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The data on the total cross section �tot�e
�e� ! e�e�bb� measured at LEP2 represent a serious

challenge for perturbative QCD. In order to understand the origin of the excess of data over QCD
calculations, we investigate the dependence of the four contributions to this cross section on ��
collision energy. As the reliability of the existing calculations of �tot�e

�e� ! e�e�bb� depends, among
other things, on the stability of the calculations of the cross section �tot��� ! bb� with respect to
variations of the renormalization and factorization scales, we investigate this aspect in detail. We show
that in most of the region relevant for the LEP2 data the existing QCD calculations of the cross section
�tot��� ! bb� do not exhibit a region of local stability. A possible source of this instability is
suggested.
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I. INTRODUCTION

Heavy quark production in hard collisions of hadrons,
leptons, and photons has been considered as a clean test of
perturbative QCD. It has therefore come as a surprise that
the first data on the bb production in pp collisions at the
Tevatron [1,2], �p collisions at HERA [3,4], and ��
collisions at LEP2 [5,6] have turned out to lie signifi-
cantly and systematically above theoretical calculations.
The disagreement between data and theory [7–9] was
particularly puzzling for the collisions of two quasireal
photons at LEP2.

The arrival of new data on bb production in ep colli-
sions at HERA have further complicated the situation. In
the range of moderate Q2 * 10 GeV2, the new ZEUS data
[10] are in reasonable agreement with next-to-leading
order (NLO) QCD predictions, but there is still a sizable
excess of the new ZEUS data over theory in the region
2 & Q2 & 10 GeV2. Moreover, there is a problem of con-
sistency between new ZEUS and older H1 data in the
region Q2 * 10 GeV2. For pp collisions, the progress
on the theoretical side [11,12] has significantly reduced
the discrepancy observed at the Tevatron.

On the other hand, the problem of understanding the bb
production in �� collisions remains unsolved. The recent
DELPHI data [13] are in striking agreement with the
older L3 and OPAL data and by a factor of about 3 above
the standard NLO QCD calculations. There have, how-
ever, been few theoretical suggestions of how to explain
this excess. Neither the use of unintegrated parton distri-
bution functions [14] nor the production of supersymmet-
ric particles [15], proposed for explaining an analogous
excess in antiproton-proton collisions, are of much help
for LEP2 data, primarily because of low �� energies
involved.
ress: chyla@fzu.cz
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In [12], we have investigated the sensitivity of QCD
calculations of �tot�pp ! bb� to variation of the
renormalization and factorization scales � and M. In
particular, we have argued that in order to arrive at
locally stable results [16] these two scales must be
kept independent. We have furthermore shown that in
the Tevatron energy range the position of the saddle
point of the cross section �NLO

tot �pp ! bb; S;M;��,
considered as a function of � and M, lies far away from
the ‘‘diagonal’’ � � M used in all existing QCD
calculations. Using the NLO prediction at the saddle point
instead of the conventional choice � � M � mb

enhances the theoretical prediction in the Tevatron
energy range by a factor of about 2, which may help in
explaining part of the excess of data over NLO QCD
predictions.

In this paper similar analysis is performed for ��
collisions at center of mass system energies W relevant
for LEP2 data. Although all three experiments at LEP2
have measured merely an integral over the cross section
���� ! bb;W� weighted by the product of photon fluxes
inside the beam electrons and positrons, it is very impor-
tant to understand the W dependence of the four individ-
ual contributions to it.

