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Pair production at the focus of two equal and oppositely directed laser beams: The effect of the
pulse shape
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We calculate the probability that an e� � e� pair is created at rest from vacuum at the focus of two
equal and oppositely directed pulsed laser beams. The effects of the finite duration and of the temporal
behavior of the resulting laser pulse are taken into account perturbatively and the production probability
is compared with the corresponding quantity calculated in the presence of an infinite laser beam with a
constant pulse shape. By inserting theoretically achievable numerical values of the pulse parameters it
is shown that the induced correction to the production probability cannot be neglected.
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I. INTRODUCTION

In his seminal work [1] Schwinger determined the
probability that an e� � e� pair is created from vacuum
in the presence of a constant and uniform electric field
with strength E. Schwinger used the effective Lagrangian
technique to obtain the production probability per unit
volume and time and the same result has been obtained in
[2] by using the causal Green function of the Dirac
equation. In the weak field regime E� Ecr �
m2c3=� �he� with m and �e < 0 the mass and the electric
charge of the electron, the probability resulted propor-
tional to the so-called Schwinger factor exp��	Ecr=E�.
Now, the numerical value of Ecr � 1:3� 1016V=cm is so
high that, also today, it is impossible to check experimen-
tally the effect of pair creation because of the technical
inability to produce (even locally) a constant and uniform
electric field with strength of the order of Ecr. For this
reason, since the early 1970s many studies have been
carried out about the possibility that pairs are created
from vacuum in other physical situations such as in the
electric field of two colliding heavy ions [3] or at the
focus of a laser beam [4]. Concerning this last physical
situation, it seems that the x-ray free electron lasers
facilities that today are being built at SLAC and DESY
laboratories may give the possibility to observe the pro-
duction from vacuum of e� � e� pairs (see [5] and, in
particular, Refs. [31–35] therein). As a consequence,
many theoretical papers have been devoted to the study
of pair production at the focus of a laser beam [6–13].
Actually, in [1] it was also shown that the creation of a
pair from vacuum is forbidden in the field of a plane
monochromatic wave without the presence of a third
body. In fact, by going into details, in [6,12] the produc-
tion of pairs was studied in the presence of a heavy
nucleus, while in [7,13] in the presence of an existing
electron-positron plasma. Instead, Fried et al. in [8] cal-
culated, by means of the Fradkin functional formulation,
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the pair production probability per unit volume and unit
time at the focus of two crossed lasers at right angle
while, finally, the authors of Refs. [9–11] chose the con-
figuration with the two laser beams oppositely directed.
In particular, in [9,11], by solving numerically the
coupled system of Maxwell and Vlasov equations it is
estimated that a few hundred pairs can be created in the
spot of two laser beams with central wavelength � �
0:15 nm and peak electric field E � 1:3� 1015 V=cm.
Instead, in [10] the pair production probability is calcu-
lated by using both analytical and numerical tools and
starting from the one-particle Dirac equation.

In all the cited papers the analytical calculations and
the theoretical predictions have been done by assuming an
infinite duration of the laser pulse and a constant pulse
shape. This is, of course, a good approximation when the
laser pulse duration is much larger than the laser period.
Nevertheless, today, very short extreme ultraviolet and
soft x-ray laser pulses of the order of a few hundred
attoseconds (1 as � 10�18 s) have been produced
[14,15] and theoretical estimates suggest that single atto-
second pulses may be realized [16–19]. In this respect, it
is reasonable to imagine that the effects of the finite
duration of the laser pulse and of the temporal behavior
of the pulse-shape function may enter the game and may
be revealed. In the present paper we want to calculate the
probability that an e� � e� pair is created at rest from
vacuum at the focus of two equal and oppositely directed
pulsed laser beams by taking into account the finite
duration of the resulting laser pulse. The theoretical
model and the approximations that we used and that are
described in the next section, allowed us to reduce the
problem to solve the equation of a two-level system in the
presence of the external laser pulse. This system has been
largely used in the study of high order harmonic genera-
tion by atoms [20–25]. In particular, some results we have
already obtained in [25] will be used here also. Finally,
the production probability so calculated has been com-
pared with the analogous quantity obtained in the pres-
ence of an infinite laser pulse with a constant pulse shape
13-1  2004 The American Physical Society
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and, as we will remark in the conclusion [see Sec. III], the
difference between the two results is appreciable and,
hopefully, measurable.

