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Thermodynamics of two-color QCD and the Nambu Jona-Lasinio model
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We investigate two-flavor and two-color QCD at finite temperature and chemical potential in
comparison with a corresponding Nambu and Jona-Lasinio model. By minimizing the thermodynamic
potential of the system, we confirm that a second-order phase transition occurs at a value of the
chemical potential equal to half the mass of the chiral Goldstone mode. For chemical potentials beyond
this value the scalar diquarks undergo Bose condensation and the diquark condensate is nonzero. We
evaluate the behavior of the chiral condensate, the diquark condensate, the baryon charge density and
the masses of scalar diquark, antidiquark and pion, as functions of the chemical potential. Very good
agreement is found with lattice QCD (Nc � 2) results. We also compare with a model based on leading-
order chiral effective field theory.
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I. INTRODUCTION

The phase structure of QCD has been the subject of
intense investigations in recent years. Precise numerical
data have become available concerning QCD thermody-
namics at high temperature via large-scale computer
simulations on the lattice (for a review see [1]). The study
of full QCD at finite baryon density is still a formidable
challenge, due to the limitations of standard Monte Carlo
simulations when applied to systems at finite chemical
potential (for recent results see [2,3]). Present develop-
ments are aimed at improved strategies [4] to deal with
the fact that the determinant of the Euclidean Dirac
operator becomes complex at finite chemical potential.

An interesting perspective of finite-density QCD is the
emergence of color superconductivity. This was revealed
first by calculations based on one-gluon exchange;
Barrois, Bailin and Love [5,6] and later Iwasaki and
Iwado [7] pointed out that the induced attractive force
near the Fermi surface creates quark Cooper pairs result-
ing in color superconductivity in the case of QCD at low
temperature and high density. In the late nineties, using
an instanton model of the effective interaction, Alford,
Rajagopal and Wilczek [8,9] and Rapp, Schäfer, Shuryak
and Velkovsky [10] argued that the energy gap is expected
to be of the order of 100 MeV.

No first principle computations exist at this moment
concerning the phenomenon of color superconductivity in
full Nc � 3 QCD. One response to this situation has been
to start from simpler QCD-like theories with additional
anti-unitary symmetries that guarantee the Fermion de-
terminant to be real at nonzero chemical potential and
therefore allow the study of such theories on the lattice.
Examples of such explorations include QCD with two
colors and fundamental quarks and QCD with an arbi-
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trary number of colors and adjoint quarks [11]. The phys-
ics of both these theories is quite different from full
three-color QCD. Nevertheless these differences are
easily understood and classified. Knowledge of the criti-
cal conditions for phase transitions in these schematic
cases may offer qualitative clues about critical phe-
nomena encountered in three-color QCD, such as diquark
condensation.

In two-color QCD, diquarks can form color singlets
which are the baryons of the theory. The lightest baryons
and the lightest quark-antiquark excitations (pions) have
a common mass, m�, and this spectrum determines the
properties of the ground state for small chemical poten-
tials. General arguments [12] predict a phase transition
from the vacuum to a state with finite baryon density at a
critical chemical potential �c, which is the lowest energy
per quark that can be realized by an excited state of the
system. This state is populated by light diquarks, and one
expects �c � m�=2. The Bose-Einstein condensation of
diquarks, with nonzero baryon number, can be inter-
preted as baryon charge superconductivity.

The �T;�� phase diagram of QCD with two colors has
been studied by Dagotto et al. using a mean-field model
of the lattice action [13,14]. The smallness of�c has been
exploited to study the zero temperature phase transition
using a chiral effective Lagrangian extended to the flavor
symmetry SU�2Nf� [11,15–18]. Other approaches to two-
color QCD have also been explored, based, for example,
on a random matrix model [19,20] and on the renormal-
ization group [21]. Several of these model calculations
have been verified by lattice simulations [22–43].

In the present paper we investigate the relationship
between Nc � 2 QCD and a corresponding Nambu and
Jona-Lasinio (NJL) model [44–48] in which gluonic
degrees of freedom are ‘‘integrated out’’ and replaced
by a local four-point interaction of quark color currents.
This amounts to effectively replacing the local color
gauge symmetry by a global one, with the assumption
13-1  2004 The American Physical Society
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that colored (gluonic) excitations are far removed from
the low-energy spectrum and hence ‘‘frozen’’. Similar
models have already been used to study the QCD color
superconductivity phase with two [49–54] and three fla-
vors [55–57] (for a recent review see [58]). The specific
aim of this work is to test the effectiveness of the NJL
model, with its dynamically generated quasiparticles, in
reproducing the thermodynamics of two-color QCD, and
to compare our results quantitatively with those obtained
from recent lattice computations. We study the behavior
of the chiral and diquark condensates, and of the baryon
density, as functions of temperature and chemical poten-
tial, both in the chiral limit and for finite values of the
current quark masses. We investigate, again for both zero
and finite quark masses, the two-color QCD phase dia-
gram in the T �� plane. As further applications we
evaluate the pion, diquark and antidiquark masses, as
functions of the chemical potential. We compare our
results to lattice data and also to the predictions from
chiral effective field theory.
1Isovectors such as the pion field are denoted by ~�.
II. TWO-COLOR NJL MODEL

