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Pion form factor in the k; factorization formalism
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Based on the light-cone (LC) framework and the k; factorization formalism, the transverse
momentum effects and the different helicity components’ contributions to the pion form factor
F_(Q?) are recalculated. In particular, the contributions to the pion form factor from the higher-
helicity components (A; + A, = *1), which come from the spin-space Wigner rotation, are analyzed in
the soft and hard energy regions, respectively. Our numerical results show that the right power behavior
of the hard contribution from the higher-helicity components can only be obtained by fully keeping the
k7 dependence in the hard amplitude, and that the k; dependence in LC wave function affects the hard
and soft contributions substantially. As an example, we employ a model LC wave function to calculate
the pion form factor and then compare the numerical predictions with the experimental data.
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L. INTRODUCTION

In the perturbative QCD (PQCD) theory, the hadronic
distribution amplitude (DA) and the structure function
that enter exclusive and inclusive processes via the facto-
rization theorem at high momentum transfer can be de-
termined by the hadronic wave function, and therefore
they are the underlying links between hadronic phe-
nomena in QCD at large distance (nonperturbative) and
small distance (perturbative). However we require a con-
ceptual framework within which the connection between
the hadron and its constituents can be made precise. A
particularly convenient and intuitive framework is based
upon the Fock-state decomposition of hadronic state,
which arises naturally in the ‘“light-cone quantization”
[1,2]. A light-cone (LC) wave function is a localized
stationary solution of the LC Schrodinger equation
that describes the evolution of a state |W(7)) on the LC
time 7= x" = (x + x*) in physical LC gauge A" =
(A°+ A% =0, ie, i0,|W(r))=H.c|¥(r)), where
Hic = P~ = (P° — P?) is the LC Hamiltonian. The LC
wave function is the amplitude V¥, (x;, K ; A;) to find n
particles (quarks, antiquarks, and gluons) with momenta
k; = (x;, k ;) in a pion of momentum P, where x; =
ki /PT 3 ix; = 1), is the LC momentum fraction of the
ith (anti)quark or gluon in the n-particle Fock-state.

An important issue, which has to be addressed when
applying PQCD to exclusive processes, is how to imple-
ment factorization, ie., how to separate perturbative
contributions from those intrinsic to the bound-state
wave functions. The k7 factorization is one of the funda-
mental tools of PQCD. Since the k; factorization theorem
has been proposed [1-3], it has been widely applied to
various processes. Until recently, a better proof of the kr
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factorization theorem for exclusive processes in PQCD
has been provided by M. Nagashima and H.N. Li [4].
Their starting point is that the on-shell valence partons
carry longitudinal momenta initially, and then acquire ky
through collinear gluon exchanges before participating in
hard-scattering. A hard amplitude, derived from the par-
ton level amplitude with gauge-invariant and infrared
divergent meson wave function being subtracted, is then
gauge invariant and infrared finite. This way, they dem-
onstrated that all the physical quantities from the kr
factorization theorem are gauge-invariant. Therefore for
the pion form factor, when in the energy region that
PQCD is applicable, we can take the following factoriza-
tion formula [1,3,5-7],

FA0) = S [landi Ly ),

n,m, )li.l

XW (o Ky, Ay ) T (s K 1595 L5 g5 )
X\P(yj; L, /\j§M) ()

where the summation is over all helicities (A;, A ;) and n,
m extends over the low momentum states only, and 7, ,,
are the partonic matrix elements of the effective current
operator. u is the energy scale separating the perturbative
region from the nonperturbative region, and in order for
the perturbative approach to make sense, u has to be
much larger than Agcp so that a (u) is small.

It is well known that the numerical predictions for the
pion form factor from only the leading order are much
smaller than the experimental data. In order to short the
gap between the experimental data and the theoretical
predications, two ways are tried in literature, one is to
consider the nonperturbative contributions (see examples
in Refs. [8—15]); the other is to consider the nonleading
order contributions, which come from the higher-twist
effect [16], the higher order in « [17], the higher Fock
states [5], the higher-helicity components in the LC wave
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function [7,18,19], etc. As has been pointed out in
Refs. [7,18,19], the higher-helicity components in the
LC wave function might provide a great contribution to
the pion form factor at the present experimentally acces-
sible energy region. However, the conclusions are con-
flicting in those references. In Refs. [18], the authors
pointed out a large enhancement to the usual-helicity
component’s contribution, while in Ref. [19], based on
the modified PQCD approach [3] and by neglecting the
transverse momentum dependence in the quark propaga-
tor, a great suppression has been observed. And in
Ref. [7], they pointed out that the higher-helicity contri-
bution is of order 1/Q*, but only a qualitative discussion
was given there. It is then necessary to clarify the present
situation.

In the present paper, we recalculate all the helicity
components’ contributions to the pion form factor within
the LC PQCD framework, which is consistent with the
using of LC wave function. Our calculation keeps the
transverse momentum dependence fully in the hard-
scattering amplitude, i.e., such dependence is kept in
both the quark propagator and the gluon propagator, and
the resultant expression gives the right power behavior of
the hard contribution from the higher-helicity compo-
nents as Q? goes to large energy region. Furthermore,
we carry out the numerical calculations for the hard and
the soft parts of all the helicity components’ contribu-
tions. In order to explain our picture and to clarify the
difference between Ref. [18] and Ref. [19], we employ a
model LC wave function with reasonable constraints. We
show that it is substantial to take k7 dependence in the
wave function into account and to keep the transverse
momentum dependence in the quark propagator in the kr
factorization formalism within the LC framework.

