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Electromagnetic structure of the � meson in the light-front quark model
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We investigate the elastic form factors of the � meson in the light-front quark model (LFQM). With
the phenomenologically accessible meson vertices including the one obtained by the Melosh trans-
formation frequently used in the LFQM, we find that only the helicity 0 ! 0 matrix element of the plus
current receives the zero-mode contribution. We quantify the zero-mode contribution in the helicity
0 ! 0 amplitude using the angular condition of spin-1 system. After taking care of the zero-mode
issue, we obtain the magnetic (�) and quadrupole (Q) moments of the � meson as � � 1:92 and Q �
0:43, respectively, in the LFQM consistent with the Melosh transformation and compare our results with
other available theoretical predictions.
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I. INTRODUCTION

In the past few years, there has been much theoretical
effort [1–9] to study the so-called ‘‘zero-mode’’ [10–15]
contribution to the elastic and weak form factors for spin-
0 and spin-1 systems in light-front dynamics (LFD). The
zero mode is closely related to the off-diagonal elements
in the Fock state expansion of the current matrix. In
particular, the zero-mode contribution to the form factor
F�q2� can be characterized by the nonvanishing contri-
bution from the off-diagonal elements in the q� ! 0
limit, where q� is the longitudinal component of the
momentum transfer q (q� � q0 � q3, q2 �q�q��q2

?).
In the absence of zero mode, however, the hadron form
factors can be expressed as the convolution of the initial
and final LF wave functions; namely, the physical result
can be obtained by taking into account only the valence
contribution or the diagonal elements in the Fock state
expansion.

In this work, we analyze the zero-mode contribution to
the elastic form factors of the � meson using the LF
constituent quark model (or LFQM for short) [16–22],
which has been quite successful in predicting various
electroweak properties of light and heavy mesons com-
pared to the available data. In our previous LFD analysis
[6] of spin-1 electromagnetic form factors, we have shown
that the zero-mode complication can exist even in the
matrix element of the plus component of the current.
Using a covariant model of the spin-1 system with the
polarization vectors obtained from the LF gauge (��� �
0), we found that only the helicity zero-to-zero amplitude,
i.e., �h0; h� � �0; 0�, can be contaminated by the zero-
mode contribution. However, our conclusion in [6] was
based on the use of a rather simple vector meson vertex
�� � 
�. The aim of the present work is to explore our
findings in the more phenomenologically accessible �
meson vertex [see Eq. (12)]. This includes the case of
the � meson vertex obtained by the Melosh transforma-
tion frequently used in the LFQM.
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Recently, Jaus [3,8] proposed a covariant light-front
approach that develops a way of including the zero-mode
contribution and removing spurious form factors propor-
tional to the lightlike vector!� � �1; 0; 0;�1�. Using the
LFQM vector meson vertex that we include in this work,
the author in [8] concluded the existence of a zero mode in
the form factor F2�Q2� of a spin-1 meson. Although his
calculation was performed in a covariant way not using
the helicity components, the form factor F2 is related to
the matrix element of the �h0; h� � ��; 0� component of
the current [see Eq. (2.6) in [8]] as well as the �h0; h� �
�0; 0� component. Thus, according to his formulation, both
helicity ��; 0� and �0; 0� amplitudes receive the zero-
mode contribution [23]. As we show in the present
work, we do not agree with this result but find the zero-
mode contribution only in the helicity �h0; h� � �0; 0�
amplitude. However, Jaus and we agree [23] that there
is a subtle difference between his (!-dependent) formu-
lation and our formulation (not involving ! as a variable)
which leads to different conclusions regarding the effect
of the zero modes. It may call for a further clarification
whether the!-dependent formulation adds the more com-
plication in the effect of zero modes. We stress that our
formulation should be intrinsically distinguished from
the formulation involving !, since our formulation in-
volves neither ! nor any unphysical form factor. Our
finding of zero mode only in the helicity �0; 0� amplitude
is quite significant in the LFQM phenomenology because
the absence of the zero-mode contamination in the helic-
ity ��; 0� amplitude can give a tremendous benefit in
making reliable predictions on the spin-1 observables as
we present in the example of the � meson.

The paper is organized as follows. In Sec. II, we present
the Lorentz-invariant electromagnetic form factors and
the kinematics for the reference frames used in our analy-
sis. We also discuss the LF helicity basis, the angular
condition for spin-1 systems, and the two particular pre-
scriptions used in extracting the physical form factors. In
Sec. III, we present our LF calculation varying the vector
15-1  2004 The American Physical Society



HO-MEOYNG CHOI AND CHUENG-RYONG JI PHYSICAL REVIEW D 70 053015
meson vertex. We employ both the manifestly covariant
model vertex (beyond the simple model of �� � 
�) and
the LFQM vertex consistent with the Melosh transforma-
tion. We discuss the LF valence and the nonvalence con-
tributions using a plus component of the current and show
that only the helicity zero-to-zero amplitude receives
zero-mode contribution for the employed meson vertices.
In Sec. IV, we present our numerical results for the
physical quantities of the � meson using the LFQM and
compare our results with other available theoretical pre-
dictions. Conclusions follow in Sec. V. In the Appendix,
we summarize our results of the trace calculations for
various helicity components used in our form factor
calculations.
II. ELECTROMAGNETIC STRUCTURE
OF SPIN-1 SYSTEMS

The Lorentz-invariant electromagnetic form factors
Fi�i � 1; 2; 3� for a spin-1 particle are defined [24] by
the matrix elements of the current J� between the initial
jP; hi (momentum P and helicity h) and the final jP0; h0i
eigenstates as follows:
hP0; h0jJ�jP; hi � ��h0 � �h�P� P0��F1�Q2� � ���h q � �

h0

���h0 q � �h�F2�Q
2� �

��h0 � q���h � q�

2M2
v

��P� P0��F3�Q2�; (1)
where q � P0 � P and �h��h0 � is the polarization vector of
the initial [final] meson with the physical mass Mv.