Consider as a starting point the Lagrangian

L � � �x��i��@� �m0� �x� �Gc

X3
a�1

Ja��x�J
�
a �x�; (1)

with a four-point interaction that represents the local
coupling between color currents Ja� � � ��ta involving
the quark fields  and the SU�2�color generators ta with
tr�tatb� � 2�ab. Here Gc is an effective coupling strength
of dimension length� �2 and m0 is the diagonal current
quark mass matrix.

In this paper we restrict ourselves to the case of two
quark flavors (Nf � 2). In this case there are only two
order parameters, the quark condensate h �  i and the
scalar diquark condensate, symbolically denoted by
h  i. It is convenient to rewrite the interaction between
quarks, by Fierz transformation, in terms of the color
singlet pseudoscalar/scalar quark-antiquark and scalar
diquark channels. The resulting Lagrangian reads

LNJL � � �i��@� �m0� �Lq �q �Lqq

��colour triplet terms�;

Lq �q �
G
2
�� �  �2 � � � i�5 ~� �

2	;

Lqq �
H
2
� � i�5�2t2C � T�� TCi�5�2t2 �;

(2)

where G and H are constants which describe quark-
antiquark and quark-quark interactions, respectively, ta
are Pauli matrices in color space and �i are Pauli matrices
in flavor (isospin) space. We have introduced the charge
conjugation operator for fermions
054013
C � i�0�2: (3)

The terms Lq �q and Lqq are the interactions, resulting
from the Fierz-transform of the primary color current-
current coupling, projected into the relevant quark-
antiquark and diquark channels.

The coupling constants G and H in the Lagrangian (2)
are uniquely fixed by this procedure. One obtains

G � H �
3

2
Gc (4)

(see the Appendix for details).
As mentioned, the local SU�Nc � 2� gauge symmetry

is replaced by global SU�2�color in this model. In the chiral
limit, the Lagrangian (2) is invariant under an enlarged
flavor symmetry SU�Nf� 
 SU�Nf� 
U�1� ! SU�2Nf�,
which connects quarks and antiquarks; the so-called
Pauli-Gürsey symmetry, a characteristic feature of two-
color QCD. This symmetry relates pions and scalar di-
quarks. It is a natural ingredient of the ‘‘equivalent’’ NJL
model, with Eq. (4) relating the coupling constants of the
model Lagrangian.

Starting from the Lagrangian (2) and using standard
bosonization techniques, we introduce the auxiliary sca-
lar (�), pseudoscalar triplet1 ( ~�) and diquark (�;��)
fields, thus obtaining the following equivalent
Lagrangian in the color singlet sector

~L � � �i��@� �m0 � �� i�5 ~�  ~�� 

�
1

2
�� TC�5�2t2 �

1

2
� � �5�2t2C � 

T

�
�2 � ~�2

2G
�

j�j2

2H
: (5)

It is useful to represent the quark fields by a bispinor
defined in the following way:

q�x� �
1���
2

p
 �x�
C � T�x�

� �
: (6)

Furthermore, we introduce the matrix propagator

S�1�p� � p6 � M̂ ��5�2t2
����5�2t2 p=� M̂

 !
(7)

(the inverse of the so-called Nambu-Gorkov propagator),
where we have defined

M̂ � �m0 � ��1� i�5 ~�  ~�; (8)

here 1 � 1c  1f  1D is the unit matrix in color, flavor and
Dirac indices.We consider the flavor-symmetric case with
mu � md � m0. Integrating over q�x� and �q�x� we obtain
the effective Lagrangian in terms of the auxiliary field
variables �; ~�, � and ��. It can be written as
-2
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L eff � �
�2 � ~�2

2G
�

j�j2

2H
� i

Z d4p

�2��4
1

2
Tr ln�S�1�p�	:

(9)

The trace in this expression is taken over flavor, color and
Dirac indices, and the factor 1=2 compensates for double
counting in the q and �q fields.

Solving the field equations for �, ~�, � and �� and
working in the mean-field approximation2, we can evalu-
ate their vacuum expectation values. The mean-field value
h ~�i of the pseudoscalar isotriplet field is always equal to
zero. The � field has a nonvanishing vacuum expectation
value as a consequence of spontaneous chiral symmetry
breaking, while the diquark fields � and �� are expected
to have nonzero mean values only in dense matter. An
interesting limiting situation is encountered whenm0 � 0
(chiral limit) together with � � 0. In this limit the ex-
tended SU�2Nf� symmetry with Nf � 2 (and G � H)
implies that the thermodynamic potential depends only
on R2 � �2 � j�j2 so that there is a degeneracy along the
circle with constant radius R. This case will be further
discussed in Sec. V.

