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QCD in curved space-time: A conformal bag model
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We construct an effective low energy Lagrangian using constraints imposed by the renormalization
group. Degrees of freedom are gluons and a scalar glueball. This effective theory has a dual description
as classical gluodynamics on a curved conformal background. Color fields are dynamically confined,
and the strong coupling freezes at distances larger than the glueball size. We make specific predictions
(in particular, on the Nc dependence of glueball properties) which can be tested in lattice simulations of
gluodynamics.
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I. INTRODUCTION

A. Instability of the perturbative vacuum

It has been known for a long time that the perturbative
QCD vacuum is not the true vacuum of the theory. One
way to see this is to examine the derivation of the
asymptotic freedom [1] in the effective potential method.
The real part of the one-loop potential of gluodynamics
for a constant chromomagnetic field H reads [2]

Re Vpert�H� �
1

2
H2 � �gH�2

b

32�2

�
ln
gH

�2 �
1

2

�
; (1)

where � is the renormalization scale, and b � 11Nc=3.
This potential has a minimum at H � H0 (1):

gH0 � �2e�16�2=bg2���: (2)

In this paper we will call this minimum ‘‘the perturbative
vacuum’’ although this term usually refers to H � 0.

However it was soon realized that this perturbative
vacuum is unstable. It is instructive to trace the origin
of this instability in the effective potential method, which
was pointed out in Ref. [3]. Consider the Landau levels of
a particle of spin s and four-momentum p in a constant
chromomagnetic field Hẑ [4]:

p�p� � 2gH�n� 1=2� � 2szgH; (3)

where sz is a projection of the spin on the direction of the
chromomagnetic field. The effective potential (1) can be
calculated as [3]

Vpert�H� �
gH

4�2

�
Z
dpz

X1
n�0

X
sz��1

����������������������������������������������������
2gH�n� 1=2� sz� � p2z

q
:

(4)
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Its real part yields (1), while the imaginary part can be
calculated as

Im Vpert�H� �
gH

4�2

Z �gH

�gH
dpz

������������������������������
p2z � gH � i0

q
� �

g2H2

8�
: (5)

Therefore, the perturbative vacuum corresponding to the
minimum of the perturbative potential (2) is unstable.
The instability is caused by the mode n � 0 and sz � 1
(spin direction parallel to the field); note that n � 0
corresponds to the Landau level of the largest radius
	1=

�������
gH

p
, i.e., to the infrared region of the theory. This

means that perturbative QCD is ill defined at large dis-
tances [5], and we may have to describe the theory in
terms of other variables.

B. QCD in a cavity

The breakdown of the perturbative approach (at least,
at the one-loop level) has to happen at some critical value
of the chromomagnetic field Hc >H0 � �2

QCD=g. This
means that weaker color fields cannot penetrate the physi-
cal vacuum, and the necessary condition for the applica-
bility of the perturbative approach is that the energy
density of the color field is sufficiently high:

�H �
H2

8�
>

�4
QCD

32�2�s
: (6)

The condition (6) means that the color fields can be
properly defined only at distances smaller than Rconf 	
��1
QCD. For perturbative theory to make sense, it has

therefore be constrained within a cavity of radius Rconf ,
with appropriate boundary conditions. A possible realiza-
tion of this idea is the MIT bag model [6] where the
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colored fields are required to vanish at the surface of a
sphere.

It is well known that the presence of boundary con-
ditions leads to the emergence of Casimir vacuum energy
�C 	 R�4

conf 	�4
QCD; in the MIT bag model, it is repre-

sented by a ‘‘bag constant.’’ It is also known that a theory
in flat space-time in the presence of nontrivial boundary
conditions can often be conveniently described as a the-
ory in a curved background [7]. In this paper we will
argue that such a description is possible for gluodynamics.
We develop an effective theory which has the following
dual descriptions: (i) classical gluodynamics in a curved
conformal space-time background and (ii) gluodynamics
in flat space-time coupled to scalar glueballs (which in
this case play the role of dilatons saturating the correla-
tion functions of the trace of the energy-momentum
tensor). The representation of the effective theory in flat
space-time appears quite similar to the nontopological
soliton model of Friedberg and Lee [8] which describes
quarks coupled to a scalar self-interacting field, and more
generally to the approach outlined in Ref. [9]; we will
return to the discussion of this topic later.

It is clear that such an approach should have its limi-
tations. Consider, for example, the dependence on the
number of colors Nc: the energy density of the gluon field
�H 	 �N2

c � 1�, whereas the Casimir vacuum energy �C 	

�4
QCD 	 N0

c . One therefore can expect that the effect of
the boundary will diminish at large Nc, and so the ap-
proach may not have a smooth Nc ! 1 limit.

C. Renormalization group and the low
energy theorems

The basic property of the perturbative effective poten-
tial (1) is its invariance under the renormalization group
(RG) transformations. We would like to preserve this
fundamental property at all distances [10–12]. For this
purpose, we need to encode the properties of RG in a set
of low energy theorems (LET) for the correlation func-
tions of the trace of the energy-momentum tensor.

