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We compute power-suppressed corrections to the �� and �0� transition form factors Q2F���0���Q
2�

arising from the end point regions x ! 0; 1 by employing the infrared-renormalon approach. The
contribution to the form factors from the quark and gluon content of the �;�0 mesons is taken into
account using for the �� �0 mixing the SUf�3� singlet �1 and octet �8 basis. The theoretical
predictions obtained this way are compared with the corresponding CLEO data and restrictions on
the input parameters (Gegenbauer coefficients) Bq

2��1�, B
g
2��1�, and Bq

2��8� in the distribution ampli-
tudes for the �1; �8 states with one nonasymptotic term are deduced. Comparison is made with the
results from QCD perturbation theory.
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I. INTRODUCTION

The electromagnetic transition form factors (FFs)
FM��Q2� of light pseudoscalar M � �0; �; �0 mesons
were the subject of much theoretical [1–10] and experi-
mental [11] research in recent years. For instance, the
CLEO collaboration reported about rather precise mea-
surements of the �0�;�� and �0� transition FFs that
stimulated interesting theoretical investigations aiming
to account for the obtained experimental data within the
framework of QCD. One of the key objectives of such
analyses is to model the �0; � and �0 mesons distribution
amplitudes (DAs) and, in the �;�0 case, to extract infor-
mation on their gluon components.

Indeed, it is known that the physical � and �0 mesons
can be represented as superpositions of a flavor SUf�3�
singlet �1 and octet �8 state

j�i 	 cospj�8i � sinpj�1i;

j�0i 	 sinpj�8i 
 cospj�1i:
(1)

Unlike the octet �8 state, the SUf�3� singlet �1 contains a
two-gluon component [12], which even absent at the
normalization point �2

0 , appears in the region Q2 >�2
0

owing to quark-gluon mixing and renormalization-group
evolution of the �1 state DA. The � and �0 mesons (cf.
Equation (1)) receive a gluon contribution due to the gluon
content of the �1 state. Because the meson-photon tran-
sition at leading-order (LO) is a pure electromagnetic
process, the gluon components of the � and �0 mesons
can contribute directly to the �� and �0� transitions only
at next-to-leading-order (NLO) due to quark box dia-
grams. They also affect the LO result through evolution
of the quark component of the �, �0 meson DAs.
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Contributions to the �� and �0� transition FFs, originat-
ing from the gluon content of the � and �0 mesons, were
recently computed [6] within the framework of the stan-
dard hard-scattering approach (HSA) of the perturbative
QCD (PQCD) and estimates of the expansion parameters
in the meson DAs were given.

The gluon contributions to the �� and �0� electromag-
netic transition FFs are subdominant. But in some exclu-
sive processes, like the B meson two-body nonleptonic
exclusive and semi-inclusive decays, which involve the �
and �0 mesons, their gluon contribution can potentially
play an essential role in explaining the experimental data
(see Ref. [13] and references cited therein). The reason is
that in these processes the gluon component of the � and
�0 mesons contributes to corresponding hard-scattering
amplitudes already at LO of perturbative QCD. Hence,
the gluonic parts of the �;�0 meson DAs, deduced from
the ��; �0� data, are important input ingredients in
studying a wide range of exclusive processes, given that
they are universal, i.e., process- and frame-independent
quantities.

The HSA and the perturbative QCD factorization the-
orems [14], at asymptotically large values of the
momentum-transfer Q2, lead to reliable predictions for
exclusive processes. But in the momentum-transfer re-
gime of a few GeV2, experimentally accessible at present
for most exclusive processes, power-suppressed correc-
tions �1=Q2�n; n 	 1; 2; 3 . . . may play an important role
in explaining the experimental data. In order to evaluate
such corrections, the QCD running-coupling (RC)
method, combined with the infrared (IR) renormalon
approach, was proposed [1,2,13,15,16]. This method al-
lows one to evaluate power-behaved contributions in ex-
clusive processes arising from the end point regions
x ! 0; 1. In this manner, power corrections to the elec-
tromagnetic FFs FM�Q2� (M � �, K) [15,16], to the tran-
sition FFs FM��Q2� (M � �0; �; �0) [1,2], as well as to
20-1  2004 The American Physical Society
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the gluon-gluon-�0 vertex function [13] were computed.
Power corrections can also be obtained by means of the
Landau-pole free expression for the QCD coupling con-
stant [17]. This analytic approach was used to calculate in
a unifying way power corrections to the electromagnetic
pion FF and such to the inclusive cross section of the
Drell-Yan process [18,19].

Power corrections to the �� and �0� electromagnetic
transition FFs within the RC method were computed in
Ref. [1] and predictions for the structure of the DAs of the
� and �0 mesons were made. In the present work we
extend this sort of investigation by also including into
the calculation of the ��;�0� transition FFs the power
corrections originating from the gluonic content of the
�;�0 mesons that were not taken into account in Ref. [1].
This will enable us to extract their DAs from comparing
our theoretical predictions with the CLEO data [11].

The paper is structured as follows: Sec. II contains the
required information on the hard-scattering amplitudes
for the �1� and �8� transitions, accounting also for the
gluon content of the �1 state. The DAs of the SUf�3�
singlet �1 and octet �8 states are considered and their
evolution is taken into account. In Sec. III we compute the
�� and �0� transition FFs within the RC method and
obtain the Borel resummed expressions for them. The
asymptotic limit Q2 ! 1 of these FFs is explored and
the standard HSA leading-twist predictions for the FFs
are recovered. In Sec. IV we perform a numerical analysis
and compare our results with the CLEO [11] data with the
aim to extract constraints on the � and �0 meson DAs.
Finally, Sec. V contains our concluding remarks.
II. SUf�3� SINGLET AND OCTET COMPONENTS
OF THE ��, �0� TRANSITION FORM FACTORS

The meson-photon electromagnetic transition FF
FM��Q

2� can be defined in terms of the invariant ampli-
tude �� of the process1

���q1� 
 ��q2� ! M�p� (2)

in the following way

�� 	 ie2FM��Q2���������q2�q1�q2�; (3)

where ���q2� is the polarization vector of the real photon
andQ2 	 �q2

1. The FFs of the �� and�0� transitions are
sums of the corresponding singlet F1

M��Q
2� and octet

F8
M��Q

2� contributions

FM��Q
2� 	 F1

M��Q
2� 
 F8

M��Q
2�: (4)

The FF of the octet state F8
M��Q

2� and the quark-related
component of the FF of the singlet state, F1

M��Q
2�, can be

computed by employing the results obtained for the pion-
1Hereafter M denotes the � or �0 meson.
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photon transition FF [6,20]. The latter is known at O��s�
of PQCD [20]. More recently, also a part of O��2

s � cor-
rections were computed [21]. The gluonic component of
the singlet contribution F1

M��Q
2� was just recently calcu-

lated within the framework of the HSA of the perturba-
tive QCD in Ref. [6].