After solving the field equation for �, we can work in
terms of the effective quark mass m which is related to
h�i through the self-consistent gap equation

m � m0 � h�i � m0 �Gh �  i: (10)

Note that h�i � Gh �  i is negative in our representation,
and h �  i � h � u u � � d di with h � u ui � h � d di.
III. PARAMETER FIXING

The three parameters of the model are the ‘‘bare’’
quark mass m0, a loop-momentum cutoff � and the
coupling strength G � H. Even if we are considering
the Nc � 2 NJL model, we choose to reproduce the
known chiral physics in the hadronic sector. This is rea-
sonable since, in color singlet channels, Nc enters only
parametrically in the relevant physical constants and
observables. For this reason, we fix those parameters
through the constraints imposed by the pion decay con-
stant and the chiral (quark) condensate:
(i) T
2In th
their ex
using th
he pion decay constant f� is evaluated in the
NJL model through the following relation:

f2� � 4m2I�1�� �m�

where I�1�� �m� � �iNc
Z d4p

�2��4



'��2 � ~p2�

�p2 �m2 � i(�2
:

(11)

The empirical value is f� � 92:4 MeV.
e mean-field approximation the fields are replaced by
pectation values for which we will later on continue
e notation � and � for simplicity and convenience.
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(ii) T
-3
he quark condensate becomes

h � u ui � �4mI�0�� �m�; (12)

with

I�0�� �m� � iNc
Z d4p

�2��4
'��2 � ~p2�

p2 �m2 � i(
: (13)

Its ‘‘empirical’’ value derived from QCD sum
rules is

h � u ui1=3 ’ h � d di1=3 � ��240� 20� MeV:

(14)
(iii) T
he current quark massm0 is fixed from the Gell-
Mann, Oakes, Renner relation

m2� �
�m0h �  i

f2�
: (15)

In the chiral limit, m0 � 0 and m� � 0.
The Goldberger-Treiman relation, which determines
the pion-quark coupling g�, follows from the previous
relations

m � g�f�; (16)

with g2� � �4I�1�� �m�	�1.
We will first perform all our calculations with a finite

value for the current quark mass m0, and then investigate
the chiral limit, m0 ! 0. The parameters obtained by
imposing the constraints (11)–(15) are shown in Table I.
IV. RESULTS AT FINITE T AND �

We now extend the NJL model to finite temperature T
and chemical potentials � using the Matsubara formal-
ism. We consider the isospin symmetric case, with an
equal number (and therefore a single chemical potential)
of u and d quarks. The quantity to be minimized at finite
temperature is the thermodynamic potential

"�T;�� � �T
X
n

Z d3p

�2��3
1

2
Tr ln

1

T
~S�1�i!n; ~p�

� �

�
�2

2G
�

j�j2

2H
; (17)

where !n � �2n� 1��T are the Matsubara frequencies
for fermions and the inverse quark propagator including
the chemical potential � is now defined as

~S�1�p0; ~p� � p6 � M̂���0 ��5�2t2
����5�2t2 p=� M̂���0

 !
:

(18)

Using the identity
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FIG. 1. Scaled expectation values h�i and hj�ji as a function
of the chemical potential for different temperatures.
Continuous lines correspond to T � 0, dashed lines to T �
100 MeV, dotted lines to T � 150 MeV and the dashed-dotted
line corresponds to T � 200 MeV (hj�ji � 0 in this case).

TABLE I. Parameter set used in this work, and the corresponding physical quantities.

� �GeV	 G � H �GeV�2	 m0 �MeV	 m �MeV	 jh � u uij
1=3 �MeV	 f� �MeV	 m� �MeV	

0.78 10.3 4.5 361 259 89.6 139.3
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T r ln�X� � ln det�X� (19)

we can evaluate the trace in (17) and obtain

1

2
Tr ln

~S�1

T
�i!n; ~p�

 !
� 4 ln

!2n � �E��2

T2

 !

� 4 ln
!2n � �E��2

T2

 !
; (20)

where we have defined E� �
���������������������������
�(��2 � j�j2

p
, with (� �

(��, ( �
������������������
~p2 �m2

p
. Next we evaluate the Matsubara

sum in Eq. (17) using the following relation:

T
X1

n��1

ln
�
!2n � E�2

T2

�
� E� � 2T ln�1� exp��E�=T�	:

(21)

The thermodynamic potential becomes

"�T;�� � �4
Z d3p

�2��3

	
2T ln



1� exp

�
�
E�

T

��

�2T ln


1� exp

�
�
E�

T

��
� �E� � E��

�


'��2 � ~p2� �
�2

2G
�

j�j2

2H
: (22)

In Eqs. (20)–(22), the effective (constituent) quark mass
m is related to the current quark mass and the � field
through Eq. (10).