The purpose of this paper is to reanalyze the effects
coming from the higher-helicity components of the pion
wave function within the framework of LC PQCD and the
kr factorization formalism, then give a comparative study
on the contributions from different helicity components
within the soft and the hard region, respectively. In
Sec. II, based on the k; factorization formula, the hard-
scattering amplitude is given within the LC framework.
In Sec. III, with a model LC wave function, the hard
contributions from different helicity components of pion
are analyzed. Section IV is devoted to give a discussion of
the soft part contribution, especially on the contributions
from different helicity components. A conclusion and a
brief summary are presented in the final section.

IL. HARD-SCATTERING AMPLITUDE WITH K7
DEPENDENCE

The hard-scattering amplitude for the higher-helicity
components (A; + A, = =1) of the LC wave function
within the LC PQCD approach has been given in
Ref. [7]. In Ref. [7], with a simple argument that when
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summing over all the helicity states only the real part of
each hard-scattering amplitude survives, they used a
simplified combined expression for the hard-scattering
amplitude [Eq. (20) there] at the very beginning. Since
the combination of the imaginary part from both the
spin-space wave function and the hard kernel can also
make contributions, it is not a strict argument and can
only be true under some proper approximations. In the
present section, we will not do such simplifications in our
calculation and will give the hard-scattering amplitude
for all the helicity components that come from the spin-
space Wigner rotation. So even though some of our present
procedures are the same as those of Ref. [7], we will put
all the necessary ones here for self-consistence.

In the LC quantization, at higher momentum transfer,
the hard contribution to the pion form factor can be
written as [3,6,7,18]

F,(0%) = [ [dx]Ldylld®k | [P0, TW0—92(x Kk |, A)

XTyu(x,y, qp, ki, 1, A AP0y 1, A)
+ 2

where the ellipses represent the higher Fock-state contri-
butions, [dx] = dx,dx,8(1 —x; —x,) and [d’k ] =
d*k | /1673, WLU=9Q](x Kk | )) is the valence Fock-state
LC wave function with helicity A and with a cutoff on
|k | | that is of order (1 — x)Q. Such a cutoff on |k | is
necessary to insure that the wave function is only
responsible for the lower momentum region. 7 contains
all two-particle irreducible amplitudes for y* + gg — g
and should be calculated from the time-ordered
diagrams in LC PQCD. In the LC gauge, the nominal
power law contribution to F,(Q?) as Q — o is F,(Q?) ~
1/(Q?)" ! [20], under the condition that n quark or gluon
constituents are forced to change direction. Thus only the
qg component of yl(1792)(x k , A) contributes at the
leading 1/Q?.

The lowest-order contribution for the hard-scattering
amplitude Ty comes from the one-gluon exchange
shown in Fig. 1. To simplify our notations, we separate
the spin-space wave function yX(x, k|, A) out from the
whole LC wave function, ie, ¢ ™92(x Kk, , A)—
XXk, M) 92(x k,,A) and then combined the
spin-space wave function yX(x, k|, A) into the original
Ty to form a new one, i.e.,

Ty = & TR0 + & T2 =0 (1=
+ETHTRVA- + T V=1, 3)

where A, are the helicities for the (initial or
final) pion’s two constitutent quarks, respectively,
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FIG. 1. Six leading order time-ordered Feynman diagrams
for the hard-scattering amplitude, where p; = (x, k), p, =

(x, =k 1), pi = i yiqr +10), ph = (2, yoq1 — 11).

£ = m? k-1 itk X1p)

2[mz+ki]'/2[m2+li] 2[m2+ki]1/2[m2+li]
two coefficients derived from yX(x, k ;, A). Equation (3)
is different from Eq. (20) in Ref. [7], and one may observe
that if combining the imaginary part of &, that comes

form the higher-helicity spin-space wave function with
T}.;\'+A2:tl)

7> and &, = 77 are

the imaginary part of the hard kernel , it can
make real contribution to 7. The spin-space wave func-
tion yX(x,k, A) can be found in Ref. [21]. In Eq. (3)
there is no hard-scattering amplitude with quark and
antiquark helicities being changed due to the fact that
the quark helicity is conserved at each quark-gluon (or
photon)-quark vertex in the limit of vanishing quark
mass [2].