In accordance with the PQCD factorization theorems,
at large momentum-transfer, the FFs F1

M��Q
2� and

F8
M��Q

2� can be represented in the form of a convolution
of the corresponding hard-scattering amplitudes with the
quark and gluon components of the DAs of the �1 and �8

states,

Q2F1
M��Q

2� 	 f1
MN1

�
Tq

H;0�x� �q
�1�x;�

2
F�



�s��

2
R�

4�
CF�T

q
H;1�x;Q

2; �2
F� �q

�1�x;�
2
F�


Tg
H;1�x;Q

2; �2
F� �g

�1�x;�
2
F��

�
(5)

and

Q2F8
M��Q

2� 	 f8
MN8

�
Tq

H;0�x� ��8
�x;�2

F�



�s��

2
R�

4�
CFT

q
H;1

��x;Q2; �2
F� ��8

�x;�2
F�

�
; (6)

where all quantities above are renormalized, i.e., are
singularity-free, and the symbol  denotes the convolu-
tion

TH�x� ��x� 	
Z 1

0
dxTH�x���x�:

Here the functions Tq
H;0�x� and Tq

H;1�x;Q
2; �2

F� are the
hard-scattering amplitudes for the partonic subprocess
�
 �� ! q
 q at LO and NLO, respectively, and
Tg

H;1�x;Q
2; �2

F� is the NLO hard-scattering amplitude for
�
 �� ! g
 g, with �2

F, �2
R being the factorization and

renormalization scales. In Eqs. (5) and (6), fiM are the M-
meson-decay constants, CF 	 4=3 is the color factor, and
N1 andN8 are numerical constants, each depending on the
quark structure of the associated �1, �8 states

N1 	
1���
3

p �e2
u 
 e2

d 
 e2
s�; N8 	

1���
6

p �e2
u 
 e2

d � 2e2
s�: (7)

The hard-scattering amplitudes Tq
H;0�x�,

Tq
H;1�x;Q

2; �2
F�, and Tg

H;1�x;Q
2; �2

F� are well-known
[6,20,21] and are given by the following expressions
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Tq
H;0�x� 	

1

x



1

x
;

Tq
H;1�x;Q

2; �2
F� 	

1

x

�
ln2x�

x lnx
x

� 9
�



1

x
�3 
 2 lnx� ln

Q2

�2
F


 �x $ x�;

Tg
H;1�x;Q

2; �2
F� 	

xln2x
x




�
6 �

4

x

�
lnx


2
x lnx
x

ln
Q2

�2
F

� �x $ x�; (8)

where x � 1 � x.
The next ingredients needed for computing the

FFs F1
M��Q

2� and F8
M��Q

2� are the meson-decay con-
stants fiM and the distribution amplitudes
�q

�1�x;�
2
F�; �

g
�1�x;�

2
F�, and ��8

�x;�2
F� for the �1; �8

states. The decay constants fiM are defined as the matrix
elements of the axial-vector currents Ji�5 with i 	 1; 8

<0jJi�5jM�p�> 	 ifiMp�: (9)

In the octet-singlet basis the constants fiM can be parame-
terized by two methods. One is to follow the pattern of
state mixing (cf. Equation (1))

f8
� 	 f8 cosp; f

1
� 	 �f1 sinp;

f8
�0 	 f8 sinp; f1

�0 	 f1 cosp;
(10)

where the decay constants f1; f8 and p are given by [22]

f1 	 1:17f�; f8 	 1:26f�; p 	 �15:4� (11)

with f� 	 0:131 GeV being the pion decay constant.
The second method employs a two-mixing-angles pa-

rametrization:

f8
� 	 f8 cos8; f

1
� 	 �f1 sin1;

f8
�0 	 f8 sin8; f1

�0 	 f1 cos1
(12)

with the mixing-angles 1 and 8 provided by [22]

1 	 �9:2�; 8 	 �21:2�: (13)

parametrization (10) leads to simple expressions for the
physical FFs in terms of F�1��Q

2� and F�8��Q
2�;, viz.,

F���Q
2� 	 F�8��Q

2� cosp � F�1��Q
2� sinp;

F�0��Q
2� 	 F�8��Q

2� sinp 
 F�1��Q
2� cosp;

(14)

where the form factors F�1��Q
2� and F�8��Q

2� are deter-
mined by expressions (5) and (6), but with the decay
constants fiM replaced by fi. In our numerical computa-
tions we shall use both schemes the conventional one-
angle mixing scheme and also the two-mixing-angles
parametrization.

The main question still to be answered concerns the
shape of the DAs of the �1 and �8 states. In general, a
054020
meson DA is a function containing all nonperturbative,
long-distance effects, which cannot be calculated by em-
ploying perturbative QCD methods. Nonetheless, as a
direct consequence of factorization, the evolution of the
DAwith the factorization scale �2

F is governed by PQCD.
Input information at the starting point of evolution, i.e.,
the dependence of the DA on the variable x at the nor-
malization point �2

0, has to be extracted from experimen-
tal data or derived via nonperturbative methods, for
example, QCD sum rules with nonlocal condensates
[23] (see also [24]) or instanton-based models [25] at
some (low) momentum scale, characteristic of the par-
ticular nonperturbative model.

Because of mixing of the quark-antiquark component
with the two-gluon part of the DA, the evolution equation
for the DA of the flavor singlet pseudoscalar �1 state has a
2 � 2 matrix form [12]. The solution of this equation is
given by the expressions

�q�x;�2
F� 	 6xx

"
1 


X1
n	2;4::

(
Bq
n

�
�s��2

0�

�s��2
F�

��n


�0


$g
nB

g
n

�
�s��

2
0�

�s��2
F�

��n�
�0

)
C3=2
n �x� x�

#
(15)

and

�g�x;�2
F� 	 xx

X1
n	2;4::

(
$q
nB

q
n

�
�s��2

0�

�s��2
F�

��n


�0


Bg
n

�
�s��

2
0�

�s��
2
F�

��n�
�0

)
C5=2
n�1�x� x�: (16)

Here C3=2
n �z� and C5=2

n �z� are Gegenbauer polynomials.
Detailed information concerning the parameters $q

n; $
g
n

and the anomalous dimensions �n

; �

n
� can be found in

Ref. [13]. In Eqs. (15) and (16) the coefficients Bq
n and Bg

n

will be considered as free input parameters, the values of
which at the normalization point �2

0 determine the shapes
of the DAs �q�x;�2

F� and �g�x;�2
F�.

In our calculations we shall use a phenomenological
DA for the �1 state containing only the first Gegenbauer
polynomials C3=2

2 �x� x� and C5=2
1 �x� x� (i.e., Bq

2 �

0; Bg
2 � 0 and Bq

n 	 Bg
n 	 0 for all n > 2)

C3=2
2 �x� x� 	 6�1 � 5xx�; C5=2

1 �x� x� 	 5�x� x�: (17)

Under this assumption, the DAs assume the following
forms [13]

�q
�1�x;�

2
F� 	 6xx�1 
 A��2

F� � 5A��2
F�xx�;

�g
�1�x;�

2
F� 	 xx�x� x�B��2

F�:
(18)

For nf 	 3, in other words, for momentum transfers Q2

below the charm-quark production threshold, the func-
-3
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tions A��2
F� and B��2

F� are defined by

A��2
F� 	 6Bq

2

�
�s��2

F�

�s��
2
0�

�48
81
�
Bg

2

15

�
�s��2

F�

�s��
2
0�

�101
81
;

B��2
F� 	 16Bq

2�
�s��2

F�

�s��2
0�
�

48
81 
 5Bg

2�
�s��2

F�

�s��2
0�
�
101
81 :

(19)

The DA of the octet �8 state contains only the quark
component ��8

�x;�2
F�. This DA is identical to �q

�1�x;�
2
F�,

but with A��2
F� replaced by C��2

F�, i.e.,

C��2
F� 	 6Bq

2

�
�s��2

F�

�s��
2
0�

�50
81
: (20)

The explicit expressions for the functions A��2
F� and

B��2
F� at momentum transfers above the charm-quark

threshold (or, for nf 	 4) can be found in the Appendix
of Ref. [13]. For nf 	 4, the function C��2

F� should be
modified to read 50=81 ! 2=3. If necessary, we shall
distinguish between input parameters in Eqs. (19) and
(20) by using the notations Bq

2��1� and Bq
2��8�.
III. BOREL RESUMMED �� AND �0�
TRANSITION FORM FACTORS

In Sec. II we have outlined the key ingredients pertain-
ing to both the standard HSA as well as the RC treatment
of the transition FFs F1

M��Q
2� and F8

M��Q
2�. Let us

now turn to a discussion of the main differences between
these two approaches, starting with the choice of
the scales �2