The mean values for the � and � fields are determined
by minimizing the thermodynamic potential. One ob-
tains the following set of coupled equations that must
be solved simultaneously in order to find the solutions for
� and j�j:

� � �
2G

�2
Z
dpp2

m0 � �
(



(��
E�

�
(��
E�

�2
�

(��

�exp�E
�

T � � 1	E
�
�

(��

�exp�E
�

T � � 1	E
�

��

j�j �
2H

�2
Z
dpp2



j�j

E�
�

j�j

E�
� 2

�
j�j

�exp�E
�

T � � 1	E
�

�
j�j

�exp�E
�

T � � 1	E
�

��
: (23)

In Fig. 1 we show our results for the scaled expectation
values of the � and � fields as a function of the chemical
potential for different temperatures. One observes that at
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T � 0 the system undergoes a second-order phase tran-
sition at a critical chemical potential �c � m�=2, as
predicted by general arguments. The value of the pion
mass that we consider here is the one evaluated in the
model and shown in Table I. So this model exhibits
diquark condensation at chemical potentials larger than
�c, where the value of the chiral condensate is corre-
spondingly reduced. At T � 0, � is always nonvanishing
for �>�c; the diquark phase persists for large �. For
temperatures T * 200 MeV, on the other hand, the di-
quark condensate vanishes even for large chemical
potentials.

The chiral effective Lagrangian approach [11] predicts
the following behavior for the diquark condensate as a
function of the chemical potential at �>�c:

h  i

jh �  i0j
�

hj�ji

jh�i0j
�

�����������������������
1�

�
m�

2�

�
4

s
; (24)

which means that hj�ji should reach the vacuum expec-
tation value of the (scaled) chiral condensate asymptoti-
cally as �! 1. In the NJL model, the scale of variation
for �>�c is set by the momentum cutoff �. As a
consequence, j����j increases until ��� (correspond-
ing to �=m� � 5). For larger values of � the relevant
interactions become weaker and j�j tends to decrease
with �. This feature is an artifact, however, since the
applicability of the NJL model is limited to energy and
momentum scales below �. For chemical potentials
-4
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FIG. 3. Scaled h�i (a) and hj�ji (b) as a function of tem-
perature for different values of �=m�.
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FIG. 2. Scaled h�i and hj�ji as a function of the chemical
potential at T � 0; our results (solid lines) are compared to the
lattice data taken from Ref. [27]. The different symbols (open
circles, squares and diamonds) for the chiral condensate cor-
respond to different values for the quark masses. The dashed
lines are the predictions from chiral effective field theory [11].
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smaller than the cutoff scale the agreement between NJL
and chiral Lagrangian calculations is excellent, as ex-
pected. At very large chemical potential, perturbative
gluon exchange presumably takes over, with decreasing
interaction strength as � increases.

In Fig. 2 we show a comparison of our results for the
scaled chiral and diquark condensates at T � 0 as a
function of the chemical potential, with lattice data taken
from Ref. [27]. These data have been obtained by studying
two-color QCD with staggered fermions in the adjoint
representation. It was found that the positive determinant
sector behaves like a two-flavor theory. As we can see, the
agreement of our results with lattice data is remarkable.
The dashed lines are the predictions from chiral effective
field theory.

In Fig. 3 we show the scaled h�i and hj�ji as a function
of the temperature for different values of the chemical
potential. In this way we find, as a function of the chemi-
cal potential, the critical temperature of the phase tran-
sition, so that we can draw the phase diagram of two-
color QCD as modeled in the NJL model. This phase
diagram is presented in Fig. 4. At very small chemical
potentials we have a transition from a system in which
chiral symmetry is spontaneously broken to a system
where it is restored (from region I to region II) with
hj�ji � 0 in both phases. Region III is the superfluid
phase with hj�ji � 0. We note that the detailed analysis
of the phase diagram, Fig. 4, reveals that the transition
from region III to II becomes first order at large chemical
potential, with a tricritical point around � ’ 1:1�
1:2m�. A similar phenomenon has also been observed
in the Nc � 3 two-flavor NJL calculation of Ref. [51]. The
detailed comparison between Nc � 2 and Nc � 3 phase
diagrams remains as an interesting question that will be
0
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0.25

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
µ/mπ

T
 (

G
eV

)

FIG. 4. Phase diagram in the NJL model with two colors.
The zone I is a region in which chiral symmetry is sponta-
neously broken, and hj�ji � 0; in region II chiral symmetry is
restored, and again hj�ji � 0; region III is the superfluid phase
in which hj�ji � 0.

-5
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addressed in forthcoming work, once lattice QCD ther-
modynamics with Nc � 3 has progressed further.