The paper is organized as follows. In the following
section, the general form of the perturbative expansion
of the total cross section �tot��� ! bb;W;M;�� is
reviewed and the role of three different classes of
direct and resolved photon contributions is discussed.
In Sec. III, the W dependence of the four
contributions to the cross section �tot�e

�e� ! e�e�bb�
is investigated at the LO of QCD. The main result of
this paper, the numerical study of the sensitivity of
standard NLO approximation to �NLO

tot ��� ! bb� to
the choice of renormalization and factorization scales,
is presented in Sec. IV. The conclusions are drawn in
Sec. V.
01-1  2004 The American Physical Society
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II. QQ PRODUCTION IN �� COLLISIONS

Throughout the paper, I will adopt the standard termi-
nology and notation used in the theoretical description of
hard �� collisions as defined, for instance, in [17]. The
reader is referred to this paper also for a discussion of
salient features of QCD description of the photon, such as
the inhomogeneous nature of the evolution equations for
its parton distribution functions (PDF), etc. As all PDF
used below are those of the (quasi)real photon, I will drop
any specification of this fact.

In the calculations of [7–9], performed with fixed pole
quark masses, the NLO QCD approximation to
�tot��� ! QQ� is defined by taking into account the first
two terms in the perturbation expansions of direct

�dir�M� � ��0�
dir � ��1�

dir
s��� � ��2�
dir�M;��
2

s���

� ��3�
dir�M;��
3

s��� � � � � ; (1)

as well as single

�sr�M� � 2
Z

dxG�x;M���G�x;M�

� 4
Z

dx
X
i

qi�x;M���qi
�x;M�

� ��1�
sr �M�
s��� � ��2�

sr �M;��
2
s���

� ��3�
sr �M;��
3

s��� � � � � ; (2)

and double resolved photon contributions,

�dr�M� � 4
Z

dx dy
X
i

qi�x;M�qi�y;M��qq�xy;M�

�
ZZ

dxdyG�x;M�G�y;M��GG�xy;M�

�2
ZZ

dxdy��x;M�G�y;M��qG�xy;M�

� ��2�
dr �M�
2

s��� � ��3�
dr �M;��
3

s��� � � � � : (3)

In the above expressions, we have taken into account
identity of beam particles and equality q�x;M� �
q�x;M�. The partonic cross sections appearing in (2)
and (3) can be expanded in powers of 
s��� in the
following way:

��G�x;M� � 
s�����1�
�G�x� � 
2

s�����2�
�G�x;M;�� � � � � ;

(4)

��qi
�x;M� � 
2

s�����2�
�qi�x;M� � 
3

s�����3�
�qi�x;M;��

� � � � ; (5)

and

�qq�xy;M� � 
2
s�����2�

qq�xy� � 
3
s�����3�

qq�xy;M;��

� � � � ; (6)
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�GG�xy;M� � 
2
s�����2�

GG�xy� � 
3
s�����3�

GG�xy;M;��

� � � � ; (7)

�qG�xy;M� � 
3
s�����3�

qG�xy;M� � � � � : (8)

Starting at order 

2
s , the direct photon contribution

depends also on the factorization scale and therefore
mixes with the single and double resolved photon ones.
The first two terms in (1) are, however, unrelated to any
terms in (2) or (3) and can therefore be considered
separately.

Note that PDF as well as the short distance parton level
cross sections depend on the factorization scale M,
whereas the renormalization scale � appears only if the
latter are calculated as perturbative expansions in 
s���.
As emphasized a long time ago by Politzer [18], these
scales reflect ambiguities in the treatment of quite differ-
ent divergences (ultraviolet in the case of the renormal-
ization scale � and infrared in the case of the
factorization scale M) and should thus be kept as inde-
pendent free parameters of any finite order perturbative
calculation. Note also that each of the three contributions,
(1)–(3), depends on the factorization scale M and only
their sum is independent of M.