Let us sketch the derivation of these theorems, as they
represent the guiding principle for the construction of our
effective theory. Consider an expectation value of an
operator O of canonical dimension d; it can be written
down as

hOi 	 �M0e�8�=bg2����d: (7)

On the other hand, the dependence of the QCD
Lagrangian on the coupling is

L QCD � ��1=4g2� ~Fa�� ~Fa��; (8)

where ~F � gF is the rescaled gluon field. Following
Refs. [13,14] we can write down the expectation value
of the operator O in the form of the functional integral
and differentiate with respect to �1=4g2��� to get
054005
i
Z
dxhTfO�x�; ~F2�0�gi � �

d

d��1=4g2�
hOi: (9)

Combining (7) and (9) we obtain the relation [13,14]

i lim
q!0

Z
dxeiqxh0jT

�
O�x�;

 ��s�
4�s

F2�0�
�
j0iconnected

� hOi��4�: (10)

This expression can be easily iterated by consequent
differentiation like in (9) to obtain a set of relations
between Green’s functions involving an arbitrary number
of operators F2. We can rewrite those relations using the
expression for the scale anomaly in QCD in terms of the
trace of the energy-momentum tensor !�� (d � 4)

!�� �
 �g�
2g

Fa��Fa��: (11)

Substituting also !�� for O we obtain the following set of
LET for different Green’s functions involving operator
!���x�:

in
Z
dx1 . . .dxnh0jTf!

�1
�1�x1�; . . . ; !

�n
�n�xn�; !

�
��0�gj0iconnected

� h!���0�i��4�n:

(12)

Equations (10) and (12) show that although the scale
symmetry of the classical Yang-Mills (8) has been broken
down by quantum fluctuations [15], there still remains a
symmetry imposed by the invariance of the observables
under the renormalization group.

D. Organization of the paper

It was suggested by several authors that the typical
scale of vacuum fluctuations of a gluon field M0 is hard
[14,16,17]. It is much harder than the massm of the lowest
scalar glueball state. In the usual dilaton approach, this
lowest scalar glueball is identified with the dilaton field.
The validity of the dilaton approach is based on the
assumption that the scale invariance is broken ‘‘softly,’’
i.e., that the ratio m=M0 � 1. In this case the correlation
functions of the scalar gluon operators at large distances
r� 1=m can be saturated by the dilaton fields. On the
other hand, the existence of a large nonperturbative scale
M0 � m implies that the dynamics of gluon fields cannot
be described by a perturbative approach down to the
distances r � 1=M0. Therefore, if we want to address
the dynamics at distances 1=M0 � r � 1=m, we have to
consider an effective theory in which the effective de-
grees of freedom include both dilatons and gluons.

In Sec. II we follow a method suggested in Ref. [11] and
rewrite quantum fluctuations of the gluon field in the
scalar channel in terms of the real scalar field $ of
mass m. The remaining Fa�� terms represent a classical
gluon field. Such separation is possible since at distances
-2
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r� 1=M0 the gluon field can be treated as a classical
(distances much larger than the inverse of the typical
scale M0), while the field $ is quantum as long as r�
%$ 	 1=m. We derive a low energy effective Lagrangian
(23) for gluodynamics which is valid at long distances
r > 1=M0. It satisfies the LET (12) and possesses a stable
vacuum $ � 0.

In Sec. III we calculate M0 using the requirement that
vacuum fluctuations of $ do not change the vacuum
energy density which is (at least in principle) an observ-
able constant. We also find that the strong coupling con-
stant freezes at distances r > 1=M0. In Sec. IV we match
our effective Lagrangian, valid at r > 1=M0 with the
perturbative QCD valid at r � 1=M0. This matching
procedure yields the value of the strong coupling constant
�s�M0� at r � 1=M0 as a function ofm=M0. We argue that
our effective theory is applicable only at not very large
Nc. In Sec. V we summarize.
1Of course G has nothing to do with the Newtonian gravi-
tational constant G�1=2

N � MPl � 1:22� 1019 GeV � �QCD.
This is the well-known hierarchy problem.
II. EFFECTIVE LAGRANGIAN

We start with the derivation of the effective
Lagrangian using the mathematical trick suggested in
[11]. Consider the Yang-Mills theory on a curved confor-
mally flat background in d dimensions. The background is
given by the metric

g���x� � eh�x�'��; (13)

and the action by

S � �
1

4g2
Z
ddx

�������
�g

p
g��g%) ~Fa�% ~F

a
�); (14)

where g � detg��. Recall that the classical Yang-Mills
Lagrangian in flat space-time is scale and conformally
invariant only in four dimensions. On the contrary, it can
be proved [11] that the theory on the curved background
given by (13) and (14) is scale and conformally invariant
in any number of dimensions d—this means that regu-
larization does not bring into the theory (14) any dimen-
sionful parameters. Upon regularization the action (14)
acquires an additional term in d � 4:

�S � �
1

4g2
Z
d4xe2h

	
�
bg2

32�2 �
~Fa���2



: (15)

The effective one-loop action of the Yang-Mills field in
the external constant conformally flat gravitational field
is given by the sum of (14) and (15); it is obviously scale
and conformally invariant. The term (15) corresponds to
the anomalous second term in the right-hand side (rhs) of
(1). Therefore, the scale anomaly of QCD manifests itself
in the theory defined by (13) and (14) through a term
containing the axillary scalar field h [11], without
any dimensionful parameters. In a dual, and more con-
ventional, flat space-time description the scale anomaly
exhibits itself in the phenomenon of dimensional trans-
054005
mutation, which brings in a dimensionful parameter
explicitly.

