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B!M1M2: Factorization, charming penguins, strong phases, and polarization
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Using the soft-collinear effective theory we derive the factorization theorem for the decays B !
M1M2 with M1;2 � �; K; �; K�, at leading order in �=EM and �=mb. The results derived here apply
even if �s�EM�� is not perturbative, and we prove that the physics sensitive to the E� scale is the same
in B ! M1M2 and B ! M form factors. We argue that c �c penguins could give long-distance effects at
leading order. Decays to two transversely polarized vector mesons are discussed. Analyzing B ! ��
we find predictions for B0 ! �0�0 and jVubjf

B!�
� �0� as a function of �.
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Decays of B mesons to two light mesons are important
for the study of CP violation in the standard model. In [1]
it was suggested that since mb; EM � �; mM the ampli-
tudes should factorize into simpler nonperturbative ob-
jects, and the proposed factorization theorem was
checked at one-loop. This approach is often referred to
as ‘‘QCD factorization’’ (QCDF). Factorization has also
been considered in the ‘‘perturbative QCD’’ (pQCD)
approach [3]. These approaches rely on a perturbative
expansion in �s�EM��. The results obtained from facto-
rization are quite predictive and may allow us to answer
fundamental questions about the standard model. At the
current time several important issues remain to be an-
swered. These include (i) the extent to which the results
are model-independent consequences of QCD (since
QCD is a predictive theory any model-independent limit
must give the same answer in different approaches). A
complete proof of a factorization theorem will answer
this question. (ii) Unambiguous definitions of any non-
perturbative hadronic parameters which appear are re-
quired. This allows the universality of parameters to be
understood, as well as making clear the extent to which
predictions rely on model dependent assumptions about
parameter values. (iii) Does the power expansion con-
verge? If power suppressed contributions really compete
with leading order contributions as some studies [4,5]
suggest then the expansion cannot be trusted. In this
case the only hope is a systematic modification of the
power counting to promote these effects to leading order,
or an identification of certain observables that are free
from this problem.

The soft collinear effective theory (SCET) [6,7] pro-
vides the necessary tools to address these issues. A first
study of SCET factorization for B ! �� has been made
in [8]. In this paper we go beyond Refs. [1,3,8] in several
ways. We first reduce the SCET operator basis to its
minimal form and extend it to allow for all B ! M1M2

decays (including two vectors). Our results show that all
of the so-called ‘‘hard spectator’’ contributions are al-
04=70(5)=054015(10)$22.50 70 0540
ready present in the form factors, just with different
hard Wilson coefficients. We also derive a form of
the factorization theorem which does not rely on a
perturbative expansion in �s�EM��, and show that
the nonperturbative parameters are still the same as
those in the B ! M form factors. In our analysis
long distance c �c penguins [9,10] are investigated,
but are left unfactorized. For the values of mb
and mc realized in nature, we give an argument why
these contributions can be leading order. This is contrary
to expectations that they are power suppressed [1,5], but
in agreement with expectations in [5,9,10]. The pres-
ence of these contributions could introduce large
LO nonperturbative strong phases. Even in observ-
ables that are free from charming penguins our results
differ phenomenologically from Ref. [1]. In partic-
ular while the power counting in Ref. [1] assumes a
hierarchy in parameters �B�

J 	 �B�, we show that
SCET allows for other possibilities such as �B�

J 
 �B�

[� and �J are defined through Eqs. (12), (18), and (24)].
We demonstrate that the LO SCET results are in agree-
ment with current B ! �� data, and find that current
central values favor �B�

J * �B�, albeit with fairly large
uncertainties.

We set M � P when discussing pseudoscalars, M � V
for vectors, and use an M to denote either. The decays
B ! M1M2 are mediated in full QCD by the weak �B �
1 Hamiltonian, which for �S � 0 reads
HW �
GF���
2

p
X

p�u;c

��d�p

�
C1O

p
1 � C2O

p
2 �

X10;7�;8g

i�3

CiOi

�
;

(1)
where the Cabibbo-Kobayashi-Maskawa (CKM) factor is
��f�p � VpbV

�
pf with f � d. The standard basis of f � d

operators are (with Op
1 $ Op

2 relative to [11])
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Op
1 � �pb�VA�dp�VA;

Op
2 � �p"b��VA�d�p"�VA;

O3;4 � f�db�VA�qq�VA; �d"b��VA�q�q"�VAg;

O5;6 � f�db�VA�qq�V�A; �d"b��VA�q�q"�V�Ag;

O7;8 �
3eq

2
f�db�VA�qq�V�A; �d"b��VA�q�q"�V�Ag;

O9;10 �
3eq

2
f�db�VA�qq�VA; �d"b��VA�q�q"�VAg;

O7�;8g � 
mb

8�2 d%&'feF&'; gGa
&'Tag�1� �5�b:

(2)

Here the sum over q � u; d; s; c; b is implicit, �; " are
color indices and eq are electric charges. The �S � 1 HW

is obtained by replacing �f � d� ! �f � s� in Eqs. (1)
and (2). The coefficients in Eq. (1) are known at next-to-
leading-log order [11]. In the naive dimensional regulari-
zation scheme, taking �s�mZ� � 0:118 and mb �
4:8 GeV gives C7��mb� � 0:317, C8g�mb� � 0:149
and

C1–10�mb� � f1:080;0:177; 0:011;0:033; 0:010;

 0:040; 4:9� 104; 4:6� 104;

 9:8� 103; 1:9� 103g: (3)

The relevant scales in B ! M1M2 are mb, mc, the jet
scale

��������
E�

p
and �. Varying � between 100–1000 MeV the

jet scale is numerically in the range
��������
E�

p
’ 0:5–1:6 GeV.