We analyze the matrix elements in the Breit frame
(q� � 0, qy � 0, qx � Q, and P? � �P0

?) defined by
[18,20,25–28]
q� � �0; 0; Q; 0�;

P� � �Mv

�������������
1 � �

p
;Mv

�������������
1 � �

p
;�Q=2; 0�;

P0� � �Mv

�������������
1 � �

p
;Mv

�������������
1 � �

p
; Q=2; 0�;

(2)
where � � Q2=4M2
v is the kinematic factor. Here, we use

the notation p� � �p�; p�; p1; p2� and the metric con-
vention p2 � p�p� � p2

? with p� � p0 � p3.
Following the Bjorken-Drell convention [29], we work

with the circular polarization and spin projection h �
� �"# . With ���p;�� � 0 from the LF gauge [1], the
initial and final transverse (h � �) and longitudinal (h �
0) polarization vectors in the Breit frame are given by
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���P;�� �
�1���

2
p

�
0;
�Q
P�

; 1;�i
�
;

���P; 0� �
1

Mv

�
P�;

�M2
v �Q2=4
P�

;
�Q
2
; 0
�
;

���P0;�� �
�1���

2
p

�
0;
Q
P�
; 1;�i

�
;

���P0; 0� �
1

Mv

�
P�;

�M2
v �Q2=4
P�

;
Q
2
; 0
�
:

(3)

The covariant form factors of a spin-1 hadron in Eq. (1)
can be determined using only the plus component of
the current, I�h0h�0� � hP0; h0jJ�jP; hi. As one can see
from Eq. (1), while there are only three independent
(invariant) form factors, nine elements of I�h0h�0� can be
assigned to the current operator. However, since the cur-
rent matrix elements I�h0h�0� must be constrained by the
invariance under the LF parity and the LF time reversal,
one can reduce the independent matrix elements of the
current down to four, e.g., I���, I���, I��0, and I�00
[18,20,25–27,30]. The angular momentum conservation
requires an additional constraint on the current operator,
which yields the so-called ‘‘angular condition’’ ��Q2�
given by [25]

��Q2� � �1 � 2��I��� � I��� �
������
8�

p
I��0 � I

�
00 � 0: (4)

Because of the angular condition, only three helicity
amplitudes are independent as expected from the three
physical form factors. However, the relations between the
physical form factors and the matrix elements I�h0h are not
uniquely determined because the number of helicity am-
plitudes is larger than that of physical form factors. For
example, Grach and Kondratyuk (GK) [25] used �h0; h� �
��;��, ��;��, and (�; 0) as one of their choices for the
matrix elements. On the other hand, Brodsky and Hiller
(BH) [27] used �0; 0�, ��; 0�, and (�;�) amplitudes con-
sidering that the (0,0) component gives the most domi-
nant contribution in the high momentum perturbative
QCD (PQCD) region. Chung, Coester, Keister, and
Polyzou [26] involved all helicity states, i.e., ��;��,
�0; 0�, ��; 0�, and ��;��. Among various choices, we
present GK and BH prescriptions for the comparison
purpose in this work. We note that, much earlier than
the present work, Ref. [31] presented most of the available
sets of choices for the matrix elements using the
!-dependent formulation and Ref. [32] presented the co-
variant calculation supporting the GK prescription with
an effort to point out the role of the nonvalence contri-
bution in LFD. In practical computation, instead of cal-
culating the Lorentz-invariant form factors Fi�Q2�, the
physical charge (GC), magnetic (GM), and quadrupole
(GQ) form factors are often used. The relations between
-2
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F0s and G0s are given by

GC � F1 �
2
3�GQ; GM � �F2;

GQ � F1 � F2 � �1 � ��F3:
(5)

The physical form factors (GC, GM, and GQ) in terms of
the matrix elements I�h0h for GK and BH prescriptions are
given by

GGK
C �

1

2P�

�
�3 � 2��

3
I��� �

4�
3

I��0������
2�

p �
1

3
I���

�
;

GGK
M �

2

2P�

�
I��� �

1������
2�

p I��0

�
;

GGK
Q �

1

2P�

�
�I��� � 2

I��0������
2�

p �
I���

�

�
;

(6)

and
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GBH
C �

1

2P��1 � 2��

�
3 � 2�

3
I�00 �

16

3
�
I��0������
2�

p

�
2

3
�2�� 1�I���

�
;

GBH
M �

2

2P��1 � 2��

�
I�00 �

�2�� 1�������
2�

p I��0 � I
�
��

�
;

GBH
Q �

�1

2P��1 � 2��

�
I�00 � 2

I��0������
2�

p �
1 � �
�

I���

�
:

(7)

Of course, the matrix elements must fulfill the angular
condition given by Eq. (4) for the physical form factors to
be independent from the prescriptions (GK or BH).

At zero momentum transfer, these form factors are
proportional to the usual static quantities of charge e,
magnetic moment �, and quadrupole moment Q [18,28]:

eGC�0� � e; eGM�0� � 2Mv�;

�eGQ�0� � M2
vQ:

(8)
For the general discussion of the high Q2 behaviors in the spin-1 system, one may also define the structure functions
A�Q2�, B�Q2�, and the tensor polarization T20 [27] through the relation to the physical form factors:

A�Q2� � G2
C �

2

3
�G2

M �
8

9
�2G2

Q; B�Q2� �
4

3
��1 � ��G2

M;

T20�Q
2; �� � ��

���
2

p

3

4
3�G

2
Q � 4GQGC � �1=2 � �1 � ��tan2��=2��G2

M

A� Btan2��=2�
:

(9)
We use this relation Eq. (9) in Sec. IV to numerically
verify the recent discussion [30] on the non-negligible
subleading contribution at the large Q2 region as a con-
sequence from the spin-1 angular condition.

III. MODEL DESCRIPTION AND CALCULATION

As we have shown in our previous work [6], the form
factors of a spin-1 particle can be derived from the
covariant Bethe-Salpeter model of (3 � 1)-dimensional
fermion field theory.