R and �2
F. It is evident that if a physical

quantity can be factorized, like Eqs. (5) and (6), then
the left-hand side (LHS) cannot depend on artificial
intrinsic scales or on the particular renormalization
and factorization schemes adopted. But at any finite order
of QCD perturbation theory, truncation of the corre-
sponding perturbative series will give rise to a depen-
dence on the scales �2

F and �2
R, as well as on the

factorization and renormalization scheme (for an in-
depth discussion of these issues, we refer the reader to
the second paper of Ref. [5]). Because higher-order cor-
rections in perturbative QCD computations are, as a rule,
large for both inclusive and exclusive processes, reliable
theoretical predictions require an optimal scale-setting
that minimizes higher-order corrections. Typically, the
factorization scale enters the NLO contribution to the
hard-scattering amplitude of meson transition or electro-
magnetic form factors in the form � ln�Q2=�2

F�, so that
taking �2

F equal to Q2 eliminates this term. But in order
to analyze the sensitivity of our results to a chosen value
of �2

F, we shall perform all analytical computations for
�2

F � Q2.
The choice of the renormalization scale is somewhat

subtler because this scale enters not only the NLO con-
tribution, but also as the argument of the running strong
coupling �s��2

R�. To discuss this question, consider first
054020
the scale of the strong coupling. One effective method to
solve this problem is the Brodsky-Lepage-Mackenzie
(BLM) scale-setting procedure [26]. In this framework,
a large part of the higher-order corrections—namely,
those originating from the diagrams with quark ‘‘bub-
bles’’ insertions—can be absorbed into the scale of the
QCD coupling constant. When utilizing this new scale
one finds the NLO correction to be significantly reduced
relative to its initial value. The generalization of the BLM
procedure to all orders of perturbative QCD led to the
invention of the RC method and the IR renormalon ap-
proach (for a review, see Ref. [27]). In the case of inclusive
processes, it was proven by explicit calculation that all-
order resummation of diagrams with a chain of (quark)
bubble insertions into the gluon line gives the same
results as the calculation of one-loop Feynman diagrams
for the quantity under consideration using the QCD
running-coupling at the vertices. Moreover, the IR renor-
malon approach in conjunction with the ‘‘ultraviolet
dominance hypothesis’’ enables one to estimate higher-
twist corrections to a wide range of inclusive processes.

This approach was used for studying IR renormalon
effects in exclusive processes as well. For instance,
���0�s=4��n corrections to the Brodsky-Lepage evolu-
tion kernel V�x; y;�s�Q

2�� were computed in Ref. [28,29]
and renormalon-chain contributions to the pseudoscalar
meson DA and the �0� transition FF were taken into
account in [28]. Similar investigations along this line of
thought were performed in Refs. [30,31].

In addition to loop-integration ambiguities, exclusive
processes may receive power-behaved contributions from
the end point regions due to the integration in a process
amplitude over the longitudinal momentum fractions of
the involved partons. In fact, in order to reduce the NLO
correction, for example, to the pion electromagnetic FF
F��Q

2�, the renormalization scale �2
R should be set equal

to the typical four-momentum, flowing through hard
gluon lines in the partonic subprocess qq0 
 �� ! qq0

[26]. Choosing the scale �2
R this way, inevitably leads to a

dependence on the longitudinal momentum fractions car-
ried by the hadron’s constituents. In the case of F��Q2�,
the NLO contribution to the hard-scattering amplitude
T1

H�x; y;Q
2� contains a logarithm of the form

ln�x yQ2=�2
R�, with x and y being, respectively, the lon-

gitudinal momentum fractions of the quarks in the initial
and the final pion. Hence, the natural choice to eliminate
this term would be to set �2

R 	 x yQ2. But due to the
convolution of the hard-scattering with the soft compo-
nents (cf. e.g., Eq. (5)), integrations over x and y appear
that give rise to power corrections when approaching the
end point x ! 0; 1; y ! 0; 1 regions. Renormalizing the
process amplitude at a scale close to the large external
momentum Q2 makes such contributions less pronounced
but at the expense of large NLO logarithms. Therefore, if
we are to optimize our theoretical calculation, we have to
-4
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minimize NLO contributions while keeping under con-
trol power corrections in the end point regions.

Specifically, for the meson-photon transition we have

�2
R 	 Q2x; �2

R 	 Q2x; (21)

because in the corresponding two, leading-order,
Feynman diagrams the absolute values of the square of
the momenta flowing through virtual quark lines are
determined exactly by these expressions. In the standard
HSA one ‘‘freezes’’ the scale of the QCD coupling con-
stant �2

R (�2
R), by replacing x by its mean value <x> 	

1=2 and performs then the integrations in Eqs. (5) and (6)
with �s�Q

2=2�. Let us stay within the HSA and concen-
trate on the NLO corrections to the quark component of
Eq. (5). Omitting an unimportant, in the present context,
constant factor, we get

Q2F1
M��Q

2�
quark
1 � �s

�
Q2

2

�
t�x;�2

F� �q
�1�x;�

2
F�


�s

�
Q2

2

�
t�x;�2

F� �q
�1�x;�

2
F�

	 2�s

�
Q2

2

�
t�x;�2

F� �q
�1�x;�

2
F�; (22)

where the function t�x;�2
F� is

t�x;�2
F� 	

1

x

�
ln2x�

x lnx
x


 �3 
 2 lnx�a� 9
�

(23)

and a 	 ln�Q2=�2
F�. In deriving Eq. (22) we used the

symmetry property of the quark component of the �1

state DA, valid also for the function ��8
�x;�2

F�,

�q
�1�x;�

2
F� 	 �q

�1�x;�
2
F�; ��8

�x;�2
F� 	 ��8

�x;�2
F�:

(24)

The generalization of our analysis to encompass the gluon
component of the FF is straightforward.

Applying the RC method, the same quark component
of the �1� transition FF takes the form

Q2F1
M��Q

2�
quark
1 � �s�Q

2x�t�x;�2
F� �q

�1�x;�
2
F�


�s�Q
2x�t�x;�2

F� �q
�1�x;�

2
F�

	 2�s�Q
2x�t�x;�2

F� �q
�1�x;�

2
F�: (25)

After a similar analysis for the gluon component of the
form factor Q2F1

M��Q
2�, using the RC method, we find

Q2F1
M��Q

2�
gluon
1 � 2�s�Q2x�g�x;�2

F� �g
�1�x;�

2
F�; (26)

with the function g�x;�2
F� being given by the expression

g�x;�2
F� 	

xln2x
x




�
6 �

4

x

�
lnx
 2a

x lnx
x

(27)

by making use of the antisymmetry of the gluon DA
�g

�1�x;�
2
F� under the exchange x $ x
054020
�g
�1�x;�

2
F� 	 ��g

�1�x;�
2
F�: (28)

The gluon component in the standard HSA has the same
form (26) with the argument of �s being replaced by
Q2=2.

Summing up, we can write the transition FFs
Q2F1

M��Q
2� and Q2F8

M��Q
2� in the context of the RC

method as follows

Q2F1
M��Q

2� 	 f1
MN1fT

q
H;0�x� �q

�1�x;�
2
F�



CF

2�
��s�Q2x�t�x;�2

F� �q
�1�x;�

2
F�


�s�Q
2x�g�x;�2

F� �g
�1�x;�

2
F��g (29)

and

Q2F8
M��Q

2� 	 f8
MN8

�
Tq

H;0�x� ��8
�x;�2

F�



CF

2�
�s�Q2x�t�x;�2

F� ��8
�x;�2

F�

�
: (30)

But the integrations over x in Eqs. (29) and (30), when
retaining the x dependence of the QCD coupling �s�Q

2x�
[�s�Q

2x�], lead to divergent integrals because the
running-coupling �s�Q

2x� [�s�Q
2x�] suffers from an in-

frared singularity in the limit x ! 0 [x ! 1]. This means
that in order to perform calculations with the running-
coupling, some procedure for its regularization in the end
point x ! 0; 1 regions has to be adopted.