The kinetic part for the field h�x� can be obtained in a
manifestly scale and conformally invariant way using the
Einstein-Hilbert Lagrangian for the one-loop effective
Yang-Mills field

S �
Z
d4x

�������
�g

p
�

1

8�G
R�

1

4g2
g��g%) ~Fa�% ~F

a
�)

� e2h!��
�
; (16)

where R is the Ricci scalar and G is some dimensionful
constant; we substituted (11) into the square brackets of
(15). We can now use a well-known expression for the
Riemann tensor R�� [18] to write down the dynamical
terms for the field h�x� which obey the scale and confor-
mal symmetry. Using (13) we get

R
�������
�g

p
� R��

�������
�g

p
� eh

3

2
�@�h�

2: (17)

Note that by writing (17) we explicitly neglected terms of
higher order in derivatives and constrained ourselves to
the Einstein’s gravity. This corresponds to an expansion in
powers of a slowly varying background field.

The vacuum expectation value of the energy-
momentum tensor reads

h!��i � �4j�vj: (18)

The perturbative contribution to (18) is given by (11).
Since the perturbative vacuum (2) is not stable, it is
natural to assume that the dominant contribution to the
energy density of the physical vacuum comes from non-
perturbative modes. It is therefore convenient to separate
the perturbative contribution to the !�� in the following
way:

!�� � !���pert:� � 4j�vj (19)

[we will argue below (see (26)] that the physical vacuum
is indeed independent of the value of the external chro-
momagnetic field.) Combining (16), (17), and (19) we
arrive at the expression for the effective one-loop action
in the conformally flat gravitational field

S �
Z
d4x

	
4j�vj

m2 e
h�@�h�

2 �
1

4
�Fa���

2 � j�vje
2h

�
1

4
e2h

�
�
bg2

32�2 �F
a
���

2

�

; (20)

where the new dimensionful constant m was introduced
instead of G [19]1:

m2 �
64�
3

j�vjG: (21)
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At this point it is important to note that one can easily
read the running coupling constant off (14) and (15). It
can be seen that �e2h plays a role of the familiar pertur-
bative logarithm 2 ln�q2=�2�. Hence our effective theory
is applicable when q2 <�2. In the infrared region the
perturbative expressions break down. However it is pos-
sible to remove the explicit dependence on the strong
coupling from the effective action by performing the
following redefinition in (20):

h! h� 2 ln&; j�vj ! &4j�vj; m2 ! &2m2;

(22)

where &4 � g2b=32�2. Equation (22) is just a change of
mass unit.

Finally, we have to perform Legendre transformation
of the action (20) to get the minimum of the effective
potential at the minimum of the field $ which is canoni-
cally conjugated to the field h [11]. The result reads [19]

L �
j�vj

m2

1

2
e$=2�@�$�

2 � j�vje
$�1� $� �

1

4
�Fa���

2

�e$�1� $�
1

4
�Fa���2; (23)

where we included the factor
�������
�g

p
in the definition of L.

The Lagrangian (23) defines our effective low energy
theory. It is valid at long distances r > 1=M0, where M0

is an ultraviolet cutoff. By construction, the scalar field $
describes the long distance quantum fluctuations in the
scalar channel while the gluon field strength tensorFa�� in
(23) is treated at a classical level at r > 1=M0.

The mathematical trick of putting the theory in curved
space-time background which we used in derivation of
(23) gives a simple way to keep track of all symmetries of
the effective Lagrangian. However, we think it is also
instructive to check how the effective perturbative po-
tential (1) emerges from the Lagrangian (23). The energy
density !00 corresponding to (23) is given by

!00�x� �
j�vj

2m2 ��@0$�
2 � �@i$�2�e$=2 � g00j�vje$�1� $�

�

	
�Fa0%Fa0 % �

1

4
g00�Fa%)�

2



�1� e$�1� $��;

(24)

where i � 1; 2; 3. Therefore the effective potential W in
the constant chromomagnetic field H is

W �
Z
d3x

�
1

2
H2 � e$�1� $�

�
1

2
H2 � j�vj

��
: (25)

In strong chromomagnetic field H2 � j�vj the energy
density W reduces to the effective potential (1). In this
case $ is not an independent degree of freedom, but rather
a function of H. We calculate the corresponding momen-
tum scale in the next section. The minimum of the func-
054005
tional W�H;$� is found from the following equations:

1� e$�1� $� � 0; $e$�12H
2 � j�vj� � 0: (26)

Evidently, the minimum is at $ � 0 and the value of the
W at the minimum is �j�vj independently of the value of
the chromomagnetic field H. We conclude that the physi-
cal vacuum of the gluodynamics is described by one
scalar field even in the presence of the applied chromo-
magnetic field. This can also be seen by taking a small $
limit in (23): the gluon terms cancel out. This justifies our
assumption (19).

It is seen from (25) that an increase of the color field H
leads to the increase of the energy density of the system.
Since H 	 g=r2 (where r is the size of the system) the
energy density decreases with r. At the same time the
volume which the system occupies increases as r3.
Therefore, we expect that there exists a static configura-
tion with a finite size r0 such that the total energy of the
system is minimal. This is analogous to the mechanism of
bag formation in the Friedberg-Lee model [8]. However,
the minimum of the effective potential in our model is
independent of H and located at $ � 0, while in the
Friedberg-Lee model it depends on the density of the
color sources.