The covariant diagram shown in Fig. 1(a) is in general
equivalent to the sum of the LF valence diagram (b) and
the nonvalence diagram (c), where � � P0�=P� � 1 �
q�=P�. From the covariant diagram of Fig. 1(a), the
electromagnetic current I�h0h�0� of a spin-1 particle with
equal constituent masses (m � mq � m �q) is given by
I�h0h�0� � iNcg2
Z d4k

�2&�4
S��k� P�S

�
h0hS��k� P

0�

��k� P�2 �m2 � i"��k2 �m2 � i"���k� P0�2 �m2 � i"�
; (10)
where Nc is the number of colors and g is the normaliza-
tion constant modulo the charge factor eq which can be
fixed by requiring the charge form factor to be unity at
q2 � 0. In Ref. [6], we replaced the point photon vertex

� by a nonlocal smeared photon vertex S��P�
�S��P0�
to regularize the covariant fermion triangle loop in (3 �
1) dimensions, where S��P� � �2=�P2 � �2 � i"� and �
plays the role of a momentum cutoff similar to the Pauli-
Villars regularization. For the form factors calculated
from this particular fermion loop, the results based on
adopting a smeared photon vertex [6] are equivalent to
those based on smearing the q �q bound-state vertex, i.e.,
taking S� as a part of the q �q bound-state vertex rather
than as a part of the photon vertex. However, there is a
conceptual difference between these two choices of regu-
larization because in principle the Bethe-Salpeter ampli-
tude of the q �q bound-state system should be distinct from
the dressing of the photon vertex. Since the latter choice,
i.e., smearing the q �q bound-state vertex, leads naturally
to the concept of a bound-state wave function in the
valence sector, conceptually we are taking S� in
Eq. (10) as a part of q �q bound-state vertex in this work.
Since the replacement of the LF radial wave function by
the one which has much more phenomenological support
is considered later, such conceptual distinction in the
choice of regularization is necessary at this point.
-3
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FIG. 1 (color online). Covariant triangle diagram (a) is represented as the sum of LF valence diagram (b) defined in the 0<
k� <P� region and the nonvalence diagram (c) defined in the P� < k� <P0� region, where � � P0�=P� � 1 � q�=P�. The
large white and black blobs at the meson-quark vertices in (b) and (c) represent the ordinary LF wave function and the nonvalence
wave function vertices, respectively. The small white blobs in (b) and (c) represent the (on-shell) mass pole of the quark propagator
determined from the k� integration.
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The trace term S�h0h of the quark propagators in Eq. (10)
is given by

S�h0h � ��h0 ��Tr����p6 0 �m�
��p6 �m��)�k6 �m����h�);

(11)

where p � k� P, p0 � k� P0, and �)���� is the spinor
structure of the initial (final) state meson-quark vertex. In
our previous work [6], using a rather simple meson vertex,
�� � 
�, we showed that only S�00 receives zero-mode
contributions.

The purpose of the present work is to go beyond the
simple vertex, �� � 
�, and analyze the zero-mode con-
tribution to see if the same conclusion (i.e., zero mode
only in S�00) can be drawn. For this purpose, we extend the
meson vertex to the more general one, which has been
used for the phenomenology:

�)�
)�
�2k�P�)

D
; ���
��

�2k�P0��

D0
: (12)

While in the manifestly covariant model, D and D0 may
be written as [32,33]1

Dcov �
2

Mv
�k � P�Mvm� i��;

D0
cov �

2

Mv
�k � P0 �Mvm� i��;

(13)

in the standard LFQM they are given by [3,8,18]

DLFQM �

���������������������
m2 � k2

i?

x�1 � x�

s
� 2m � M0i � 2m;

D0
LFQM �

���������������������
m2 � k2

f?

x0�1 � x0�

vuut
� 2m � M0f � 2m;

(14)
1In a brief presentation of Ref. [33], the authors indicated that
they investigated the � meson form factors using Eq. (13).
However, the detailed explicit calculations have not yet been
presented. Moreover, the result shown in Ref. [33] was based on
the instant-form polarization rather than the light-front polar-
ization so that the direct analysis of light-front helicity am-
plitudes as discussed in this work has not yet been presented.

053015
where x0 � x=�, � � P0�=P� � 1 � q�=P� (i.e., x0 � x
in the q� � 0 frame) and
k i? � k? �
x
2
q?; kf? � k? �

x0

2
q?: (15)
We note that the LF meson vertex [Eq. (12)] with DLFQM

given by Eq. (14) can be obtained by the standard LF
Melosh transformation [16]. The equivalence between
Dcov�D0

cov� in Eq. (13) and DLFQM�D0
LFQM� in Eq. (14)

can be established only in a very limited case, e.g.,
zero-binding-energy limit, Mv � M0.

As we have shown in our previous analysis, with a
rather simple but manifestly covariant meson vertex
(�� � 
�) [6,9], we can in principle duplicate both the
manifestly covariant calculation and the LF calculation to
check which form factors are immune to the zero mode.
However, as we have also shown in Refs. [6,9], we can
directly check the power counting of the longitudinal
momentum fraction in the trace term to find out explicitly
which helicity amplitude has the zero-mode contribution.
No matter which way we check, the results are the same.
In this work, we follow the latter procedure to check each
helicity amplitude and show explicitly that both phenom-
enologically accessible meson vertices given by Eqs. (13)
and (14) lead to the same conclusion, i.e., the zero-mode
contribution exists only in the helicity zero-to-zero
amplitude.

Before we proceed, we first summarize our result of the
trace term for the ‘‘�’’ component of the current. Then,
we separate the valence contribution from the nonvalence
contribution and take the q� ! 0 limit of the nonvalence
contribution to analyze the zero mode in each helicity
amplitude.