We point out that natural units with �h � c � 1 will be
used throughout.
1From the physical meaning of the coefficients in the linear
combination (3), P�T=2� is, actually, the probability that the
pair is present at T=2 but with an abuse we will denote it as a
‘‘production’’ or a ‘‘creation’’ probability instead of as a ‘‘pres-
ence’’ probability.
II. THEORETICAL MODEL AND RESULTS

According to what we have said in the introduction, we
have to calculate the production of a pair in the field of
two identical and oppositely directed pulsed laser beams.
On the one hand, without resorting to second quantiza-
tion, we can describe the production of the pair in the
Dirac one-particle framework, that is, as the transition of
the electron from a negative energy level to a positive one.
On the other hand, since we are dealing at the most with
an x-ray laser (wavelength �10�9 � 10�8 cm), the spa-
tial nonuniformity of the laser beam can be neglected in
the creation region which is of the order of the Compton
length � � 1=m � 3:9� 10�11 cm. For this reason, the
one-particle Dirac Hamiltonian of the electron in the
presence of two oppositely directed laser beams with
central angular frequency ! and peak electric field E
can be written as [10]

H�t� � � 	 
p� eA�t�� � �m (1)

where the Dirac matrices � and � are intended in the
Dirac representation and where, by assuming linearly
polarized lasers along the z direction,

A �t� �
E
!
fT�t� cos!tk̂: (2)

The Hamiltonian (1) with A�t� given in the previous
equation is identical to that used in [10] apart from the
pulse-shape function fT�t�. This function, in fact, has
been introduced to describe the temporal shape of the
laser pulse and it depends on the parameter T which is the
duration of the pulse. Because of its physical meaning we
can consider the function fT�t� to be continuous with its
derivative and to be even, that is, fT��t� � fT�t�. Also,
we imagine that the pulse starts at t � �T=2 and ends at
t � T=2, then we assume that fT�t� is identically zero
before t � �T=2, it strictly grows for negative times
larger than t � �T=2, it reaches its absolute maximum
at t � 0 and fT�0� � 1, and then it strictly decreases for
positive times until t � T=2 when it becomes again iden-
tically zero. Finally, we require that the function fT�t� is
slowly varying with respect to cos!t and that in the limit
of very large pulse durations it becomes identically one,
that is limT!1fT�t� � 1.

Now, in [4] it has been shown that the production
probability of a pair decreases exponentially with the
electron and the positron linear momenta [see Eqs. (41)
and (42) in that paper]. Despite that in [4] only the limit
case fT�t� � 1 and T ! 1 was considered, it is reason-
able to restrict here our attention to the production of a
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pair with both the electron and the positron at rest. Also,
it is obvious that in the presence of the electromagnetic
field described by the vector potential (2) the spin of the
electron along the z axis conserves in the transition from
the energy level �m to the energy level �m because of the
conservation of the total angular momentum. In this way,
the electron state j �t�i at a generic time t can be written
as the following linear combination of the energy eigen-
states:

j �t�i � c�m;#�t�j �m; #i � c�m;"�t�j �m; "i

�c�m;#�t�j �m; #i � c�m;"�t�j �m; "i (3)

and the eigenstates with spin-down are never coupled
with those with spin-up. In particular, it can be shown
that the Dirac equation

i
@j �t�i
@t

� H�t�j �t�i (4)

transforms into the following equation system8>>>><>>>>:
i _c�m;#�t� � �mc�m;#�t� ���t�c�m;#�t�
i _c�m;#�t� � �mc�m;#�t� ���t�c�m;#�t�
i _c�m;"�t� � �mc�m;"�t� ���t�c�m;"�t�
i _c�m;"�t� � �mc�m;"�t� ���t�c�m;"�t�

(5)

with

��t� �
eE
!
fT�t� cos!t: (6)

Equations (5) are the equations of motions of two inde-
pendent two-level systems both with energy gap 2m and
in the presence of an external perturbation ��t� and
���t�, respectively [the sign in front of ��t� is, obvi-
ously, irrelevant]. Now, even if the external lasers are x-
ray lasers then !� 2m in such a way the external
perturbation can be considered adiabatic. In this respect,
the adiabatic treatment used in [25] in the different con-
text of high order harmonic generation can also be used
here to calculate the probability P�T=2� that a pair is
created at the end of the laser pulse. In fact, by assuming,
for example, that c�m;#��T=2� � 1 and c�m;"��T=2� � 0,
this probability is given by1

P
�
T
2

�
� 2

��������c�m;#
�
T
2

���������2 (7)

where the factor 2 takes into account the remaining
analogous spin-up case in which c�m;#��T=2� � 0 and
c�m;"��T=2� � 1 (we remind, as observed in [10], that
the state j �t�i is normalized to two). Now, the coeffi-
-2
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cients given in Eqs. (21) and (22) in [25] correspond
exactly to the coefficients c�m;#�t� and c�m;#�t� [or, equiv-
alently, c�m;"�t� and c�m;"�t�] calculated up to first order in
the time derivative of ��t�. By using those coefficients
and by adapting the notation, it can easily be shown that
up to first order

P�1�

�
T
2

�
� 2

��������G
�
T
2

���������2 (8)

where [see Eqs. (9), (23) and (25) in [25]]

G
�
T
2

�
�

E
2E1

Z T=2

�T=2
dt

d
fT�t� cos!t�=dt

1� � EE1
�2f2T�t�cos

2!t

� exp
	
2im

Z t

�T=2
dt0
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s �

(9)

with E1 � m!=e � !=mEcr. Since we are interested in
the square modulus of the quantity G�T=2�, we can use
the equivalent expression

G
�
T
2

�
� i

E
E1
Im

Z !T=2

0
d�

d
fT��=!� cos��=d�

1� � EE1
�2f2T��=!�cos

2�

� exp
	
2i
m
!

�
Z �

0
d�0
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E
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2
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0=!�cos2�0

s ��
(10)

where the change of variable � � !t has been performed.
Now, despite that the previous integral cannot be eval-
uated exactly, we have said that in our hypotheses
m=!� 1 and then the phase of the exponential in
Eq. (10) is large. In this way, an asymptotic estimate of
the external integral in Eq. (10) can be given by using the
steepest descent method [26]. As we have said, this prob-
lem has been solved in [4] in the case in which T ! 1
and fT�t� � 1 and our procedure is very similar. In par-
ticular, our purpose here is to correct that result by con-
sidering long but not infinite pulse durations and a time-
dependent pulse-shape function. Now, the pair is most
likely to be produced at t � 0 when the electric field is
maximum instead of at the beginning or at the end of the
pulse. For these reasons we write the pulse-shape fT�t� as
[remember that fT�t� � 1]

fT�t� � 1� �fT�t� (11)

and we assume to deal with times t near 0 such that
�fT�t� � 1. Now, in order to apply the steepest descent
method to evaluate the external integral in Eq. (10) we
have to determine the stationary points ~� of the exponent
in Eq. (10) in the complex plane such that their real parts
are nonnegative and less than or equal to !T=2. These
stationary points are determined by the condition
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1�
�
E
E1

�
2
f2T�~�=!�cos

2 ~� � 0 (12)

and they will be determined up to first order in �fT�~�=!�.
If we split ~� as the sum ~� � ~�1 � �~� of the zero-order
solution ~�1 and of the first-order correction �~�we obtain

~�1 � ~�1;n �
2n� 1

2
	� i arcsinh

�
E1
E

�
n � 0; 1; . . . ; N

(13)

as already calculated in [4], and

�~� � �~�n � i
E1



















E2 � E21
q �fT

�
~�1;n

!

