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Baryonic Regge trajectories with analyticity constraints
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1Dipartimento di Fisica, Università della Calabria and Instituto Nazionale di Fisica Nucleare,
Gruppo collegato di Cosenza, I-87036 Arcavata di Rende, Cosenza, Italy

2Bogolyubov Institute for Theoretical Physics, Academy of Science of Ukraine, UA-03143 Kiev, Ukraine
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A model for baryonic Regge trajectories compatible with the threshold behavior required by
unitarity and asymptotic behavior in agreement with analyticity constraints is given in explicit form.
Widths and masses of the baryonic resonances on the N and � trajectories are reproduced. The
MacDowell symmetry is exploited and an application is given.
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I. INTRODUCTION

Regge trajectories are basic building blocks of a strong
interaction scattering amplitude. By smoothly connecting
the scattering (negative squared momentum transfer t)
and resonance (positive t) regions, they bear the idea of
duality between direct-channel resonances and t-channel
exchanges. The dynamical origin of the meson mass
spectra and the analytic properties of the bosonic Regge
trajectories have been studied thoroughly in the past and a
comprehensive review on this subject can be found in
Ref. [1]. The same statement does not hold for baryons
that present further complications due to their more in-
volved internal structure and, as we shall see, to the
intricate analytical properties of their Regge trajectories.

The widespread prejudice that Regge trajectories ��t�,
or symmetrically, ��s�, are real and linear functions
stems mainly from two sources: from the experimental
data, and from the dual resonance model, whose spec-
trum of resonances can be reproduced by means of vari-
ous mechanical models, like the string model or by a
linear confining potential. The experimental evidence
favoring a nearly linear behavior comes from the ob-
served spectrum of mesonic and baryonic resonances in
a fairly wide region of squared mass and from fits to the
data on elastic scattering near the forward direction.
Although the nonlinearity and complexity of the Regge
trajectories was never questioned, the simplicity and ef-
ficiency of the linear approximation, combined with the
relevant theoretical background (Veneziano duality,
strings, confining potentials), were the reasons why ana-
lytic properties and the deviation from linearity of the
trajectories was ignored in many cases. At the same time,
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the simplest and most important argument about the
importance of the imaginary part is just the nonvanishing
widths of the resonances.

There are several more important arguments support-
ing the nonlinear and complex nature of Regge trajecto-
ries [2]. First, the fundamental property of analyticity of
the scattering amplitude requires that Regge trajectories
are complex functions with cuts fixed by unitarity.
Further, the asymptotic properties of the scattering am-
plitude impose an upper bound on the trajectories.
Combined with Mandelstam analyticity this bound states
that the real part of the trajectory asymptotically is
limited by a constant (modulus logarithms) or, equiva-
lently j��s�=

���
s

p
lnsj � const as s! 1. This absolute

upper bound can still be lowered by requiring fixed-angle
scaling behavior of the scattering amplitude, or equiva-
lently the presence of pointlike constituents in the collid-
ing hadrons.

Having fixed the basic threshold and asymptotic prop-
erties of the trajectory, one can proceed to their practical
realization. The problem can be attacked by two, albeit
interconnected ways: by model building or by using
dispersion relations. While the first may offer explicit
expressions for the trajectories with their intuitive physi-
cal interpretation (e.g., in terms of the quark model), the
second one is more rigorous and hence reliable. What-
ever the approach, basically one faces the problem of how
to combine the nearly linearity of the trajectory in a
fairly wide domain with the presence of a large imagi-
nary part.

Here, following our earlier analysis of meson trajecto-
ries [3,4], we pursue the second option and consider the
baryon spectrum. Information on the N and � baryon
trajectories has been obtained from the analysis of back-
ward pion-nucleon scattering, see, for example, Refs. [5–
8], where the important problem of the linearity of the
baryon Regge trajectories has been investigated in detail.
The conclusion that Regge trajectories are not straight
03-1  2004 The American Physical Society



FIORE et al. PHYSICAL REVIEW D 70 054003
and parallel lines is supported by the detailed analysis of
Ref. [9]. Moreover, in the case of baryons, the analyticity
properties of the trajectory function [10], that follow from
the invariance under Schwinger’s space-time reflection of
the covariant scattering amplitude [11], confirm this
conclusion.