The approximations employed in [7–9] include all
terms that are currently known, so we cannot presently
do better. On the other hand, we should be aware of its
theoretical status [19]. Clear shortcoming concerns the
case of the direct contribution (1) which is the sum of the
purely QED contribution

��0�
dir�W� � �0

��
1�

4m2
b

W2 �
8m4

b

W4

�
ln
1� �
1� �

��
�
1�

4m2
b

W2

��

� �0c�0��mb=W�;

�0 �
12�e4b


2

W2 ;

(9)

where � �
���������������������������
1� 4m2

b=W
2

q
and the lowest order QCD

correction given as ��1�
dir
s � �0
s���c�1��mb=W� and

calculated, for instance, in [20]

��01�
dir � ��0�

dir � ��1�
dir
s

� �0	c
�0��mb=W� � 
s���c�1��mb=W�
: (10)

As the sum (10) does not mix to this order with the other
two contributions (2) and (3), it is manifestly of the
leading order in QCD coupling 
s only and thus a mo-
notonous function of the renormalization scale �.
Consequently, it cannot be associated to a well-defined
renormalization scheme of 
s as such an association
requires the presence of at least two consecutive non-
trivial powers of 
s.
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FIG. 1. Examples of diagrams describing the direct photon contribution to ���� ! QQ� up to the order 
2
2
s . The solid (dashed)

lines denote light (heavy) quarks.
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At the order 
2
2
s , the diagrams with light quarks

appear, and we can distinguish three classes of direct
photon contributions differing by the overall heavy quark
charge factor CF:

Class A: C
FIG. 2. E
diagrams.
F � e4Q: Comes from diagrams, such as those
in Figs. 1(e)–1(g), in which both photons couple
to heavy QQ pairs. Despite the presence of mass
singularities in contributions of individual dia-
grams coming from gluons and light quarks in
the final state and from loops, the Kinoshita-
Lee-Naunberg theorem implies that at each or-
der of 
s the sum of all contributions of this
class to �dir is finite. As the first as well as the
second terms in (10) are proportional to e4Q,
it is this class of direct photon contributions
that yields the third term in (10) and is thus
needed for the calculation of �dir to be per-
formed in a well-defined renormalization
scheme (RS).
Class B: C
F � e2Q: Comes from diagrams, such as that
in Fig. 1(h), in which one of the photons couples
to a heavy QQ and the other to a light qq pair.
For massless light quarks, this diagram has
initial state mass singularity, which is removed
by introducing the concept of the light quark
distribution functions of the photon. The facto-
rization scale dependence of the contribution of
this diagram is then related to that of single
resolved photon diagrams in Figs. 2(a) and 2(c).
Class C: C
F � 1: Comes from diagrams in which both
photons couple to light qq pairs, as those in
Fig. 1(l). In this case, the analogous subtraction
xamples of resolved photon diagrams involving the pointlike part
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procedure relates it to the single resolved pho-
ton contribution of the diagram in Fig. 2(f) and
double resolved photon contribution of the dia-
gram in Fig. 2(h).
Because of different charge factors CF, the classes A, B,
and C of direct photon contributions do not mix under
renormalization of 
s and factorization of mass
singularities.

Both the single and double resolved photon contribu-
tion, given by the first two terms in (2) and (3) contain
two nonzero consecutive terms in expansion of partonic
cross sections in 
s and thus have the same basic structure
as the analogous expression for heavy quark production in
hadronic collisions. There is, however, an important dif-
ference between photon-induced and hadronic collisions,
as described, for instance, in [17].

‘‘Here we would like to point out that the way of
counting the order of QCD calculations in the photon-
induced processes is still a subject of discussion (see, e.g.,
[21,22] and earlier papers [23,24]). The origin of the
problem is the presence of a definite parton model pre-
diction in the form of an 
 ln�Q2� contribution, leading to
the inhomogeneous term in the Q2 evolution equations for
the quark densities in the photon. One approach bases on
the treatment of the quark density in the photon as being
of the order q� � 
=
s, while in the second one q� � 
.
This difference leads to different sets of diagrams which
formally should be included in the NLO calculations; see,
e.g., the prompt photon production at HERA, where two
types of NLO predictions are compared to data [25].’’