To simplify the hard-scattering amplitude, we adopt
the standard momentum assignment at the “infinite-

momentum’ frame [2],
|

1 1

NAFL=0) — 2 |:x2(x1x2 + yw&)} k2 [ (x1x; + y1y2)
xix(yr — x)?

x (O — x1)2

PHYSICAL REVIEW D 70 053007

P,= (P, P ,P)=(1,00)), q=1093.q1)
“)
where P* is arbitrary because of Lorentz invariance and
the momentum transfer Q> = —¢> = q3. Using D to

denote the ‘“‘energy-denominator” in the six Feynman
diagrams (x"-ordered diagrams), all the needed ‘¢
energy-denominators’ can be found in Ref. [7]. With the
help of the above equations, the hard-scattering ampli-
tude can be shortly expressed as,

Tl(f;\l+)‘2) — gch[T((l)tl"'/\z) + Tl(;\]"')‘Z) + TE‘)‘I+/\2):|
o0 (5)

k_]_ Aad _lJ_
where the three terms in the parentheses, which corre-
spond to Fig. 1(a)—1(c), respectively, can be written as

T[(l)t,+/\2) _ NAFR) gy — x))
DyDp yr—x
4 0(y; —xy) ©)
Dyp (y; — xp)*’

+ T,

in — __

NAFR) (x) — y))
Dy 1Dy x1 — ¥
4 0(x; —y) 7
D—zz o1 — xl)z’

Té/\,ﬂz) _

+ T,

in — __
) =

T£A1+A2) _ NAHR) g(y, — xl)_ )
D31D3,  yr —x
Here Ti" and TiM represent the contributions from the
instantaneous diagrams in the LC PQCD. The numerator
NWFA) for the usual-helicity components (A; + A, = 0)
can be written as

} _ lzl[ (1% + y132) } —(2q, - kl)[(ﬂxz + yw&)}

y1y2(y1 —x1)2 x1(yy —x1)2

t(q, - ll)[(xlxz + i)y + xl)’2)} bk, - lL)[(Xlxz + i)y + xl)’z)}

x1y1y2(n — x1)2
+i[(x2 =y X[k + xqu])}
X1X2Y1)2 '

x1%y1y2(y1 — xl)z

(€))

where the plus sign corresponds to ({|—1]) and the minus sign corresponds to (|f—|1). And for the higher-helicity

components (A; + A, = *1),

NOFL=2) = 2 [xz(xz)ﬁ + xlyz)} K2 [ (x2y; + x1y2)
L T Y L (v — )2
x1 Xy — xy)

x;(yy _xl)z

+(q - lJ_)|: (o1 + x1y2)° } + (k- lJ_)|:

xiy1y2(n — X1)2

where the plus sign corresponds to Ay + A, = 1 (11-11)
and the minus sign corresponds to A; + A, = —1 (||—]
1). The first terms in the above two equations give the
ordinary leading 1/Q? contributions.

} _ lzl[ (a1 + x132) } ~(2q, - kl)[(xz)ﬁ + xl)’2)}

yiva(yy — x1)2 x(y — x1)2
+ 2 1, x(k, +
(X1 + x12) z}ii[ 1L X (kg xqu)} (10)
xX1y1y2(y1 — x1) X1X2Y1)2

To simplify the hard-scattering amplitude, we adopt
the same two prescriptions as have been described in
Ref. [7]: (1) The terms proportional to the ‘““bound ener-
gies” of the pion, i.e., ~k? /(x;x,) and ~1% /(y,y,) can be
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ignored to avoid the involvement of the higher Fock states
contributions [6]. (2) The terms such as k3 /q3 and
12l /q2L in both the ‘“energy-denominators” and the nu-
merator N1*4) can be neglected due to the fact that
ki < q} and 13 < q}. Furthermore, as has been
pointed out in Refs. [6,22], the natural variable to make
a separation of perturbative contribution from that in-
trinsic to the bound-state wave function is the LC
energy in the LC perturbative expansion. Under

o 2
such conditions, the two energy flow [— 7()‘2‘1;“” } and
1X2

_ etk )=xl, P
xy2(y1—x1)

} in the gluon propagator should be

large, otherwise we cannot apply the PQCD, i.e.,

Soneanmo _ 166 7Cra (V)
" (I —=x)(1 = y)xy
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(raq) +k1)? > (k3) ~ A?
and
(g + ki) —xl P> (k) (17) ~ A?

are two extra conditions which make the PQCD appli-
cable, where A, being of O(Agcp), represents a hadronic
scale.

With the above prescriptions, we finally obtain

T, = TZ\1+/\2=O) i Tg\lﬂ\z:tl) (11)

with

{{(c— D] —2ky -qu 21 -qr + (= Dl {&x - D21y -qp + (0 — Dai]

—2(y =Dk -qu}7 '@y — Dyl =y +xQ2y — DIk, -qp)* + (x— Dx[21; - q; + (y— Dg3]
X{1 = y+xQ2y = DA, -qp) +2(x = Dy — Dyqi} — (x = D — Dy(ky - qy)

X{8x(1y - qy) +[1 —y+x(6y —5)q3}), (12)
and
x 2Cra(Q?
i - MBIy gy ok quon s+ - D)
X{x—=D21 -q + (= D3] =20 — Dk ~q ) 'Qx— Dx( -q)* + (y— 1)
X{2y(k - q)* + (x— Dlx(; - qy) — yk, - q)]g3 ) (13)

From Eq. (13), one may observe that the net contribution
from the imaginary part of the higher-helicity LC wave
function contributes zero, but only under the above two
prescriptions can we draw such a conclusion. After doing
a simple transformation, one may find Eq. (13) coincides
well with the one obtained in Ref. [7]. The hard-scattering
amplitude Eq. (12) for the usual-helicity components
(A + A, = 0) is different from others (see, for example,
in Ref. [6]) after including all the k7 dependence in the
LC PQCD framework. Because of the complicated inte-
gral in Eq. (2), Ref. [7] did not give the numerical results
for the higher-helicity contribution of the pion form
factor. We will apply the VEGAS program [23] to evaluate
the hard contributions in the next sections.