Note that we can read the one-loop behavior of the
strong coupling right off the expression (1) for the effec-
tive potential. Indeed, the susceptibility of the vacuum in
the strong external chromomagnetic field is [do not con-
fuse ��H� with the renormalization scale � in (1)]

��H� � 1�
 �g�
g

�
ln
gH

�2 �
1

2

�
: (27)

Recall that the beta function can be interpreted as a
response of the system to the change of the external field.
Namely, (27) implies

 � �g
@��H�
@ lnH

: (28)

From (23) it follows that��H� is independent ofH at long
distances, therefore  � 0. The strong coupling does not
run if the effective theory is considered at the tree level.
We will see in the next section that quantum corrections
do not alter that conclusion.

It remains to check that the vacuum at $ � 0 is stable.
Let us recall that (1) is the real part of the perturbative
effective potential. However the perturbative potential
has also the imaginary part, as discussed above, which
is due to the instability of the Landau level with n � 0
and sz � 1, i.e., spin direction is parallel to the field.

Let us now examine the properties of the Landau levels
in our effective theory near the $ � 0. The equation of
motion of the dilaton field is
-4
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j�vj

m2 @��e
$=2@�$� �

j�vj

4m2 e
$=2�@�$�2 � $e$j�vj�

$e$
1

4
Fa��F

a�� � 0:

(29)

Expanding near the minimum we arrive at

@2�$�m2

�
1�

H2

2j�vj

�
$ � 0: (30)

The corresponding Landau levels are

p�p� � m2

�
1�

H2

2j�vj

�
: (31)

It is seen that p�p� � 0 for any H so that the instability
does not develop in the effective theory we are discussing
in this paper.

Next, consider the trace of energy-momentum tensor
which can be calculated directly from (23) using

!�� � '��
�
2
@L
@'��

� '��L
�
�
8j�vj

m2 @
2
�e

$=2; (32)

where the last term in the right-hand side is the total
derivative. Using equation of motion of the dilaton field
(29) one arrives at

!�� � �4j�vje$ � $e$Fa��Fa��: (33)

By virtue of (29) one can clearly see that in the limit
j�vj ! 0 the trace (33) vanishes and the classical symme-
tries of the Yang-Mills Lagrangian are restored. One
might be worried that in the expansion of (33) in powers
of $ the term $Fa��Fa�� appears while it is absent in the
Lagrangian (23). However it is easy to see that this term is
canceled out by the pure dilaton contribution. Indeed,
expanding the equation of motion (29) up to the quadratic
terms in $ one finds

1

4
Fa��Fa��$ � �j�vj$� full derivative �O�$2�: (34)

It is important to stress that !�� given by Eq. (33)
satisfies the LET (12) since the field Fa�� is classical (c
number) and can be absorbed in the definition of j�vj; see
(23). To summarize, we have at our disposal an effective
Lagrangian (23) describing gluodynamics at long dis-
tances r > 1=M0. It satisfies the constraints imposed by
the renormalization group and has stable minimum at
$ � 0.
054005
III. QUANTUM FLUCTUATIONS AROUND THE
PHYSICAL VACUUM

Effective theory (23) is nonrenormalizable. Let M0 be
its UVcutoff (in the effective potential method, this is the
scale which corresponds to the lowest Landau level).
Quantum fluctuations can develop only if there is enough
kinematical space which is the case if m� M. Let us
define the perturbative expansion parameter % as

% �
m
M0

: (35)

We will see later in this section that the perturbative
series in powers of % is equivalent to the expansion of
the Lagrangian (23) in powers of $, and % indeed is the
small expansion parameter in our effective theory. For
the rest of this section we assume that % is small and prove
this assumption in Sec. IV.

A. Normalization of the energy-momentum tensor

Let us first find the scale M0 at which our effective
description breaks down; we will work in the leading
order in %. The vacuum expectation value of the trace of
energy-momentum tensor (33) is the physical observable
and does not depend on a particular choice of degrees of
freedom in the Lagrangian; its value is given by (18). By
virtue of (33) it is equivalent to the requirement that

4j�vjh1� e$i � h$e$Fa��F
a��i: (36)

In the vacuum $ � 0 (18) is obviously satisfied. Quantum
fluctuations in general violate this requirement. However,
since the effective Lagrangian (23) is formally divergent
at short distances we have to impose an ultraviolet cutoff
M0. We will choose such a cutoff that (18) is satisfied.

Expanding (33) to the order O�$0� we obtain a trivial
result

!�� � �4j�vj �O�$�: (37)

At the order O�$� Eq. (36) is satisfied due to (34).
At the next order O�$2� (36) can be satisfied only for a

particular choice of the cutoff M0. Note that by the LET
(12) (with n � 1) long distance contributions to the ex-
pectation value of the operator !���x� can be expressed
through the two-point correlator $�q2� defined as

$�q2� � i
Z
d4xeiqxh0jT!���x�!

