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Static quantities of a neutral bilepton in the 331 model with right-handed neutrinos
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A neutral vector boson can possess static electromagnetic properties provided that the associated field
is non-self-conjugate. This possibility is explored in the SUC�3� � SUL�3� � UN�1� model with right-
handed neutrinos, which predicts a complex neutral gauge boson Y0 in a nontrivial representation of the
electroweak group. In this model the only nonvanishing form factors are the CP-even ones, which arise
from both the quark and gauge sectors, and contribute to the magnetic dipole and the electric
quadrupole moments of this neutral particle.
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I. INTRODUCTION

The electromagnetic properties of neutral particles
have been the source of great interest since they are
generated at the loop level, thereby opening up the pos-
sibility for the detection of new physics effects.
Considerable attention has been paid to the electromag-
netic properties of neutrinos and the neutral Z boson of
the standard model (SM). In particular, the impact of new
physics effects on the trilinear couplings of the Z boson
has been studied in a model-independent manner using
the effective Lagrangian technique [1]. As far as neutral
fermions are concerned, it was long realized that the off-
shell electromagnetic vertex of a massless Dirac neutrino
is a gauge-dependent quantity [2]. On the other hand, a
massive Dirac neutrino does have static electromagnetic
properties which characterize its magnetic and electric
dipole moments. This is to be contrasted with the case of a
Majorana neutrino, which only has off-shell electromag-
netic properties [3], which in turn is a consequence of the
fact that a Majorana neutrino is identical to its antipar-
ticle. A more recent model-independent study of the
electromagnetic form factors of Majorana particles with
higher spin was presented in Ref. [4]. The situation for
neutral spin-1 particles is similar as for neutrinos: a
neutral vector boson characterized by a self-conjugate
field, for which the particle is identical to its antiparticle,
cannot have static electromagnetic properties. This fact
has been already discussed in the case of the neutral Z
boson [5]. On the contrary, a non-self-conjugate field can
have static electromagnetic properties.

The possibility that neutral particles have nonzero
static electromagnetic properties was explored in a gen-
eral context using arguments of gauge invariance and
transformation under the discrete symmetries C, P, and
T [6]. Several extensions of the SM, such as grand unified
theories (GUTs), predict the existence of at least one new
complex neutral gauge boson with nonzero content of
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quantum numbers from the global or local symmetries
of the theory. The purpose of this work is to present a
calculation in a specific version of the 331 model [7]
which predicts the existence of a non-self-conjugate neu-
tral gauge boson in a nontrivial representation of the
electroweak group.

The 331 model is based on the simplest non-Abelian
extension of the SM group, namely, SUC�3� � SUL�3� �
UN�1� [7]. This model is appealing and has been the
source of interest recently [8] because it requires that
the number of fermion families be a multiple of the quark
color number in order to cancel anomalies, which sug-
gests a path to the solution of the flavor problem. Another
important feature of this model is that the SUL�2� group
is totally embedded in SUL�3�. As a consequence, after
the first stage of spontaneous symmetry-breaking (SSB),
when SUL�3� � UN�1� is broken down to SUL�2� � UY�1�,
a pair of massive gauge bosons associated with four
broken generators of SUL�3� emerge in a doublet of the
electroweak group. Contrary to what happens in other
theories, the couplings between the new and the SM gauge
bosons do not involve any mixing angle, which means
that they are expected to be similar in magnitude to the
ones existing between the SM gauge bosons themselves.

Apart from the minimal 331 model, another version
including right-handed neutrinos has been considered in
the literature more recently [9,10]. Its main feature is that
it requires a more economic Higgs sector to break the
gauge symmetry and generate the fermion masses. This
model predicts the existence of a singly-charged boson
Y� along with a non-self-conjugate neutral boson Y0�.
Both of these new gauge bosons can be classified as
bileptons since they carry lepton-number L � �2, and
thus are responsible for lepton-number violating interac-
tions [11]. The neutral bilepton is a very promising can-
didate in accelerator experiments since it may be the
source of neutrino oscillations [12]. The dynamical be-
havior of the Y0 boson is somewhat similar to that of the
W gauge boson, due to the nontrivial quantum number
assignment. For instance, the Y0Y�W� coupling resem-
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bles those existing between the electroweak gauge bosons.
In the fermionic sector, the Y0 also couples to the quark
pairs �d;D1�, �s;D2�, and �t; T�, with D1, D2 and T three
new quarks predicted by the model. These couplings
induce nonzero static electromagnetic properties for the
neutral bilepton.