III. HARD CONTRIBUTIONS TO THE PION
FORM FACTOR

In order to get the hard contributions for the pion form
factor from Eq. (2), we need to know the soft hadronic
wave function. Several important nonperturbative ap-
proaches have been developed to provide the theoretical
predictions for the hadronic wave function [15,21,22,24—
27]. One useful way is to use the approximate bound-state
solution of a hadron in terms of the quark model as the

\
starting point for modelling the hadronic valence wave

function. The Brodsky-Huang-Lepage (BHL) prescrip-
tion [22] of the hadronic wave function is in fact obtained
in this way by connecting the equal-time wave function in
the rest frame and the wave function in the infinite-
momentum frame. In Ref. [21], based on the BHL pre-
scription, a revised LC quark model wave function has
been raised that can give both the approximate asymp-
totic DA and the reasonable valence state structure func-
tion which does not exceed the pion structure function
data simultaneously. So in the present paper, we will use
this revised LC quark model wave function for our latter
discussions, i.e.,

W(x, kJ_) = QDBHL(xr kL)XK(X, kJ_)

ki + m? K
P N b k )
SBZ.X(I _ x)i|X (x J_)

(14)
=A exp[ -

with the normalization constant A, the harmonic scale 8
and the quark mass m to be determined. With the help of
the model wave function, from Eq. (2), we can obtain the
leading-twist hard part contributions to the pion form
factor. From Eq. (12) we obtain the contributions from
the usual-helicity components (A; + A, = 0),
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m2+ki m*= +12

FUTR=0(02) = /dxdy[dzkl][dzll] 1 -0

— y)xy

xp| — x(1—x) y(1—y) )) )C(.Xf + y - 2Xy - 1)
88> (1-xq] +2q; -k,

Fdrr == g2y f ddy[dk 11, ]

yx+y—2xy—1) x+y—xr—y* :| (15)
(I=yai —2q; -1 201 —y)q -k =201 —x)qy -1 + (1 =)0 = y)q3 |
and from Eq. (13) we obtain the contributions from higher-helicity components (A; + A, = *1),
m?+k2 m?>+12
47TA2(§2 + f;)CFas(Qz) exp| — x(l*xj)- + y(lf;) |: -X
(I = x)(1 = y)xy 88° (1-x)q] +2q; -k,

n -y x+y—2xy (16)

1=y} —2q -1} 2(1 =gy -k —2(1 —x)qy -1 + (1 —x)(1 = Y)ql}

By integrating over the azimuth angles for k | and 1, with the integration formula shown in the Appendix, the above six
dimensional integration can be reduced to four dimensional integration, which can then be dealt with by numerical

calculation with the help of the VEGAS program.

Integrating over the azimuth angles for k| and 1, we obtain the contributions from the usual-helicity components

(A + 2, =0),

A2 Cra (Qz)lkj_”lj_l

P00 = [ dvdydidn,

3273 xy
yax+y-—1 —ny)

’n2+|kl|2+n12+|lllz
exp| — x(1—x) y(1—y)
832

x+y—x2—y?

+ J— —
><|:)c()c y—1-—2xy) N
(1= x)y1 = 7

(1 = y)4/1 = 73

(17)
(1 =x)(1 = )1 = iyl = nj

and the contributions from the higher-helicity components (A; + A, = *1),

AszCFa (Q2)|kJ_||lJ_|

PR = — [ dsdydmyd,

643 xy

m?Hky 2 mA 2
B T )
exp ¥

(1= 1= )1~ 1 — 7))

><|:(x +y — 2xy)

where £ = p it K| = 0(1 = x)mi/2 and

1.l = Q(1 — y)75/2, with n,, in the range of (0, 1). In
Eq. (18), there is an overall minus sign and because the
integrand is always positive, we can draw the conclusion
that the higher-helicity components will always suppress
the contributions from the usual-helicity components.

With the help of the LC wave function Eq. (14) and its
parameter values shown in Eq. (28), we show the pion
form factor with or without the higher-helicity compo-
nents in Fig. 2. One may observe a large suppression
comes from the higher-helicity components as compared
to the prediction obtained in the original hard-scattering
model [18]. This large suppression was obtained by
Ref. [19] with a quite different picture. They argued that
the transverse momentum in the quark propagator is of
small contribution (about 15% [3,28]). And the hard-
scattering amplitude, after neglecting the transverse mo-
mentum dependence in the quark propagator, was taken
to be

, (18)
(1—x(1 - y)771772\/1 - 771\/1 - 77%:|

TI(-;H +Fa=%1) _ _TI(;H +1,=0)

4gZCF Q*—o0

xy,0% + (ky —1,)?
_ 4g°Cp | 4g°Cp(ky —1,)*
x2y,0° (x2y20?%)?

It can be seen that the asymptotic behaviors (Q> — o0) of
the higher-helicity states and the usual-helicity states are
directly with opposite signs and all states make the con-
tribution at the order of 1/Q?. However it is not a right
argument and it is the transverse momentum dependence
in the quark propagator that causes the asymptotic be-
havior of higher-helicity contribution is of order 1/Q*
other than 1/Q?. In the present work, we have considered
the kr dependence both in the wave function and in the
hard-scattering amplitude consistently within the LC
PQCD approach, then our results have a right power
behavior for the higher-helicity contributions.