I adhere to the second point of view, as do the authors of
[22,23], but contrary to that adopted in [7–9]. As in the
s of PDF of the photon and the related direct photon
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case of photoproduction of direct photons, investigated in
[22,23], this implies that the set of diagrams which I
think should be included in the NLO QCD calculations
of �tot��� ! bb� does not coincide with that used by the
authors of [7–9]. Specifically, I think one should include
beside the class A direct photon contribution (which must
undoubtedly be included to make the direct photon con-
tribution next-to-leading in 
s) also the classes B and C. I
will not elaborate on why I think this is the right way to
proceed, as the aim of this paper is to investigate the scale
dependence of NLO calculations [7–9] of �tot��� ! bb�.
FIG. 3 (color online). Left: The distributions d�k=dW corre-
sponding to the pure QED contribution together with three
lowest order QCD contributions: single resolved (SR), double
resolved (DR), and direct (DIR). The sum of all four contri-
butions is shown as the upper dotted curve. Right: The com-
parison of pure QED contribution with the sum of three lowest
order QCD ones. All curves were obtained for mb � 4:75 GeV,���
S

p
� 200 GeV, and Q2

max � 4 GeV2 using GRV LO PDF of the
photon and setting !�4� � 0:27 GeV.

TABLE I. The integrated cross sections ��e�e� ! bb; S� for���
S

p
� 200 GeV and Q2

max � 4 GeV2, corresponding to the dis-
tributions in Fig. 3. The renormalization and factorization
scales � and M we identified and set equal to mb. LO form
of 
s��� was used. All cross sections are in picobarns.

Parameters QED LO QCD Total
�4�
III. BB PRODUCTION AT LEP2

At LEP the incoming electrons and positrons acted as
sources of transverse quasireal photons1 described by the
flux

f�
T �y;Q

2� �


2�

�
1� �1� y�2

y
1

Q2 �
2m2

ey

Q4

�
; (11)

where Q2 stands for photon virtuality. For brevity of
notation, we shall in the following write instead of
�tot�e

�e� ! e�e�bb� simply �tot�e
�e� ! bb�.

Although the data are available only for cross sections
integrated over the whole phase space, we shall discuss
the contributions d�k�e

�e� ! bb�=dW of individual
processes as functions of �� collision energy W. The
shapes of these contributions can alternatively be charac-
terized by the functions

Fk�W� �
Z W

2mb

dw
d�k�e

�e� ! bb�
dw

;

Gk�W� �
Z ��

S
p

W
dw

d�k�e
�e� ! bb�
dw

;

(12)

which quantify how much of a given contribution comes
from the region up to a given W [Fk�W�] or above it
[Gk�W�]. As the available data are not copious enough
to measure the differential distribution d��e�e� !

bb�=dW, the theoretical analysis of the distributions
(12) might allow us to invent a strategy of how to sepa-
rate the kinematic region of accessible W into two parts,
each dominated by a particular contribution. The relative
importance of the individual contributions as a function
of W is determined by the ratio

rk�W� �
d�k�e

�e� ! bb�
dW

	
d�tot�e

�e� ! bb�
dW

: (13)
1In the kinematical region relevant for bb production in ��
collisions at LEP2, the mean photon virtuality was very small,
typically hQ2i ’ 0:01 GeV2, and consequently the contribution
of longitudinal virtual photons can be safely neglected.
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A. QED contribution

The pure QED contribution to �tot�e
�e� ! bb� is

given as

d�QED�e
�e� ! bb�

dW
�

6
4e4b
�S

A�W�

W

��
1�

4m2
b

W2 �
8m4

b

W4

�


 ln
1� �
1� �

� �
�
1�

4m2
b

W2

��
;

(14)

where

A�W� �
ZZ

dy dz #
�
W2

S
� yz

��
1� �1� y�2

y

�




�
1� �1� z�2

z

�
ln
Q2

max�1� y�

m2
ey2

ln
Q2

max�1� z�

m2
ez2

;