�
��0�j0i

�
Z
d)2 /�)2�

)2 � q2 � i0
; (38)

where we have introduced the spectral density /�q2�. We
find it more convenient to work with this correlator. The
first reason is that the spectral density can be expressed in
terms of physical states. The other one is that we know
/�q2� for the perturbative theory.
-5
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To rewrite condition (36) in terms of a two-point cor-
relator we apply to it the LET (12)

$�0� � �4h!��i: (39)

Thus, our requirement that (36) holds at the leading non-
trivial order in % can be written as [see (33)]

$dil�0� �$mix�0� � 0; (40)

where we separated the pure dilaton and mixed dilaton-
gluon contributions.

The pure dilaton contribution can be read from (33):

h!��idil � �4j�vj
1
2h$

2i (41)

which implies that [see Fig. 1(a)]

$dil�0� � 8j�vjh$2i � 8j�vj
m2

j�vj
1

2

Z d4k

�2��4
i

k2
�
m2M2

0

2�2 :

(42)
(a) (b)

FIG. 1. (a) Pure dilaton contribution to the trace of energy-
momentum tensor; (b) mixed dilaton-gluon contribution to the
two-point correlator of the trace of energy-momentum tensor.
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Let us turn to the mixed gluon-dilaton contributions.
The corresponding diagram is shown in Fig. 1(b). Its
imaginary part is

/mix�)2� �

�
m2

j�vj

�
2N2

c � 1

4

Z d4q1
�2��4

Z d4q2
�2��4

�q�1 q
�
2

��q1 � q2�g
���2�2��2'�q21�'�q

2
2�
Z d4k1

�2��4

�
Z d4k2

�2��4
�2��2'�k21�'�k

2
2��2��

4

�'�k1 � k2 � q1 � q2�

�
)8

140� 48�2��5
�N2

c � 1�
�
m2

j�vj

�
2
; (43)

where we neglected the mass of the dilatonmwith respect
to the cutoff M0. $�q2� can be calculated using the
dispersion relation with subtractions
$�q2�mix �
Z 1

0

/mix�)
2�d)2

)2 � q2 � i0
� q2

Z 1

0

/mix�)
2�d)2

)4 � q4
Z 1

0

/mix�)
2�d)2

)6
� � � � � q12

Z 1

0

/mix�)
2�d)2

)14

� q10
Z 1

0

/mix�)2�d)2

)10�)2 � q2 � i0�
�
Z 1

0

/mix�)2�d)2

)2 : (44)
The dispersion integral in the last line of (44) is propor-
tional to q10 ln��M2

0 � q2�. Consequently,
$mix�0� � �
Z 1

0

/mix�)
2�d)2

)2 � �
1

4
/mix�M2

0�: (45)
Formally, (45) gives the value of the nonvanishing sub-
traction constant in the dispersion relation.

Substituting (42) and (45) into vacuum stability con-
dition (40) results in the equation determining the ultra-
violet cutoff M0 of the effective theory [19]
M2
0 � 16�1051=3�N2

c � 1��1=3
�
j�vj
m

�
2=3
: (46)
B. Gluon polarization tensor

We have argued that the vacuum expectation of the
gluon condensate (18) is unchanged provided we had
chosen the value of the cutoff according to (46). In that
case the quantum correction does not change the vacuum
energy density which is completely saturated by the
classical solution. Now we would like to calculate quan-
tum corrections to the strong coupling. To the leading
order in % we have the tadpole diagram in Fig. 2.

Introduce the scalar function '�q2� as follows:

'���q� � �q�q� � q2g���'�q�: (47)

The tadpole diagram is given by

i'tadpole
�� �q� �

1

2

m2

j�vj

Z M0

m

d4k

�2��4
i

k2 �m2 � i0
i��1�

��q�q� � q2g���: (48)

It can be calculated by performing the Wick rotation and
consequent integration over a four dimensional sphere of
q

k

FIG. 2. The leading order quantum correction to the gluon
propagator at long distances.
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radiusM0.We neglect then the dilaton mass which gives a
contribution of higher order in %. The result of the cal-
culation of the diagram in Fig. 2 is

'�q2� �
M4

0

64�2j�vj
; q2 � M2

0: (49)

The quantum correction is constant. This means that the
strong coupling freezes at long distances.

The tadpole diagram, Fig. 2, is leading order in %
correction. However the higher order corrections deserve
a special remark since they could be in principle loga-
rithmically divergent at q2 � 4m2 in which case those
diagrams would dominate the polarization tensor at long
distances. In Appendix B we argue that all such loga-
rithms appear in the product �q2 � 4m2�n ln�q2=4m2�,
where n > 0 and thus vanish at the end point of the
dilaton spectrum. Also we check that the subleading
diagrams are numerically small. Therefore, the conclu-
sion of the previous section that the strong coupling
freezes at long distances holds if such quantum correc-
tions are included.