19)

053007-5



TAO HUANG, XING-GANG WU, AND XING-HUA WU

0.14

0 ti) 1‘0 1‘5 2‘0 2‘5 30
Q%(GeV?)

FIG. 2. The hard contribution to the pion form factor
Q%F_(Q?%). The dotted line stands for the contribution from
the usual-helicity (A; + A, = 0) components, the dashed line
stands for the contribution from the higher-helicity (A; + A, =
*1) components and the solid line is the total hard contribu-
tion, which is the combined result for all the helicity compo-
nents.

IV. A DISCUSSION OF THE SOFT
CONTRIBUTION TO THE PION FORM FACTOR

In the above sections, we have shown that the inclusion
of the higher-helicity components suppresses the hard-
scattering contributions at moderate Q2. In order to com-
pare our predictions with the present experimental data,
we need to know the contributions from the soft part.
Since this part is model-dependent and is still under

PHYSICAL REVIEW D 70 053007

progress [8—11], as an example, we consider the soft
contributions to the pion form factor with the model LC
wave function shown in Eq. (14) and study the different
helicity components’ soft contributions to the pion form
factor separately.

For the soft part contribution, we have [29]

d2k 1

s (0% = H(x, k|, A)
Jy o [Tom St

XW(x k|, A) + - (20)

where A, A’ are the helicities of the wave function, re-
spectively, the first term is the lowest-order contribution
from the minimal Fock-state and the ellipses represent
those from higher Fock states, which are down by powers
of 1/Q? and by powers of a.

Taking the LC wave function as is shown in Eq. (14),
we obtain

L rdk 24 k) oK/
F;‘T+(Q2)=f dxf16 L N A Y
0 m \/mz + ki\/m2 + k'
2 2 ? 2
x exp| — 1 tme KT +m e
88°x(1 —x) 8B%x(1 —x)

where k/, =k + (1 — x)q for the final state LC wave
function when taking the Drell-Yan-West assignment
[29]. We proceed to integrate the transverse momentum
k, in Eq. (21) with the help of the Schwinger
a-representation method,

1 Lo e1,—an
— = —_ K @ . 22
T a e da (22)

Doing the integration over k |, we obtain

C8mA(1+ M)+ 071 — x)*[2+ A4 + A)]

|
FS . Qz)—f dxj 12877'2(1 + 1)} p(

Q*(x — 1)A?
X|:IO<32x32(1 + 1)

L ( QDR
Il<32x32(1 + A))Q (1

—_ x)2A2 :|’
where the I,(n = 0, 1) is the modified Bessel function of
the first kind. After taking the expansion in the small Q>
limit, we obtain the probability,

_ d’k |
= [ g kP

Py =F (0)lpoy o4

_ ! o0 A? m?(1 + A)
- ﬁ dxf; Aiem T A7 eXp[4(x - 1)x32}
X[m?(1 + A) + 4x(1 — x) B?]

and the charged mean square radius (r2. )% [30],

32(1 — x)xB*(1 + A) )

){32(1 —0xB(1 + A) — 021 — 02 + A + N)] + 8m2(1 + )}

(23)
\
(r2., ) 6 0 -
1 00 3A2
L O )
% exP( a0 - x)x32>(1 X)(2+4r+ A%

X [8(1 — x)xB% + m*(1 + A)].

In the above two equations, one may observe that the
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terms in the square bracket that are proportional to m?
come from the ordinal helicity components, while the
remaining terms in the square bracket are from the
higher-helicity components.

The parameters in the wave function can be determined
by several reasonable constraints [21]. Two constraints
can be derived from 7 — uv and 7° — yy decay am-
plitude [22]:

2
ﬁ) ' dx f TEL yix ky) = £,/045)

167 (26)
1
f dx¥(x, k| =0)=3/f.,
0
where  f, is the pion decay constant:

(0]g(0)y* y59(0)|P) = if P, the experimental value of
which is 92.4 = 0.25 MeV [31]. Experimentally the aver-
age quark transverse momentum of pion (k% ), is ap-
proximately of the order (300 MeV)? [32]. The quark
transverse momentum of the valence state in the pion is
defined as

d’k | |W(x k)2

(k%) = f dx K2 |
@ (16m)° P

. @27

and it should be larger than (ki),T. We thus could require

that ,/(k2 ), has the value of a few hundreds MeV, servin
1744 g

as another constraint. Using the constraints and the model
wave function Eq. (14), we obtain,

m = 310 MeV,; B =396 MeV;
A = 0.050 MeV ™, (28)

for (k%) = (367MeV)*. And by using the above parame-
ters, we obtain

(r2.)1 = 0.216 fm?, (29)

_ pA+2,=0) A +A=%1)
Py =P 0 4 poith = 0.744. (30)