Integrating out 
mb fluctuations, the effective
Hamiltonian in SCETI [12] can be written as

HW �
2GF���
2

p
X
n; �n

(X
i

Z
�d!j�

3
j�1c

�f�
i �!j�Q

�0�
if �!j�

�
X
i

Z
�d!j�

4
j�1b

�f�
i �!j�Q

�1�
if �!j� �Qc �c � . . .

)
;

(4)

where c�f�i and b�f�i areWilson coefficients, the ellipses are
higher order terms in �=Q, Q � fmb; Eg, and Qc �c de-
notes operators appearing in long distance charm effects
as in Fig. 1. Penguin contractions with light quark loops
are included in matching onto Q�0;1�

if since their long
distance contributions are power suppressed [1]. The
αs )

c

c

b
d,s

q
q

....
q µ

αs(mv)

(

FIG. 1. Example of long distance charming penguins. The
mv gluons are nonperturbative and LO soft gluons are ex-
changed by the b, c, �c and spectator quark which is not shown.
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long-distance contributions occur when one or both of
the quark lines in the penguin loop become soft or col-
linear. In matching onto SCET these quark lines are left
uncontracted and give rise to higher order operators which
are power suppressed. An example which gives rise to a
six quark operator is given in Fig. 2.

In penguin contractions with charm quarks the situ-
ation is different due to the threshold region. For the c �c
system the offshellness depends on the value of q2 � m2

bx,
and long distance contributions from x ! 0 or x ! 1 are
suppressed [4]. However, for q2 
 4m2

c the charm quarks
are moving nonrelativistically. This region corresponds to
momentum fractions x ’ 4m2

c=m2
b ’ 0:4 in the middle of

the distribution 1M�x�. These contributions have one
�s�2mc�, but cannot be calculated perturbatively. Using
nonrelativistic QCD power counting they are ‘‘sup-
pressed’’ by O�v� with v ’ 0:4–0:5. The velocity v can
be treated in principle as an independent expansion pa-
rameter. Thus we conclude that these contributions may
be leading order, and comparable in size to other penguin
terms such as those from the small Wilson coefficients
C3–6. A rigorous account of these long distance c �c pen-
guin contractions can only be obtained by deriving a
factorization theorem for them, however we do not at-
tempt to do so here, and therefore do not write down
operators for Qc �c.

In Eq. (4) the O��0� operators are (sum over q �
u; d; s)

Q�0�
1d � � �un;!1

�6nPLbv�� �d �n;!2
6nPLu �n;!3

�;

Q�0�
2d;3d � � �dn;!1

�6nPLbv�� �u �n;!2
6nPL;Ru �n;!3

�;

Q�0�
4d � � �qn;!1

�6nPLbv�� �d �n;!2
6nPLq �n;!3

�;

Q�0�
5d;6d � � �dn;!1

�6nPLbv�� �q �n;!2
6nPL;Rq �n;!3

�;

(5)

with Q�0�
is obtained by swapping �d ! �s. In Eq. (5) the

‘‘quark’’ fields with subscripts n and �n are products of
collinear quark fields and Wilson lines with large mo-
menta !i. For example,

�u n;! � � �5�u�n Wn6�! �n � P y��; (6)

where �5n creates a collinear quark moving along the n
u

u

b
d,s

q
qu

FIG. 2. Example of a long distance light quark penguin
which matches onto a power suppressed operator. The q goes
in the �n direction, the q goes in the n direction, the broken u
quark line is soft or collinear and the �u and gluon remain hard.
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FIG. 3 (color online). Factorization of B ! MM0 in SCET.
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direction, or annihilates an antiquark. The bv field is the
standard usoft heavy quark effective theory field with
Lagrangian Lh � �bviv �Dbv. For a complete basis we
also need operators with octet bilinears. We take these to
be Q�0�

i with TA � TA color structure, for example

Q�0�

1d
� � �un;!1

�6nPLTAbv�� �d �n;!2
6nPLTAu �n;!3

�: (7)

These id and is operators do not contribute to the decays
B ! M1M2 at leading order, but will in power correc-
tions. Our basis of Q�0�

id operators can be directly related to
the one derived in [8], except that we also included Q�0�

3d
which makes the basis sufficient to accommodate all
electroweak penguin effects.

We also need the O��� operators for the LO factoriza-
tion. Defining

igB?&
n;! �

1

�!�
fWy

n �i �n �Dc;n; iD
&
n;?�Wn6�! �P y�g

(8)

they are

Q�1�
1d �

2

mb
� �un;!1

ig 6B?
n;!4

PLbv�� �d �n;!2
6nPLu �n;!3

�;

Q�1�
2d;3d �

2

mb
� �dn;!1

ig 6B?
n;!4

PLbv�� �u �n;!2
6nPL;Ru �n;!3

�;

Q�1�
4d �

2

mb
� �qn;!1

ig 6B?
n;!4

PLbv�� �d �n;!2
6nPLq �n;!3

�;

Q�1�
5d;6d �

2

mb
� �dn;!1

ig 6B?
n;!4

PLbv�� �q �n;!2
6nPL;Rq �n;!3

�;

Q�1�
7d �

2

mb
� �un;!1

igB?&
n;!4

PLbv�� �d �n;!2
6n�?&PRu �n;!3

�;

Q�1�
8d �

2

mb
� �qn;!1

igB?&
n;!4

PLbv�� �d �n;!2
6n�?&PRq �n;!3

�:

(9)

Our basis in Eq. (9) is simpler than the one in [8] for
several reasons. Terms with a B?

n or D?
n in the �n bilinear

can be reduced to Eq. (9) by Fierz transformations. This
shows that hard-spectator and form factor contributions
are related. Second, 6P?Q�0�

if � 0, so integration by parts

allows a basis for Q�1�
if with no n-covariant derivatives, so

only field strengths B?
n appear, plus

� �un�
&
?PLbv�P

&
?�

�d �n 6nPLu �n� terms which give vanishing
contributions. We suppress Q�1�’s with octet bilinears
that do not contribute at LO. The operators Q�0;1�

5;6 only
contribute to SU�3� �n singlet production and are not used
below.