Since the position of the singularity in the J plane of
the partial-wave amplitude is an analytic function of the
center of mass energy in the relevant channel, say

���
s

p
, the

MacDowell symmetry [11] implies that

�	�
���
s

p
� 
 ����

���
s

p
� for s > 0; (1)

where � denote the parity of the trajectory. The relation
(1) requires that, if the trajectory is linear in s, parity
doublets must exist. The simplest way of eliminating
doublets, that are not observed experimentally, is to
take into account deviations of the trajectories from line-
arity and to show, as in Ref. [8], that these deviations are
compatible with experimental data. Arguments based on
the spontaneous chiral symmetry breaking in the low
energy part of the baryon spectrum [12] support this
point of view.

For the above reasons, attempts to exploit the explicit
form of the baryon trajectories on the basis of the experi-
mental data meet great difficulties. While in Ref. [7] the
conclusion is that the isospin I 
 1=2 nucleon Regge
trajectories, with even and odd parities, are independent
Regge trajectories, since otherwise it would be impossible
to explain the energy dependence of 
	p backward cone
and the dip, the parametrization of Ref. [8] succeeds in
reproducing the baryon spectrum, the energy dependence
of cross sections, and the momentum transfer dependence
of differential cross sections. Dispersion relations for the
trajectory function [2,7,10] impose severe constraints on
the analytic structure of this function [13,14] and give the
opportunity to restrict its possible form.

In this paper we construct an explicit model for com-
plex Regge trajectories reproducing both the masses and
the widths of observed baryonic resonances with the
constraints of analyticity and unitarity. Section II
presents an attempt to adapt a previous model for meson
trajectories [3,4] to the baryon spectrum. The N and �
trajectories are considered in detail in Sec. III. In Sec. IV
we implement the MacDowell symmetry and derive ex-
plicit formulas for the real and imaginary parts of the
trajectory. The application to the nucleon trajectory is
studied in Sec. V. The last Section is devoted to conclud-
ing remarks.

II. A SIMPLE MODEL

The properties of the bosonic trajectories following
from analyticity and unitarity [15] have been summa-
rized in our previous papers [3,4]. Fermion trajectories
suffer further complications [2]. The generalization of the
MacDowell symmetry shows that, in order to satisfy the
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relation between natural and unnatural parity amplitudes,
we need two trajectories of opposite parity that are re-
lated by the relation (1). Moreover the dispersion relation
for the trajectory function should exhibit analyticity in���
s

p
and should be written in terms of this variable. In

order to clarify the problem, however, we will limit
ourselves, in this Section, to consider analyticity in the
variable s for a simplified model.

Let P be the parity of the resonances lying on a Regge
trajectory. Since P 
 ��1�J�v, where v 
 1=2 for odd
half-integral J and v 
 0 for integral J, natural parity
means  
 	1 while unnatural parity means  
 �1.
Hence for the N trajectory, �1

	

2 ;
5	

2 ; . . .�, we have  
 	1

while, for the � trajectory, �3
	

2 ;
7	

2 ; . . .�,  
 �1. The
minimum allowed angular momentum is [15]

L 
 J� �s1 	 s2� 	
1
21� 12��1�s1	s2�v�

and, since 1 
 �1 for the pion and 2 
 	1 for the
nucleon, the � trajectory function will be characterized
by L 
 J� 1

2 . Both the real and imaginary parts of the
trajectory will inherit the threshold behavior of the
partial-wave amplitude for pion-nucleon scattering:

�q2
12�

L	1=2 
 �q2
12�

J; (2)

where q12 is the center of mass momentum.
While retaining the assumption of additivity of thresh-

old contributions, the more regular behavior of the bar-
yonic resonance widths suggests that the choice of the
imaginary part of the trajectory can be different from the
bosonic case. Both the real and imaginary parts of the
trajectory function ��s� have cuts only where the partial-
wave amplitude has. In particular, one can show that the
only dynamical singularity of ��s� is the right-hand cut
above the first threshold present in the partial-wave am-
plitude [2,10]. Since the problem involves many channels,
more thresholds can well be present and the assumption of
additivity of threshold contributions becomes then com-
pulsory since we do not know other ways of combining
different generalized functions, step functions in this
case.

As a first attempt, we consider analyticity in s for the
trajectory functions and start from the simple form for
the imaginary part of the trajectory

Im��s� 
 s�
X
n

cn

�
s� sn
s

�
Re��sn�

� ��s� sn�: (3)

Equation (3) has the correct threshold behavior and ana-
lyticity requires that � < 1. The boundedness of ��s� for
s! 1 follows from the condition that the amplitude, in
the Regge form, should have no essential singularity at
infinity in the cut plane.