(15)

results from convolution of photon fluxes (11), integrated
over the virtualities up to Q2

max. The convolution (15) can
easily be performed analytically and the result inserted
into (14). In Fig. 3, we display by the solid curve the result
mb ! PDF DIR SR DR
4:75 0:27 GRV LO 1.27 0.473 1.415 0.121 3.28
4:5 0:27 GRV LO 1.40 0.478 1.746 0.146 3.77
4:75 0:35 GRV LO 1.27 0.520 1.542 0.141 3.47
4:75 0:27 SAS1D 1.27 0.473 0.904 0.077 2.73

-4
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of evaluating (14) for mb � 4:75 GeV,
���
S

p
� 200 GeV,

and Q2
max � 4 GeV. The distribution vanishes at the

threshold W � 2mb due to the threshold behavior of the
cross section (9), peaks at about W � 12 GeV, and then
drops rapidly off due to the fast decrease of both the
photon flux (11) and (9).

Integrating the distributions in Fig. 3 yields the values
in the fourth column of Table I.

B. Lowest order QCD corrections

As in the case of a pure QED contribution (9), these
corrections are given as convolutions of the photon flux
(11) with the appropriate partonic cross sections. In all
calculations, u, d, s, and c quarks were considered as
intrinsic in the photon and nf � 4 was correspondingly
taken in the expression for 
s���.

The W dependence of the lowest order QCD correction
to direct photon contribution is given as the product

d�LO
dir �W�

dW
�

6
4e4b
�S

A�W�

W

s�����1�

dir�W=mb�: (16)

The resulting W dependence evaluated for � � mb and
shown in Fig. 3 is peaked even more sharply at small W
than the pure QED contribution (14). This reflects the fact
that the cross section ��1�

dir�W=mb� does not vanish at the
threshold W � 2mb as does ��0�

dir�W=mb�.
The lowest order single and double resolved photon

contributions were computed with HERWIG Monte
Carlo event generator, which implements the appropriate
LO cross sections of the processes

��G ! b� b; (17)

G�G ! b� b; q� q ! b� b; (18)

where q � u; d; s; c stand for intrinsic quarks in the pho-
ton, and convolutes them with photon fluxes and PDF of
the quasireal photon(s). In HERWIG, the renormalization
FIG. 4 (color online). Left: Solid (dashed) curves show the
partially integrated cross sections Fk�W� (Gk�W�) defined in
(12) for QED and three lowest order QCD contributions. Right:
The relative contributions rk�W� defined in (13) for the same
four contributions.
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and factorization scales � and M are identified and set
equal to an expression which is approximately equal to

the transverse mass � � M � MT �
�������������������
E2

T �m2
b

q
. In the

LEP2 energy range, the mean hMTi depends weakly on W
with, approximately, hMTi ’ 7 GeV.

Results of the calculations, in which the LO GRV PDF
of the photon, the LO expression for 
s��� with !�4� �
0:27 GeV, and mb � 4:75 GeV were used, are shown in
Figs. 3 and 4. As expected, the corresponding distribu-
tions are much broader than those of pure QED or lowest
order QCD direct contributions.

C. Comparison of individual contributions

The comparison of the distributions d�k=dW;Fk�W�,
Gk�W�, and rk�W�, corresponding to four individual con-
tributions, displayed in Figs. 3 and 4, and summarized in
Table I, reveals a large difference in their shapes and
magnitude. Specifically, we conclude that
(i) T
-5
he pure QED as well as the lowest order QCD
direct photon contributions peak at very small W
and are basically negligible above W ’ 50 GeV.
For instance, the left plot of Fig. 4 shows that 95%
of the QED contribution comes from the region
W & 30 GeV.
(ii) T
he onset of single and double resolved photon
contributions are much slower, but these distribu-
tions are, on the other hand, markedly broader.
(iii) T
he double resolved photon contribution is practi-
cally negligible everywhere.
(iv) T
he pure QED and single resolved photon contri-
butions are of comparable size and together make
up about 85% of the total integrated cross section,
(v) u
p to about W ’ 30 GeV, d�tot=dW is dominated
by pure QED contribution, whereas for W *