Next we determine the most general structure of the
p2 
 E� contributions in SCETI . We decouple the usoft
modes by making the field redefinitions [6] 5n0 ! Yn05n0 ,
An0 ! Yn0An0Y

y
n0 , with Yn0 a Wilson line of n0 � Aus gluons

and n0 � n or �n. In Q�0;1�
if all Y’s cancel except for �Yyn bv�
054015
[8], and the operators factor into �n; v� and �n parts,

Q�0;1�
if � ~Q�0;1�

if Q �n
if: (10)

In Fig. 3 the M0 meson only connects to the rest of the
diagram at the scale p2 
Q2, through Q �n

if � �q �n;!2
�q0�n;!3

for some flavors q; q0 and Dirac structure �. The shaded
p2 
 E� region is required to generate the collinear M,
similar to the B ! M form factors [12]. At LO it is given
by T products of the remaining parts of the operators in
Eq. (10), ~Q�0;1�

if , with one Lagrangian L�j�
q5 inserted on the

spectator quark to swap it from usoft to collinear:

T1 �
Z

d4y d4y0 T� ~Q�0�
if �0�; iL

�1�
5nq
�y�; iL�1�

5n5n
�y0�

� iL�1�
cg �y0�� �

Z
d4y T� ~Q�0�

if �0�; iL
�1;2�
5nq

�y��;

T2 �
Z

d4y T� ~Q�1�
if �0�; iL

�1�
5nq
�y��:

(11)

Here L�1�
5nq

� �qusYig 6B?
n Wy5n � H:c: [13], and the form

of our other L’s can be found in [14].
Now we match SCETI onto SCETII. A complete treat-

ment of T1 is an open question due to end point singular-
ities [12,15,16], but hV?jT1jBi � 0 and the nonzero
matrix elements can be parametrized as

hPjT1jBi � mB�BP; hVkjT1jBi � mB�BVk : (12)

For T2 the most general perturbative matching at &2 

E� generates a set of operators with Wilson coefficients
given by jet functions J and J? whose form is constrained
by reparametrization invariance, chirality, power count-
ing and dimensional analysis [!1 � z!, !4 � �1 z�!,
�x � 1 x, <n;! � �Wy5n�!],
-3
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T�� �5nW�!1
igB?�

n;!4
PR;L�

ia�0��ig 6B?
n Wy5n�

jb
0 �y�

� i6ab6�y��6�2��y?�
1

!

�
Z 1

0
dx

Z dk�

2�
e�ik�y=2

�
J?�z; x; k��

�

�
6n
2

PR;L��
?�"

?

�
ji
� �<n;x!

�6n�?" <n; �x!� � J�z; x; k��

� �6nPL;R��
?�ji� �<n;x!

�6nPL;R<n; �x!�

	
;

(13)

where fi; jg and fa; bg are spin and color indices. At tree
level we find that J�z; x; k�� � J?�z; x; k�� � 6�x
z���s�&�CF=�Nc �xk��. The remaining pieces of T2 are
purely usoft and match directly onto soft operators in
SCETII, giving


2i
mb

Z
d4y� �qsY�

j�y��bv�
i�0�; (14)


2i
mb

Z
d4y� �qsY�

j�y���?� bv�
i�0�; (15)

where here Eq. (14) goes along with the J? term, and
Eq. (15) goes along with the J term.

To obtain the final result for amplitudes we combine
Eqs. (10)–(14), simplify the Dirac structure between the
soft fields, and take matrix elements. First consider final
states containing perpendicularly polarized vector me-
sons, B ! V?V?. Kagan [17] has argued that B ! V?V?
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is power suppressed relative to the longitudinal polariza-
tion, B ! VkVk. At LO in SCET Q�0;1�

if for i � 1–6 have
scalar bilinears and give vanishing contributions to B !

V?V?. The operators ~Q�1�
7f and ~Q�1�

8f generate the J? term
in Eq. (13) and could contribute. However, chirality con-
servation in SCETI implies that one vector is L and one is
R polarized so the ~Q�1�

7f and ~Q�1�
8f contributions also vanish

(quark masses flip chirality and in SCETI are suppressed
by powers of mq=

��������
�E

p
[18]). More explicitly the J? term

in Eq. (13) vanishes because the soft Dirac structure can
be reduced, 6nPL��

?�"
? � �g�"

? � i?�"
? �6nPL, and this ten-

sor vanishes when contracted with the �n-bilinear,

�g�"
? � i?�"

? � �d �n;!2
6n�?� PRq �n;!3

� 0: (16)

Thus at LO only Ac �c could give transverse polarized
vector mesons so

A� �B ! V?
1 V?

2 � �
2GF���
2

p hV?
1 V?