�
n � 0; 1; . . . ; N

(14)

where N is the largest natural number such that �2N �
1�	=2 � !T=2. Now, from an experimental point of
view the goal is to build an x-ray free electron laser
such that E * 10 E1 (see [5] and Ref. [37] therein) and,
for this reason, we decide to work in the strong field
regime E� E1. On the other hand, we are giving an
asymptotic estimate of the probability P�1��T=2� so we
do not need to sum the contributions to the external
integral in Eq. (10) of all the stationary points; it is
enough to take only the dominant one. It is easy to
show that this contribution comes from the stationary
point with the smallest imaginary part [at first order in
�fT�~�=!�]. In turn, by reminding from Eq. (11) that the
correction �fT�t� is small at small times and by observing
that in the strong field regime E� E1 the zero-order
stationary points ~�1;n are next to real, it is easy to
show that the dominant contribution comes from the sta-
tionary point with the smallest real part that is from ~�0.
For notational simplicity this stationary point will be
indicated simply as ~� � ~x� i~y � ~x1 � �~x� i�~y1 �
�~y� and

~x1 �
	
2
; �~x � �

E1


















E2 � E21

q Im
	
�fT

�
~�1

!

��
;

(15a)

~y1 � arcsinh
�
E1
E

�
; �~y �

E1


















E2 � E21

q Re
	
�fT

�
~�1

!

��

(15b)

with ~�1 � ~�1;0 � ~x1 � i~y1. As it is clear from the
previous equation, although we decided to work in the
strong field regime E� E1 we will use the expression of
~� without approximation in the ratio E1=E and we will
perform the limit E� E1 only at the end of the calcu-
lations. We proceed in this way in order to avoid incon-
sistencies in the approximations. In fact, we are also
working in the limit �fT�t� � 1 and the relative magni-
-3
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tude of the two small parameters E1=E and �fT�t� is a
priori unknown.

At this point the application of the steepest descent
method to calculate the external integral in Eq. (10) is
identical to the case treated in [4].2 For this reason we
give directly the following expression of the probability
P�1��T=2� as

P�1�

�
T
2

�
� 2

�
2	
3

�
2
exp��2A�cos2B�

�
2	
3

�
2
exp��2A�:

(16)

In this equation the quantities A and B are defined,
2We only want to point out that the stationary points of the
exponent in Eq. (10) are poles of the integrand function of the
external integral in such a way the steepest descents cannot
pass exactly through these points. Nevertheless, this problem
has also been dealt with in [4] and we refer the reader to that
paper for a more detailed discussion.
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analogously to Eq. (41) in [4]. It is not necessary to
give the exact (and cumbersome) expression ofB because,
since B�m=!� 1, we can approximate cos2B� 1=2.
Instead, the quantity A is given by

A �
2m
!

Z ~y

0
dyRe
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�
2
f2T

�
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!

�
cos2�~x� iy�

s �
:

(17)

By defining y=~y � " and by retaining only the terms up
to first order in �fT�t� it can easily be shown that the
quantity A becomes
A �
2Ecr
E
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0
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�

E
E1

�
2
� #2

s �
(18)
where we have introduced the adimensional variable # �
�E=E1� sinh�~y1"� and where we remind that Ecr � m2=e.
In the previous expression we singled out three terms: the
first one is the zero-order term and it is the same as in
Eq. (44) in [4], while the other two terms are the correc-
tions due to the pulse-shape function. The expression (18)
of the quantity A can be further simplified by reminding
that our results are valid in the strong field regime E�
E1. By retaining only the terms up to �E1=E�2 we obtain

A �
	
2

Ecr
E

	
1�

1

8

�
E1
E

�
2
� �fT

�
	
2!