The value of <rfr+ 49 is in nice agreement with the ones
obtained in Ref. [33,34]. In fact, we have used the same
monopole ansatz as has been used in Ref. [30,34]. It is
shown that the valence quark radius is smaller than the
experimental value of the pion charged radius ([0.671 =
0.008 fm]? [31]). Therefore the valence portion of a had-
ron is more compact than the hadron radius. For the
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probability of finding the valance states in the pion, we
have P%‘”Zzo) = 0.398 for the usual-helicity compo-

nents and (P4 =" = 0.346) for the higher-helicity
states, which show that the higher-helicity components
have the same importance as that of the usual-helicity
components. It has been shown that even though we have
added the contributions from the higher-helicity states,
the probability of finding the minimal ¢ Fock-state in
pion is still less than unity, i.e., P,; = 0.744 < 1. This is
shown clearly in Fig. 3(a), so it is necessary to take the
higher Fock states and the higher-twist terms into con-
sideration to give a full understanding of the pion form
factor at the energy region Q%> — 0. It should be noticed
that if one normalizes the valence Fock-state to unity
without including the higher-helicity components, then
the soft and hard contributions from the valence state can
be enhanced and become important inadequately. In
Refs. [12,13], to fit the experimental data, the nonvalence
contributions to the form factors have also been consid-
ered within the light-front dynamics.

The result for the soft contribution to the pion form
factor is shown in Fig. 3. From Fig. 3(b), one may observe
a quite different behavior from that of the hard contribu-
tion for the higher-helicity components (A; + A, = *1).
In the energy region Q% < 1 GeV?2, the higher-helicity
components give a large enhancement (the same order
contribution) to usual-helicity (A; + A, = 0) components
and after that the higher-helicity components’ contribu-
tions will decrease with the increasing Q. At about Q* ~
4 GeV?, the higher-helicity components’ contributions
become negative and as a result, the net soft contribution
will then decrease fast with the increasing Q2, which
tends to zero at about Q% ~ 16 GeV?2.

We show the combined results that come from the hard-
scattering part and from the soft part for the pion form
factors Q’F,(Q?) in Fig. 4, where for comparison, the
experimental data [35] and the well-known asymptotic
behavior for the leading-twist pion form factor have also
been shown. It is shown that the soft contribution is less
important as Q% > a few GeV?, since we have taken the
correct normalization condition Eq. (30) and considered
the suppression effect from the higher-helicity compo-
nents. One may observe that our present result for the pion
form factor is lower than the experimental data, it is
reasonable since we have not taken the higher-twist ef-
fects and the higher order corrections into consideration.
The next-to-leading order correction will give about
~20%—-30% [17] extra contributions to the pion form
factor, while the twist-3 contributions are comparable
with the leading-twist contributions in a large intermedi-
ate energy region ( ~ 1-40 GeV) [16]".

"The twist-3 contribution is model-dependent, if we take the
wave function with a better end-point behavior, then the twist-3
contributions can be greatly suppressed [36].
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FIG. 3 (color online). The soft contribution to the pion form
factor. The upper is for the pion form factor F,(Q?), while the
lower is for Q*F .(Q?), where the contribution comes from all
the helicity components are shown in dashed line, the contri-
bution from the ordinal helicity component A; + A, =0 is
shown in dotted line and the contribution from the higher-
helicity components A; + A, = *1 is shown in dashed-dotted
line. The experimental data is taken from [35].

V. SUMMARY AND CONCLUSION

In this paper, the transverse momentum effects and the
higher-helicity contributions to the pion form factor are
systematically studied based on the LC framework and
the kr factorization formalism. Both collinear and k;,
factorization are the fundamental tools for applying
PQCD to the pion form factor since they can separate
the calculable perturbative contributions from the non-
perturbative parts that can be absorbed into the bound-
state wave functions. The k; factorization theorem has
been widely applied to various processes and the kp
factorization theorem for exclusive processes in PQCD
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FIG. 4 (color online). The combined results for the pion form
factors Q?F,.(Q?). The solid line stands for the contribution
from the hard part, the dotted line stands for the contribution
from the soft part, the dashed line is the total Pion form factors
and the dashed-dotted line is the usual asymptotic result. The
experimental data are taken from [35].

has been proved by M. Nagashima and H. N. Li. Thus it
provides a scheme to take the dependence of the parton
transverse momentum k; into account. Reference [3]
shows that the end-point singularity can be cured by
resuming the resultant double logarithms a;In’k; into a
Sudakov form factor and then the PQCD analysis can
make sense. In fact, the Sudakov effects have small
effects for the pion form factor in the region where
experimental data is available. We note that there is kr
dependence in the wave function in the k; factorization,
and it generates much larger effects than the Sudakov
suppression to the hard-scattering amplitude in the
present experimental Q” region. Our results show that it
is substantial to take k; dependence in the wave function
into account.

The LC formalism provides a convenient framework
for the relativistic description of the hadron in terms of
quark and gluon degrees of freedom, and the application
of PQCD to exclusive processes has mainly been devel-
oped in this formalism. In the present paper, we have
given a consistent treatment of the pion form factor
within the LC PQCD framework, i.e., both the wave
function and the hard interaction kernel are treated
within the framework of LC PQCD. Taking into account
the spin-space Wigner rotation, one may find that there are
higher-helicity components (A; + A, = %£1) in the LC
spin-space wave function besides the usual-helicity com-
ponents (A; + A, = 0). We have studied the higher-
helicity components’ contributions to the hard part and
the soft part of the pion form factor by using the LC
PQCD approach with the parton’s transverse momentum
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k7 included. We find that the asymptotic behavior of the
hard-scattering amplitude for the higher-helicity compo-
nents including the transverse momentum in the quark
propagator is of order 1/Q* which is the next to leading
order contribution compared with the contribution com-
ing from the ordinary helicity component, but it can give
sizable contributions to the pion form factor at the inter-
mediate energies.