2 jQc �cj �Bi: (17)

Next consider B ! VkVk, B ! VkP and B ! PP de-
cays. Now it is the J term in Eq. (13) that contributes
along with possible long distance charming penguins.
Because of the form of our operators the J term is iden-
tical to the analysis of the B ! M form factors. The LO
factorization formula for A � hM1M2jHW j �Bi which de-
termines �B0; B ! M1M2 with M1;2 pseudoscalars or
longitudinal vectors is
A� �B ! M1M2�

� ��f�c AM1M2
c �c �

GFm2
B���

2
p

�
fM2

�BM1

Z 1

0
du T2� �u�1M2�u� � fM1

�BM2

Z 1

0
du T1� �u�1M1�u� �

fBfM1
fM2

mb

�
Z 1

0
du

Z 1

0
dx

Z 1

0
dz

Z 1

0
dk� J�z; x; k���T2J�u; z�1M1�x�1M2�u� � T1J�u; z�1M2�x�1M1�u��1�

B �k��
	
; (18)
where Ac �c denote possible long distance charming pen-
guin amplitudes which contribute in channels where c�d;s�

4
appear. For each decay mode the set of hard coefficients
Ti� and TiJ can be obtained from Table I.

A new result from our analysis is that the jet function J
in Eq. (18) is the same as that appearing in the factoriza-
tion formula for B ! M form factors [19]. We quote here
two of these formulas, one for the standard B ! P‘ �'
form factor f��E�, and one for the form factor Ak for B !
Vk‘ �' decays,

Ak�E� �
1

mV



mBEA2�E�
mB �mV


�mB �mV�

2
A1�E�

�
; (19)

where

E �
m2

B �m2
M  q2

2mB
: (20)
At LO in SCET [12,15,16,19,20]

f��E� � T����E��BP�E� � N0

Z 1

0
dz

Z 1

0
dx

Z 1

0
dk�

�C���
J �z; E�J�z; x; k�; E�1M�x�1�

B �k��;

Ak�E� � T�Ak��E��BVk �E� � Nk

Z 1

0
dz

Z 1

0
dx

Z 1

0
dk�

�C
�Ak�
J �z; E�J�z; x; k�; E�1M�x�1�

B �k��;

(21)

where N0 � fBfPmB=�4E2�, Nk � fBfVmB=�4E2�, and
the functions T��;A��E�; C��;A�

J �z� are combinations of
SCET Wilson coefficients and can be found in [19]. In
that paper the jet functions J�?��z; x; k�� in Eq. (13) are
denoted by J�?�b �z; x; k�� and J�?�a �x; k�� �R
1
0 dz J�?�b �x; z; k��. At the end point where E ’ mB=2
-4



TABLE I. Combinations of Wilson coefficients appearing in the factorization formula. Note that these results do not assume
isospin symmetry and all VV channels in this table are longitudinal. Because of our basis choice the coefficients T1J;2J�u; z� for all
these states are identical to T1�;2� �u� with each c�f�i �u� replaced by b�f�i �u; z�.

M1M2 T1� �u� T2� �u� M1M2 T1� �u� T2� �u�

���, ���, ���, �
k
��
k

c�d�1 � c�d�4 0 ��K���, ��K, ��
k
K�
k

0 c�s�1 � c�s�4

��0, ��0 1��
2

p �c�d�1 � c�d�4 �
1��
2

p �c�d�2  c�d�3  c�d�4 � �0K��� 1��
2

p �c�s�2  c�s�3 �
1��
2

p �c�s�1 � c�s�4 �

��0, �
k
�0
k

1��
2

p �c�d�1 � c�d�4 �
1��
2

p �c�d�2 � c�d�3  c�d�4 � �0K, �0
k
K�
k

1��
2

p �c�s�2 � c�s�3 �
1��
2

p �c�s�1 � c�s�4 �

�0�0 1
2 �c

�d�
2  c�d�3  c�d�4 �

1
2 �c

�d�
2  c�d�3  c�d�4 � � �K���0, � �K0, �

k
�K�0
k

0 c�s�4

�0�0 1
2 �c

�d�
2 � c�d�3  c�d�4 �

1
2 �c

�d�
2  c�d�3  c�d�4 � �0 �K���0 1��

2
p �c�s�2  c�s�3 �  1��

2
p c�s�4

�0
k
�0
k

1
2 �c

�d�
2 � c�d�3  c�d�4 �

1
2 �c

�d�
2 � c�d�3  c�d�4 � �0 �K0, �0

k
�K�0
k

1��
2

p �c�s�2 � c�s�3 �  1��
2

p c�s�4

K���0K���, K���0 �K���0 c�d�4 0 K���K���� 0 0
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the same parameters �BM and jet function J appear in the
form factors and in the nonleptonic decays. Since the
analysis for J is identical to that in the form factors
several important facts can be immediately taken over
for B ! M1M2 decays. In particular to all orders in
perturbation theory only the 1�

B �k�� wave function is
obtained as proven in Ref. [19]. Also the convolution
integrals with J are finite with an identical proof to the
one given in Ref. [15]. Finally it is clear that possible
messenger fluctuations [21] cannot spoil factorization in
Q�0;1�

if which have color singlet �n bilinears, and so their
role will be identical to that in the form factors.

At this point we compare our result in Eq. (18) with the
result in QCDF [1]. From Eq. (25) of [1] the LO factori-
zation theorem is

hM1M2jOij �Bi � (22)

�
FB!M1�0�fM2

Z
du TI

M2;i
�u�1M2

�u� � �1$ 2�
	

�fM1
fM2

fB

Z
du dx dk�

�TII
i �x; u; k��1M1

�x�1M2
�u�1B�k��; (23)

where the parameters are the QCD form factors FB!M�0�,
1Mi

, and 1B (other parameters appear when power sup-
pressed terms from annihilation or chirally enhanced
corrections are included). In the QCDF power counting
the second term is suppressed relative to the first by a
factor of �s. The result in Eq. (22) is quite similar to the
SCET formula derived in Eq. (18). However, there are
several important differences, which we comment on.
The two things that are most important for phenomenol-
ogy are that QCDF does not allow for a leading order A��

c �c
contribution, and that the SCETanalysis suggests that the
contributions from � and �J are comparable in size, rather
than �B�

