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Factorization, power corrections, and the pion form factor
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This paper is an investigation of the pion form factor utilizing recently developed effective field
theory techniques. The primary results reported are both the transition and electromagnetic form
factors are corrected at order �=Q due to time ordered products which account for deviations of the pion
from being a state composed purely of highly energetic collinear quarks in the lab frame. The usual
higher twist wave function corrections contribute only at order �2=Q2, when the quark mass vanishes.
In the case of the electromagnetic form factor the �=Q power correction is enhanced by a power of
1=�s�Q� relative to the leading order result of Brodsky and Lepage, if the scale

��������
�Q

p
is nonperturbative.

This enhanced correction could explain the discrepancy with the data.

DOI: 10.1103/PhysRevD.70.054024 PACS numbers: 12.38.–t
I. INTRODUCTION

Making predictions for hadronic observables is ex-
tremely difficult given the complexity of the theory of
strong interactions (QCD). In the absence of a solution to
the theory, we are forced to accept reduced predictive
power. We can make predictions only after we have
extracted some crucial related information from the
data. Moreover, the necessary information is usually in
the form of nonlocal matrix elements and not just fixed
couplings. Even with these lowered expectations, it is still
highly nontrivial to find observables which we can predict
from first principles. The primary tool at our disposal is
factorization [1]. Observables which are ‘‘factorizable’’
can be separated into long and short distance contribu-
tions. Asymptotic freedom allows for a calculation of the
short distance piece via a perturbative expansion in the
coupling, while the long distance piece is in principle
calculable but in practice must be extracted from experi-
ment. The predictive power lies in the fact that factoriza-
tion implies universality. That is, the same
nonperturbative factor can appear in predictions for dis-
parate processes.

Proving that a certain observable is factorizable is a
highly nontrivial process. The pioneering works on the
subject [2–4] were based upon diagrammatic techniques
and can be quite intricate. Using these techniques, facto-
rization was shown to leading in 1=Q, whereQ is the large
energy scale in the process. For example, the photon-pion
transition form factor which is defined via (q � p� �

p�)

h�0�p�� j J
�0� j ��p�; ��i � �ieF��p�
���q��
���;

(1)

can be written to leading order (in 1=Q � 1=
�����������
j q2 j

p
) as
address.
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F�� �
2f�
Q2

Z 1

0
dxC1�x;Q=
����x;
�; (2)

while the pion electromagnetic (EM) form factor defined
as

h��p� j J
�0� j ��p0�i � F��Q2��p
 	 p0

�; (3)

may be written as

F� � �Qu �Qd�
f2�
Q2



Z 1

0
dxdyT1�x; y;Q=
����x;
����y;
�: (4)

In these expressions �� carries the universal, nonpertur-
bative, information about the structure of the pion and is
defined via

�if��ab���x;
� �
Z dz

2�
e�ixz �nph�a

n;pj �q�z��b
�


W�z;�z�q��z�j0i; (5)

where W is a lightlike Wilson line needed for manifest
gauge invariance. C1 and T1 are the perturbatively calcu-
lable, process dependent, high energy Wilson coefficients.
At asymptotically large values of Q, the pion wave func-
tion is dominated by its first moment and approaches the
form ���x� / x�1� x�f�. Experimentally, the prediction
for the transition form factor agrees at the 10% level,
while the EM form factor is off by a factor of order one.
Thus, the relevant questions is, how large are the sublead-
ing corrections in each case? This paper undertakes the
task of systematically categorizing the power corrections
to these processes, including the contribution from the so-
called ‘‘end-point region.’’ The issue of the breakdown of
factorization will also be discussed.
24-1  2004 The American Physical Society



IRA Z. ROTHSTEIN PHYSICAL REVIEW D 70 054024
II. SCET

The results in this paper are derived utilizing recent
developments in the so-called Soft-Collinear Effective
Theory (SCET) [5]. In this approach, factorization proofs
simplify because modes with varying virtualities are
separated at the level of the Lagrangian [6]. Proving
factorization becomes tantamount to determining if the
theory properly accounts for the IR physics of the process
under consideration. Perhaps the true power of the effec-
tive field theory approach, as applied to exclusive pro-
cesses, is that it enables one to account for power
corrections in a systematic fashion including the so-
called end-point contributions.1