The once subtracted dispersion relation for the trajec-
tory is
-2
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FIG. 1 (color online). The real part of the � trajectory. The
dashed line corresponds to the result of a linear fit; the solid
line corresponds to the final result.
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R e��s� 
 ��0� 	
s


PV

Z 1

0
ds0

Im��s0�
s0�s0 � s�

; (4)

where PV means the Cauchy principal value of the in-
tegral. Setting �n 
 Re��sn� we get

Re��s� 
 ��0� 	
s



X
n

cnAn�s�; (5)

where [16]

A n�s� 

��1� �����n 	 1�

���n � �	 2�s1��n
F1

�
1; 1� �;�n � �

	 2;
s
sn

�
��sn � s� 	

�

s��1

�
s� sn
s

�
�n

� cot
�1� ��� �
��������n 	 1�s�n
s���n � �	 1�

F1

�
�

� �n; 1;�	 1;
sn
s

��
��s� sn�:

From these equations we get the slope

Re�0�s� 

1




X
n

cnBn�s�; (6)

where

B n�s� 

��1� �����n 	 1�

���n � �	 2�s1��n
F1

�
2; 1� �;�n � �

	 2;
s
sn

�
��sn � s� 	

�

s��1

�
s� sn
s

�
�n

cot
�1

� ���
�
�	 �n

sn
s� sn

�

�
��������n 	 1�s�	1

n

�1	 d����n � ��s2
F1

�
1	 �� �n; 2;�

	 2;
sn
s

��
��s� sn�:

Equations (5) and (6) determine the widths of the reso-
nances through the relation

� 

Im��M2�

MRe�0�M2�
; (7)

where � is the total width of the resonance and M is its
mass.

III. FITTING THE RESONANCES MASSES AND
WIDTHS IN THE SIMPLIFIED MODEL

In this section we apply the formalism to the � baryon
trajectory �3

	

2 ;
7	

2 ; . . .� and nucleon N	 trajectory which
contains baryonsN�939� 1	

2 ,N�1680� 5	

2 ,N�2220� 9	

2 , and
N�2700� 13	

2 [17]. In the fit the input data are the masses
and widths of the resonances. The quantities to be deter-
mined are the parameters cn, � and the thresholds sn.
While s1 is fixed to the pion-nucleon threshold, data
allow for the determination of the other two thresholds
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at maximum, i.e., s2 and a higher threshold, the one
above all the known resonances, that will be called sx
in the following.

A. �	 trajectory

First we fit the real part of the amplitude using a linear
form of the trajectory

R e��s� 
 ��0� 	 �0�0� � s: (8)

Thus we obtain ��0� 
 0:17� 0:02 and �0�0� 
 0:87�
0:01 (GeV�2) (�2=d:o:f: 
 0:63). Using these values of
the parameters we calculate Re��sn�, where n 
 1; 2; x
and s1 
 �m
 	mN�

2 
 1:16 GeV2, s2 
 2:8 GeV2, and
sx 
 15 GeV2.

Then, as previously stated, we set �n 
 Re��sn� and
continue the recursive fitting procedure using formulas
(5) and (6). After 15 steps the procedure converges and we
obtain the values of the parameters: ��0� 
 �0:04�
0:03, � 
 �0:26� 0:01, c1 
 0:75� 0:03, c2 

2:2� 0:3 and cx 
 1414� 75, s2 
 2:44� 0:05 GeV2,
sx 
 11:7� 0:3 GeV2 (�2=d:o:f: 
 1:4).

� resonances have been seen in a large number of
formation and production experiments. ��1950� has
been seen in the �K channel, 
	p! �	K	, but the
evidence is poor, and one of its decay modes is N ,
�<10%�. It is interesting to notice that the threshold in
the �K channel, for example, is 2:84 GeV2 and for N is
2:92 GeV2. Both are higher than, but not too far from, the
second threshold s2 
 2:44 GeV2 found empirically min-
imizing the �2 of the fit.