A. Trace calculation

From Eqs. (11) and (12), we obtain the trace term for
the � component of the current as follows:
-4
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S�h0h � ��h0 ��Tr����p6 0 �m�
��p6 �m��)�k6 �m����h�);

� Tr��6 h0 �p6
0 �m�
��p6 �m��6 h�k6 �m�� �

�h � �2k� P�
D

Tr��6 h0 �p6
0 �m�
��p6 �m�

��k6 �m��;�
�h0 � �2k� P

0�

D0
Tr��p6 0 �m�
��p6 �m��6 h�k�m��;

�
�h0 � �2k� P

0�

D0

�h � �2k� P�
D

Tr��p6 0 �m�
��p6 �m��k6 �m��;

� S�1h0h � S
�
2h0h � S

�
3h0h � S

�
4h0h: (16)
Using the following identity:

p6 �m � �p6 on �m� �
1
2


��p� � p�on�; (17)

we separate the trace part for each S�ih0h�i � 1; 2; 3; 4� into
the on-mass shell [i.e., p2 � m2 or p� � p�on � �m2 �
p2
?�=p

�] propagating part, �S�ih0h�on, and the off-shell
part, �S�ih0h�off , i.e., S�ih0h � �S�ih0h�on � �S�ih0h�off . In the
Appendix, we present the explicit expressions of (S�ih0h)
in terms of LF variables.

Now, by doing the integration over k� in Eq. (10), one
finds the two LF time-ordered contributions to the resi-
dues corresponding to the two poles in k�, the one com-
ing from the interval (I) 0< k� <P� [see Fig. 1(b), the
‘‘valence contribution’’], and the other from (II) P� <
k� <P0� [see Fig. 1(c), the ‘‘nonvalence contribution’’].

B. Valence contribution

In the valence region of 0< k� <P� as shown in
Fig. 1(b), the residue is at the pole of k� � k�on � �m2 �

k2
? � i"�=k� (i.e., spectator quark), which is placed in the

lower half of the complex-k� plane. Thus, the Cauchy
integration over k� of the plus current, I�h0h�0� [see
Eq. (10)], in the Breit frame given by Eq. (2) yields

I�val
h0h �

Nc
16&3

Z 1

0

dx

x�1 � x�2

�
Z
d2k?-i�x;ki?�S�h0h-f�x;kf?�; (18)

where

-i�x;ki?� �
g�2

�1 � x��M2
v �M2

0i��M
2
v �M2

�0i�
(19)

corresponds to the initial state meson vertex function
with

M2
�0i �

m2 � k2
i?

x
�

�2 � k2
i?

1 � x
: (20)

The final state denoted by subscript �f� can be obtained
by replacing �x;ki?� with �x0;kf?� in Eqs. (19) and (20).
Since k� � k�on in the valence region, �S�h0h�off � 0 and
S�h0h � �S�h0h�on.
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C. Nonvalence contribution and zero mode
in q� ! 0 limit

In the region P� < k� <P0��� P� � q�� as shown in
Fig. 1(c), the poles are at k� � k�m � P0�

1 � �m2 � �k? �

P0
?�

2 � i"�=�k� � P0�� (from the struck quark propaga-
tor) and k� � k�� � P0� � ��2 � �k2

? � P0
?�

2 �

i"�=�k� � P0�� [from the smeared quark-photon vertex
S��k� P

0�]. Both of them are located in the upper half of
the complex k� plane.

When we do the Cauchy integration over k� to obtain
the LF time-ordered diagrams, we decompose the product
of five energy denominators in Eq. (10) into a sum of
terms with three energy denominators [see Eq. (21) in
Ref. [6]] to avoid the complexity of treating double k�

poles and obtain

I�nvh0h � �
g2�4

16&3��2 �m2�2

Z �

1

dx
xx00�x� ��

�
Z
d2k?

� S�h0h�k
� � k���

�M2
v �M2

0�f��q
2 �M2

���

�
S�h0h�k

� � k���

�M2
v �M

2
0�f��q

2 �M2
�m�

�
S�h0h�k

� � k�m�

�M2
v �M

2
0f��q

2 �M2
mm�

�
S�h0h�k

� � k�m�

�M2
v �M

2
0f��q

2 �M2
m��

�
; (21)

where

M2
�� �

k002
? � �2

x00�1 � x00�
; M2

mm �
k002
? �m2

x00�1 � x00�
;

M2
�m �

k002
? � �2

x00
�

k002
? �m2

1 � x00
;

M2
m� �

k002
? �m2

x00
�

k002
? � �2

1 � x00
;

(22)

with the variables defined by

x00 �
1 � x
1 � �

; k00
? � k? �

�
1

2
� x00

�
q?: (23)

Now, the zero mode [6] appears if the nonvalence diagram
does not vanish in the q� ! 0 limit, i.e.,
-5
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lim
q�!0

Z P��q�

P�
dk��� � �� � lim

�!1

Z �

1
dx�� � �� � 0: (24)

To check if this is the case, we count the longitudinal
momentum fraction factors in Eq. (21), e.g., in the q� !
0 limit, the first term in I�nvh0h becomes

I�z:m:
h0h � lim

�!1

Z �

1

dx
xx00�x� ��

S�h0h�k
� � k���

�M2
v �M2

0�f��q
2 �M2

���

� lim
�!1

Z �

1
dx

�1 � x�
�1 � ��

�� � ��S�h0h�k
�
��; (25)

where the factor �� � �� corresponds to the part that is
regular as q� ! 0 (i.e., �! 1). Thus, the nonvanishing
zero-mode contribution is possible only if the longitudi-
nal momentum fraction of S�h0h�k

�� is proportional to
�1 � x��s with s � 1. Otherwise, there is no zero-mode
contribution since the integration range shrinks to zero as
q� ! 0. The other three terms in Eq. (21) have the same
behavior as the first term shown.

Since we already know that the helicity zero-to-zero
component, S�00, gives a nonvanishing zero-mode contri-
bution at the level of a simple vertex, �� � 
� [6], we
need to focus on other helicity components for the vector
meson vertex given by Eq. (12). In the nonvalence region
(P� < k� <P0�), since the LF energy poles, k�m and k�� ,
are proportional to k� � 1=�1 � x�, we know that the D
terms of covariant and LFQM vertices in Eq. (12) behave
as

Dcov �
1

1 � x
; DLFQM �

������������
1

1 � x

s
; (26)

by counting only the singular longitudinal momenta in
the �! 1 (i.e., x! 1) limit. We also note that the invari-
ant mass in the DLFQM for the initial state vector meson
has to be replaced by

M2
0i �

m2 � k2
i?

x
�
m2 � k2

i?