An interesting quantity is the baryonic density

/ � �
@"�T;��
@�

: (25)

The lattice data of Ref. [27] show a scaled baryonic
density defined as

~/ �
/

4Nff2�m�
: (26)

Leading-order chiral effective field theory [11] gives the
following behavior at �>�c:

~/ �
�
2m�



1�

�
m�

2�

�
4
�
: (27)

Figure 5 presents our results for the scaled baryonic
density (26) as a function of the chemical potential at
zero temperature, in comparison with the lattice data for
the same quantity. Our results are in good agreement with
lattice data at moderate chemical potentials, while for
large chemical potentials the baryon density is under-
estimated. This difference may be caused by the mean-
field approximation. Correlations between quasiparticles,
not covered by this approximation, tend to become in-
creasingly important with growing density.

A. Pion and scalar diquark properties

This Section presents our results for the masses of the
(pseudo) Goldstone bosons, namely, the pion, the scalar
diquark and the corresponding antidiquark.

In order to evaluate the masses of the bosonic fields, we
expand the effective action
0.25 0.5 0.75 1 1.25 1.5 1.75 2
mπ

0

0.5

1

1.5

2

4N
ff

π
2
m

π
ρ

µ

FIG. 5. Scaled baryonic density as a function of the chemi-
cal potential at T � 0 (continuous line). The lattice data are
taken from Ref. [27]. The different symbols correspond to
different values for the quark masses. The dashed line is the
prediction from chiral effective field theory [11].
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S eff � �
Z
d4x



�2 � ~�2

2G
�
���

2H

�
�
i
2
tr
Z
d4x ln�S�1�x�	 (28)

in a power series of the meson and diquark fields around
their mean-field values. The second-order term of this
expansion identifies the mass spectrum of mesons and
diquarks. The resulting effective action in momentum
space has the following form:

S�2�
eff��; ~�;�;�

�� � �
�2 � ~�2

2G
�
���

2H

�
i
4
tr
Z d4p

�2��4
�~S0A~S0A	; (29)

where ~S0 is the Nambu-Gorkov propagator (18) evaluated
at the mean-field values for the bosonic fields, and A is a
matrix defined in the following way:

A �

�
�� i�5 ~�  ~� ��5�2t2
����5�2t2 �� i�5 ~�  ~�

�
(30)

(see also [59]). By analyzing the second-order action (29),
one observes that mixing terms arise, at�>�c, between
the �, � and �� fields; these terms are proportional to
j�j, and the mixing occurs because the presence of a
nonzero diquark condensate spontaneously breaks the
baryon number symmetry. This feature was already found
in [39]. The mass matrix turns out to have the following
form:

M �

@2S�2�
eff

@ ~�2
0 0 0

0
@2S�2�

eff

@�2
@2S�2�

eff

@�@�

@2S�2�
eff

@�@��

0
@2S�2�

eff

@�@�

@2S�2�
eff

@�2
@2S�2�

eff

@�@��

0
@2S�2�

eff

@��@�

@2S�2�
eff

@��@�

@2S�2�
eff

@��2

0
BBBBBBBB@

1
CCCCCCCCA
; (31)

and the masses of the various modes are found by solving
the equation

det�M� � 0: (32)

Evidently the pion fields do not mix with the others, while
the �, the diquark and the antidiquark fields mix in the
phase with j�j � 0.

The behavior of the scaled pion mass as a function of
the chemical potential is shown in Fig. 6, in comparison
to the lattice data. The pion mass increases linearily with
the chemical potential at �>�c. This behavior was
anticipated in the calculations by Kogut et al. [11]. They
in fact predicted for m� the following behavior at �>
�c:

m� � 2�; (33)

as indicated by the dashed line in Fig. 6. Our result is in
very good agreement with both the lattice data and the
-6
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FIG. 6. Scaled pion mass as a function of �=m�0�
� at T � 0

(continuous line). The lattice data are taken from Ref. [27] and
have been rescaled in order to show dimensionless quantities.
The different symbols correspond to different values for the
quark masses. The dashed line is m� � 2�, as predicted in
leading-order chiral effective field theory [11]. Also shown is
the (scaled) pion decay constant f�=m

�0�
� and its evolution with

increasing �.
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predictions using the leading-order chiral effective
Lagrangian.

The behavior of the pion and � masses and of the pion
decay constant as functions of temperature at � � 0 is
shown in Fig. 7. At temperatures T exceeding the critical
Tc for the chiral transition at which h�i tends to zero, m�
becomes equal to the pion mass and both masses rise
continuously with increasing T. The pion decay constant
tends to zero at the same time.