The results are shown in Figs. 1 and 2.
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FIG. 4 (color online). The width of the N trajectory.
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FIG. 2 (color online). The width of the � trajectory.
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B. N	 trajectory

As in the previous Subsection, we start fitting the real
part of the amplitude using a linear form of the trajec-
tory:

R e��s� 
 ��0� 	 �0�0� � s: (9)

Thus we obtain ��0� 
 �0:27� 0:14 and �0�0� 
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α(0) = -0.41

δ = -0.46 ± 0.08

FIG. 3 (color online). The real part of the N trajectory. The
dashed line corresponds to the result of a linear fit; the solid
line corresponds to the final result.
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0:98� 0:04 (GeV�2) (�2=d:o:f: 
 0:24). Using these val-
ues of the parameters we calculate Re��sn�, where n 

1; 2; x and s1 
 �m
 	mN�

2 
 1:16 GeV2, s2 

2:44 GeV2, and sx 
 11:7 GeV2. Now the channels N,
with a threshold at 2:21 GeV2, and �K, with a threshold
at 2:59 GeV2, are no more forbidden. Also in the N	 the
interpretation of the second threshold as a physical one
now seems appropriate.

Then we set �n 
 Re��sn� and continue the recursive
fitting procedure using formulas (5) and (6). Again after
15 steps the procedure converges and we obtain the values
of the parameters: ��0� 
 �0:41, � 
 �0:46� 0:07,
c1 
 0:51� 0:08, c2 
 4:0� 0:8, and cx 
 �4:5�
1:7� � 10	4 (�2=d:o:f: 
 1:15).

The results are depicted in Figs. 3 and 4.

IV. AN APPROACH BASED ON MACDOWELL
SYMMETRY

The trajectories of baryonic Regge poles in states with
angular momentum J and parity ��1�J�1=2 coincide when
the c.m. energy squared s tends to zero and becomes a
complex conjugate of each other for s < 0 [10]. This
relation is due to the kinematic singularity

���
s

p
present

in spinor amplitudes. The trajectory function � 
 ��
���
s

p
�

is complex for
���
s

p
>

�����
s1

p
and

���
s

p
<�

�����
s1

p
and real in the

interval �
�����
s1

p
<

���
s

p
<

�����
s1

p
where s1 is the first threshold,

s1 
 �m
 	mN�
2 
 1:16 GeV2 for � and N trajectories.

A dispersion relation can be written for ��
���
s

p
� [2,5,10]:

��
���
s

p
� 


1




Z 1����
s1

p

Im�	�s0�����
s0

p
�

���
s

p d
����
s0

p
	

1




Z 1����
s1

p

Im���s0�����
s0

p
	

���
s

p d
����
s0

p
;

(10)
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FIG. 5 (color online). The real part of the N trajectory. The
dashed line corresponds to the result of the fit with Eq. (19); the
solid line corresponds to the final result. The dotted line
corresponds to the linear fit.
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where Im���s� are the imaginary parts of the position of
the poles of the 
� N scattering amplitudes in states
with angular momentum � and parity ��1���1=2.

The MacDowell symmetry for the 
� N partial-wave
amplitudes [11],

TJJ�1=2�
���
s

p
� 
 TJJ	1=2��

���
s

p
�; (11)

implies the existence of resonance states with the same J,
but opposite parity, except when their residue vanishes.
Hence the possibility to reveal these additional reso-
nances, and confirm their existence, depends on the de-
tailed behavior of the residue function [5,6,18].1

In the following we will consider the N trajectory and
express the ‘ 
 J	 1=2 amplitude through the ‘ 
 J�
1=2 amplitude by using Eq. (11). Then the N trajectory,
�N�

���
s

p
�, at the resonances will have the form:

�N��2:2� 
 9=2, �N��1:68� 
 5=2, �N��0:939� 

1=2, �N�1:675� 
 5=2, and �N�2:25� 
 9=2 where the
masses of the resonances have been expressed in GeV.
An updated fit to these resonances has been performed
with a trajectory that splits the degeneracy [6]:

�N�
���
s

p
� 
 a0 	 a1

���
s

p
	 a2s; (12)

where a0 can be eliminated by imposing the condition
�N��0:939� 
 1=2. The result of this fit, shown in Fig. 5,
is interesting and such as to justify a deeper analysis.