1 � x
!
m2 � k2

i?

x
�
m2 � k2

i?

x� 1
(27)

in the nonvalence region (x > 1) since the initial state
vertex becomes the non-wave-function vertex [4] [see
Fig. 1(c)]. Nevertheless, the power of the singular term
in 1 � x given in Eq. (26) remains the same. Now, from
the explicit forms of the trace terms S�ih0h given in the
Appendix, we could determine the existence/nonexis-
tence of the zero mode for each helicity component.
Regardless of using covariant or LFQM vertices, we
find that there are no singular terms in 1=�1 � x� for
the helicity ( ��;��;�0) components. The most prob-
lematic term regarding the zero mode was found to be the
second term �S�2�0�off given by Eq. (A8), which is propor-
tional to �k� � k�on�=D. While �k� � k�on�=Dcov is regular
in 1=�1 � x�, �k� � k�on�=DLFQM �

��������������������
1=�1 � x�

p
, i.e., S��0
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itself shows singular behavior in the �! 1 limit for the
LFQM vertex. However, from Eq. (25), the net result of
the zero-mode contribution to I�z:m:

�0 for D � DLFQM is
shown to be zero because

I�z:m:
�0 � lim

�!1

Z 1

�
dx

�1 � x�
�1 � ��

�� � ��

������������
1

1 � x

s
�

lim
�!1

Z 1

0
dz

�1 � ���1 � z��������������������������������
�1 � ���1 � z�

p �� � �� � 0; (28)

where the variable change x � �� �1 � ��z was made
and the term �� � �� again corresponds to the regular part in
the q� ! 0 limit. For helicity �00� component, the zero-
mode contribution comes from �S�100�off for both D �
Dcov and DLFQM [see Eq. (A10)].

Thus, as in the case of Dirac coupling �� � 
�, we
find that only I�00 receives the zero-mode contribution for
the more general vertex structures given by Eq. (12) with
Dcov and DLFQM. Accordingly, we can compute the elec-
tromagnetic structure of the spin-1 particle using only the
valence contribution as far as I�00 is avoided (e.g., GK
prescription). Moreover, we may identify the zero-mode
contribution to I�00 using the angular condition given by
Eq. (4), i.e.,

I�z:m:
00 � �1 � 2��I�val

�� � I�val
�� �

������
8�

p
I�val
�0 � I�val

00 ; (29)

in the q� � 0 frame with the LF gauge ��� � 0.
Thus far, we relied on the generalization of the meson

vertex [Eq. (12)] while we kept the use of the smeared
photon vertex as adopted in Ref. [6]. Although the spin-
orbit part of the LFQM can be incorporated by this
generalization, the radial part of the LF wave function
given by Eq. (19) may serve only a semirealistic calcu-
lation of physical observables as discussed by others
[8,34]. For the more realistic calculation, one may need
to replace the LF radial wave function by the one which
has much more phenomenological support. For this pur-
pose, we may utilize the LFQM presented in Ref. [22],
which has been quite successful in predicting various
static properties of low lying hadrons. Comparing - in
Eq. (18) with our light-front wave function given by
Ref. [22], we get

-i�x;ki?� �

���������
8&3

Nc

s ��������
@kz
@x

s
�x�1 � x��1=2

M0i
2�x;ki?�; (30)

where the Jacobian of the variable transformation k �
�kz;k?� ! �x;k?� is obtained as @kz=@x � M0i=�4x�1 �
x�� and the radial wave function is given by

2�k2� �

���������������
1

&3=2)3

s
exp��k2=2)2�; (31)

which is normalized as
-6
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FIG. 2. The angular condition given by Eqs. (4) or (29) in the
Breit frame, i.e., ��Q2� � I�zm

00 . Note that the zero-mode con-
tribution is necessary to satisfy the angular condition even at
Q2 � 0, where ��0� � �0:65 in our model calculation.
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Z
d3kj2�k2�j2 �

Z 1

0
dx

Z
d2k?

�
@kz
@x

�
j2�x;k?�j

2 � 1:

(32)

It is important to note that the end-point singularities are
under control with the phenomenological wave function
given by Eqs. (30) and (31) that falls exponentially to
mock nonperturbative effects. The prefactor to 2�x;ki?�
in Eq. (30) is proportional to �1 � x�1=4 and thus also
regular in the limit x! 1. In the next section, we shall
investigate the �-meson electromagnetic properties using
this model. We should note that this replacement of the
radial part of the LF wave function cannot alter our
conclusion of the zero mode (i.e., only in S�00) because
the use of Eq. (30) is limited just for the valence
contribution.

In summary, the LFQM described above provides the
calculation of physical form factors with just the valence
contribution of I�h0h except the component of �h0; h� �
�0; 0�, i.e.,

I�LFQM
h0h �

Z 1

0

dx
2�1 � x�

Z
d2k?

��������
@kz
@x

s ��������
@k0z
@x

s

�2�x;ki?�2�x;kf?�
�S�h0h�on

M0iM0f
: (33)

Thus, in the GK prescription where I�00 is not used, it is
easy to verify GGK

C �0� � I�LFQM
�� =2P� � 1 because at

Q � 0, M2
0i�M

2
0f�M

2
0 ��m2�k2

?�=x�1�x�, �S����on

� 4P��1 � x�M2
0 from a straightforward evaluation using

Eq. (A3) and �S����on � 0 from Eq. (A5).
However, the BH prescription involves the I�00 compo-

nent and GBH
C �0� � I�LFQM

00 =2P� � 1 due to the zero-
mode contribution. It has been shown in Ref. [35] that
the additive model for the current operator of interacting
constituents is consistent with the angular condition only
for the first two terms of the expansion of the plus (good)
current in powers of the momentum transfer Q. Indeed,
we can show that the zero-mode contribution to I�LFQM

00
vanishes in the zero-binding limit (i.e.,Mv � M0) and the
angular condition ��0� � 0 in this case. At the same
token, we can show that I�LFQM