To build the proper effective field theory one isolates
the degrees of freedom responsible for the nonanalytic
behavior of the low energy theory. Usually this corre-
sponds to simply integrating out massive fields, but there
are cases [7] where one wishes to explicitly separate
certain subset of fluctuations of the fields. This separation
allows for manifest power counting, which in turn makes
the classification of power corrections relatively simple.
In SCET the relevant modes in the IR are collinear pc �
�p	

c ; p�
c ; p?

c � � �n 
 pc; �n 
 pc; p?
c � �Q�#2; 1; #�, soft

ps �Q�#; #; #� and ultrasoft (usoft) pus �Q�#2; #2; #2�,
where n2 � �n2 � 0, n 
 �n � 2, and # � 1 is the expan-
sion parameter. The relevant modes are fixed by the
external momenta and use of the Coleman-Norton theo-
rem. In [6], the authors chose # / �=Q as this fixes the
transverse momenta of the external lines to be of order �,
as it should be physically. This also means that the usoft
modes have virtuality less than �, that is, their wave-
length is longer than the confinement radius. These ‘‘-
hyper-confining modes’’ should not contribute to
physical processes. In all the cases discussed in [6], it
was shown that these modes do indeed cancel in the
matrix elements. There is one additional mode which
may contribute in the case when there are at least two
collinear directions, namely, the so-called ‘‘Glauber re-
gion,’’ whose momenta scale as �#2; #2; #�. While these
modes typically are not relevant in exclusive processes,
this has yet to been shown within the context of SCET.

A. The Need for an Intermediate Theory

New subtleties in the theory arise when one considers
power corrections to exclusive processes due to what is
known as the end-point region, which is defined as the
contribution to the process where the hadron is in an
asymmetric configuration. That is, one or more of the
constituents carries a parametrically small part of the
longitudinal momentum.2 In the context of effective field
1These contributions are sometimes also referred to as the
‘‘Feynman’’ or ‘‘soft’’ regions.

2We will always be discussing processes/frames where the
hadron is nearly lightlike.
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theory language, this configuration corresponds to a sub-
leading fluctuation. To see this note that to preserve mani-
fest power counting, we take the pion to be an eigenstate
of the leading order Hamiltonian of the effective theory,
which as will be discussed below, only contains collinear
fields. As such, the overlap of the pion with a field which
contains a net soft quantum number3 will be nil. Thus, in
the effective field theory formalism these soft regions of
the wave function show up via time ordered products
wherein a collinear field fluctuates to a soft field and
then back to a collinear field. These time ordered products
must involve an operator which couples a collinear field
with a field whose momenta scale as ��;�;��. However,
momentum conservation forbids the coupling of such a
field with a collinear field whose momentum scale is
(Q;�2=Q;�).

This issue was addressed in [9], where it was pointed
out that such interactions will be properly accounted for,
if one considers working in two stages. In the initial
theory, labeled SCETI, the scaling parameter # is order�����������
�=Q

p
; this theory is valid at scales below Q but above��������

�Q
p

. In this theory interactions between collinear
�1; #2; #� and ultrasoft (#2; #2; #2) gluons are permitted.
At the scale

��������
�Q

p
, we match onto a second theory

SCETII, where # now scales as �=Q. In doing this
matching we integrate out modes with invariant mass
q2 � �Q. In SCETII, there are no interactions between
collinear and soft modes.4
III. THE TRANSITION FORM FACTOR

A. Leading Order

In the effective theory each mode is interpolated by a
distinct field and scales homogeneously in #. For in-
stance, collinear modes with large light-cone momentum
in the n direction are interpolated by $n and A


n for
fermions and gauge bosons, respectively. These fields
have support only over momenta of order #2, as their
large light-cone and transverse momenta have been
scaled out. The leading order Lagrangian for these col-
linear fields with momenta in the n direction, is given by

L �0�
c � �$n

�
in 
D	 iD6 c

?