On the basis of the previous results for the asymptotic
behavior of Im��s� we perform only one subtraction in
Eq. (10) and, for the real part of ��

���
s

p
�, we get

Re��
���
s

p
� 
��0� 	

���
s

p



PV

Z 1

0

Im�	�s0�����
s0

p
�

����
s0

p
�

���
s

p
�
d

����
s0

p

�

���
s

p



PV

Z 1

0

Im���s0�����
s0

p
�

����
s0

p
	

���
s

p
�
d

����
s0

p
; (13)

where only one of the two principal values has to be
taken: the first one for

���
s

p
> 0 and the second one for���

s
p

< 0. It is convenient to consider the equivalent form

Re��
���
s

p
� 
 ��0� 	

���
s

p

2

PV

Z 1

0

ds0

s0�s0 � s�
�

����
s0

p
Im�	�s0�

� Im���s0�� 	
���
s

p
Im�	�s0� 	 Im���s0���;

(14)

where the simple expression (4), studied before, is reob-
tained when Im�	�s� 
 Im���s�. Obviously, the solution
of Eqs. (13) and (14) is the same but the proof is not trivial
and will be given in Appendix A.
1The absence of parity doublets in the low energy part of the
baryon spectrum as an indication of spontaneous symmetry
breaking has been proposed in Ref. [12].

054003
The experimental values of the widths of resonances,
symmetric with respect to the axis

���
s

p

 0 in the

���
s

p
� J

plane, coincide within the errors. Hence their imaginary
parts cannot be too different and a minor modification of
the previous assumption (3),

I m���s� 
 s�
X
n

cn

�
s� sn
s

�
Re���sn�

� ��s� sn�; (15)

seems reasonable in view of the small difference between
the trajectories

���
���
s

p
� 
 a0 � a1

���
s

p
	 a2s

resulting from the fit. The condition � < 1=2, necessary
for the convergence of integrals in Eq. (13), has been
implemented in view of the results in the preceding
Section. In Eq. (15) Im���s� does not change under the
transformation

���
s

p
! �

���
s

p
and hence, for example, s�

must be interpreted as �j
���
s

p
j2�� while

�����
sn

p
is always

positive.
Let us rewrite Eq. (14) in the form

R e��
���
s

p
� 
 ��0� 	

X
n

cnF n�
���
s

p
� (16)

and set ��
n 
 Re���sn�. With this input in Eq. (14) the

expression for F n�
���
s

p
� can be easily evaluated. We find
-5



FIORE et al. PHYSICAL REVIEW D 70 054003
F n�
���
s

p
� 


1

2

��
s�
�
1�

sn
s

�
�	
n

tan�
�� �
�����
sn

p ���
s

p
s�n���1=2� ����1	 �	

n �


��1=2� �	 �	
n �

2F1

�
1;

1

2
	 �� �	

n ;
3

2
	 �;

sn
s

�

� the same term with �	
n ! ��

n

	
	

�
�s�

�
1�

sn
s

�
�	
n

cot�
��

�
s�n�������1	 �	

n �


��1� �	 �	
n �

2F1

�
1; �� �	

n ; 1	 �;
sn
s

�
	 the same term with �	

n ! ��
n

	�
��s� sn�

	
1

2

�� ���
s

p�����
sn

p
s�n��1=2� ����1	 �	

n �


��3=2� �	 �	
n �

2F1

�
1;

1

2
� �;

3

2
� �	 �	

n ;
s
sn

�

� the same term with �	
n ! ��

n

	
	

�
s
sn

s�n��1� ����1	 �	
n �


��2� �	 �	
n �

2F1

�
1; 1� �; 2� �	 �	

n ;
s
sn

�

	 the same term with �	
n ! ��

n

	�
��sn � s�: (17)
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FIG. 6 (color online). The width of the N trajectory. The dot-
dashed line corresponds to the fit with the simplified model;
the solid line corresponds to the final result.
The widths can be found by first calculating the de-
rivative of �0

R�
���
s

p
�. The result can be written as

�0
R�

���
s

p
� �

dRe��
���
s

p
�

d
���
s

p 

X
n

cnDn�
���
s

p
�:

By comparison with a Breit-Wigner resonance of massM,
whereM can be positive or negative in this context, we get
the total width

� 

2Im��M2�

j�0
R�M�j

: (18)

The calculation of �0
R�

���
s

p
� parallels the one already done

in the preceding Section and the explicit form of Dn�
���
s

p
�

will be shown in Appendix B.

V. APPLICATION TO THE NUCLEON
TRAJECTORY

In this section we apply the formalism to the nucleon
trajectory.