�� � I�LFQM
00 [i.e.,

�S����on � �S�00�on from Eqs. (A3) and (A9)] at Q � 0 in
the zero-binding limit. In most previous LFQM analyses
[16,18,36], the authors used not only the meson vertex
factor given by Eq. (12) together with Eq. (14) but also the
zero-binding-energy prescription, i.e., Mv � M0, which
is equivalent to replace Mv in ���P; 0�����P0; 0�� with
M0i�M0f�. In that case, the angular condition is zero at
Q2 � 0. However, in this work, we showed an explicit
example which gives ��0� � 0 even if the plus current is
used. In Ref. [6], ��0� � 0 was also shown. Thus, the
zero-mode contribution is in general necessary even at
Q2 � 0 for the I�00 amplitude.
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IV. NUMERICAL RESULTS

The model parameters used in our analysis are m �
0:22 GeV and ) � 0:3659 GeV, which were obtained
from the linear confining potential of our QCD-motivated
effective Hamiltonian in LFQM [22], as well as
Mv � 0:77 GeV.

First, we show in Fig. 2 the angular condition ��Q2�
given by Eq. (4) or Eq. (29) in the Breit frame defined by
Eq. (2). In this particular reference frame, ��Q2� is equal
to the zero mode from the helicity zero-to-zero compo-
nent, I�z:m:

00 in Eq. (29). Note that ��Q2� � 0 even atQ2 �
0 (see the discussion just before this section). Unless the
binding-energy zero limit (Mv � M0) is taken, I�00 is not
immune to the zero mode even at Q2 � 0, but it even-
tually goes to zero as Q2 becomes very large.

In Fig. 3, we plot the physical form factors, GC, GM,
and GQ, respectively. The solid lines represent the full
solutions, i.e., the GK prescription in Eq. (6) or equiva-
lently the BH prescription in Eq. (7) including the zero-
mode contribution to I�00, i.e., I�full

00 � I�val
00 � I�z:m:

00 ,
where I�z:m:

00 is obtained from Eq. (29). As they should
be, the full solutions are found to be independent from the
choice of prescription. The dashed lines represent the
valence contributions to the form factors in the BH pre-
scription. The dash-dotted lines represent the zero mode
from the helicity zero-to-zero component, which turns
out to be exactly the same with the difference between the
solid and the dashed lines. For the charge form factor,
GC�Q2�, we found it has a zero around Q2 � 5:5 GeV2,
-7



TABLE I. Magnetic dipole (�) and quadrupole (Q) moments
in units of e=2Mv and e=M2

v, respectively.

References This work [8] [42] [39]

� 1.92 1.83 2.3 2:0 � 0:3
Q 0.43 0.33 0.45 � � �
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FIG. 3. Form factors of the � meson, i.e., charge [GC�Q2�], magnetic [GM�Q2�], and quadrupole [GQ�Q2�] form factors. The solid
and dashed lines represent the full (i.e., valence � zero mode) solution and valence contribution (I�val

00 ) to the form factors,
respectively. The dash-dotted line represents the zero-mode contribution, i.e., full solution � valence contribution.
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which is not shown in the figure. Also, the nonvanishing
zero-mode contribution to I�00 at Q2 � 0 is apparent in
Fig. 3.

We also obtain the magnetic (in units of e=2Mv) and
quadrupole (in units of e=M2

v) moments for the � meson
as

� � 1:92; Q � 0:43:

Our result for the magnetic moment without involving
the zero mode is comparable to � � 1:83 in Ref. [8] and
the one in Ref. [37], in which the author found �< 2 by
considering the low energy limit of the radiative ampli-
tudes in conjunction with the amplitude calculated by the
hard-pion technique. The recent light-cone QCD sum rule
[38] and the traditional QCD sum rule [39] reported � �
2:3 � 0:5 and 2:0 � 0:3, respectively. We note that the
author of Ref. [39] also preferred �< 2. On the other
053015
hand, the previous LFQM [18,36] and the Dyson-
Schwinger model [40,41] predicted �> 2. We summa-
rize in Table I our results of magnetic dipole (�) and
quadrupole (Q) moments compared with other theoretical
predictions.

Since it is difficult to have the � meson as a target, the
definition of A�Q2�, B�Q2�, and T20�Q2� is given only by
the relation to the physical form factors as shown in
Eq. (9). Nevertheless, the general discussion on the high
-8
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Q2 behaviors of A�Q2�, B�Q2�, and T20�Q
2� is still impor-

tant because the subleading contribution in the deuteron
case would be even greater than the � meson case. The
subleading contribution as a consequence of the spin-1
angular condition has been discussed recently in
Ref. [30]. In Fig. 4, we plot the structure functions
A�Q2�, B�Q2�, and their ratio log10�B=A� up to Q2 �
10 GeV2. The solid and dashed lines represent the full
results and the contributions only from the I�full

00 ��
I�val
00 � I�z:m:

00 � component, respectively. The dominance
of helicity zero-to-zero amplitude at high Q2 region
[27,30,43] has been discussed in the context of PQCD
counting rules and the naturalness condition [44].
However, the analysis of the angular condition [30] re-
veals that the subleading contributions I��0 �

��QCD=Q�I�00 and I��� � I��� � ��QCD=Q�2I�00 are not as
negligible as one might naively expect from PQCD. Our
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FIG. 4. Structure functions A�Q2�, B�Q2�, and their ratio log10�B
contributions only from the I�full

00 � I�val � I�z:m: component.
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LFQM results indicate that the dominance of I�00 is real-
ized in A�Q2� but not in B�Q2� [or log10�B=A�], supporting
the significance of the subleading contribution discussed
in Ref. [30]. For the magnetic form factor GM�Q2� in
Eq. (7), both I�00 and I��0 terms contribute at the same
order and the I��0 contribution at large Q2 region (even at
Q2 � 100 GeV2) is not negligible. This explains why we
have discrepancies between the full results and I�00 dom-
inances for the calculations of B�Q2� and log10�B=A�.