This presentation has been organized as follows. In
Sec. II, we present a brief review of the 331 model with
right-handed neutrinos, with special emphasis on the
current and Yang-Mills sectors. Sec. III is devoted to
the calculation of the on-shell vertex Y0Y0��. In
Sec. IV we analyze the behavior of the Y0 form factors,
and the conclusions are presented in Sec. V.
II. THE 331 MODEL WITH RIGHT-HANDED
NEUTRINOS

331 models are based on the SUC�3� � SUL�3� � UN�1�
gauge group. In the version with right-handed neutrinos
[9] the leptons are arranged as
fiL �

�iL
eiL

��cL�
i

0BB@
1CCA� �1; 3;	1=3�; eiR � �1; 1;	1�;

i � 1; 2; 3;

(1)
where i stands for the family index. In the quark sector, a
new quark for each family is necessary. The first two
quark families transform as
QaL �

daL
	uaL
DaL

0BB@
1CCA� �3; �3; 0�; uaR � �3; 1; 2=3�;

daR � �3; 1;	1=3�; DaR � �3; 1;	1=3�;

(2)
for a � 1; 2, whereas the third family transforms differ-
ently
Q3L �

u3L
d3L
TL

0BB@
1CCA� �3; 3; 1=3�; u3R � �3; 1; 2=3�;

d3R � �3; 1;	1=3�; TR � �3; 1; 2=3�:

(3)
As far as the scalar sector is concerned, only three
triplets of SUL�3� are required to achieve the SSB mecha-
nism:
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� �
�0

�	

�00

0B@
1CA� �1; 3;	1=3�;

� �
��

�0

�0�

0@ 1A� �1; 3; 2=3�;

� �
�0

�	

�00

0B@
1CA� �1; 3;	1=3�:

(4)

In contrast, the minimal version requires three triplets
and one sextet. The vacuum expectation values <�>T �
�0; 0; w=

���
2

p
�, <�>T � �0; u=

���
2

p
; 0�, and <�>T �

�v=
���
2

p
; 0; 0� yield the following SSB pattern

SU C�3� � SUL�3� � UN�1�
w
!
SUC�3� � SUL�2�

� UY�1�
u; v

!
SUC�3� � Ue�1�: (5)

Notice that in order to break SUC�3� � SUL�3� � UN�1�
into SUC�3� � SUL�2� � UY�1�, only the scalar triplet �
is required. The covariant derivative in the triplet repre-
sentation is given by

D # � @# 	 ig
&a

2
Aa# 	 igNN

&9

2
N#; (6)

where &9 � 2diagf1; 1; 1g=3 and &a�a � 1 . . . 8� are the
Gell-Mann matrices. The generators are normalized as
Tr�&a&b� � 2)ab and Tr�&9&9� � 2. In the first stage of
SSB, five generators of SUL�3� along with the one asso-
ciated withUN�1� are broken, i.e., &a < �>0 � 0, for a �
4; . . . ; 9. The linear combination Y � �3

���
2

p
N&9 	 &8�=

���
3

p

annihilates the vacuum and can be identified with the
hypercharge operator. In this stage the three exotic quarks
and the gauge bosons associated with the broken gener-
ators of the 331 group Y0, Y�, and Z0 acquire mass. The
exotic quarks have the same electric charge as the SM
quarks, namely, QD1;2 � 	1=3 and QT � 2=3. As for the
massive gauge bosons, both Y0 and Y� are complex,
whereas Z0 is a real field with no quantum numbers
from the electroweak group.