30 GeV QCD contributions take over.

The numbers given in Table I correspond to standard
fractionally charged quarks. In [26], its author interprets
the excess of data over standard theoretical calculations as
evidence for Hahn-Nambu integer quark charges. I think
his argumentation is wrong, but I mention it here to
illustrate the merit of separating the data into at least
two regions of W. Were the author of [26] right, the whole
discrepancy would have come from the region of small W,
where QED contribution dominates.

On the other hand, were the light gluino production [15]
responsible for the observed excess, this excess would
have to come from the region of W dominated by the
double resolved photon contribution. Although the energy
dependence of the gluon-gluon fusion to gluino-
antigluino may be slightly different than those of G�

G ! QQ or qq ! QQ, the basic shape of the W distri-
butions is given by the convolution of the photon fluxes
(11) and the gluon distribution function of the photon,
which are the same in both types of processes.
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The above observations underline the fact that, in order
to pin down the origins of the excess of the integrated
cross section �tot�e

�e� ! bb� over theoretical calcula-
tions, it would be helpful to have the data separated into at
least two subsamples, say W & 30 GeV and
W * 30 GeV.

The magnitude of the contributions discussed in the
preceding subsection depend, beside the renormalization
and factorization scales specified above, on a number of
other input parameters: the numerical values of
mb;!

�4�
QCD; Q

2
max. The calculations reported above were

performed for
���
S

p
� 200 GeV, Q2

max � 4 GeV2, mb �

4:75 GeV, and !�4� � 0:27 GeV using the GRV LO PDF
of the photon. To see the sensitivity of the LO results to
these assumptions we varied some of these parameters:
(i) m
b was lowered to mb � 4:5 GeV,

(ii) !
�4� was increased to 0:35 GeV,
(iii) G
RV set of PDF of the photon was replaced with
that of Schuler-Sjöstrand set SAS1D.
The choice of Q2
max � 4 GeV2 corresponds roughly to the

usual cuts imposed on the LEP2 data and could therefore
be also adjusted to specific conditions of a given experi-
ment. The results of the calculations of �tot�e

�e� !

e�e�bb�, corresponding to different sets of input pa-
rameters specified above, are listed in Table I. Lowering
mb increases all four contributions, as does, except for the
pure QED one, increasing !�4�. SAS1D PDF yield mark-
edly lower results for single and double resolved photon
contributions. It is, however, clear that varying the input
parameters within reasonable bounds does not bring the
sum of lowest order QED and QCD calculations signifi-
cantly closer to the data.
IV. CAN HIGHER ORDER QCD CORRECTIONS
SOLVE THE PUZZLE?

With the sum of QED and lowest order QCD contribu-
tions way below the data, we shall now address the
question of how much of this gap can be explained by
the higher order QCD corrections.

A. Direct photon contribution

As emphasized above, in order to obtain an expression
of the next-to-leading order in 
s, the direct photon term
of the order 
2

s�
�2�
dir must be added to the lowest order QCD

contribution (10). Because the latter is proportional to e4b,
the class A of 
2
2

s direct photon contributions is needed
for this purpose. The sum of the second and third terms in
(1), i.e., dropping the purely QED contribution, can be
written as

�NLO
dir �W;mb;�� � ��1�

dir�W;mb�
s���


 	1� r1�W;mb;��
s���
: (19)
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The NLO coefficient r1 has the general form

r1�W;mb;�;RS� �
�0

4�
ln

�2

!2
RS

� '�W=mb�; (20)

where '�W;mb� denotes the renormalization scale and
scheme invariant [16], which governs the basic features
of the scale dependence of (19):