�

�a1�fT

�
	
2!

��
E1
E

�
2
�

’
	
2

Ecr
E

	
1�

1

8

�
E1
E

�
2
� �fT

�
	
2!

��
(19)

where we did not evaluate the coefficient a1 because the
corresponding term is negligible with respect to the
others. Nevertheless, it is worth noting that this term
goes essentially as �!T��2 � 
m!=�eE��2 � �Ep=E�2

with Ep � m!p=e the quantity analogous to E1 but
with!p � 2	=T the typical frequency of the pulse shape
instead of the laser frequency !. Also, we have checked
that the next correction proportional to �E1=E�

4 is negli-
gible with respect to �fT�	=2!� in the physical regime
we are interested in.
By inserting the previous result in Eq. (16), the proba-
bility P�1��T=2� simply becomes

P�1�

�
T
2

�
�

�
2	
3

�
2
exp


�	

Ecr
E

	
1�

1

8

�
E1
E

�
2

� �fT

�
	
2!

���
: (20)

This final expression of the production probability clearly
shows the presence of the nonperturbative Schwinger
exponential corrected by a ‘‘laser frequency’’ term pro-
portional to �E1=E�2 � �m!=eE�2 and by a ‘‘pulse-
shape’’ term depending in fact on the exact form of the
pulse-shape function. Obviously, the correcting ‘‘pulse-
shape’’ term in the exponential is positive implying, as
expected, that the creation probability is smaller than that
in the presence of an infinite beam with pulse shape
identically equal to one. In particular, this correcting
term is obtained by substituting in the original
Schwinger exponential the electric field E with the
pulse-shape modulated field E� 
1� �fT�	=2!��. This
is expected by looking at Eqs. (2) and (11) although the
instant 	=2! where the pulse-shape function is evaluated
depends on the details of the steepest descent method.
Finally, we also want to point out that the quantity (20) is
the total probability that a pair is created at rest. Instead,
in the previous cited papers [1,2,4] the authors calculate
the pair production probability per unit volume and unit
time and they obtain the Schwinger factor by integrating
on all the electron and positron momenta. Nevertheless,
the fact that we have also obtained the Schwinger factor is
not surprising. In fact, as it is shown in [2,4], every
differential probability that the pair is created with the
electron momentum between p and p� dp is also pro-
portional to a Schwinger-like factor exp
�	�1�
-4



FIG. 1. Semilog plot of the exact production probabilities
(dots) calculated by evaluating Eq. (7) after integrating nu-
merically the Schroedinger equation in the form (5) with the
pulse shape (21) and of the approximated asymptotic produc-
tion probabilities (continuous curve) calculated by means of
Eq. (23). The probabilities are plotted as functions of the peak
laser electric field E expressed in unit of E1 and the numerical
values of all the parameters are those given below Eq. (24).
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p2?=m
2�Ecr=E� with p2? � p2x � p2y that becomes just

exp��	Ecr=E� for a pair created at rest.
We want to conclude by giving more quantitative esti-

mates and checks of our results. To do this we consider the
typical pulse-shape function

fcos
2

T �t� � cos2
�
	t
T

�
(21)

so that [see Eq. (11)]

�fcos
2

T �t� ’
�
	t
T

�
2

(22)

and the probability (20) becomes

P�1�cos2
�
T
2

�
�

�
2	
3

�
2
exp


�	

Ecr
E

	
1�

1

8

�
E1
E

�
2

�

�
	2

2!T

�
2
��
: (23)

First, we shall evaluate a typical correction to the pro-
duction probability induced by the finite duration of the
laser pulse. Now, the relative difference between the
probability P�1�cos2�T=2� and the analogous one calculated
in the presence of an infinite laser beam with pulse-shape
function always equal to one is given by

 cos
2
�

��������P
�1�cos2�T2� � limT!1P

�1�cos2�T2�

P�1�cos2�T2�

��������
� exp

	
	