Equation (49) is the leading order contribution of vac-
uum fluctuations to the gluon polarization tensor. We can
systematically develop the perturbation theory in %. The
qualitative picture of the renormalization group flow can
be obtained by a simple dimensional analysis (see, e.g.,
[20]). Since the typical scale for mass is the cutoffM0, the
coefficients in front of the four terms in the rhs of (23)
have the following behavior at different momentum
scales p: �M0=p�2, �M0=p�4, �M0=p�0, and �M0=p�2, re-
spectively. Thus, the only relevant term at low momenta is
the second one, which is purely a dilatonic term. This is a
manifestation of the fact that the dynamics of the vacuum
fields decouples from the colored sources.
IV. MATCHING ONTO THE PERTURBATION
THEORY

One can express the strong coupling at the cutoffM0 as
a function of the parameters of the low energy
Lagrangian. This can be achieved by matching the spec-
tral density of the effective theory (43) with the spectral
density of the perturbation theory at M2

0. In perturbative
gluodynamics the anomalous trace of energy-momentum
tensor is given by (11). Then the calculation of the spec-
tral density of the correlator (38) is straightforward [16]

/pert�q2� �
�
b�s
8�

�
2
42
N2
c � 1

2

Z d4q1
�2��4

Z d4q2
�2��4

�q�1 q
�
2

��q1 � q2�g
���2�2��2'�q21�'�q

2
2��2��

4

�'�q� q1 � q2�

�

�
b�s
8�

�
2 �N2

c � 1�

2�
q4: (50)

Since the spectral density is just the imaginary part of the
054005
correlator, it is clear that only mixed diagrams of (45)
contribute to the matching in the leading in % order (in-
deed, /dil 	m4)

/mix�M
2
0� � /pert�M

2
0�: (51)

Using Eq. (46) we obtain

�s�M
2
0� �

16
����
�

p
%

b
���������������
N2
c � 1

p ; �q2 � Q2 � M2
0: (52)

This equation shows that the small parameter of pertur-
bation theory �s is matched onto the small parameter of
our effective theory, %.

At Q2 >M2
0 the strong coupling runs as

�s�Q
2� �

�s�M2
0�

�1� b�s
4� lnQ

2

M2
0
�
�

4�

b ln Q2

�2
QCD

; Q2 >M2
0;

(53)

where we introduced the familiar phenomenological con-
stant �QCD as

�2
QCD � M2

0e
�4�=b�s�M2

0�: (54)
A. Numerical estimations

QCD sum rules analysis performed in [13,14] make it
possible to estimate the nonperturbative scale inherent to
the vacuum of gluodynamics, which appears quite hard:
M2

0 � 20 GeV2. Lattice calculations show [21] that the
lightest resonance in pure gluodynamics is the scalar
glueball with mass m ’ 1:6 GeV. It is natural to identify
this glueball with a dilaton; it is interesting that this state
appears to have a size much smaller than the sizes of
glueballs with other quantum numbers [21]. In the ap-
proach followed in this paper this is a consequence of a
large value of the cutoff scale M0. From the vacuum
stability condition (46) we find j�vj ’ �0:58 GeV�4. By
definition % � m=M0 ’ 0:36. Equation (52) then implies
that �s�M2

0� ’ 0:33. The value of the �QCD follows from
(54): �QCD ’ 0:79 GeV.

In the world with light quarks the scalar glueball mixes
with the scalar *qq meson [15]. The lightest scalar reso-
nance is the ) resonance which is a strong mixture of the
glueball and the q *q meson [22]. In this case the dilaton
mass can be estimated as the mass of the ) [19]: m ’
0:6 GeV. QCD sum rules give an estimate of the QCD
vacuum energy density: j�vj � �0:24 GeV�4. From (46)
we have M0 ’ 1:9 GeV. Other estimates can be done
exactly as in the previous paragraph yielding % � 0:31,
�s�M2

0� ’ 0:35, and �QCD � 0:26 GeV. To verify how
good is this value from the phenomenological point of
view we use (53) and find that at the Z-boson mass scale
�s�mZ� ’ 0:12. This is in reasonable agreement with the
data—see discussion in Ref. [23].
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B. Dependence on Nc

Let us now discuss the dependence of our effective
theory on the number of colors Nc. Equation (54) can be
considered as an equation for the cutoff of the effective
theoryM0 as a function of the number of colorsNc. Let us
find M0�Nc�. It is convenient to introduce the dimension-
less parameter a and have % rescaled as follows:

*% �
%�QCD

m
; a �

���������������
N2
c � 1

q �QCD

����
�

p

8m
: (55)

Then using (35) and (55), Eq. (54) takes the form

*% � exp
�
�
a
*%

�
: (56)

Its solution is shown in Fig. 3(a). We observe that the
solution has two branches: one starting at the origin (0,0)
and the second one starting at the point (0,1). Both
branches terminate at the critical point �acr; *%cr� �
�e�1; e�1�. To pick up the physical branch we note that
by (55) a � 0 when Nc � 1. Thus, by (52) *% � 0 at this
point. Therefore the physical branch is the lower one in
Fig. 3(a). In Fig. 3(b) we represent it as a plot of the cutoff
M0 versus the number of colors Nc. The value of �QCD �

0:8 chosen for this figure is such that �s�M2
Z� � 0:12 at

b � 11.
The critical value of the parameter a corresponds to the

critical value of Nc. Using (55) we find

N2
c � Ncr2

c �

 
8m����
�

p
�QCD

e�1

!
2

� 1 (57)

(of course, the integer part of the right-hand side must be
taken) which yieldsNcr

c � 3.WhenNc > Ncr
c our effective

theory ceases to be valid. Indeed, M0 rapidly decreases
with Nc (approximately as 1=N2

c) approaching the dilaton
massm. The values of the strong coupling�s�Mcr

0 � and the
cutoff Mcr

0 at the critical point are

�s�Mcr
0 � �

2�
bcr
; (58)
FIG. 3. Numerical solution to (56). (a) Rescaled coupling % vs
a; the critical point is (e�1; e�1). (b) Dependence of M0 on the
number of colors in gluodynamics (�QCD � 0:8 GeV); only the
physical branch of the solution is shown. With a good accuracy
M0 / 1=N2

c .
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and

Mcr
0 �

8m�������������������������
��Ncr2

c � 1�
p : (59)