As a first step in this direction, we express the running-
coupling �s�Q

2x� in terms of �s�Q
2�, employing the

renormalization-group equation, to find [32],

�s�Q
2x� ’

�s�Q2�

1 
 lnx=t

�
1 �

�s�Q2��1

2��0

ln�1 
 lnx=t�
1 
 lnx=t

�
;

(31)

where �s�Q
2� is the one-loop QCD coupling, t 	

4�=�0�s�Q
2� 	 ln�Q2=#2�, with �0 and �1 being the

one and two-loop coefficients of the QCD beta function

�0 	 11 �
2

3
nf; �1 	 51 �

1

9
3nf;

respectively. Equation (31) expresses �s�Q2x� in terms of
�s�Q2� to the ��2

s �Q2� order accuracy.
Inserting (31) into the formulas for the transition FFs

(29) and (30), we obtain integrals which are still diver-
gent, but can be computed using existing methods. One of
them, applied in [15] for the calculation of the electro-
magnetic pion form factor, allows one to obtain the
quantity under consideration as a perturbative series in
�s�Q2� with factorially growing coefficients Cn � �n�
1�!. Similar series may be found also for the transition
-5
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FFs Q2Fi
M��Q

2�

Q2Fi
M��Q

2� �
X1
n	1

�
�s�Q2�

4�

�
n
�n�1

0 Cn: (32)

But a perturbative QCD series with factorially growing
coefficients is a signal for the IR renormalon nature of the
divergences in (32). The convergence radius of the series
(32) is zero and its resummation should be performed by
employing the Borel integral technique. First, one has to
find the Borel transform B�Q2Fi

M���u� of the correspond-
ing series [33]

B�Q2Fi
M���u� 	

X1
n	1

un�1

�n� 1�!
Cn: (33)

Because the coefficients of the series (32) behave like
Cn � �n� 1�!, the Borel transform (33) contains poles
located on the positive u axis of the Borel plane. In other
words, the divergence of the series (32) has been trans-
formed into pole singularities of the function
B�Q2Fi

M���u�. These poles are exactly the IR renormalon
poles.

Now in order to define the sum (32), or to find the
resummed expression for the form factors, one has to
invert B�Q2Fi

M���u� to get

�Q2Fi
M��Q

2��res

� P:V:
Z 1

0
du exp

�
�

4�u

�0�s�Q
2�

�
B�Q2Fi

M���u�; (34)

and remove the IR renormalon divergences by the prin-
cipal value prescription. These intermediate steps can be
bypassed by introducing the inverse Laplace transforms
of the functions in (31), i.e.,

1

�t
 z��
	

1

����

Z 1

0
du exp��u�t
 z��u��1;

Re� > 0
(35)

and

ln�t
 z�

�t
 z�2
	

Z 1

0
du exp��u�t
 z���1 � �E � lnu�u;

(36)

where ��z� is the Gamma function, �E ’ 0:57 7216 is the
Euler constant, and z 	 lnx [or z 	 lnx].

Then using (31), (35), and (36), we find [1,13]

�s�Q
2x� 	

4�
�0

Z 1

0
due�utR�u; t�x�u: (37)

Here, the function R�u; t� is defined as

R�u; t� 	 1 �
2�1

�2
0

u�1 � �E � lnt� lnu�: (38)
054020
Having used Eqs. (18), (23), (27), and (37), in Eqs. (29)
and (30), and performing the integrations over x, we
obtain the FFs Q2F1

M��Q
2� and Q2F8

M��Q
2� within the

RC method;, viz.,

Q2F1
M��Q

2� 	 f1
MN1

�
6 
 A��2

F� 

12CF

�0

�
�1 
 A��2

F��

�
Z 1

0
due�utR�u; t�Q1�u� � 5A��2

F�

�
Z 1

0
due�utR�u; t�Q2�u�

�



2CF

�0
B��2

F�

�
Z 1

0
due�utR�u; t�G�u�

�
(39)

and

Q2F8
M��Q

2� 	 f8
MN8

�
6 
 C��2

F� 

12CF

�0

�
�1 
 C��2

F��

�
Z 1

0
due�utR�u; t�Q1�u� � 5C��2

F�

�
Z 1

0
due�utR�u; t�Q2�u�

��
: (40)

The functions Q1�u�; Q2�u�, and G�u� have the expres-
sions

Q1�u� 	
d2

d�2 B�2; ��1�u �
d
d�

B�1; ��2�u


 2a
d
d�

B�2; ��1�u 
 3�a� 3�B�1 � u; 2�;

(41)

Q2�u� 	
d2

d�2 B�3; ��2�u �
d
d�

B�2; ��3�u


 2a
d
d�

B�3; ��2�u 
 3�a� 3�B�2 � u; 3�;

(42)

and

G�u� 	
d2

d�2 B�1; ��4�u 
 6
d
d�

B�2; ��3�u

� 4
d
d�

B�1; ��3�u 
 2a
d
d�

B�1; ��4�u

�
d2

d�2 B�2; ��3�u � 6
d
d�

B�3; ��2�u


 4
d
d�

B�2; ��2�u � 2a
d
d�

B�2; ��3�u; (43)

where the standard notation for the Beta function B�x; y�

B�x; y� 	
��x���y�
��x
 y�

has been employed.
-6
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After some manipulations, the functions Q1�u�; Q2�u�
and G�u� can be recast into the more convenient forms

Q1�u� 	
2

�1 � u�3
�

2

�2 � u�3
�

2a

�1 � u�2



1 
 2a

�2 � u�2


3
a� 3

�1 � u��2 � u�
;

Q2�u� 	
2

�2 � u�3
�

4

�3 � u�3



2

�4 � u�3
�

2a

�2 � u�2



1 
 4a

�3 � u�2
�

1 
 2a

�4 � u�2


6
a� 3

�2 � u��3 � u��4 � u�
;

G�u� 	
4

�4 � u�3
�

2

�3 � u�3



2

�2 � u�2
� 2

5 � a

�3 � u�2


4
3 � a

�4 � u�2
:

(44)

One observes that the FFs given by (39) and (40)
contain a finite number of single, double, and triple poles
located at the points u0 	 1; 2; 3; 4. In other words, em-
ploying expression (37), we have transformed the end
point x ! 0 singularities in Eqs. (29) and (30) into (mul-
tiple) poles in the Borel plane u. These poles are the IR
renormalon poles and consequently the integrals in
Eqs. (39) and (40) are just the inverse Borel transforma-
tions (34), in which the Borel transforms B�Q2F1�8�

M� ��u� of
the NLO parts of the quark components and the gluon
component of the scaled FFs are, up to constant factors,
proportional to the functions

R�u; t�Q1�u�; R�u; t�Q2�u�; R�u; t�G�u�:

As we have emphasized above, the IR renormalon
divergences can be cured by employing the principal
value prescription, which we adopt in this work to regu-
larize divergent integrals. Therefore, the integrals over u
in Eqs. (39) and (40) are to be understood in the sense of
the Cauchy principal value. Removing these divergences,
Eqs. (39) and (40) become just the Borel resummed ex-
pressions �Q2F1

M��Q
2��res and �Q2F8

M��Q
2��res for these

scaled FFs.
It is known [1,13] that the IR renormalon pole located

at the point u0 	 n of the Borel plane corresponds to the
power-suppressed correction ��1=Q2�n, contained in the
scaled FFs. To make the discussion of this question as
transparent as possible, let us for the time being neglect
the nonleading term ��2

s in (31) and make the replace-
ment R�u; t� ! 1 in (37). Then, the integrals in the re-
summed FFs with multiple IR renormalon poles at
u0 	 n can be easily expressed in terms of the integrals
with a single IR renormalon pole at the same point u0 	
n (see, Eq. (54) below), so that our formulas (39) and (40)
will contain the integrals
054020
4�
�0