Ecr
E

�
	2

2!T

�
2
�
� 1 (24)

where the symbol � indicates that the previous asymp-
totic value of the probability P�1�cos2�T=2� has been sub-
stituted. To do a numerical estimate we use the laser
parameters given as ‘‘goal’’ parameters in [5]: photon
energy ! � 8:3 keV and peak electric field E � 2:0�
1015 V=cm (that is, E � 0:15Ecr and E � 9:3 E1). By
also considering as the laser pulse duration the ‘‘optimis-
tic’’ value T � 10 as � 10�17 s, Eq. (24) gives  cos

2
�

0:032 that is a correction of the order of 3% which is not
negligible and (hopefully) measurable. Incidentally, we
observe that by using the previous parameters, the cor-
recting ‘‘laser frequency’’ and ‘‘pulse-shape’’ terms in the
exponential in Eq. (23) are of the same order of magni-
tude, while we have checked that the next ‘‘laser fre-
quency’’ correction can be neglected.

Finally, since some approximations have been done to
obtain the final result Eq. (23) it is useful to compare it
with the exact production probability obtained by nu-
merically integrating the Schroedinger equation in the
form (5) with the pulse shape (21) and by evaluating
Eq. (7). In particular, in Fig. 1 we plot the exact proba-
bility (7) and our asymptotic estimate (23) as functions of
the peak electric field E expressed in unit of E1. The exact
probabilities show rapid oscillations that have been aver-
053013
aged in P�1�cos2�T=2� [see Eq. (16)]. Also, the function
P�1�cos2�T=2� gives a good average of the behavior of the
exact probability. In fact, we have performed a best fit of
the exact probabilities by using the test function
c1 exp��c2=x� (in most of the electric field range consid-
ered we can neglect the correcting ‘‘laser frequency’’
term in the exponential without appreciable error) and
we have obtained the best values c1 � 3:6� 1:3 and c2 �
197� 11 to be compared with [see Eq. (23)] �2	=3�2 �
4:4 and with 	f1� 
	2=�2!T��2gEcr=E1 � 194, respec-
tively. The good agreement (but the error in c1 is quite
large) confirms the validity of our treatment and of the
approximations made.
III. SUMMARY AND CONCLUSIONS

In this paper we have calculated the probability that an
e� � e� pair is created at rest from vacuum in the field of
two identical but oppositely directed laser pulses. Various
papers have been devoted to this subject but always con-
sidering (from a theoretical point of view) pulses with
infinite duration and constant pulse shape. In the present
paper we have taken into account the finite duration and
the form of the laser pulse by introducing the pulse-shape
function fT�t�. Since the pair production probability de-
creases exponentially with the electron (positron) linear
momentum we have evaluated the probability that the
electron and the positron making the pair are created at
rest. In this way the system has been reduced to two
-5
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decoupled two-level (both with energies �m and �m)
systems subject to an external adiabatic perturbation (the
laser periods we have in mind are much larger than the
typical times during which a pair is created). By using a
technique already applied in [25], we have been able to
calculate the production probability at the end of the pulse
by including perturbatively the effect of the pulse shape.
The final result Eq. (20) has been obtained in the strong
field limit E� E1 � m!=e and it shows the typical
Schwinger nonperturbative dependence on the external
peak electric field E, a correction proportional to �E1=E�2
053013
connected to the laser frequency and a correction depend-
ing on the pulse-shape function evaluated at t � 	=�2!�.
As expected, the resulting probability is less than the
corresponding one in the presence of an infinite pulse
with a constant time profile equal to unit. Finally,
by considering the typical cos2 pulse-shape function
and by using values of the pulse parameters that are
expected to be accessible experimentally in a few years,
we concluded that the corrections to the production
probability due to the pulse shape can also be of the order
of 3%.
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