We see that the effective theory breaks down at large
Nc, with the critical value Ncr

c [see (57)]. This can be
readily interpreted if we recall that the perturbative
vacuum energy density grows as j�vjpert 	 N2

c at large
Nc, whereas j�vj of the effective theory does not [see
Fig. 3(b) and (46)]. Thus, the effective theory breaks
down at such large values of Nc that the perturbative
vacuum energy density cannot be matched onto the effec-
tive one. In the region Nc � Ncr

c where we can use the
effective theory, the Nc dependence of the value of the
freezing strong coupling is given by �s�M2

0�b	 %=Nc 	
Nc as can be seen from (52) and Fig. 3(b).

Since M0 decreases as Nc increases the matching re-
gion is driven into the infrared where the perturbative
expansion can no longer be trusted. Indeed, the dilaton
spectral density vanishes at q2 < 4m2. On the contrary,
the perturbative gluon spectral density is finite at arbi-
trary small but finite q2 [see (50)]. Although the dilaton
effective theory takes into account the nonperturbative
effects associated with the scale anomaly, it is not clear
how those effects are related to the color potential at long
distances. The interplay between the dilaton low energy
effective theory and the gluodynamics at large Nc cer-
tainly deserves special study.

V. CONCLUSIONS

In this paper we constructed an effective low energy
Lagrangian (23) of gluodynamics which involves gluons
and the scalar glueball. This Lagrangian is valid at dis-
tances r > 1=M0 and possesses a stable minimum in
which gluons do not propagate. Using this Lagrangian
we developed the perturbation theory of quantum fluctu-
ations around the physical vacuum. Since the effective
theory (23) is divergent when considered on a quantum
level we must introduce an ultraviolet cutoff M0. To
calculate it we noted that classical configuration of the
dilaton field saturates the vacuum energy j�vj. Therefore
the value of M0 is dictated by the requirement of vacuum
stability—quantum fluctuations must not contribute to
the vacuum energy density. This happens to be true only
for a certain choice of M0 given by (46). In the kinematic
region q2 � M2

0 we developed a perturbation theory in a
small parameter % � m=M0 and used it to calculate the
leading (49) and next-to-leading (B7) order radiative
corrections to the gluon propagator. We observed that
the leading radiative correction to the gluon propagator
is constant. We conclude that the strong coupling �s
freezes at distances larger than the inverse cutoff 1=M0;
this behavior is consistent with the analysis of
Refs. [23,24].

By matching the spectral densities of the perturbation
theory (valid at r < 1=M0) and of the effective one (valid
-8



FIG. 4. Feynman rules for the dilaton effective theory.
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at r > 1=M0) we determined the value of the strong
coupling at the scale M0 in terms of the vacuum energy
density j�vj and the glueball mass m, (52). Using QCD
sum rules to estimate M2

0 ’ 20 GeV2 we calculate the
�QCD and then �s�mZ�; we found a reasonable agreement
with experimental data. We consider this as additional
evidence that the typical scale of vacuum fluctuations of
QCD is hard [14,16,17].

We discussed the Nc dependence of the theory. As Nc
increases M0 decreases as 	1=N2

c , so that at some Ncr
c we

haveM0 � m and the quantum fluctuations of the dilaton
field are no longer possible. The matching on the pertur-
bation theory (51) and (52) breaks down. Numerically,Ncr

c

is found to be just above 3, so the effective theory (23) is
applicable to the study of the infrared behavior of SU(3)
gluodynamics.

One of our main results— the freezing of the strong
coupling at long distances—has an elegant geometric
interpretation. Recall that we derived the effective
Lagrangian (23) by formally coupling Yang-Mills theory
to the conformally flat gravity described by the field $
[11]. This way the scale symmetry of Yang-Mills theory is
restored at the cost of introducing a new field. At very
short distances �s � 1 and the scale anomaly vanishes in
usual perturbative gluodynamics. Effectively this means
considering Yang-Mills theory in the flat space. At very
long distances the theory resides in its physical vacuum
$ � 0, see (17), which means that the space-time is flat
again. In between those extreme cases we can think of
Yang-Mills field as a classical field propagating on a
curved background. Indeed it has been found in
Ref. [25] that the coupling of the Yang-Mills theory on
a curved background freezes at long distances.

The physical picture which has emerged from our study
thus corresponds to color fields dynamically confined
within a cavity by the interaction with self-coupled scalar
glueball fields. This interaction regularizes the theory in
the infrared region and leads to the freezing of strong
coupling at large distances.

It will be very interesting to study the properties of
bound states in this ‘‘conformal bag model.’’ While we
checked that the model does have the corresponding
solutions, so far we have not succeeded in finding them
analytically.