In order to compare our predictions with the present
experimental data, we need to know the contributions
from the soft part. As an example, we have considered
the soft contributions to the pion form factor with a
reasonable wave function in the LC framework. Our re-
sults show that the soft contributions from the higher-
helicity components have a quite different behavior from
that of the hard-scattering part and have the same order
contribution as that of the usual-helicity (A; + A, = 0)
components in the energy region (Q> <1 GeV?). As
0? > 1 GeV?, the higher-helicity components’ contribu-
tions will decrease with the increasing Q. At about Q* ~
4 GeV?, the higher-helicity components’ contributions
become negative and as a result the net soft contributions
to the pion form factor will then decrease with the in-
creasing Q?, which tends to zero at about Q* ~ 16 GeV?2.
Thus the soft contribution is less important in the inter-
mediate energy region. Although the soft contributions
are purely nonperturbative and model-dependent, our
results show that the calculated prediction for the pion
form factor should take the k7 dependence in the soft and
hard parts into account beside including the higher order
contributions. Therefore, one needs to keep the transverse
momentum in the next leading order corrections and to
construct a realistic k; dependence in the hadronic wave
function in order to derive more exact prediction to the
pion form factor in ky factorization.
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APPENDIX: INTEGRATION FORMULA

The error function is defined as

Erf(x) = ~dt.

Al
\/— (A1)

An important property for the error function is
lim, . Erf(x) = 1.

Second we list some useful formula that are needed for
integrating over the azimuth angle of the momenta k |
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and 1, and then reduce the integration dimension from
six to four. And the remaining four dimensional integra-
tion can be done numerically.

By using polarization coordinate, we have

[dk3 I[d13 ] = kidkdld6dp/(167)?, (A2)
where k, [ and 6, p are the module and azimuth angle of
k, and 1, respectively. By using the following formula,
the integration over the azimuth angle can be done ana-
lytically.

FUAB) - jzw do _ 2
ne o A+ Bcos(d) J(A+B)A—-B)
(A3)
(27 cos(6)d6
f2(A, B) = ﬁ) A + Bcos(0)
o [1 ) B } (A4)
B JA+B)@A-B)J
[ sin(0)do
/54, B) = ﬁ) A+ Bcos(6) (A5)
27 (27 cos(f — p dep
f4(4, B) = f f A+ Bcos(ﬁ)
(2 [2m cos(@ — p)dbdp
f5(4.8,0) = jo ﬁ) A + Bcos(6) + Ccos(p)’ (46)

where A, B and C are functions that are free from 6 and p.
The result for the function f5 is very complicated and for
simplicity its explicit form will not be listed here.
However, by adding a small component [BC cos(6) X
cos(p)] (for the integration we need to deal with, we
have BC < A, which corresponding to k| -1} <« qi),
it can be solved approximately,

2 cos(0 — p)dOdp
fs(A, B,C) = / f [A + Bcos(6)][A + Ccos(p)]

= f2(A, B)f»(A, C). (A7)

There one may notice that under the present approxima-
tion, the actual azimuth angle, i.e., a, for q; will not
affect the final integrated results due to the fact that after
integration over 6 and p, it will always accompanied by a
factor [cos(a)? + sin(a)?] = 1.

After integrating over the azimuth angle, we can
change the integration over the radius of k| and 1; to
two variables 1| and 7, that are within the range of (0.1)
through the relation

kil =01 =x)n/2 1Ll = 01 = y)n2/2. (A)

The relation is so choosing as to insure that all the
quantities in the radical sign obtained by doing the azi-
muth angle integration are always positive.

053007-9



TAO HUANG, XING-GANG WU, AND XING-HUA WU

(1]

(2]

(4]
(5]
(6]
(71
(8]

(9]

[10]
[11]

[18]
[19]

G. P. Lepage, S.J. Brodsky, T. Huang, and P. B. Mackezie,
in Particles and Fields, Proceedings of the Banff
Summer Institute on Particle Physics, Banff, Alberta,
Canada, 1981 2, edited by A.Z. Capri and A. N. Kamal
(Plenum, New York, 1983), p. 83.

G.P. Lepage and S.J. Brodsky, Phys. Rev. D 22, 2157
(1980); 24, 1808 (1981).

H. N. Li and G. Sterman, Nucl. Phys. B381, 129 (1992); J.
Botts and G. Sterman, Nucl. Phys. B325, 62 (1989).

M. Nagashima and H.N. Li, Phys. Rev. D 67, 014019
(2003).

A. Szczepaniak, C.R. Ji, and A. Radyushkin, Phys. Rev.
D 57, 2813 (1998).

C.R. Ji, A. Pang, and A. Szczepaniak, Phys. Rev. D 52,
4038 (1995).

E G. Cao, J. Cao, T. Huang, and B. Q. Ma, Phys. Rev. D
55, 7107 (1997).