In Fig. 5, we show the full solution of the tensor
polarization T20�Q2� at � � 20� (dashed line) and at � �
70� (solid line), respectively. For comparison, we
also plot the I�full

00 contribution to T20�Q
2� at � � 20�

(dot-dashed line) and at � � 70� (dotted line), respec-
tively. The T20�Q

2� results also indicate the non-negligible
subleading contribution [30] even at a rather large Q2

region.
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V. CONCLUSION

In this work, we investigated the electromagnetic struc-
ture of the � meson in the light-front quark model. The
two vector meson vertices are analyzed, i.e., the mani-
festly covariant vertex D � Dcov and the LFQM vertex
D � DLFQM consistent with the Melosh transformation.
Using the power counting method for each helicity am-
plitude, we found that only the helicity zero-to-zero am-
plitude receives the zero-mode contribution regardless of
D � Dcov or D � DLFQM. Other helicity amplitudes such
as �h0; h� � ��;��, ��;��, and ��; 0� are found to be
immune to the zero mode for both vertices. Much earlier
than the present work, Ref. [32] presented the covariant
calculation supporting the GK prescription with an effort
to point out the role of the nonvalence contribution in
053015
LFD. In this regard, Refs. [12,32] are quite relevant to the
investigation of this paper. However, our finding is differ-
ent from that in Ref. [8], in which the author found the
nonvanishing zero-mode contribution to the helicity zero-
to-plus component as well. This is significant because the
absence of the zero-mode contribution in I��0 allows that
the pure valence contribution in LFD can give the full
result of the physical form factors.

Further, we identified the zero-mode contribution to I�00
using the angular condition given by Eq. (29). Our result
of ��Q2� exhibits the nonvanishing zero mode even at
Q2 � 0 unless the binding-energy zero limit (Mv � M0)
is taken. This does not contradict the findings in the
additive model for the current operator of interacting
constituents discussed in Ref. [35]. Indeed, our calcula-
tions with D � DLFQM for �h0; h� � ��;�� and ��;��

are equivalent to the previous LFQM [18,36] calculations
based on the Melosh transformation. However, our calcu-
lations involving the helicity zero polarization vector,
e.g., �h0; h� � ��; 0�, cannot be the same with the previous
Melosh-based calculations [18,36] unless the zero-
binding limit Mv � M0 is taken. One should note that
the helicity zero polarization vector involves 1=Mv as a
normalization factor [see Eq. (3)]. Thus, it appears im-
portant to analyze the difference in the physical observ-
ables including the binding-energy effects. As we
presented in this work, our phenomenological LFQM
prediction including the binding-energy effect (i.e.,
Mv � M0) leads to � � 1:92< 2, which is rather differ-
ent from the previous results (�> 2) based on the free
Melosh transformation [18,36,42].

Finally, our numerical results on B�Q2� and T20�Q2� at
the large Q2 region support the significance of the sub-
leading contribution, e.g., I��0 contribution in B�Q2�,
found from the analysis of the angular condition in
Ref. [30].

APPENDIX: SUMMARY OF TRACE TERMS IN
HELICITY AMPLITUDES

The on-mass shell parts �S�ih0h�on in Eq. (16) are given
by
�S�1h0h�on � Tr��6 h0 �p6
0
on �m�
��p6 on �m��6 h�k6 on �m��;

�S�2h0h�on �
�h � �2kon � P�

D
Tr��6 h0 �p6

0
on �m�
��p6 on �m��k6 on �m��;

�S�3h0h�on �
�h0 � �2kon � P0�

D0
Tr��p6 0

on �m�

��p6 on �m��6 h�k6 on �m��;

�S�4h0h�on �
�h0 � �2kon � P

0�

D0

�h � �2kon � P�
D

Tr��p6 0
on �m�


��p6 on �m��k6 on �m��;

(A1)
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and the off-shell parts �S�ih0h�off in Eq. (16) are given by

�S�1h0h�off �
�k� � k�on�

2
Tr��6 h0 �p6

0
on �m�
��p6 on �m��6 h
��;

�S�2h0h�off �
��h �k

� � k�on�

D
Tr��6 h0 �p6

0
on �m�


��p6 on �m��k6 on �m��

�
�k� � k�on�

2D
�h � �2k� P�Tr��6 h0 �p6

0
on �m�


��p6 on �m�

��;

�S�3h0h�off �
��h0 �k

� � k�on�

D0
Tr��p6 0

on �m�

��p6 on �m��6 h�k6 on �m��

�
�k� � k�on�

2D0
�h0 � �2k� P

0�Tr��p6 0
on �m�


��p6 on �m��6 h

��;

�S�4h0h�off �
�k� � k�on�

DD0
���h �


h0 � �2kon � P

0� � ��h0 �h � �2kon � P� � �
�
h �

�
h0 �k

� � k�on��Tr��p6 0
on �m�


��p6 on �m�

��k6 on �m�� �
�k� � k�on�

2DD0
�h0 � �2k� P

0��h � �2k� P�Tr��p6 0
on �m�


��p6 on �m�

��:

(A2)

In the Breit frame with the LF gauge given by Eqs. (2) and (3), the explicit forms of the trace terms in Eqs. (A1) and
(A2) for each helicity component are given as follows.

(I) helicity ( ��) component:

�S�1���on �
4P�

x

�
m2 � �2x2 � 2x� 1�

�
k2
? �

x2

4
Q2 � ixkyQ

��
;

�S�2���on � �2P�

�
m
D

�
�8�1 � x�k2

? � x�2x2 � 2x� 1�Q2 � 2kxQ� 2ikyQ�2x� 1�2�;

�S�3���on � �2P�

�
m
D0

�
�8�1 � x�k2

? � x�2x2 � 2x� 1�Q2 � 2kxQ� 2ikyQ�2x� 1�2�;

�S�4���on �
4P�

DD0

�
k2
? �

x2

4
Q2 � ixkyQ

�
��1 � x��M2

0i �M
2
0f � 8m2� � xQ2�;

(A3)

and

�S�1���off � 4�P��2�k� � k�on��1 � x�2; �S�2���off � �S�3���off � 0;

�S�4���off �
8�P��2

DD0
�1 � x�2�k� � k�on�

�
k2
? �

x2

4
Q2 � ixkyQ

�
:

(A4)

In the nonvalence region where k� � 1=�1 � x�, D � Dcov � 1=�1 � x� and D � DLFQM �
��������������������
1=�1 � x�

p
. Thus, we find

from the power counting for the longitudinal momentum fraction that all the off-shell trace terms �S�i���off �i �
1; 2; 3; 4� are regular as q� ! 0 (or equivalently x! 1). Therefore, there is no zero mode in the helicity ( ��)
component.