' > 0: T
-6
he expression (19), considered as a function of
�, exhibits a stationary point (local maximum)
where it is locally stable. This point, preferred by
the principle of minimal sensitivity [16], is also
close to the point for which r1 � 0, which is
selected by the method of effective charges
[27]. The value of �NLO

dir at the stationary point
is proportional to 1=' implying large NLO cor-
rections for small '. Inserting the appropriate
numbers for nf � 4, mb � 4:75 GeV, and !�4�

MS
�

0:27 GeV, we get

'�W=mb� � 3:88� r1�W=mb; 1;MS�: (21)

The coefficient r1�W=mb; 1;MS� thus does not
have to be too large to get small, or even negative
'.
' � 0: �
NLO
dir is a monotonous function of �, in fact

even steeper than �LO
dir . Consequently, for nega-

tive ' going to the NLO does not improve the
stability of the calculation, but quite on the
contrary.
As the second term in (19) has not yet been calculated, we
cannot associate the class A direct photon contribution,
given by the first term in (19), to a well-defined renor-
malization scheme. Moreover, as the magnitude of the
NLO corrections in (19) is determined by the ratio
��2�

dir�W=mb; 1�=�
�1�
dir�W=mb� of two functions of W=mb,

which may depend on W=mb in different ways, the coef-
ficient r1 may be very large even when both the numerator
and denominator are on average of comparable and small
magnitude. This indicates that, without the knowledge of
class A direct photon contribution of the order 
2
2

s , we
cannot make a meaningful estimate of the importance of
the second term in (19).

B. Resolved photon contribution

As for LEP2 energies, the double resolved photon one is
numerically negligible, only the single resolved photon
contribution will be discussed in detail below. As shown
in Fig. 3, d�LO

sr =dW peaks at about W � 30 GeV with the
mean value hWi �

:
65 GeV. This suggests that the cross

section �NLO
sr �e�e� ! bb� will be determined primarily

by those of �NLO
sr ��� ! bb� in the energy range

30 & W & 65 GeV.
All the results shown below for the single resolved

photon contribution,



FIG. 6. The surface and contour plots of �NLO
sr �W;M;�� for

W � 40 GeV.
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�NLO
sr �W;M;�� � 2
s���

Z
dxG�x;M�	��1�

�G�x�

� 
s�����2�
�G�x;M;��
 � 4
2

s���



Z

dx
X
i

qi�x;M���2�
�qi�x;M�;

(22)

are based on the formulas for the partonic cross sections
��k�

ij as given in [28] and were obtained using the GRV HO

set of PDF of the photon and setting !�4�

MS
� 0:27. Because

the expressions for ��2�
�G as given in [28] correspond to

� � M, we have reconstituted its separate dependence on
� and M by adding to ��2�

�G�x;M;M� the term

��0=4���
�1�
�G ln��2=M2�. Note that for each value of M

the expression (22) has, as far as the � dependence is
concerned, the form of the NLO expression (19).

We first follow the conventional procedure and set M �
�. The resulting scale dependence of the expression (22),
together with those of the quark and gluon contributions
to it, are shown in Fig. 5(a) for W � 40 GeV. Overlaid for
comparison is also the LO approximation, given by the
first term in (22). We note the different scale dependence
of the �G and �q channels, the latter turning negative for
M * 6 GeV, but the most important observation con-
cerns the fact that the conventional NLO approximation
(22) is a monotonously decreasing function of the scale
M � �. Moreover, it falls off even steeper than the LO
expression. In other words, in going from the leading to
the next-to-leading order in 
s the sensitivity to the scale
variation increases, rather than decreases, as one might
expect (and hope).