O.C. Jacob and L. S. Kisslinger, Phys. Rev. Lett. 56, 225
(1986); Phys. Lett. B 243, 323 (1990); L.S. Kisslinger
and S.W. Wang, Nucl. Phys. B399, 63 (1993).

L. S. Kisslinger, H. M. Choi, and C. R. Ji, Phys. Rev. D 63,
113005 (2001).

W. Schweiger, Nucl. Phys. (Proc. Suppl.) 108, 242 (2002).
V. Anisovich, D. Melikhov, and V. Nikonov, Phys. Rev. D
52, 5295 (1995).

B. L. G. Bakker, H. M. Choi, and C. R. Ji, Phys. Rev. D 63,
074014 (2001).

J.P.B.C. de Melo, T. Frederico, E. Pace, and G. Salme,
Nucl. Phys. A707, 399 (2002).

E Schlumpf, Phys. Rev. D 50, 6895 (1994).

V.M. Braun, A. Khodjamirian, and M. Maul, Phys. Rev.
D 61, 073004 (2000).

E G. Cao, Y. B. Dai, and C.S. Huang, Eur. Phys. J. C 11,
501 (1999); A. Szczepaniak and A.G. Williams, Phys.
Lett. B 302, 87 (1993); Z.T. Wei and M. Z. Yang, Phys.
Rev. D 67, 094013 (2003).

R. D. Field, R. Gupta, S. Otto, and L. Chang, Nucl. Phys.
B186, 429 (1981); E. Braaten and S. M. Tse, Phys. Rev. D
35, 2255 (1987); E. P. Kadantseva, S.V. Mikhailov, and
A.V. Radyushkin, Yad. Fiz. 44, 507 (1986); Sov. J. Nucl.
Phys. 44, 326 (1986); N.G. Stefanis, W. Schroers, and
H.C. Kim, Eur. Phys. J. C 18, 137 (2000).

B.Q. Ma and T. Huang, J. Phys. G 21, 765 (1995).

S.W. Wang and L.S. Kisslinger, Phys. Rev. D 54, 5890
(1996).

[20]

(21]

[22]

(23]
(24]

[25]

053007-10

PHYSICAL REVIEW D 70 053007

S.J. Brodsky, in Summer Institute on Particle Physics,
SLAC, Stanford, California, 1979 (SLAC Report
No. SLAC-PUB-2447, 1979); G.P. Lapage and S.J.
Brodsky, Phys. Lett. B 87, 359 (1979).

T. Huang, B.Q. Ma, and Q. X. Shen, Phys. Rev. D 49,
1490 (1994).

G.P. Lepage, S.J. Brodsky, T. Huang, and P B.
Mackenzie, Particles and Fields (Ref. [1]), p. 143; G.P.
Lepage, S.J. Brodsky, T. Huang, and P. B. Mackenzie,
Particles and Fields (Ref. [1]), p. 83; T. Huang, in
Proceedings of XXth International Conference on High
Energy Physics, Madison, Wisconsin, 1980, edited by L.
Durand and L. G. Pondrom, AIP Conf. Proc. No. 69 (AIP,
New York, 1981), p. 1000.

G. P. Lepage, J. Comput. Phys. 27, 192 (1978).

V.L. Chernyak and A.R. Zhitnitsky, Nucl. Phys. B201,
492 (1982); Phys. Rep. 112, 173 (1984); Nucl. Phys.
B246, 52 (1984); T. Huang, X.D. Xiang, and X N.
Wang, Chin. Phys. Lett. 2, 67 (1985); Phys. Rev. D 35,
1013 (1987).

S. Gottlieb and A. S. Kronfeld, Phys. Rev. Lett. 55, 2531
(1985); Phys. Rev. D 33, 227 (1986); G. Martinelli and
C.T. Sachrajda, Phys. Lett. B 217, 319 (1989); D. Daniel,
R. Gupta, and D.G. Richards, Phys. Rev. D 43, 3715
(1991).

P. Korll and M. Raulfs, Phys. Lett. B 387, 848 (1996).
V.M. Braun and 1. E. Filyanov, Z. Phys. C 44, 157 (1989);
T. Huang and Q. X. Shen, Z. Phys. C 50, 139 (1991); C. E.
Carlson and E Gross, Phys. Rev. D 36, 2060 (1987).
H.N. Li, Phys. Rev. D 48, 4243 (1993); J. Botts and G.
Sterman, Nucl. Phys. B381, 129 (1989).

S.D. Drell and T.M. Yan, Phys. Rev. Lett. 24, 181
(1970).

E Cardarelli et al., Phys. Lett. B 332, 1 (1994).
Particle Data Group, K. Hagiwara et al., Phys. Rev. D 66,
010001 (2002).

See, e.g., W.J. Metcalf et al, Phys. Lett. B 91, 275
(1980).

T. Huang, Nucl. Phys. (Proc. Suppl.) 7, 320 (1989).

E Cardarelli et al., Phys. Rev. D 53, 6682 (1996).

L.J. Bebek et al, Phys. Rev. D 9, 1229 (1974); C.N.
Brown et al., ibid. 8, 92 (1973); J. Volmer et al., Phys. Rev.
Lett. 86, 1713 (2001).

T. Huang and X. G. Wu, hep-ph/0408252.