Z 1

0

e�utdu
n� u

	
Z 1

0
�s�Q

2x�xn�1dx 	
1

n
f2n�Q�; (45)

where f2n�Q� are the moment integrals

fp�Q� 	
p
Qp

Z Q

0
dkkp�1�s�k2�: (46)

The integrals fp�Q� were calculated before [34] using the
IR matching scheme:

fp�Q� 	

�
�I

Q

�
p
fp��I� 
 �s�Q2�

XN
n	0

�
�0

2�p
�s�Q2�

�
n

�fn! � ��n
 1; p ln�Q=�I��g; (47)

where �I is the infrared matching scale and ��n
 1; z� is
the incomplete Gamma function. In Eq. (47) ffp��I�g are
phenomenological parameters, representing the weighted
average of �s�k2� over the IR region 0 < k<�I, and act
at the same time as infrared regulators of the right-hand
side (RHS) of Eq. (45). The first term on the RHS of
Eq. (47) is a power-suppressed contribution to fp�Q� and
models the ‘‘soft’’ part of the moment integral. It cannot
be calculated within PQCD, whereas the second term on
the RHS of Eq. (47) is the perturbatively calculable part
of the function fp�Q�, representing its ‘‘hard’’ perturba-
tive tail. In other words, the infrared matching scheme
allows one to estimate power corrections to the moment
integrals by explicitly pulling them out from the full
expression, and introducing new nonperturbative pa-
rameters fp��I�. The same moment integrals f2n�Q�,
computed in the framework of the RC method (LHS of
Eq. (45)), contain information on both their soft and the
perturbative components. Indeed, numerical calculations
demonstrate that the LHS of (45), computed by employ-
ing the principal value prescription, and its RHS—found
by means of (47) for p � 2—practically coincide with
each other. Therefore we can state that the scaled and
resummed FFs (39) and (40) contain power corrections
��1=Q2�n; n 	 1; 2; 3; 4. Hence the usage in phenomeno-
logical applications of both the IR matching scheme and
the RC method seems legitimate. In fact, both methods
have been used to calculate the pion’s electromagnetic FF
[35] and the vertex function Q2F�0g�g� �Q2; !� [13]. But
the RC method has an advantage over the IR matching
scheme because it allows one to compute the functions
fp�Q� without introducing the new nonperturbative pa-
rameters �I and fp��I�. Moreover, using this method, the
parameters fp��I� themselves can be computed in good
agreement with model calculations and available experi-
mental data [13,35].

The power corrections ��1=Q2�n are important in the
region of moderate Q2 and change the behavior of the
scaled and resummed FFs (39) and (40) as functions of
Q2 significantly, both qualitatively and quantitatively. In
the present work we have to deal only with a finite number
-7
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of IR renormalon poles. Their number and location, in the
case under consideration, depend on the DAs (18) used in
the calculations. The asymptotic DAs of the �1 and �8

states lead to only two IR renormalon poles at u0 	 1; 2.
Distribution amplitudes, which include higher-order
Gegenbauer polynomials n > 2, may lead to a series of
IR renormalon poles at u0 	 5; 6 . . . . Note that at small
momentum transfers, in each integral f2n�Q� associated
with the pole u0 	 n, the soft part dominates. In the
context of the IR matching scheme the integral f2n�Q�
at Q2 	 �2

I even consists of just the soft contribution.
Restricting our considerations to contributions arising
only from the nearest to the origin u 	 0 IR renormalon
poles (which are, of course, the dominant ones), entails
two problems: first, it reduces the accuracy of the numeri-
cal results and second, one loses information on the DAs
of the �1 and �8 states. Therefore, for the self-consistent
treatment of the FFs (39) and (40) we should take into
account contributions coming from all IR renormalon
poles.

The principal value prescription, adopted here to regu-
larize divergent integrals over u, generates itself power-
suppressed ambiguities (uncertainties)

�Nq
(q�Q2�

Q2q ;

where f(q�Q2�g are calculable functions entirely deter-
mined by the residues of the Borel transforms
B�Q2F1�8�

M� ��u� at the pole q 	 u0 and fNqg are arbitrary
constants. Taking into account these ambiguities in
Eqs. (39) and (40) leads to a modification of the Borel
resummed FFs, amounting to

�Q2F1�8�
M� �Q

2��res ! �Q2F1�8�
M� �Q

2��res 
 �Q2F1�8�
M� �Q

2��amb:

(48)

In accordance with the ‘‘ultraviolet dominance hypothe-
sis’’, the uncertainty in Eq. (48) will allow us to estimate
power corrections to the scaled FFs stemming from
sources other than the end point integrations. Indeed, by
fitting the constants fNqg to the experimental data, one
can deduce some information concerning the magnitude
of such corrections.

It should be clear that regardless of the methods em-
ployed for the computation of the form factors, in the
limit Q2 ! 1 these must reach their asymptotic values.
The important problem to be clarified is then whether our
resummed expressions �Q2F���Q2��res, �Q2F�0��Q2��res

lead in the limit Q2 ! 1 to their corresponding well-
known asymptotic forms. For the sake of simplicity, we
restrict ourselves to the �2

F 	 Q2 case. To answer the
question posed above, we first explore the Q2 ! 1 limits
of the DAs �q

�1�x;Q
2�, �g

�1�x;Q
2�, and ��8

�x;Q2�.
Because in Eqs. (15) and (16) the eigenvalues �n

� < 0
and their absolute values increase with n for all n � 2,
054020
going to the asymptotic limit only the quark component
of the �1 state DA survives, evolving to its asymptotic
form, whereas the DA of the gluon component �g

�1�x;Q
2�

in this limit vanishes, i.e.,

�q
�1�x;Q

2� !
Q2!1

6xx; �g
�1�x;Q

2� !
Q2!1

0:

The same arguments apply also to the DA of the �8 state,
consisting only of the quark component

��8
�x;Q2� !

Q2!1
6xx:

In our case this means that the following limits are
fulfilled

A�Q2�; B�Q2�; C�Q2� !
Q2!1

0: (49)

Moreover, we have to take into account that in this limit
the term ��2

s �Q
2� in the expansion of �s�Q

2x� in terms of
�s�Q

2� has to be neglected [1,13]. The latter requirement
is equivalent to the replacementZ 1

0
e�utR�u; t�du !

Z 1

0
e�utdu: (50)

Then we obtain

�Q2FM��Q
2��res !

Q2!1
6�f1

MN1 
 f8
MN8�

�

�
1 


2CF

�0

Z 1

0
due�utQ1�u�

�
: (51)

But this is not the final result because in the integral above
t 	 ln�Q2=#2� and its Q2 ! 1 limit has still to be com-
puted. The integralZ 1

0
due�ut

�
2

�1 � u�3
�

2

�2 � u�3



1

�2 � u�2
�

9

1 � u



9

2 � u

�
(52)

can be expressed in terms of the logarithmic integral

li�x� 	 P:V:
Z x

0

dt
lnt

(53)

after performing the integration by parts of the first three
terms to obtainZ 1

0

e�utdu

�n� u�3
	 �

1

2n2 �
ln3
2n



ln23
2

li�3n�
3n

;

Z 1

0

e�utdu

�n� u�2
	 �

1

n

 ln3

li�3n�
3n

;

(54)

where 3 	 Q2=#2. Employing the formula [13]

li�xn�
xn

’
1

n lnx

XM
m	0

m!