J 	 �B� as in QCDF. As discussed later, current
data on B ! �� seems to support �B�

J 
 �B�, albeit with
large uncertainties. This difference has significant phe-
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nomenological ramifications, as it implies that even in
absence of leading order charming penguin effects the
perturbative strong phases predicted in [1] would receive
O�100%� corrections. Besides these points there are sev-
eral technical differences between the two formulas.
Using FB!M�0� in Eq. (22) rather than �BM does not
completely separate out all contributions from the hard
scale. Also, in Eq. (22) TI and TII include perturbative
contributions from both the &2 ’ Q2 and &2 ’ E� scales
[20]. In the result in Eq. (18) these scales are separated in
TiJ and J, respectively. If �BM is independent of the &2 ’
E� scale as argued in Ref. [16] then the scales are also
completely separated in the Ti��

BM term, otherwise �BM

still encodes physics at both the jet scale E� and the scale
�2.

The jet function J depends on physics at the intermedi-
ate scale, so its perturbative expansion in �s�

��������
E�

p
� is not

as convergent as for the TiJ and Ti� which are expanded in
�s�Q�. In fact, perturbation theory may fail for J alto-
gether. This can be tested both by experiment [22] and by
additional perturbative calculations. Using SCET we can
still obtain an expression for A� �B ! M1M2� without ex-
panding J perturbatively:

A �
GFm2

B���
2

p

�
fM1

Z 1

0
du dz T1J�u; z��BM2

J �z�1M1�u�

�fM1
�BM2

Z 1

0
du T1� �u�1

M1�u�
	

�f1 $ 2g � ��f�c AM1M2
c �c ; (24)

where power counting implies �BM 
 �BM
J 
 ��=Q�3=2.

Equation (24) defines implicitly the parameter �J�z�.
Here the nonperturbative parameters �BM, �BM

J �z�, and
1M�u�, still all occur in the B ! M semileptonic and rare
form factors. For a model-independent analysis they need
to be determined from data. Note that it was possible for
us to derive Eq. (24) because in Eq. (18) we separated the
scales Q2 and E� into T’s and J’s, respectively. The
corresponding results for the form factors in Eq. (21) are
-5
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f� � T����E��BP�E� � N0

Z 1

0
dz C���

J �z��BM
J �z; E�;

Ak � T�Ak��E��BVk �E� � Nk

Z 1

0
dz C

�Ak�
J �z��BV

J �z; E�:

(25)

The two form factors in Eq. (21) can be obtained from
data on B ! �P;Vk�‘', giving important information on
the �BM; �BM

J appearing in Eq. (18). Note that in Eqs. (18)
and (24) the �’s are evaluated at E � mB=2.
Equations (18) and (24) are the main results of our paper.

Using Eq. (24) still requires matching the full theory
Oi’s onto the Q�0;1�

if to determine the Wilson coefficients

c�f�i and b�f�i . For the coefficients of Q�0�
i we find [f � d; s]

c�f�1 � ��f�u

�
C1 �

C2

Nc

�
 ��f�t

3

2

�
C10 �

C9

Nc

�
� �c�f�1 ;

c�f�2 � ��f�u

�
C2 �

C1

Nc

�
 ��f�t

3

2

�
C9 �

C10

Nc

�
��c�f�2 ;

c�f�3 � ��f�t
3

2

�
C7 �

C8

Nc

�
��c�f�3 ;

c�f�4 � ��f�t

�
C4 �

C3

Nc


C10

2


C9

2Nc

�
� �c�f�4 :

(26)

and for the Q�1�
i

b�f�1 � ��f�u



C1 �

�
1

mb

!3

�
C2

Nc

�

��f�t



3

2
C10 �

�
1

mb

!3

�
3C9

2Nc

�
��b�f�1 ;

b�f�2 � ��f�u



C2 �

�
1

mb

!3

�
C1

Nc

�

��f�t



3

2
C9 �

�
1

mb

!3

�
3C10

2Nc

�
� �b�f�2 ;

b�f�3 � ��f�t



3

2
C7 �

�
1

mb

!2

�
3C8

2Nc

�
� �b�f�3 ;

b�f�4 � ��f�t



C4 

C10

2
�

�
1

mb

!3

��
C3

Nc


C9

2Nc

��

��b�f�4 ;

(27)

where !2 � mbu, !3 � mb �u � mb�u 1� and the
�c�f�i and �b�f�i are perturbative corrections. The O��s�

contributions to the �c�f�j �u� have been calculated in [1]
and later in [8]. It is possible that these results will need to
be modified by an additional subtraction for the long
distance charming penguin. Finally, any full �s�mb�

analysis requires �b�f�j �u; z� which are currently un-
known, unless the numerical values of � , �J are such
that �J 
 �s�mb�� so that �BM

J 	 �BM and the �c�f�j co-
efficients dominate numerically.
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There are several issues in the phenomenological use of
the factorization formula. There is a hierarchy due to
CKM factors and the Ci’s which have to be accounted
for in the c�f�i and b�f�i . For example, C1 is about a factor of
6 larger than any of the other coefficients, making c�d�1 ,
b�d�1 , and b�d�2 large. We will refer to quantities as ‘‘con-
taminated’’ if 1=mb power corrections could compete
with LO results due to the hierarchy in Wilson coeffi-
cients. Unless these corrections can be accounted for or
proven to be absent, one should assign 
100% uncer-
tainty to predictions for contaminated decays. The deter-
mination of whether a quantity is contaminated depends
on the relative size of �BM and �BM

J . If �BM � �BM
J as in

QCDF then any f � d decay in Table I that is independent
of c�d�1 could receive large corrections, making quantities
such as Br� �B0 ! �0�0� contaminated [4]. Here the most
problematic are large power corrections proportional to
C1�=E which is 
C2 and � Ci�3. These can arise, for
example, from T products involving the Q�0�

2f
operators.