1

i �n 
Dc
iD6 c

?

� �n6
2
$n 	L�0�

cg ; (6)

with

i �n 
Dc �
�P 	 g �n 
 An; iD?

c � P? 	 gA?
n ;

in 
D � in 
 @	 gn 
 Aus 	 gn 
 An:
(7)

The operators �P and P? are derivative-like operators
3That is, an operator which has no overlap with a purely
collinear state.

4One can think of the ultrasoft modes in SCETI as becoming
the soft modes in SCETII.
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whose eigenvalues are the large light-cone and transverse
momenta, respectively. The gluon action, L�0�

cg , can be
found in [5].

Let us start by considering the pion transition form
factor. The leading order matching for this process was
performed in [6]. This process involves the scattering of a
highly virtual photon and a quark-antiquark constituent
pair of an on-shell photon in the n direction.We will work
to leading order in �em.5 By integrating out the hard off-
shell intermediate state in the �? 	 � ! q	 �q process,
we generate a two quark operator in the SCETI. The most
general spin structures for currents with two collinear
particles moving in the same or opposite directions are
[6]

�$ nf
�n6 ; �n6 �5; �n6 �



?g$n;

�$ �nf1; �5; �


?g$n: (8)

From this result we can see that, for the case at hand,
there is only one relevant operator structure which inter-
polates for the pion, namely, �n6 �5, thus the leading order
matching result is of the form

O�0�
!1;!2 � i�?
�� �$nW�!1

�n6 �5�Wy$n�!2
; (9)

where the isospin structure has been suppressed, and
�?
� � 1

2 �n
�n��
���. Here the W’s are the Fourier trans-

forms of lightlike Wilson lines

W�y;1� � P exp
�
i
Z 1

y
�n 
 An�# �n�d#

�
; (10)

and !1;2 the total collinear momenta of the jetlike struc-
ture Wy$ and �$W respectively. Typically each operator is
accompanied by label subscripts, such labels are implied
if they are not explicit. There is an implied sum over all
label momenta such as !1;2, which will be restricted by
momentum conservation when we take a matrix element.
We may then decouple the usoft modes from the collinear
modes in the Lagrangian via field redefinitions [10]

$̂ �n; �n� � Yy
�n; �n�$�n; �n�; Â�n; �n� � Yy

�n; �n�A�n; �n�Y�n; �n�; (11)

where Y is an usoft Wilson line defined as

Yn � P exp
�
i
Z 1

y
n 
 A�#n�d#

�
: (12)

This redefinition has the effect of decoupling usoft
lines from collinear lines in the action at the cost of
introducing Y factors into the operator O0. However, we
can see that since the Y are usoft and carry no large light-
cone momenta they will cancel in O0 as a consequence of
unitarity. The Y’s will, however, show up in subleading
Lagrangian and external operators. We will drop the
5If we were to treat the photon like a hadron, then the
analysis is almost identical to the case of the EM form factor
discussed in later paragraphs.
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hatted symbol from here on, and thus the reader should
assume that all fields have been redefined as in (11).

The matching onto SCETII is trivial at this order. The
off-shellness of the external collinear lines is reduced to
being less than �Q. Taking the matrix element of this
operator between the vacuum and one pion state yields the
usual leading order result in terms of the pion wave
function (2).

B. Power Corrections

Power corrections arise from either matching onto
higher order operators or from including corrections
from the subleading Lagrangian into time ordered prod-
ucts (TOP’s). The order # action introduces couplings
between usoft and collinear fields and is given by [11–13]

L�1�
$$ � �$niD6

us
?

1

i �n 
Dc
iD6 c

?