�n lnx�m
; M � 1

and retaining in the expressions
-8



FIG. 1. Predictions for the scaled form factors as functions of
Q2 of the �� (a) and �0� (b) electromagnetic transition. For
the solid curves the designation is Bg

2��1� 	 0. The dashed
lines correspond to Bg

2��1� 	 10; for the dash-dotted curves we
use Bg

2��1� 	 15. The data are taken from Ref. [11].
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ln 23
li�3n�
3n

; ln3
li�3n�
3n

terms up to O�1= ln3� order, we finally find

�Q2FM��Q2��res !
Q2!1

6�f1
MN1 
 f8

MN8�

�
1 �

5

3�
�s�Q2�

�

	
1���
3

p �4f1
M 


���
2

p
f8

M�

�
1 �

5

3�
�s�Q

2�

�
: (55)

It is worth noting that numerical constants and terms
� ln3 in Eq. (52), appearing due to Eq. (54), cancel out
in the final result.

The Eq. (55) for M 	 � and �0 supplies the asymptotic
limit of the corresponding transition FFs. These limits
can be readily obtained within the standard HSA by
means of the asymptotic DAs of the �1 and �8 states.
Stated differently, by explicit computation we have
proved that in the Q2 ! 1 limit the Borel resummed
expressions (39) and (40) and (40) lead to the well-known
asymptotic forms of the F���Q2� and F�0��Q2� form
factors.

IV. EXTRACTING THE � AND �0 MESON
DISTRIBUTION AMPLITUDES

In this section we perform numerical computations of
the Borel resummed �� and �0� transition FFs2 in order
to extract the � and �0 meson DAs from the CLEO data.
We shall also compare our theoretical predictions with
those obtained with the standard HSA [6,36], the aim
being to reveal the role of power corrections at low-
momentum-transfer in the exclusive process under con-
sideration. In our calculations below we shall use the
following values of #; �2

0 and �2
F

#4 	 0:25 GeV; �2
0 	 1 GeV2; �2

F 	 Q2

(56)

and we shall employ both the one-angle scheme (10) and
also the two-mixing-angles scheme (12). Eqs. (19) and
(20) will be evaluated using the two-loop approximation
for the QCD coupling �s�Q

2�:

�s�Q2� 	
4�

�0 ln�Q2=#2�

�
1 �

2�1

�2
0

lnln�Q2=#2�

ln�Q2=#2�

�
: (57)

The results shown in Figs. 1–9 —with the exception of
Fig. 7—are obtained within the ordinary octet-singlet
mixing scheme. In Fig. 1 the predictions for the �� and
�0� FFs are presented for Bq

2��1� 	 Bq
2��8� 	 0:02 and

various values of Bg
2��1�. One appreciates that without the

gluon contribution (Bg
2��1� 	 0) both FFs are slightly

below the data points, especially Q2F�0��Q
2�. But their

deviations are not dramatic and to improve the agreement
2Notice that in this Section ‘‘FF’’ means the scaled form
factors.

054020
with the data, one has to include the contribution coming
from the gluon component of the �1� transition FF. The
corresponding results are shown in Fig. 1 by broken lines.
These numerical calculations demonstrate that the
gluonic contribution is important

at relatively low values of the momentum-transfer Q2.
From Fig. 1 it is clear that the gluonic contribution,
arising from the �1 DA with Bg

2��1�> 0, enhances the
transition FFs Q2F���Q2� and Q2F�0��Q2� in the region
1:5 GeV2 � Q2 � 12 GeV2 while reducing their magni-
tude at Q2 > 12 GeV2. This effect is sizeable for the �0�
transition FF relative to its counterpart for ��, in par-
ticular, for larger values of Bg

2��1� and for smaller values
of Bg

2��1�. The impact of the gluonic contribution on the
��;�0� transition FF’s is quite understandable, recalling
that the physical � and �0 states consist predominantly of
-9



FIG. 2 (color online). The 15 area in the Bg
2 � Bq

2 plane
estimated within the RC method by comparing the CLEO
data and the theoretical predictions for the resummed and
scaled transition FFs ��, �0�.

FIG. 3 (color online). The �� (a) and �0� (b) scaled tran-
sition form factors as functions of Q2. The central solid curves
are found using the values Bq

2��1� 	 Bq
2��8� 	 0:05 and

Bg
2��1� 	 17. The shaded areas demonstrate 15 regions for

the transition FFs.
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the flavor SUf�3� octet �8 and singlet �1 states, respec-
tively, with the �1� transition FF comprising also a
gluonic part. Therefore, the �0� transition FF should be
and is more sensitive to the gluonic part.

These features of the �� and �0� transition FFs de-
termine the 15 region for the allowed values of the
Gegenbauer coefficients Bq

2��1� 	 Bq
2��8� and Bg

2��1�,
plotted in Fig. 2. In other words, the �� and �0� tran-
sition FFs, computed in the context of the RC method by
employing the model DAs with input parameters belong-
ing to the shaded region in Fig. 2, describe the CLEO data
with a 15 accuracy.

In Fig. 3 we plot the 15 areas for the �� and �0�
transition FFs. If we were to consider the �� and �0�
transitions separately, these areas would be larger than
those shown in Fig. 3. For the �� transition, the upper
bound of the 15 region can be extended towards larger
values of Q2F���Q2�. For the �0� transition, the lower
bound of the corresponding 15 region can be shifted
towards lower values of Q2F�0��Q2�. But their joint treat-
ment leads to the picture drawn in Fig. 3.

A major problem in extracting the values of theoretical
parameters from the experimental data is their stability
against uncertainties inherent in the theoretical expres-
sions. In the case under consideration, expressions (4),
(39), and (40), for the �� and �0� transition FFs depend
on the factorization scale, on the QCD scale parameter #,
the decay constants f1; f8, and the octet-singlet mixing
angle p. As we have explained in Sec. III, the renormal-
ization scale �2

R (�2
R) in the context of the RC method is

determined by the hard-scattering dynamics of the under-
lying partonic subprocess and is not a free parameter. Our
analytical expressions for the transition FFs, calculated
by keeping �2

F � Q2, allow us to analyze the dependence
054020
of the extracted parameters Bq
2��1�; B

q
2��8�, and Bg

2��1�
on the factorization scale �2

F. We have performed the
computation of the �� and �0� transition FFs using the
values �2

F 	 Q2=2 and �2
F 	 2Q2 and found that our

prediction for the 15 area (Fig. 2) is absolutely stable
against these variations. This means that the FFs deter-
mined by the input parameters from the 15 area in Fig. 2,
by varying the factorization scale, remain within the
corresponding 15 regions shown in Fig. 3. Stated differ-
ently, the variation of �2

F in the limits �2
F 2 �1=2; 2� does

not change (shift, rotate) the 15 area in Fig. 2. On the
contrary, the variation of the QCD scale parameter #
modifies the 15 region in Fig. 2. The entailed modifica-
tions shift the region along both axes, retaining, however,
its form stable. Thus, computations performed with #4 	
0:26 GeV result in the following shifts: along the
-10



FIG. 5 (color online). The dependence of the �� (a) and
�0� (b) scaled transition form factors on the octet-singlet
mixing angle p. The solid curves describe the ‘‘default’’ choice
 	 �15:4�. The dashed curves correspond to  	 �16:4� and
the dash-dotted ones to  	 �14:4�.

FIG. 4 (color online). The dependence of the �� (a) and
�0� (b) scaled transition form factors on the values of the
decay constants f1 and f8. The octet-singlet mixing angle is
p 	 �15:4�. The solid curves in both panels are calculated
using f1=f� 	 1:17, f8=f� 	 1:26. The long-dashed curves
correspond to f1=f� 	 1:17, f8=f� 	 1:24 and the short-
dashed one in the left panel are found by employing the values
f1=f� 	 1:17, f8=f� 	 1:30. The dash-dotted curves in both
panels describe FFs obtained with f1=f� 	 1:20 and f8=f� 	
1:28.