The situation is much better in the case �BM 
 �BM
J since

any decay depending on c�d�1 , b�d�1 , or b�d�2 will not be
contaminated and can be expected to have power correc-
tions of normal size, 
20%. Our analysis of B ! ��
below favors this situation, and in this case Br� �B0 !
�0�0� is not contaminated.

At leading order in �=E there are only two sources of
strong phases: the one-loop �ci;�bi which can become
complex [1], and the unfactorized Ac �c charming penguin.
Additional final state phases come from power correc-
tions 
�=E. It is known from �B0 ! D0�0 decays that
�=E corrections produce 
30� nonperturbative strong
phases in agreement with dimensional analysis [22].
These large phases have nothing to do with a �=mc
expansion so we expect strong phases of similar size
from power corrections in B ! M1M2. For contaminated
decays, such as B ! KK, nonperturbative strong phases
/ C1 could be order unity.

The factorization theorems in Eqs. (18) and (24) can
be used to make quantitative predictions for nonleptonic
B ! MM0 decays. There are many applications; a few
of the more important categories are (i) decay modes
which are independent of charming penguin contribu-
tions are determined by � and �J which can be extracted
from semileptonic form factors. (ii) SCET implies
SU(3) relations beyond those following from HW
in Eq. (1) with full QCD. It also simplifies the structure
of SU(3) breaking corrections. (iii) For B ! VV0 SCET
allows us to analyze polarization effects. (iv) Using iso-
spin SCET makes predictions for matrix elements whose
quantum numbers differ from those of the AM1M2

c �c ampli-
tudes. In the remainder of the paper we discuss examples
in each of these categories. In particular we show that
Eq. (24) gives a reasonable fit to the current B ! ��
data.
-6
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The parameters �BM and �BM
J in Eq. (24) for nonlep-

tonic decays are common to those appearing in B ! M
form factors Eq. (25). Decays that do not depend on Ac �c
include all combinations in Table I that are independent of
c4 and b4, such as B ! �0� and B ! �0� once
isospin is used. For example,

���
2

p
A�B ! ��0� �

GFm2
B���

2
p f�

�

�Z 1

0
du dz�b�d�1 � b�d�2  b�d�3 ��u; z�

��B�
J �z�1��u�

��B�
Z 1

0
du�c�d�1 � c�d�2  c�d�3 ��u�

�1��u�
	
; (28)

At tree level the b�f�i ’s are independent of z and this
relation gives a clean constraint on �B� and
�B�

J �
R

dz �B�
J �z�.

Flavor SU(3) symmetry is a powerful tool for studying
nonleptonic B decays. In one particular application,
Ref. [23] proposed using flavor SU(3) symmetry to de-
termine � from B� ! K�; ���0. Corrections to this
approach come from SU(3) breaking effects and are typi-
cally 
30%. The factorization relation Eq. (24) implies
enhanced SU(3) relations beyond those in QCD. For
example, in QCD all B ! PP decays to two pseudoscalar
octet mesons are parametrized in the SU(3) limit by five
complex amplitudes. Using the SCET factorization for-
mula Eq. (18) this number is reduced to one complex
amplitude Ac �c, one real number � and one real function
�J�z�. In the language of Ref. [23] the operators in Eq. (4)
do not generate the E, A, and PA amplitudes, so these are
power suppressed.

In certain cases the SU(3) breaking can be also com-
puted. Such an example is the determination of two SU(3)
breaking parameters R1;2 appearing in a SU(3) relation
used to extract � [23]

A�B ! �K0�� �
���
2

p
A�B ! K�0�

�
���
2

p jVusj

jVudj
�R1  6EWei�R2�A�B ! ��0�:

(29)

Here 6EW parametrizes the largest electroweak penguin
effects and is calculable. The parameters R1;2 can be
expressed in terms of �B�; �BK; �B�

J �z�; �BK
J �z� and calcu-

lable Wilson coefficients and do not involve A��
c �c or AK�

c �c .
Polarization measurements in decays to two vector

mesons have received much attention recently. These
decays were studied in Ref. [17], and it was argued that
factorization implies RT 
 1=m2

b and R?=Rk �
1�O�1=mb�, where R0;T;?;k denote the longitudinal,
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transverse, perpendicular, and parallel polarization frac-
tions (RT � R? � Rk, R0 � RT � 1). Using SCET we find
that RT is power suppressed in agreement with [17],
unless the charming penguin amplitude Ac �c spoils this
result. We cannot resolve the validity of the R?=Rk rela-
tion working only at LO in 1=mb. Experimentally, one
finds [24,25]

R0�B
� ! ���0� � 0:975! 0:045;

R0�B
0 ! ���� � 0:98�0:02

0:08 ! 0:03;

R0�B0 ! 1K�� � 0:49! 0:06:

(30)

It has been argued that the large transverse polarization
observed in the 1K� mode might provide a second hint at
new physics in b ! s�ss channels beyond sin�2"� from
B ! 1KS. Unfortunately this conclusion could be spoiled
by a contribution from Ac �c at leading order. Ac �c does not
contribute to B� ! ���0, but can affect B0 ! 1K� and
B0 ! ���. Until charming penguins are better under-
stood the polarization measurements do not provide a
clean signal of physics beyond the standard model
(SM). An alternative SM explanation has been offered
in Ref. [17] in terms of large power corrections from
annihilation.