First we fit the real part of the amplitude using the
following form of the trajectory:

���
���
s

p
� 
 a0 � a1

���
s

p
	 a2s; (19)

where the sign ‘‘	’’ corresponds to the N	 trajectory
which contains the baryons N�939� 1	

2 , N�1680� 5	

2 ,
N�2220� 9	

2 , and N�2700� 13	

2 [17], while the sign ‘‘�’’
corresponds to theN� trajectory, which containsN�1675�
5�

2 and N�2250� 9�

2 [17].
Thus, we obtain ��0� 
 �0:398, a1 
 ��0:86�

1:36� � 10�2 (GeV�1), and a2 
 1:03� 0:01 (GeV�2)
(�2=d:o:f: 
 0:57). The parameter a0 is eliminated from
the fit by using the condition:

�	�mn� � a0 � a1mn 	 a2m2
n 
 1=2; (20)

where mn is the nucleon mass.
Using these values of the parameters we calculate

Re���sn�, where n 
 1; 2; x and s1 
 �m
 	mN�
2 
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1:16 GeV2, s2 
 2:44 GeV2, and sx 
 11:7 GeV2. In
what follows, s2 will be used as a parameter. The final
result does not depend very significantly on sx, so its value
is fixed at 11:7 GeV2.

Then we set ��
n 
 Re���sn� and continue the recursive

fitting procedure using formulas (14) and (18). After ten
steps the procedure converges and the result we arrive at
for the values of the parameters is c1 
 0:22� 0:02, c2 

0:37� 0:09, and cx 
 18:4� 1:1, s2 
 2:4� 0:2 GeV2,
� 
 0:49� 0:09, (�2=d:o:f: 
 1:0). The intercept of the
trajectory does not change visibly, ��0� 
 �0:42.

The results are presented in Figs. 5 and 6.
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VI. CONCLUDING REMARKS

The main problem in constructing models for Regge
trajectories resides in the difficulty of making the nearly
linear rise of the real part in the whole range of observed
resonances compatible with the presence of a sizable
imaginary part. Figures 1 and 3 suggest that this diffi-
culty has been overcome. The complexity of the problem
reveals itself in the imaginary part of the trajectories as
shown in Figs. 2 and 4. In our solution, in fact, light
thresholds model the imaginary part in the resonance
region, but the real part is determined by some heavy
thresholds.

The main assumptions regard only the imaginary part
of the trajectory. This, through dispersion relations, de-
termines completely the analytic structure of the model.
The real part, the slope, and the widths of the resonances
follow from the hypothesis that the contributions of dif-
ferent thresholds are additive. There is no first-principle
reason for this constraint; it is imposed only for simplic-
ity sake.

In the simple model of Sec. II we found a physical
interpretation for the position of the thresholds that the
N trajectory inherits from the partial-wave amplitude for
the pion-nucleon scattering. However, such interpretation
becomes problematic when the MacDowell symmetry is
implemented. In this case, we must consider the thresh-
olds, above the first one, as effective thresholds. This is
always true for the last threshold sx whose position is only
weakly constrained from the experimental data. sx can
move to higher values of s if it is required from the
discovery of new baryonic resonances.

Data for the excited states of the baryons are often
insufficient for a fit of the parameters appearing in the
(oversimplified) imaginary part of the trajectory. For this
reason our analysis cannot be extended to strange and
2In the general case 1� c, b� a, and c� b� a in F�a; b; c; z�
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charmed baryons. Furthermore, for the nucleon, our find-
ings do not put strong constraints on a future search of
new nucleonic states. Approximate symmetries or dy-
namical models, not accounted for in this paper, could
help in obtaining more precise predictions when comple-
mented by analyticity and unitarity. A ‘‘global’’ fit to
baryonic trajectories could be an important step forward
a deeper understanding of their structure. This possibility
will be explored elsewhere.
APPENDIX A

In this Appendix we collect the formulas that show
how Eq. (13) can be solved and the equivalence of the
solution with the one of Eq. (14). Inserting Eq. (15) in
Eq. (13) one obtains

A n�
���
s

p
� 
 PV

Z 1

0
s0��1=2��	

n �s0 � sn�
�	
n

�
1����

s0
p

�
���
s

p d
����
s0

p
��s0 � sn�

�
Z 1

0
s0��1=2���

n �s0 � sn�
��
n

�
1����

s0
p

	
���
s

p d
����
s0

p
��s0 � sn�: (A1)

Consider now the second integral on the right-hand side
of Eq. (A1). Substituting u 