�n6
2
$n 	 H:c:;

L�1�
cg �

2

g2
trf�iD
; iD?�

c ��iD
; iD?us
� �g 	 g:f:;

L�1�
$q � ig �$n

1

i �n 
Dc
B6 c
?Wqus 	 H:c:

(13)

with D
 � n
 �n 
Dc=2	D?

c 	 �n
n 
D=2, g.f. denotes

gauge fixing terms, and

igBc

? � �i �n 
Dc; iD

?

c� � �n��Gn�

�
? : (14)

The collinear gauge invariant field strength is

�Gn�

� � �

i
g
�iD


n 	 gA

n;q; iD�

n 	 gA�
n;q0 �: (15)

We will also need the order #2 Lagrangian

L �2�
$$ � �$n

�
D6 ?
us

i
�n 
Dc

D6 ?
us �D6 ?

c
i

�n 
Dc
�n


Dus
1

�n 
Dc
D6 ?
c

� �n6
2
$n: (16)

As discussed above, it is important to understand that
time ordered products corrections correspond to pertur-
bations of the states in the effective theory. That is, in the
effective theory the pion state is not the physical pion
state, it contains only collinear modes in SCETII. The
true pion is an eigenstate of the full Hamiltonian, so
including perturbations into the time ordered product
accounts for this difference in a systematic fashion.
There is a direct analogy with heavy quark effective
theory [14] which is perhaps illuminating. In the limit
where the quark mass is taken to infinity, the B meson is
completely static. It is true that in the physical meson the
quark has some kinetic energy, but these effects can be
included when considering power corrections, via time
ordered products with subleading operators. In this way
we can build up the full meson state order by order in the
-3
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inverse quark mass. For a pedagogical discussion on the
subject see [8].

Matching onto SCETI we may generate order # opera-
tors by inserting Bc?


 into O�0�,

O�1� � i �n��?
�
� �$nW�!1

�n6 �5�W
yB�?

n W�!2
�Wy$n�!3

:

(17)

But this operator does not interpolate for the pion.6

Operators with insertions of Dc
?, can be absorbed into

O�1�. We may also consider quark mass effects, which
may arise from either the expansion of the fields via

q �

�
1	

1

�n 
 iDc
�iD6 c

? �mq�
�n6
2

�
$n; (18)

or from including mass effects in perturbative matching.
Using a simple spurion [10] analysis and the fact that
there is only one possible nonvanishing Dirac structure in
the effective theory which violates chirality, it is simple
to show that matching cannot generate any O�#0� opera-
tors7 which are linear in the quark mass to all orders in
perturbation theory. However, the introduction of a quark
mass generates a new O�#� operator

O�1�
m � i�?
�� �$nW�!1

�?�1�W�i
�
D�
?�

1
? � i ~D�

?�
1
?�W

y�!2


 �Wy$n�!3
: (19)

The spontaneous breaking of chiral symmetry would lead
these contributions to be numerically enhanced.

The possible order #2 operators which are bilinear in
the collinear quarks are

O�2�
a � i�?
�� �$nW�!1

�Wy
n n 
DWy�!2

�n6 �5�Wy$n�!3
; (20)

O�2�
b � i�?
�� �$nW�!1

�WD6 c
?W

y�!2


�WD6 c
?W

y�!3

�n6 �5�W
y$n�!4

; (21)

where the appearance of the momentum subscript implies
the existence of nontrivial Wilson coefficients which ac-
count for possible insertions of the operator �n 
Dc. O

�2�
b is

a representative of a class of operators with two transverse
covariant derivatives acting in all possible ways. The
Wilson coefficients of these operators will be related by
reparameterization invariance [12]. Other operators in-
volving collinear field strength operators can be expressed
in terms of linear combinations of these operators. In
addition, it is possible to generate operators with one
collinear and one usoft quark, i.e., �$nW �n6 �5qus, but the
contribution from this operator will be order #3 since an
additional insertion of a subleading operator is necessary
6We work in a frame where the transverse momentum of the
pion vanishes.

7Though the operator itself is leading order it would come in
suppressed by mq=Q.
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to get a nonvanishing matrix element between pion and
vacuum.