Recalling the discussion in Sec. IVA, one should,
however, not be surprised. To check how much this feature
depends on setting exactly � � M, we plot in Fig. 5(b)
FIG. 5 (color online). (a) The scale dependence of the con-
ventional NLO approximation �NLO

sr �W;M;M� for W �
40 GeV (solid curve) together with the contributions of the
�G (dashed) and �q=q (dotted) channels. The LO approxima-
tion is shown for comparison by the dash-dotted curve. (b)
�NLO

sr �W;M;*M� (solid curve) and �LO
sr �W;M; *M� (dash-

dotted) for W � 40 GeV and three values of * � 0:5; 1:2.

054001
the scale dependence of �NLO
sr �W;M;� � *M� for stan-

dard choices of * � 0:5; 1; 2. Clearly, the above conclu-
sion is independent of * in this range.

The steep and monotonous scale dependence of
�NLO

sr �W;M;� � *M� is a clear warning that the con-
ventional NLO approximation is unstable. To see what
happens if we relax the usual but arbitrary identification
� � *M, we plot in Fig. 6 the surface and contour plots
representing the full M and � dependence of
�NLO

sr �W;M;�� as given in Eq. (22).
Contrary to the analogous process in antiproton-proton

collisions [12], it does not exhibit a saddle point, where
the derivatives with respect to both M and � would
vanish, but Fig. 6 seems to indicate some sort of stability
region at large scales, say for M * 10 GeV, � * 20 GeV.
This impression is, however, misleading as becomes clear
if we plot in Fig. 7 the slices of the surface plot in Fig. 6
along both axes and recall the discussion of Sec. IVA. For
each fixed value of the factorization scale M, the expres-
sion (22) has a form of the NLO expression as far as the
FIG. 7 (color online). The renormalization scale dependence
of �NLO

sr �W;M;�� for fixed values of the factorization scale (a)
and vice versa: The factorization scale dependence of
�NLO

sr �W;M;�� for the same set of fixed values of the renor-
malization scale � (b). All calculations correspond to W �
40 GeV. In (a) the ordering from above of the curves at � �
30 GeV corresponds to M � 30, 16, 10, 7, 4.75, 3, 2, and 1 GeV.
In (b) the curves correspond at M � 0:7 GeV to the same
sequence from below.
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renormalization scale � is concerned. Recalling the dis-
cussion in Sec. IVA, we see that for M & 4:2 GeV
�NLO

sr �M;�� corresponds to negative ' and thus exhibits
no local stability point. For higher M the local maximum
in the � dependence of �NLO

sr �M;�� exists at the associ-
ated �max�M�. The M dependence of �NLO

sr 	M;�max�M�
,
shown in Fig. 7(a) by the dotted curve, is, however, even
steeper than those at fixed M. The above plots and con-
clusions concerned the results at one typical value of W,
but their essence holds for the whole interval relevant for
LEP2 data.

We thus conclude that in the energy range relevant for
LEP2 data the renormalization and factorization scale
dependence of the conventional NLO calculations of
single resolved photon contribution to the total cross
section �tot��� ! bb� exhibit no stability region, either
as a function of the common scale � � *M or as a fully
two dimensional function of � and M.

V. SUMMARY AND CONCLUSIONS

We have seen that in order to understand the origin of
the discrepancy between LEP2 data on bb production in
�� collisions and the currently available theoretical cal-
culations the separation of data into at least two bins of
the hadronic energy W, say W & 30 GeV and W *
054001
30 GeV, could be instrumental in pinning down the pos-
sible mechanisms or phenomena responsible for the ob-
served excess.

We have also shown that the existing NLO QCD cal-
culations are very sensitive to the variation of renormal-
ization and factorization scale, exhibiting no region
of local stability. This indicates that the results
based on the standard choice of renormalization
and factorization scales � � M � mb should be
taken with great caution. It is clear that the class A
direct photon term of the order 
2
2

s is needed to make
the direct photon contribution of next-to-leading
order in 
s. My conjecture is that order 
2
2

s
direct photon terms of class B and C, which are
related to single and double resolved photon contribu-
tions, may help stabilize the latter with respect
to the variation of renormalization and factorization
scales.
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