Next, consider the other two bosonic modes of the
theory: the scalar diquark and its antidiquark. The behav-
ior of their masses at finite chemical potential is shown in
Fig. 8 in comparison to the pion mass; at � � 0 they are
all degenerate, as predicted on the basis of general argu-
0.05 0.1 0.15 0.2 0.25 0.3
T GeV

0.2

0.4

0.6

0.8

G
eV

mσ

mπ

fπ

FIG. 7. Pion mass, � boson mass and pion decay constant as
a function of temperature at � � 0.

054013
ments, but they behave in different ways as the chemical
potential increases. For�<�c � m�0�

� =2 the pion, which
does not carry baryon charge, is not affected by �, while
the diquark and antidiquark masses are shifted according
to their baryon number B � �1. They follow in fact the
behavior observed also in chiral effective field theory [11]

m� � m� � 2�; m�� � m� � 2�: (34)

For �>�c, the appearance of the diquark condensate
spontaneously breaks the baryon number symmetry. The
scalar modes (diquark, antidiquark and sigma) get mixed.
The new eigenmodes are linear combinations of the
original quasiparticle states. By solving Eq. (32) we find
the masses of the new orthogonal modes. One of them,
which we denote by ~�, is massless and can be identified
with the true Goldstone boson of the theory, correspond-
ing to the spontaneous breaking of the baryon number
(U�1�) symmetry. The other two modes are massive. One
of them, which we denote by ~��, follows the behavior
derived in the paper by Kogut et al.:

m~�� � 2�
���������������������������������
1� 3�m�=2��4

q
: (35)
V. CHIRAL LIMIT

In the chiral limit m0 ! 0�m� ! 0�, and at � � 0, the
thermodynamic potential (22) (withG � H) is a function
only of �2 � j�j2, as already mentioned. This is a natural
outcome once the relation between the coefficients G and
H is fixed through the Fierz transformation of the color
current-current interaction (see Eq. (4)). As a result," is
invariant under the rotation which connects the chiral and
the diquark condensate along the circle �2 � j�j2 �
const. Because of this symmetry, the chiral condensate
is indistinguishable from the diquark condensate for
m0 � � � 0, so that a state with finite h�i can always
be transformed into a state with finite hj�ji and h�i � 0.
0.2 0.4 0.6 0.8 1 1.2 1.4
mπ

0

0

0.5

1

1.5

2

2.5

3

m
m

π
0

B 1

B 0

B 1

π

µ

FIG. 8. Spectrum of pions and diquarks/antidiquarks as a
function of the (scaled) chemical potential at zero temperature.
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The phases with spontaneously broken chiral and baryon
number symmetries are degenerate in this limit.

As soon as the chemical potential takes a finite value,
the favorable phase is the one with a nonzero diquark
condensate and zero chiral condensate. This is evident
from Fig. 9 which shows the contour plots of the thermo-
dynamic potential as a function of � and j�j. In the left
panel we have T � � � 0 and the rotational invariance is
evident. In the right panel we have introduced a very
(a)

(b)

FIG. 9. Contour plots of the thermodynamic potential in the
chiral limit (m0 � 0) as a function of � and � for T � � � 0
(a) and T � 0 and � � 20 MeV (b).

054013
small chemical potential, which is nevertheless sufficient
to break the rotational invariance along R2 �
h�i2 � hj�ji2 and favor the phase in which h�i � 0 and
hj�ji � 0.

Minimizing the thermodynamic potential of the sys-
tem, one finds the mean-field values of the chiral and
diquark condensates. Our results in Fig. 10 display hj�ji
as a function of temperature for different chemical po-
tentials. The chiral condensate is always equal to zero in
those cases.

In Fig. 11 the phase diagram of the two-color NJL
model in the chiral limit is compared to the one using a
finite value of the bare quark massm0. As one can see, the
phase boundaries for m0 � 0 and m0 � 0 become identi-
cal at large chemical potentials, whereas at small � they
show a qualitatively different behavior. In the exact chiral
limit there are only two phases in the theory, the super-
fluid phase with hj�ji � 0 and the high-temperature
phase with hj�ji � 0, separated by a critical temperature
of about 0.2 GeV.

Consider next the pion and diquark masses in the chiral
limit and their variations with increasing chemical po-
tential. The chiral condensate is always equal to zero in
this limit. Consequently, the ~� mode is a true Goldstone
boson and its mass is always equal to zero, while the ~��

and pion masses are degenerate. Explicit symmetry
breaking by a finite chemical potential lets these masses
scale as m~�� � m� � 2�. The degeneracy of ~�� and � is
removed as soon as a small nonzero quark mass m0 is
introduced. This also gives a finite mass to the ~� mode,
which is again equal to zero above �c � m�0�

� =2.
Figure 12 illustrates this situation for a very small value

of m0 ( � 0:1MeV). The critical value �c of the chemical
potential is identified as �c � m�0�

� =2, as discussed pre-
viously, but now of course with a very small value of the
0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

0 0.05 0.1 0.15 0.2 0.25 0.3
T (GeV)

<|
∆|

> 
(G

eV
)

FIG. 10. Mean-field value of the j�j field as a function of
temperature for � � 0 (continuous line) and � � 350 MeV
(dashed line).
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FIG. 11. Comparison between the phase diagram of two-
color QCD in the chiral limit (continuous line) and for bare
quark mass m0 � 0 (dashed line).
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vacuum pion mass m�0�
� . As the limit m0 ! 0 is ap-

proached, m�0�
� ! 0 and �c ! 0; the low-temperature

system is always in the superfluid phase for any value of
�. At � � 0 we recover the exact Pauli-Gürsey symme-
try, with vanishing pion and diquark masses.