We now match onto the lower theory SCETII, where
external virtualities are restricted to be less than �Q. In
doing so, the external states will pick out a subset of the
collinear modes whose transverse label momentum is of
order �. In addition, the usoft modes get relabeled to be
soft modes. For Wilson lines this transformation is de-
noted by Y ! S. O�2�

a will now scale as O��2=Q2�, since
n 
D picks out the smallest component of the collinear
field which now scales in this way. The operators in the
class of O�2�

b will have vanishing Wilson coefficients when
matching onto SCETII since we set the external trans-
verse momenta to zero. Formally this occurs because

P ?$II � 0: (22)

However, there are a class of identical operators with
usoft derivatives as well which will give �2=Q2 correc-
tions in SCETII. This scaling arises because usoft modes
in SCETI match onto soft modes in SCETII which scale
as �=Q. In addition, we will generate new operators by
considering the time ordered products in SCETI

T1 �
Z
d4xd4yT�O�0�L�1�

i �x�L�1�
i �y��;

T2 �
Z
d4xT�O�0�L�2�

j �x��;
(23)

where L�1�
i and L�2�

i are any of the first and second order
Lagrangian corrections, respectively. Since the external
states have vanishing transverse momenta as far as the
label operators in SCETI are concerned, any operator
with an odd number of transverse derivatives vanishes.
TOPs with an even number of derivatives need not vanish
since there exists nonvanishing Wick contractions.8 The
TOPs T1 and T2, however, will have nonvanishing match-
ing coefficients and will contribute at order �=Q.

To see how this scaling comes about, note that while
the power corrections to the Lagrangian L�1;2�

i will scale
down from being order �=Q to �2=Q2; this will not
happen within the time ordered product. The reason for
this is that once we lower the virtuality of the external
lines down to q2 ��2, the collinear field scaling goes
from

��������
�Q

p
to �, but internal collinear lines connecting

operators at distinct points will still scale as they did in
SCETI. This leads to enhancements in time ordered prod-
ucts relative to local operators. For instance, if we con-
sider T2, then a Wick contraction of collinear lines
between the two operators leads to a fermion line which
is off-shell by �Q. Thus the effective scaling of the
product of these two fields is �=Q, whereas if they
carried off-shellness �2, the scaling would be just
�2=Q2, hence the enhancement. Furthermore, if the scale
8Note this is not true for the ‘‘local’’ operators O�2�
b .
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��������
�Q

p
is perturbative we may integrate out these off-shell

modes perturbatively.
Thus the correction to the leading order result may be

written formally as

Q3

2i
�F�� �

Z
d4xd4y

Z
d!jC�!j�


h�n;p j O�0�
!jL

�1�
i �x�L�1�

i �y�j0i

	
Z
d4x

Z
d!jC�!j�h�n;p


jO�0�
!jL

�2�
i �x�j0i: (24)
Note that the large light-cone momenta (!i) flowing out
of the leading order operator will now flow into the
vertices of the subleading Lagrangian insertions.

It is interesting to note that in the SCET formalism all
the power corrections are factorable, in the sense that they
can be written as products of matrix elements of various
types of fields.9 That is, factorization is manifest in all the
power corrections, since after the field redefinition, none
of the various types of fields communicate. As a conse-
quence of this, all of the soft fields may be factored into
vacuum matrix elements which are independent of the
hadron, since these fields have no overlap with the had-
rons. This implies that, under our working assumption
that SCET, in particular, SCETII, as formulated in [5,9] is
the appropriate effective field theory for the above pro-
cesses, the soft pieces of all hadrons are universal. Thus,
there is hope that we can extract the soft structure func-
tions and use them to make predictions in disparate
processes.
IV. THE ELECTROMAGNETIC FORM FACTOR

A. Leading Order

Let us now consider the EM form factor. As we will
see, the existence of two jets will have important ram-
ifications. In this case, the Lagrangian splits into two
pieces, one for each type of collinear mode, which do
not communicate,

L tot � L �n 	Ln: (25)
The usual leading order Brodsky-Lepage (BL) result
was regained in SCET by matching the full QCD current
onto four quark operators which are generated at order
�s�Q� [6],
9I thank Mark Wise and Iain Stewart for emphasizing this
point to me.
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O�0�
1 � �n	 �n�
� �$nWn�!1

�n6 �5�W
y
n $n�!2


� �$ �nW �n�!3
n6 �5�W

y
�n $ �n�!4

;

O�0�
8 � �n	 �n�
� �$nWn�!1

�n6 �5Ta�Wy
n $n�!2


� �$ �nW �n�!3
n6 �5Ta�Wy

�n $ �n�!4
:

(26)

The subscripts of these operators denote their color
representation.