�����������
sn=s0

p
we get

Z 1����
sn

p
s0��1=2���

n �s0 � sn��
�
n

1����
s0

p
	

���
s

p d
����
s0

p


 �
�����
sn

p
�2��1

Z 1

0

u�2��1� u2��
�
n

1	
����������
s=sn

p
u

du: (A2)

We obtain
Z 1

0

u�2��1� u2��
�
n

1	
����������
s=sn

p
u

du 

1

2
��1	 ��

n �

�
�

�����
s
sn

s
��1� ��

��2	 ��
n � �� 2

F1

�
1; 1� �; 2� �	 ��

n ;
s
sn

�

	
��1=2� ��

��3=2	 ��
n � �� 2

F1

�
1; 1=2� �; 3=2� �	 ��

n ;
s
sn

�	
; (A3)

that is a convenient expression when sn > s. However, when s > sn, it is necessary to perform an analytic continuation
that, in the general case considered here,2 gives

Z 1

0

u�2��1� u2��
�
n

1	
����������
s=sn

p
u

du 

1

2

�
���

n 	 1������
��1	 ��

n � ��

�����
sn
s

r
2F1

�
1; �� ��

n ; 1	 �;
sn
s

�

�
��1	 ��

n ����1=2� ��
��1=2	 ��

n � ��
sn
s 2F1

�
1; 1=2	 �� ��

n ; 3=2	 �;
sn
s

�

	 

�
sn
s

�
1=2��

�
1�

sn
s

�
��
n 1

sin�
�� cos�
��

	
: (A4)

Equations (A3) and (A4) give the result for the integral in Eq. (13) in all possible cases.
are not integers.
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Of the first integral in Eq. (A1) we must take the principal value. By multiplying the numerator and denominator of
the integrand by �

����
s0

p
	

���
s

p
� we get

PV
Z 1

0
s0��1=2��	

n �s0 � sn�
�	
n

1����
s0

p
�

���
s

p d
����
s0

p
��s0 � sn� 


���
s

p

2
PV

Z 1

0

y�
	
n �y	 sn���1��	

n

y� �s� sn�
dy

	
1

2
PV

Z 1

0

y�
	
n �y	 sn���1=2��	

n

y� �s� sn�
dy; (A5)

that can be easily solved since both integrals, in the right-hand side of Eq. (A5), are of the same form of
the integrals solved before. Since Re��

���
s

p
� is an analytic function of

���
s

p
Eqs. (A3) and (A4) hold also when

���
s

p
< 0.

APPENDIX B

It is easy to show that the derivative of Re��
���
s

p
� gives for Dn�

���
s

p
� the following cumbersome expression:

Dn�
���
s

p
� 


1

2

��
2s��3=2

�
1�

sn
s

�
�	
n �1

��	
n sn 	 ��s� sn�� tan�
�� 	

s�	1=2
n

s
���1=2� ����1	 �	

n �


��1=2� �	 �	
n �

�

2F1

�
1;

1

2
	 �

� �	
n ;

3

2
	 �;

sn
s

�
	

2��� �	
n 	 1=2�

�	 3=2
sn
s 2F1

�
2;

3

2
	 �� �	

n ;
5

2
	 �;

sn
s

��
� the same term with �	

n ! ��
n

	

	

�
�2s��3=2

�
1�

sn
s

�
�	
n �1

��	
n sn 	 ��s� sn�� cot�
�� 	 2

s�	1
n ��� �	

n ��������1	 �	
n �


s3=2�1	 ����1� �	 �	
n �

2F1

�
2; 1	 ��

�	
n ; 2	 �;

sn
s

�
	 the same term with �	

n ! ��
n

	�
��s� sn�

	
1

2

��
s��3=2
n

��1=2� ����1	 �	
n �


��3=2� �	 �	
n �

�

sn2F1

�
1;

1

2
� �;

3

2
� �	 �	

n ;
s
sn

�

	
�1� 2��s

�	
n � �	 3=2 2F1

�
2;

3

2
� �;

5

2
� �	 �	

n ;
s
sn

��

� the same term with �	
n ! ��

n

	
	

�
2
s��1
n ��1� ����1	 �	

n �


��2� �	 �	
n �

���
s

p
2F1

�
1; 1� �; 2� �	 �	

n ;
s
sn

�

	 the same term with �	
n ! ��

n

	�
��sn � s�: (B1)
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