VI. CONCLUSIONS

We have investigated a two-color and two-flavor
Nambu and Jona-Lasinio model at finite temperature
and finite baryon chemical potential, with the primary
aim of exploring the capability of such a model to repro-
duce the thermodynamics of Nc � 2 lattice QCD. The
starting point is the assumption that gluon dynamics can
be integrated out and reduced to a local interaction be-
tween quark color currents. By Fierz rearrangement, this
implies a one-to-one correspondence between interac-
tions in color singlet quark-antiquark and diquark chan-
nels (the Pauli-Gürsey symmetry).
FIG. 12. Pion and diquark/antidiquark masses approaching
the chiral limit (m0 ’ 0:1 MeV). In the exact chiral limit,
m~�� � m� � 2� and m~� � 0.
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The resulting spontaneous (dynamical) symmetry
breaking pattern identifies pseudoscalar Goldstone bo-
sons (pions) and scalar diquarks as the thermodynami-
cally active quasiparticles. The successful comparison
with Nc � 2 lattice data indicates that this simple NJL
model does indeed draw a remarkably realistic picture of
the quasiparticle dynamics emerging from Nc � 2 QCD,
even though the original local color gauge symmetry of
QCD has been reduced to a global color SU�2� symmetry
in the NJL quasiparticle model. We note that color (trip-
let) quark-antiquark modes which are the remnants of
gluon degrees of freedom in this model, are far removed
from the low-energy spectrum. Poles of the respective
Bethe-Salpeter amplitudes appear at mass scales several
times the NJL cutoff scale [60].

We confirm that a diquark condensate develops at
chemical potentials�>�c � m�=2. The correlated evo-
lution of the chiral and diquark condensates with increas-
ing �, as observed in Nc � 2 lattice QCD, is very well
reproduced. Had we started from NJL four-point inter-
actions with independent, arbitrary coupling strengths in
quark-antiquark and diquark channels, the condensate
pattern would have been quite different. It appears that
modelling the low-energy dynamics of Nc � 2 QCD is
already done surprisingly well when using just a color
current-current interaction with a single strength
parameter.

The calculated baryon density, obtained by taking the
derivative of the thermodynamic potential with respect to
the chemical potential, describes the corresponding lat-
tice results well in the range�< 2�c. Deviations occur at
larger � which presumably indicate the increasing im-
portance of correlations between quasiparticles beyond
the mean-field approximation.

The NJL model also permits an instructive study of the
way in which this system behaves in the chiral limit
which is not directly accessible in lattice computations.
In particular, the limits of vanishing quark mass and
vanishing baryon chemical potential do not commute,
as expected, and have to be handled with care.

The low-energy physics of QCD differs qualitatively
between Nc � 2 and Nc � 3 because of the very different
nature of the baryonic quasiparticles in these two theo-
ries. Nevertheless, the success of the present studies en-
courages further extended investigations also for Nc � 3
thermodynamics, using NJL type quasiparticle ap-
proaches above the critical temperature for deconfine-
ment, in close contact with lattice QCD simulations.
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APPENDIX

We start from the color current interaction (1) and show
that performing a Fierz transformation we obtain the
Lagrangian (2) with the coupling coefficients related by
(4).

In order to demonstrate this identity for the coefficient
of the scalar diquark interaction (H) we must Fierz-
transform this interaction into the qq channel, while for
G we must Fierz-transform into the �qq channel.

Let us start with H; we rewrite the interaction term of
Eq. (1) and keep track explicitly of all color, flavor and
Dirac indices:

Lc
int � �Gc

X3
a�1

� � �3ta �2

� �Gc

X3
a�1

� � i;p;� j;q;5 � k;r;/ l;s;���3��5��3�/�


�ta�ij�ta�kl�pq�rs	

(A1)

with color indices i; j; k; l, flavor indices p; q; r; s, and
Dirac indes �; 5; /; �. We start by performing the Fierz
transformation for the flavor indices using the following
relation

�pq�rs �
1

2

X3
b�0

��b�pr��b�sq; (A2)

where we have defined
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�0 �
�
1 0
0 1