Scaling the fields by the usoft Wilson lines has no
effect. The fields of opposing directions do not couple
and, therefore, the matrix element of these operators
between pion states of opposing lightlike directions fac-
torizes into the result (5) with the octet contribution
vanishing.

B. Power Corrections

When we are concerned with power corrections, we
must consider the matching onto operators which may not
necessarily have nonvanishing overlap with the pions. A
nonzero overlap can be achieved via some TOPs with
subleading terms in the Lagrangian. In the EM case we
may also match onto a quark bilinear

O��2��!1; !2� � � �$ �nW �n�!1
��Wy

n $n�!2
; (27)

where the possible Dirac structures � are given in (8).
This operator is enhanced by a factor #�2 relative to the
four quark operator since each collinear fields scales as #.
However, charge conjugation implies that the only struc-
ture with nonvanishing Wilson coefficient is �?


 which
will not contribute for the case of the pion but will for the
case of the �. At next order in matching the operators

O��1�
a � �n
� �$ �nD6�

?
c; �nW �n�!1

�Wy
n $n�!2

; (28)

O��1�
b � n
� �$ �nW �n�!3

�Wy
n
~D6
?
c;n$n�!4

; (29)

are generated at order �0
s . Current conservation and rep-

arameterization invariance will relate the Wilson coeffi-
cients �Ca; Cb� of these two operators such that
!1Ca 	!4Cb � 0. Note that we have introduced here
two covariant derivatives with labels n and �n, referring to
the two distinct collinear sectors.

As opposed to the previous subleading operators, Oa;b

are not invariant under the ultrasoft field redefinitions
(11). In the redefined basis we have

O��1�
a � �n
� �$ �nD6�

?
c; �nW �nY �n�!1

�Yy
nW

y
n $n�!2

; (30)

O��1�
b � n
� �$ �nW �nY �n�!3

�Yy
nW

y
n
~D6
?
c;n$n�!4

: (31)

The leading order matrix elements between back to back
pions of this operator vanish. To generate a nonzero over-
lap, all that is needed is the proper insertion of subleading
operators which will inject one collinear quark into each
jet. Furthermore, to get a nonvanishing Wilson coeffi-
-5



FIG. 1. Integrating out modes with virtuality
��������
�Q

p
lead to

operators which represent the soft piece of the wave function.
The solid (hatched) circle represents modes off-shell by Q
(

��������
�Q

p
).
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cient, the TOP should contain an even number of inser-
tions of D6 ?

c [9]. This can be accomplished via a usoft
(which becomes soft in SCETII) partonic fluctuation. The
TOP

Tus�!i� �
Z
d4xiTf�Ca�!1;!2�O

��1�
a Ln�1�

$$ �x1�

	Cb�!3;!4�O
��1�
b L �n�1�

$$ �x1��L
�n�1�
$q �x2�L

n�1�
$q �x3�g;

(32)

gives an order �=Q contributions to the EM pion form
factor of the form

Q2�F� �
Z
d!ih�n;p j Tus�!i� 	 H:c: j � �n;p0 i: (33)

This type of correction was anticipated in [2] and is
simply a correction to the pion state. Note that each of
the operators must be accompanied by a subleading
Lagrangian which contains a collinear gluon moving in
the opposite direction relative to the gluon in the opera-
tors. This insertion is needed to ensure that there are an
even number of transverse covariant derivatives in both
directions.
054024
If the scale �Q were perturbative then we could inte-
grate the intermediate gluons as depicted in Fig. 1. The
ultrasoft quark lines, being fluctuations of virtuality �2,
would only be closed once the matrix element is taken.
There is an additional operator which gives an identical
contribution but with n $ �n. TOPs at this order involving
insertions of the quark mass have zero matching coeffi-
cients as they involve powers of the external transverse
momentum. However, there will be quark mass depen-
dence in the nonperturbative matrix elements in SCETII
which will be relevant for SU(3) [15] and are only down
by m=�.