We finally examine in some detail the predictions of
this paper for B ! �� decays, and show that they repro-
duce the existing data. The present world averages are [26]

S�� � 0:74! 0:16; C�� � 0:46! 0:13;

Br�B� ! �0��� � �5:2! 0:8� � 106;

Br�B0 ! ���� � �4:6! 0:4� � 106;

Br�B0 ! �0�0� � �1:9! 0:5� � 106;

(31)

where the branching fractions are CP averages. The am-
plitudes are naturally divided into two pieces with differ-
ent CKM factors, as A " ��d�u T � ��d�c P, where T and P
are usually called ‘‘tree’’ and ‘‘penguin’’ amplitudes. The
decay amplitudes for B ! �� can be written in a model-
independent way as

A� �B0 ! ���� � ��d�u Tc�1� rce
i6cei��;

A� �B0 ! �0�0� � ��d�u Tn�1� rnei6nei��;���
2

p
A�B ! �0�� � ��d�u T;

(32)

where �rc; 6c� and �rn; 6n� parametrize the ratio of pen-
guin to tree contributions to B0 ! ��� and B0 !
�0�0, respectively. We have neglected small electroweak
penguin contributions. Isospin gives the relations

T � Tc � Tn; Tcrcei6c � Tnrnei6n � 0; (33)

leaving only five independent strong interaction parame-
ters in Eq. (32).

In the first step of the analysis, we assume that ";� are
known, use this to disentangle the tree and penguin
-7
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amplitudes, and thus extract the five parameters in
Eq. (32). In a second step, these parameters are compared
with the leading order predictions from SCET, and used to
extract the nonperturbative parameters appearing in the
factorization formula Eq. (24), working at tree level in
matching at the hard scale. The resulting SCET parame-
ters are then used to predict values for jVubjf��0� and
Br�B0 ! �0�0� as functions of �.

Assuming values for the CKM angles " and � we can
use the five pieces of experimental data given in Eq. (31)
to determine the five hadronic parameters in Eq. (32).
Using �"; �� � �23�; 64�� [26] and the data for the CP
asymmetries we find for the penguin parameters rc and
6c

rc � 0:75! 0:35; 6c � 44� ! 12�: (34)

This is in good agreement with the recent determinations
of these parameters in Ref. [27]. Using the branching ratio
data as input, we can determine the tree parameters as
well. We find

jTj � N��0:29! 0:02�
�
3:9� 103

jVubj

�
;

jtj � 2:07! 0:42; jtnj �
�
1:15! 0:33 �I�
1:42! 0:35 �II�;

(35)

where N� � �GF=
���
2

p
�m2

Bf� and we defined

t �
T
Tc

; tn �
Tn

Tc
: (36)
0.0 0.5 1.0 1.5 2.0 2.5 3.0

- 1.5

- 0.5

0.0

0.5

1.0

1.5

θ θn

γ=64

γ=74

γ=54

t
tn

- 1.0 γ=74

γ=64

γ=54

I

II

FIG. 4 (color online). Constraints on the triangle of tree
amplitudes T=Tc  Tn=Tc � 1 from current world averaged
data on B ! ��. The shaded regions show the two 1-% regions
for � � 64� including the error correlation between jtj and jtnj.
The central values for � � 54� and � � 74� are also shown.
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Some of the errors in Eqs. (34) and (35) have sizable
correlations. The results for the tree triangle are shown
graphically in Fig. 4. The two � � 64� solutions corre-
spond to those in Eq. (35) and the ellipses denote 1%
contours. Also shown in this figure is the isospin tree
triangle, which for the reduced tree level amplitudes
reads 1� tn � t. There are two strong phases in this
triangle which are also shown in the figure, namely C
between T and Tc and Cn between Tn and Tc.

As a second step the extracted amplitudes are com-
pared with the predictions of this paper at leading order in
�=mb and tree level in the SCET Wilson coefficient c�d�i

and b�d�i . At this order our result has only four indepen-
dent hadronic parameters. The tree amplitudes T; Tc are
given by the factorization relation Eq. (18) and depend on
the nonperturbative parameters �B�; �B�

J ,

T � N�
1

3
�C1 � C2��4�B� � �4� h �u1i���B�

J �;

Tc � N�


�
C1 �

C2

3
� C4 �

C3

3

�
�B�

�

�
C1 � C4 � �1� h �u1i��

C2 � C3

3

�
�B�

J

�
;

(37)

where h �u1i� �
R
1
0 1��u�=�1 u�, and �B�

J �R
dz �B�

J �z�. The penguin amplitude also gets a contribu-
tion from the complex A��

c �c amplitude, so

P " 

��d�u

��d�c

Tcrcei6c � N�


�
C4 �

C3

3

�
�B�

�

�
C4 � �1� h �u1i��

C3

3

�
�B�

J �
1

N�
A��

c �c

�
: (38)

The amplitude Tn is given by the isospin relation Eq. (33)
as Tn � T  Tc. At tree level in SCET Wilson coeffi-
cients the B ! � form factor at q2 � 0 is

f��0� � �B� � �B�
J : (39)

Neglecting the O��s�mb�� corrections introduces an error
of about 10% for the T amplitudes, which is smaller than
the expected size of the power corrections 
O��=E�.

Equation (37) implies that the tree amplitudes T; Tc are
calculable in terms of the �; �J parameters, and their
relative strong phases are small C; Cn 

O��s�mb�;�=E�. On the other hand, the penguin ampli-
tude P can have an O(1) strong phase due to the charming
penguin amplitude A��

c �c . The pattern of results in Fig. 4
supports these predictions for the tree amplitudes T; Tc
for the upper hand solution. In particular, within the
experimental uncertainty the phases C and Cn are still
consistent with being small and compatible with order
O��=E� effects.