(II) helicity ( ��) component:

�S�1���on � 2P��1 � x��4�kL�2 � x2Q2�;

�S�2���on � 2P�

�
m
D

�
�2kL � xQ���2x2 � 2x� 1�Q� 4�1 � x�kL�;

�S�3���on � �2P�

�
m
D0

�
�2kL � xQ���2x2 � 2x� 1�Q� 4�1 � x�kL�;

�S�4���on � �
P�

DD0
�4�kL�2 � x2Q2���1 � x��M2

0i �M
2
0f � 8m2� � xQ2�;

(A5)
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and

�S�1���off � �S�2���off � �S�3���off � 0; �S�4���off � �
2�P��2

DD0
�k� � k�on��1 � x�2�4�kL�2 � x2Q2�: (A6)
Again, from the power counting for the longitudinal momentum fraction, �S�4���off is regular as x! 1. Therefore,
there is no zero mode in the helicity ���� component.

(III) helicity ( � 0) component:

�S�1�0�on �
P�

���
2

p

Mv
�2kL � xQ��2x� 1��1 � x��M2

0i �M
2
v�;

�S�2�0�on � �
4P�

Mv

���
2

p

�
m
D

�
��1 � x�M2

0i � xM
2
v���2x

2 � 2x� 1�Q� 4�1 � x�kL�;

�S�3�0�on �
4P�

Mv

���
2

p

�
m
D0

�
�2x� 1��1 � x��M2

0i �M
2
v��2k

L � xQ�;

�S�4�0�on �
P�

���
2

p

MvDD
0
�2kL � xQ���1 � x�M2

0i � xM
2
v���1 � x��M2

0i �M
2
0f � 8m2� � xQ2�;

(A7)
and
�S�1�0�off ��
4�P��2

Mv

���
2

p �k� � k�on��1� x��2k
L� xQ�;

�S�2�0�off ��
4�P��2

Mv

���
2

p

�
m
D

�
�k� � k�on���2x2 � 2x� 1�Q� 4�1� x�kL�;

�S�3�0�off ��
4�P��2

Mv

���
2

p

�
m
D0

�
�k� � k�on��1� x��2kL� xQ�;

�S�4�0�off �
�P��2

���
2

p

MvDD0
�k� � k�on��2k

L� xQ���1� x��M2
0i�M

2
0f� 8m2� � xQ2�

�
2

���
2

p
�P��2

MvDD
0
�k� � k�on��1� x�2�2kL� xQ���1� x�M2

0i� xM
2
v� �

2
���
2

p
�P��3

MvDD
0
�k� � k�on�

2�1� x�2�2kL� xQ�:

(A8)
From the power counting of the longitudinal momentum fraction in the nonvalence region, we find only �S�2�0�off for
D � DLFQM shows singular behavior, i.e., �S�2�0�off �

��������������������
1=�1 � x�

p
as x! 1. However, as we show in Eq. (28), the

resulting zero-mode contribution vanishes due to the prefactor involved in the integration. Therefore, there is no zero-
mode contribution to the helicity ��0� component.

(IV) helicity (00) component:

�S�100�on �
4P�

M2
v
x�1 � x�2�M2

0i �M
2
v��M2

0f �M
2
v�;

�S�200�on �
4P�

M2
v

�
m
D

�
�2x� 1��1 � x��M2

0f �M
2
v���1 � x�M2

0i � xM
2
v�;

�S�300�on �
4P�

M2
v

�
m
D0

�
�2x� 1��1 � x��M2

0i �M
2
v���1 � x�M2

0f � xM
2
v�;

�S�400�on �
2P�

M2
vDD0

��1 � x�M2
0i � xM

2
v���1 � x�M2

0f � xM
2
v���1 � x��M2

0i �M
2
0f � 8m2� � xQ2�;

(A9)
and
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�S�100�off �
4�P��2

M2
v

�k� � k�on��m
2 � k2

? � x2Q2=4�;

�S�200�off �
4�P��2

M2
v

�
m
D

�
�k� � k�on��1 � x��2x� 1��M2

0f �M
2
v�

�
4�P��2

M2
v

�
m
D

�
�k� � k�on��1 � x���1 � x�M2

0i � xM
2
v � �k� � k�on�P

��;

�S�300�off �
4�P��2

M2
v

�
m
D0

�
�k� � k�on��1 � x��2x� 1��M2

0i �M
2
v�

�
4�P��2

M2
v

�
m
D0

�
�k� � k�on��1 � x���1 � x�M2

0f � xM
2
v � �k� � k�on�P

��;

�S�400�off �
2�P��2

M2
vDD

0
�k� � k�on���1 � x��M2

0i �M
2
0f� � 2xM2

v���1 � x��M2
0i �M

2
0f � 8m2� � xQ2� �

2�P��3

M2
vDD

0
�k� � k�on�

2

���1 � x��M2
0i �M

2
0f � 8m2� � xQ2� �

4�P��2

M2
vDD

0
�k� � k�on��1 � x�2f��1 � x�M2

0i � xM
2
v���1 � x�

�M2
0f � xM

2
v� � P��k� � k�on���1 � x��M2

0i �M
2
0f� � 2xM2

v� � �P��2�k� � k�on�
2g:

(A10)

From the power counting of the longitudinal momentum fraction, only �S�100�off is singular for bothDcov andDLFQM, i.e.,
�S�100�off � 1=�1 � x� as x! 1, which gives the zero-mode contribution to the helicity zero-to-zero component.
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