3This is the reason why in Fig. 4(b) the FF corresponding to
the values f1 	 1:17f�; f8 	 1:30f� is not displayed.
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Bq
2��1� 	 Bq

2��8� axis: �0:005, along the Bg
2��1� axis:

�1. Hence, the modification of the 15 area is �9% in the
first and �6% in the second direction, respectively, the
percentages being given relative to the central values (see.
Equation (63) below).

The response of the central curves (Fig. 3) on varia-
tions of the decay constants f1; f8, and such due to the
octet-singlet mixing angle p within corresponding phe-
nomenologically allowed ranges [22], is demonstrated in
Figs. 4 and 5. It is remarkable that under these variations
the central curves remain entirely within the associated
054020
15 areas for the �� and �0� transition FFs. It turns out
that the �� transition FF is more sensitive to the value of
the decay constant f8 than the �0� one. The results for the
�0� transition FF obtained by varying the constant f8 2
�1:24; 1:30�f� at fixed f1 	 1:17f� practically coincide
with each other.3 On the contrary, the �0� transition FF
demonstrates a rather strong dependence on the decay
constant f1, whereas the �� one is stable under such
variations (cf. the short-dashed and dash-dotted curves,
respectively, in Fig. 4(a)]. Our computations with p 	

�15:4� � 1� confirm the conclusion drawn in Ref. [1]
that the FF for the �� transition is more sensitive to p
than the one for the �0� transition. Summing up, we can
-11



FIG. 7. The �� (a) and �0� (b) electromagnetic transition
FFs vs Q2. The solid lines correspond to the ordinary octet-
singlet mixing scheme with parameters Bq

2��1� 	 Bq
2��8� 	

0:02 and Bg
2��1� 	 18. The broken lines are obtained within

the two-mixing angle scheme. The dashed lines describe the
situation with the same parameters as the solid curves. The
parameters for the dash-dotted curves are Bq

2��1� 	 Bq
2��8� 	

0:15; Bg
2��1� 	 18.

FIG. 6 (color online). The �� (a) and �0� (b) scaled tran-
sition form factors as functions of Q2. All predictions have
been obtained within the ordinary mixing scheme and using
the initial input parameters (11) and (56). The broken lines
denote the FFs with the uncertainties included via Eq. (48), and
using the following values of fNqg; q 	 1; 2; 3; 4: 0.9 (dashed
lines); -0.6 (dash-dotted lines).
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state that the modification of the central curves in Figs. 4
and 5 , due to the variations of the decay constants and the
mixing angle discussed above, does not exceed the level
of �3% of their values.

In Sec. III we have emphasized that the ambiguities
produced by the principal value prescription, inherent in
the RC method, affect the predictions for the transition
FFs in accordance with Eq. (48). The ambiguity
�Q2F1�8�

M� �Q
2��amb depends on the �1 and �8 DAs and

also on the constant fNqg. In reality, however, for given
DAs of the �1 and �8 states, the available experimental
information allows one to extract constraints on fNqg. To
effect the influence of such contributions, we show exem-
plarily in Fig. 6 predictions for the FFs with and without
054020
such ambiguities, utilizing the expansion coefficients
Bq

2��1� 	 Bq
2��8� 	 0:05; Bg

2��1� 	 17. We find that in
order that the FFs remain within the corresponding 15
regions, the upper and lower bounds, respectively, for the
constants fNqg are provided by the values fNq 	 0:9g and
fNq 	 �0:6g. Hence, the �� transition FFs with the
ambiguities included, corresponding to fNq 	 �0:6g
(fNq 	 0:9g) at Q2 < 4 GeV2, are larger (smaller) than
the FFs without such corrections and are, in addition,
smaller (larger) for Q2 > 4 GeV2. For the �0� transition
FF we observe, qualitatively, the same behavior, but with
Q2 ’ 5 GeV2 as the transition momentum scale from the
small to the large (and vice versa) regions. In any case, the
-12



FIG. 8. The �� scaled transition FF vs Q2. In the computa-
tions the ordinary octet-singlet mixing scheme is used. The
upper (lower) bundle of curves is found within the standard
HSA (RC method). The correspondence between the curves and
the input parameters is as follows: for the solid curves
Bq

2��1� 	 Bq
2��8� 	 0; Bg

2��1� 	 0; for the dashed lines
Bq

2��1� 	 Bq
2��8� 	 �0:05; Bg

2��1� 	 0; for the dash-dotted
ones Bq

2��1� 	 Bq
2��8� 	 0:1; Bg

2��1� 	 0, and for the short-
dashed curves Bq

2��1� 	 Bq
2��8� 	 0:1; Bg

2��1� 	 15.

FIG. 9. The ratio R�Q2� for the �� FF. The solid line corre-
sponds to the input parameters Bq

2��1� 	 Bq
2��8� 	 Bg

2��1� 	
0. The dash-dotted curve describes the same ratio, but for
Bq

2��1� 	 Bq
2��8� 	 0; Bg

2��1� 	 14, while the dashed one cor-
responds to Bq

2��1� 	 Bq
2��8� 	 0:05; Bg

2��1� 	 10.
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uncertainties do not exceed the level of �11% of the
corresponding FFs in the region Q2 � �1:73–2� GeV2

and reach a mere �3% level in the region
Q2 � �16–20� GeV2.

Below, we present sample estimates for the eigenfunc-
tions expansion coefficients of the �1 and �8 DAs in the
context of the ordinary mixing scheme:

Bq
2��1� 	 0; Bq

2��8� 	 0; Bg
2��1� 2 �17; 21:5�;

(58)

Bq
2��1� 	 0:02; Bq

2��8� 	 0:02;

Bg
2��1� 2 �16; 20:5�;

(59)

Bq
2��1� 	 0:05; Bq

2��8� 	 0:05;

Bg
2��1� 2 �15; 19�;

(60)

and

Bq
2��1� 	 0:1; Bq

2��8� 	 0:1;

Bg
2��1� 2 �13:5; 17�:

(61)

The constraints (58)–(61) on the input parameter Bg
2��1�

are extracted for fixed coefficients Bq
2��1� and Bq

2��8�,
and represent the 15 range for the values of Bg

2��1�
compatible with the CLEO data. Restrictions on the pa-
rameters Bq

2��1� and Bq
2��8� at fixed value of Bg

2��1� can
also be derived. For example, for Bg

2��1� 	 16, we get
054020
Bg
2��1� 	 16; Bq

2��1� 	 Bq
2��8� 2 �0:02; 0:11�:

(62)

Summarizing this point, the estimates for the
Gegenbauer coefficients Bq

2��1�; B
q
2��8� and Bg

2��8� in
the DAs for the �1; �8 states are

Bq
2��1� 	 Bq

2��8� 	 0:055 � 0:065;

Bg
2��1� 	 18 � 4:5:

(63)

Here some comments concerning the usual octet-
singlet mixing scheme (10) and the parameter set (11)
are in order. These parameters were extracted from the
analysis of the CLEO data using the two-mixing-angles
scheme, but staying within the context of the hard-
scattering approach of perturbative QCD. Our computa-
tions demonstrate that adopting the RC method, the pa-
rameters given by (11) satisfactorily describe these data,
provided one uses the usual octet-singlet mixing scheme.
Therefore, one can consider the parameters (11) as a
prediction of the RC method and the one-angle mixing
scheme. This prediction differs from those obtained al-
ready within the one-angle mixing scheme, but employ-
ing the traditional theoretical methods (see, for example,
Ref. [37])