A crucial test of the ideas presented in this paper can be
performed on the lattice. Since r0 	 1=M0 corresponds to
the size of the scalar glueball, and M0 decreases as a
function of Nc, we predict that the scalar glueball in
SU(4) gauge theory will have a larger size than in
SU(3). Unlike in SU(3) theory, where the scalar glueball
was found to have the smallest size (see, e.g., [21]), in
SU(4) we expect all glueballs to have similar sizes. In
contrast, in SU(2) theory the size of the scalar glueball
should become even smaller than in SU(3). These pre-
dictions can be tested directly by measuring the glueball
054005
form factors (three-point correlation functions), or indi-
rectly by measuring the two-point correlation functions
of the scalar gluon operators and by checking at what
distances they approach the perturbative behavior. If the
lattice results in gluodynamics confirm the validity of the
effective theory advocated in this paper, it will be worth-
while to include the light quarks by putting the classical
QCD Lagrangian on the curved background. This could
then substitute a consistent theoretical approach to the
study of infrared behavior in QCD.

ACKNOWLEDGMENTS

We acknowledge interesting discussions on the subject
with A. Gotsman, Yu. Kovchegov, U. Maor, M.
Praszalowicz, and D.T. Son. We are indebted to T. D.
Lee for valuable comments and suggestions, and to H.
Meyer and P. Petreczky for a discussion of the lattice data
on glueballs. The work of D. K. and K.T. was supported by
the U.S. Department of Energy under Contract No. DE-
AC02-98CH10886. This research was supported in part
by the GIF Grant No. I-620-22.14/1999 and by the Israeli
Science Foundation, founded by the Israeli Academy of
Science and Humanity. In the early stage of the work of
K.T. was sponsored by the U.S. Department of Energy
under Grant No. DE-FG03-00ER41132.

APPENDIX A: FEYNMAN RULES FOR THE
DILATON LAGRANGIAN

In this Appendix we list the Feynman rules for the
Lagrangian (23) up to the quadratic terms in $; see Fig. 4.
Here a and b are the color indexes.We observe that dilaton
graphs do not violate the color symmetry. This is seen of
course directly from the Lagrangian (23).
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APPENDIX B: HIGHER ORDER CORRECTIONS
TO THE GLUON POLARIZATION TENSOR

In this appendix we argue that the higher order correc-
tions to the gluon polarization tensor have no singularities
p

q
νµ ρ λ

k1

k2

FIG. 5. Next-to-leading order diagram contributing to the
gluon polarization tensor.
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at the end point of the dilaton spectrum q2 � 4m2. Let us
consider the diagram Fig. 5 for example.

We have
i'b
���q� � i'���q�

�

�
m2

j�vj

�
2 1

2!

Z d4p

�2��4
d4k1
�2��4

d4k2
�2��4

i�p�q/ � �qp�g�/�
�ig/%

p2
i�p�q% � �qp�g�%�

i

k21 �m2

i

k22 �m2 �2��
4

�'�k1 � k2 � p� q�: (B1)
Contracting Lorentz indexes and averaging over direc-
tions of p it can be shown that '���q� has the same
transverse structure as displayed in (47). Making contrac-
tions in the definition (47) we arrive at

Im'�q� �
1

3q2
Im'�

��q�

�
1

3q2

�
m2

j�vj

�
2 1

16�

Z
d4k

Z d4p

�2��3

�'�k� p� q�'�p2�2�pq�2

������������������
1�

4m2

M2

s

�
1

3q2

�
m2

j�vj

�
2 1

64�3

Z
dM2j ~kj!2

pMq

������������������
1�

4m2

M2

s
;

(B2)

whereM2
q is the external gluon virtuality. Denote t � M2

q.
It is easily seen that

!p � j ~pj � j ~kj �
t�M2

2
��
t

p : (B3)

An integral in (B2) over M2 in the range 4m2 � M2 � t
can be easily done giving a somewhat lengthy result. Near
the end point of the spectrum the result of integration is

Im'�t� �
�
m2

j�vj

�
2 �t� 4m2�9=2

140�6��3mt2
: (B4)

The polarization tensor can be calculated using disper-
sion relation

'�q� � �q2 � 4m2�5
1

�

Z M2
0

4m2

Im'�q�

�t� q2 � i0��t� 4m2�5
dt:

(B5)

Dispersion relation can be applied only to a function
which vanishes sufficiently fast at infinite radius in the
complex plain of t. Therefore we apply it to a function
Im'�t�=�t� 4m2�5 instead of Im'�t�. This procedure
corresponds to the subtractions

'�q2� ! '�q2� �
X4
l�0

1

l!
'�l��4m2��q2 � 4m2�l: (B6)

It follows from (B4)–(B6) that

'�q� / �t� 4m2�9=2 ! 0; as t! 4m2; l � 0: (B7)

The term with l � 0 is just the largest subtraction con-
stant [cf. (44)].

Therefore we can safely expand (B2) in powers of %.
Integrating over M2 and using dispersion relation (B5)
with m � 0 we obtain

'�Q2� �
Q4m4

j�vj2
ln
M2

0 �Q2

Q2

1

24�4��4
� const: (B8)

At Q2 � M2
0 this contribution reaches its maximal value

	%2 and thus parametrically and numerically suppressed
with respect to the leading result (49).

We can easily extend our argument to higher order
diagrams. Indeed, the introduction of additional dilaton
lines can bring in only a factor of M2=m2 as can be seen
from the gluon-dilaton vertex in Appendix A and
Fig. 1(b) of Ref. [19] for dilaton self-interactions.
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