Notice that the usual leading order BL result is propor-
tional to �s�Q� while this soft contribution scales as
�s�

��������
Q�

p
�2. The data only reaches Q2 � 10 GeV2, with

error bars as large as the signal itself at larger Q [16].
Given that � is of order 1 GeV, the scale

��������
�Q

p
is likely

nonperturbative over most of the range of the data, giving
the TOP an enhancement of 1=�s�Q� relative to the lead-
ing order BL result. Thus, we see that the lack of con-
cordance between theory and data may be due to the
enhanced power correction in the EM form factor. Of
course, there are other possible reasons for the discrep-
ancy. It could be that using the asymptotic wave function
is a poor approximation for these values of Q. However,
the fact that the transition form factor seems to agree with
the data [17], within theory errors, lends credence to the
possibility that the enhanced power correction discussed
here could be the real culprit. Finally, the discrepancy
could also be due to the extrapolation of the �?p ! �n
data to the pion pole [18].
ACKNOWLEDGMENTS

This work was supported in part by the DOE under
Grant Nos. DOE-ER-03-40682-143 and DE-AC02-
76CH03000.
[1] For a review see S. J. Brodsky and G. P. Lepage, in
Perturbative Quantum Chromodynamics, (World
Scientific, Singapore, 1989), p. 93; J. C. Collins, D. E.
Soper, and G. Sterman, ibid., p. 1.

[2] G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157
(1980).

[3] A.V. Efremov and A.V. Radyushkin, Phys. Lett. 94B, 245
(1980).

[4] A. Duncan and A. H. Mueller, Phys. Lett. 90B, 159
(1980).

[5] C.W. Bauer, S. Fleming, and M. Luke, Phys. Rev. D 63,
014006 (2001); C.W. Bauer, S. Fleming, D. Pirjol, and
I.W. Stewart, Phys. Rev. D 63, 114020 (2001); C.W. Bauer
and I.W. Stewart, Phys. Lett. B 516, 134 (2001); C.W.
Bauer, D. Pirjol, and I.W. Stewart, Phys. Rev. D 65,
054022 (2002).

[6] C.W. Bauer et al., Phys. Rev. D 66, 014017 (2002).
[7] M. E. Luke, A.V. Manohar, and I. Z. Rothstein, Phys. Rev.

D 61, 074025 (2000); For a pedagogical introduction see
Rothstein ([8]).

[8] I. Z. Rothstein, hep-ph/0308266.
[9] C.W. Bauer, D. Pirjol, and I.W. Stewart, Phys. Rev. D 67,

071502 (2003).
[10] See, for example, H. Georgi, Weak Interactions and

Modern Particle Theory, (Benjamin/Cummings, Menlo
Park, CA, 1984).
-6



FACTORIZATION, POWER CORRECTIONS, AND THE . . . PHYSICAL REVIEW D 70 054024
[11] J. Chay and C. Kim, Phys. Rev. D 65, 114016
(2002).

[12] A.V. Manohar et al. Phys. Lett. B 539, 59 (2002).
[13] M. Beneke et al., Nucl. Phys. B643, 431 (2002).
[14] A.V. Manohar and M. B. Wise, Cambridge Monogr. Part.

Phys., Nucl. Phys., Cosmol. 10, 1 (2000).
[15] A. K. Leibovich, Z. Ligeti, and M. B. Wise, Phys. Lett. B

564, 231 (2003).
054024
[16] C. J. Bebek et al., Phys. Rev. D 17, 1693 (1978); NA7
Collaboration, S. R. Amendolia et al., Nucl. Phys. B277,
168 (1986).

[17] CLEO Collaboration, J. Gronberg et al., Phys. Rev. D 57,
33 (1998).

[18] C. E. Carlson and J. Milana, Phys. Rev. Lett. 65, 1717
(1990).
-7