Using the numbers in Eq. (35) for jTj and jtj and the
SCET results in Eqs. (37), we can extract the nonpertur-
bative parameters �; �J. Taking leading-log (LL) order for
-8
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the coefficients (C1 � 1:107, C2 � 0:248, C3 � 0:011,
C4 � 0:025 at & � 4:8 GeV) and h �u1i� � 3 [28], we
find

�B�j��64� � �0:05! 0:05�
�
3:9� 103

jVubj

�
;

�B�
J j��64� � �0:11! 0:03�

�
3:9� 103

jVubj

�
;

(40)

where the quoted errors are propagated from the experi-
mental errors from jTj and jtj in Eq. (35). Using the
results for rc and 6c in Eq. (34) and jVcbj � 0:041 the
penguin amplitude is

P
N�

��64�
� �0:043! 0:013�ei�136�!12��: (41)

The ��� and ���
J terms in Eq. (38) contribute 0.002 to

P=N�, which is only a small part of the experimental
result. The perturbative corrections from the �c�f�i ’s or
particularly the �b�f�i ’s can add terms whose rough size is
estimated to be 
�B�

J C1�s�mb�=� ’ 0:007. After remov-
ing these contributions, the sizable remainder would be
attributed to A��

c �c . Since A��
c �c can have a large nonpertur-

bative strong phase, the large phase in Eq. (41) supports
the conclusion that this term contributes a substantial
amount to P=N�.

The extraction of the above parameters allows us to
make two model-independent predictions with only �
and jVubj as input. First a prediction for the semileptonic
B ! � form factor f��0� is possible. Combining Eq. (40)
with Eq. (39) we find

f��0�j��64� � �0:17! 0:02�
�
3:9� 103

jVubj

�
: (42)

In Fig. 5 we show results for �B�, �B�
J , and f��0� for other

values of �, thus generalizing the results in Eqs. (40) and
FIG. 5 (color online). Model-independent results for �B�,
�B�

J , and the B ! � form factor f��q
2 � 0� as a function of

�. The shaded bands show the 1-% errors propagated from the
B ! �� data.
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(42). Note that including the correlation in the errors for
�B� and �B�

J has led to a smaller uncertainty for f��0�.
Theory uncertainty is not shown in Eq. (42) or Fig. 5, and
the most important source is power corrections which we
estimate to be !0:03 on f��0�. One-loop �s�mb� correc-
tions are also not yet included. Varying & � 2:4–9:6 GeV
in the LL coefficients changes f��0� by only a small
amount #0:01.

It is interesting to note that the central values from our
fit to the data give �B�

J * �B� which differs from the
hierarchy used in QCDF. Furthermore our central value
for f��0� is substantially smaller than the central values
obtained from both QCD sum rules [29] [f��0� � 0:26],
from form factor model based fits to the semileptonic
data [30] [f��0� � 0:21], or those used in the QCDF
analysis [4] [f��0� � 0:28 or 0.25].

Our analysis can also be used to make a prediction for
Br�B0 ! �0�0�. At tree level in SCET jtnj � jtj  1
which gives

���B0 ! �0�0�
���B ! �0��

�

�
jtj  1

jtj

�
2
�

r2c
jtj2


2rc

jtj

�
1

1

jtj

�
cos�6c� cos���: (43)

Thus we predict

Br�B0 ! �0�0� �

8><>:
�1:0! 0:7� � 106; � � 54�

�1:3! 0:6� � 106; � � 64�

�1:8! 0:7� � 106; � � 74�:

(44)

These results are all in reasonable agreement with the
current world average. The uncertainty quoted in Eq. (44)
is only from the inputs in Eq. (43), and will be directly
reduced when the first four measurements in Eq. (31)
improve. Since the �B�

J term in Eq. (40) is * �B� our
results for Br�B0 ! �0�0� are not contaminated and we
expect that theoretical uncertainty from power correc-
tions plus �s�mb� corrections will add a 
20%–30%
uncertainty to the results in Eq. (44). Note that one can
turn the analysis in Eq. (44) around and use the data on
B ! �� in Eq. (31) to give a new method for determining
the value of �, where the theoretical input from factori-
zation is that the tree triangle is flat.

Our values in Eq. (44) are somewhat larger than the
central values predicted in QCDF (
 0:3� 106 [4]) or
pQCD (
 0:2� 106 [31]). For � � 54� the first term in
Eq. (43) dominates our result, while the r2c penguin term
has a large cancellation with the interference term /
cos���. For larger �’s this cancellation becomes less
effective and Br�B0 ! �0�0� increases. In QCDF �B�

dominates over a small �B�
J , but has a small coefficient

/ C2 � C1=3, so the first term in Eq. (43) is small. In
pQCD the Ma;e terms which are multiplied by C1 are also
small for B ! �0�0.
-9
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In this paper we have used SCET to derive a factoriza-
tion theorem for B ! M1M2 decays and explored the
theoretical and phenomenological implications. Several
issues for B ! M1M2 still remain to be resolved. A facto-
rization formula for the polarization effects should be
investigated beyond leading order. It needs to be shown
that the n– �n factorization is not spoiled by Glauber
degrees of freedom. The one-loop �bi’s need to be com-
puted, as well as a resummation of Sudakov logarithms
which are given by the evolution equations for the SCET
operators. Charming penguin effects need to be better
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understood in an effective theory approach, and a full
factorization theorem for the Ac �c amplitude should
be worked out. Finally, power corrections (including
so-called chirally enhanced terms, annihilation con-
tributions, and C1�=E terms) should be studied using
SCET.
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