�
and �b � Pauli matrices with

b � 1; 2; 3;
(A3)

thus obtaining

Lc
int � �

1

2
Gc

X3
a�1

X3
b�0

� � i;p;� j;q;5 � k;r;/ l;s;���3��5


��3�/��ta�ij�ta�kl��b�pr��b�sq	: (A4)

In order to Fierz-transform the color indices we use the
relation

X3
a�1

�ta�ij�ta�kl �
1

2
��ik�lj � �t1�ik�t1�lj � �t3�ik�t3�lj	

�
3

2
�t2�ik�t2�lj; (A5)

thus obtaining

Lc
int � �

1

4
Gc

X3
b�0

� � i;p;� j;q;5 � k;r;/ l;s;���3��5��3�/�


��ik�lj � �t1�ik�t1�lj � �t3�ik�t3�lj � 3�t2�ik

�t2�lj���b�pr��b�sq	: (A6)

At the end we perform the Fierz transformation for the
Dirac indices and find
Lc
int ��

1

4
Gc

X3
b�0

	
� i;p;� j;q;5 � k;r;/ l;s;�



�C���/�C��5�

1

2
��3C���/�C�3��5�

1

2
��3�5C���/�C�3�5��5

��i�5C
���/�iC�5��5

�
��ik�lj��t1�ik�t1�lj��t3�ik�t3�lj� 3�t2�ik�t2�lj	��b�pr��b�sq

�

��
1

4
Gc

X3
b�0

X
S�0;1;3



� � �btSC � 

T�� TC�btS �� �i � �5�btSC � 
T��i TC�5�btS ��

1

2
� � �3�btSC � 

T�


� TC�3�btS ��
1

2
� � �3�5�btSC � T�� TC�3�5�btS �

�
�
3

4
Gc

X3
b�0



� � �bt2C � T�� TC�bt2 �

��i � �5�bt2C � T��i TC�5�bt2 ��
1

2
� � �3�bt2C � T�� TC�3�bt2 ��

1

2
� � �3�5�bt2C � T�� TC�3�5�bt2 �

�
;

(A7)
where we have introduced the charge conjugation matrix
operator for fermionsC � i�0�2.We can easily read from
Eq. (A7) the coefficient of the scalar diquark channel,

H �
3

2
Gc: (A8)

Next we show that also G � 3Gc=2, starting from
Eq. (A1) and performing a Fierz transformation into the
�qq channel.
We start from the flavor-SU�2� identity
�pq�rs �
1

2

X3
b�0

��b�ps��b�rq (A9)
and obtain
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Lc
int � �

1

2
Gc

X3
a�1

X3
b�0

� � i;p;� j;q;5 � k;r;/ l;s;���3��5


��3�/��ta�ij�ta�kl��b�ps��b�rq	: (A10)

Then we transform color indices by using

X3
a�1

�ta�ij�ta�kl �
3

2
�il�kj �

1

2

X3
c�1

�tc�il�tc�kj (A11)
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and find

Lc
int � �

1

4
Gc

X3
b�0

	
� i;p;� j;q;5 � k;r;/ l;s;���3��5��3�/�


�3�il�kj �
X3
c�1

�tc�il�tc�kj	��b�ps��b�rq

�
: (A12)

Finally the Dirac Fierz transformation leads to
Lc
int � �

1

4
Gc

X3
b�0

	
� i;p;� j;q;5 � k;r;/ l;s;�



����/5 �

1

2
��3�����

3�/5 �
1

2
��3�5�����

3�5�/5 � �i�5����i�5�/5

�






3�il�kj �

X3
c�1

�tc�il�tc�kj

�
��b�ps��b�rq

�

�
1

4
Gc

X3
b�0

	
3


� � �b �2 � �i � �5�b �2 �

1

2
� � �3�b �2 �

1

2
� � �3�5�b �2

�
�
X3
a�1



� � ta�b �2 � �i � �5ta�b �2

�
1

2
� � ��ta�b �2 �

1

2
� � ���5ta�b �2

��
from which we can easily read

G �
3

2
Gc: (A13)
[1] F. Karsch, Lect. Notes in Phys. 583, 209 (2002).
[2] S. Muroya, A. Nakamura, C. Nonaka, and T. Takaishi,

Prog. Theor. Phys. 110, 615 (2003).
[3] F. Karsch, K. Redlich, and A. Tawfik, Phys. Lett. B571,

67 (2003).
[4] Z. Fodor and S. D. Katz, J. High Energy Phys. 0203

(2002) 014.
[5] B. C. Barrois, Nucl. Phys. B129, 390 (1977).
[6] D. Bailin and A. Love, Phys. Rep. 107, 325 (1984).
[7] M. Iwasaki and T. Iwado, Phys. Lett. B350, 163 (1995).
[8] M. G. Alford, K. Rajagopal, and F. Wilczek, Phys. Lett.

B422, 247 (1998).
[9] K. Rajagopal, Nucl. Phys. A661, 150 (1999).
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