However our calculations do not exclude the usage of
the two-mixing angle scheme in conjunction with the RC
method. But in such a case, a considerably larger contri-
bution of the nonasymptotic terms to the DAs of the �1

and �8 states would be required. Carrying out such a
computation via (12) and (13), we obtained the results
shown in Fig. 7. Inspection of Fig. 7(a) reveals that the ��
transition FF found within this scheme lies significantly
lower than the data. Therefore, to improve the results, a
-13
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relatively large contribution of the first Gegenbauer poly-
nomial to the DAs of the �1 and �8 states seems neces-
sary. In Fig. 7 we display the FFs obtained using the
parameters Bq

2��1� 	 0:15; Bq
2��8� 	 0:15 and Bg

2��1� 	
18. We consider the values Bq

2��1� 	 Bq
2��8� 	 0:15 as

determining the lower bound for the admissible set of
DAs in the context of the two-mixing-angles parametri-
zation scheme. Hence, in the two-mixing-angles scheme,
we obtain

Bq
2��1� 	 Bq

2��8� 	 0:15; Bg
2��1� 2 �16; 20�: (64)

The � and �0 DAs were extracted from the CLEO data
on the �� and �0� transition FFs [6] having also recourse
to the �0-meson energy spectrum in the decay ,�1S� !
�0X [36]. In both these papers the standard HSA was
employed. In Ref. [6], estimates for the parameters
B1

2��
2
0�; B

g
2��

2
0�, and B8

2��
2
0� were made within the two-

mixing-angles scheme (12), reading

B1
2�1 GeV2� 	 �0:08 � 0:04;

Bg
2�1 GeV2� 	 9 � 12;

B8
2�1 GeV2� 	 �0:04 � 0:04:

(65)

These coefficients are related to ours through the expres-
sions

B1
2��

2
0� 	

A��2
0�

6
; Bg

2��
2
0� 	

B��2
0�

5
;

B8
2��

2
0� 	

C��2
0�

6
:

(66)

Using our approach and the one-angle mixing scheme, the
values of these parameters were determined to be

B1
2�1 GeV2� 	 �0:214 � 0:025;

Bg
2�1 GeV2� 	 19:25 � 2:25; B8

2�1 GeV2� 	 0;

B1
2�1 GeV2� 	 �0:183 � 0:025;

Bg
2�1 GeV2� 	 18:57 � 2:25; B8

2�1 GeV2� 	 0:02;

B1
2�1 GeV2� 	 �0:139 � 0:022;

Bg
2�1 GeV2� 	 17:8 � 2; B8

2�1 GeV2� 	 0:05;

B1
2�1 GeV2� 	 �0:07 � 0:02;

Bg
2�1 GeV2� 	 16:85 � 1:75; B8

2�1 GeV2� 	 0:1;

(67)

and

B1
2�1 GeV2� 	 �0:1128 � 0:045;

Bg
2�1 GeV2� 	 16:208 � 0:144;

B8
2�1 GeV2� 	 0:65 � 0:045:

(68)

In the case of the two-mixing-angles scheme, we find

B1
2�1GeV2� 	 �0:050 � 0:022; Bg

2�1GeV2�

	 20:4 � 2; B8
2�1GeV2� 	 0:15: (69)

One observes that within the two-mixing-angles scheme,
054020
the parameters B1
2; B

8
2 obey the constraints B1

2�1GeV2�<
0 and B8

2�1GeV2�> 0 (cf. Equation (65)).
On the other hand, the constraints for the parameters

Bq
2��

2
0� and Bg

2��
2
0�, extracted in Ref. [36] at the normal-

ization point �2
0 	 2 GeV2, read

Bq
2�2 GeV2� 	 0:010 � 0:068;

Bg
2�2 GeV2� 	 5:6 � 3:4:

(70)

Comparing now Eq. (70) with the values given in
Eq. (64), and taking into account that in Ref. [36] differ-
ent values for the scheme parameters defined by Eq. (56)
were used, we come to the conclusion that in the context
of the RC method and the two-mixing-angles scheme, the
region Bq

2�2 GeV2�< 0 should be excluded as contradict-
ing the CLEO data.

The apparent discrepancy between the results of the
present work and those of Ref. [6], as regards the extracted
values of the coefficients B1

2�1 GeV2� and B8
2�1 GeV2�, is

related to the fact that the employed theoretical schemes
are intrinsically different. Indeed, the transition FFs
computed in the standard HSA overshoot the CLEO
data—especially in the low-momentum transfer regime.
In Fig. 8 the �� transition FF obtained in the standard
HSA and the ordinary octet-singlet mixing scheme is
depicted. One appreciates that the deviation from the
data is considerable. The DAs corresponding to the pa-
rameters Bq

2��1�; B
q
2��8�> 0 even increase this disagree-

ment, whereas by adding the gluon component with
Bg

2��1�> 0 one can reduce it. Therefore to decrease the
magnitude of the FFs, and achieve this way a better
agreement with the data, the standard HSA would call
for the two-mixing-angles scheme and for DAs mainly
with Bq

2��1�; B
q
2��8�< 0. The inclusion of power correc-

tions changes this situation radically. In fact, at low-
momentum-transfer these corrections enhance the abso-
lute value of the NLO correction to the FFs by more than
a factor of 2.5–3 and, because the contribution of the
NLO term to the FFs is negative, power corrections
reduce the leading-order prediction for the FFs consid-
erably, while at the highest Q2 values measured by the
CLEO collaboration this influence becomes more moder-
ate. As a result, the �� and �0� transition FFs computed
using the input parameters from the 15 area in Fig. 2
within the RC method in conjunction with the one-angle
mixing scheme are in agreement with the CLEO data. In
order to quantify these statements, we show in Fig. 9 the
numerical results for the ratio

RM��Q
2� 	

�Q2FM��Q2��resNLO

�Q2FM��Q
2��HSA

NLO

(71)

for some selected values of the expansion coefficients.
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V. CONCLUDING REMARKS

In this work we have performed a computation of the
�� and �0� transition FFs within the RC method. The
latter has enabled us to estimate a class of power correc-
tions to the FFs related to nonperturbative effects arising
from the dependence of the strong coupling on the longi-
tudinal momentum fractions of the partons inside the �
and �0 mesons after the identification of the renormal-
ization scale with a physical momentum depending on
these fractions. This has been achieved by regularizing
the infrared singularities ensuing from the end points x 	
0; 1 by means of the principal value prescription within
the IR renormalon approach. The effect of power-
suppressed ambiguities to the considered form factors
was addressed and their influence was found to be less
important, though not negligible, with contributions
varying in the range between 3% at high to 11% at low
Q2 values.

Contributions to the FFs from the valence quark as well
as the two-gluon Fock-state of the � and �0 meson DAs
have been taken into account. We have obtained the Borel
resummed expressions �Q2FM��Q2��res for the FFs and
proved that in the asymptotic limit Q2 ! 1 they lead to
the standard HSA predictions.
054020
We have demonstrated that the effect of the calculated
power corrections on the �� and �0� transition FFs is
considerable. Indeed, at moderate values of the
momentum-transfer Q2 � 5 GeV2 they turn out to en-
hance the absolute value of the O��s� correction to the
FFs more than 2.5–3 times. The ratio RM��Q

2� of the
corresponding contributions depends on the specific M�
transition under consideration and on the input parame-
ters (Gegenbauer coefficients) of the� and�0 meson DAs.
These features of the power corrections have important
consequences: the enhanced (negative) NLO correction
significantly reduces the leading-order contribution to the
FFs, so that the input parameters of the � and �0 meson
DAs, which correctly describe the CLEO data within the
RC method, must obey the constraints presented in Fig. 2
by the shaded 15 area to fulfill Eq. (63). It is worth
emphasizing that our predictions for the � and �0 meson
DAs disagree with those extracted from the CLEO data in
the context of the standard HSA.

The DAs of the � and �0 mesons obtained in this work
can be useful in the investigation of other exclusive pro
cesses that involve � and �0 mesons, especially at lower
momentum-transfer values, where the standard HSA is
most unreliable.
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