At the Fermi scale, when SUC�3� � SUL�2� � UY�1� is
broken down to SUC�3� � Ue�1�, the masses of the heavy
particles receive new contributions. The diagonalization
of the complete Higgs kinetic-energy sector leads to the
following mass-eigenstate fields:

Y0���# �
1���
2

p �A4# � iA5#�; (7)

Y�# �
1���
2

p �A6# � iA7#�; (8)
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W�
# �

1���
2

p �A1# � iA2#�; (9)

with m2
Y0

� g2�w2 � u2�=4, m2Y� � g2�w2 � v2�=4, and
m2W � g2�u2 � v2�=4. The symmetry-breaking hierarchy
yields a splitting between the bilepton masses:

jm2Y0 	m
2
Y�j � m

2
W: (10)

It is straightforward to obtain the explicit Lagrangian
for the current sector. We will concentrate only on those
terms involving the complex field Y0, which in the lepton
sector only couples to neutrinos, whereas in the quark
sector it couples to both SM and exotic quarks as follows:

L NC
Y0

�
g���
2

p

 
	
X
i�1;2

�diL�
#DiL � �u3L�

#TL

!
Y0# � H:c:

(11)

This is the only term of the fermion sector that contrib-
utes to the one-loop induced Y0Y0�� vertex, whereas in
the bosonic sector there are contributions from both
gauge and charged scalar fields. In this work we will
not consider those contributions arising from the latter
and concentrate only on the Yang-Mills sector.

A. The Yang-Mills sector of 331 models

In order to calculate the gauge-sector contributions to
the Y0Y0�� vertex, it is necessary to introduce the gauge-
fixing term. We found it convenient to use the unitary
gauge for our calculation. Since theYang-Mills sector was
discussed to a certain extent in the case of the minimal
version of the model [8], we refrain from presenting a
more detailed discussion and focus on those points rele-
vant for the present discussion. The Yang-Mills sector
associated with the group SUL�3� � UN�1� is given by

L YM � 	
1

4
Fa#�F

#�
a 	

1

2
N#�N

#�; (12)

where Fa#� � @#Aa� 	 @�Aa# � fabcAb#Ac� and N#� �
@#N� 	 @�N#, fabc being the structure constants of the
group SUL�3�. We can write this Lagrangian as

L YM � LSM
YM �LSM	NP

YM �LNP
YM; (13)

where the first term represents the Yang-Mills sector
TABLE I. Feynman rules necessary for the ca
the Y0Y0�� vertex. V� stands for Y� or W�. Al

Vertex

Y0/�p�W
	
& �k1�Y

�
� �k2� ig��p	 k

A#�q�V
�
& �k1�V

	
� �k2� 	ie��k2

Y0/Y
0�
3 Y

�
& Y

	
� i

Y0/Y
0�
3 W

�
& W

	
� i

A#Y
0
/Y

�
& W

	
� ig
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associated with the electroweak group:

L SM
YM � 	

1

4
Fi#�F

#�
i 	

1

4
B#�B#�; i � 1; 2; 3: (14)

The term LSM	NP
YM represents the interactions between the

SM gauge fields and the heavy ones. It can be written in
the following SUL�2� � UY�1�-invariant form

LSM	NP
YM � 	

1

2
�D#Y� 	D�Y#�

y�D#Y� 	D�Y#�

	iYy#�gF#� � g0B#��Y�

	
ig
2

������������������
3	 4s2W

q
cW

Z0#�Y
y
� �D#Y� 	D�Y#�

	�D#Y� 	D�Y#�yY��; (15)

where Yy# � �Y0�# ; Y�# � is a doublet of the electroweak
group with hypercharge 	1 and D# � @# 	 igA# �

ig0B# is the covariant derivative associated with this
group. In addition, we have introduced the definitions
F#� � -iFi#�=2, A# � -iAi#=2, and B# � YB#=2, with
-i the Pauli matrices. Finally, the last term in Eq. (13) is
also invariant under the electroweak group and comprises
the interactions between the heavy gauge fields:

LNP
YM � 	

1

4
Z0#�Z0#� �

g2

4

�
Yy#
-i

2
Y� 	 Y

y
�
-i

2
Y#


�

�
Yy#

-i

2
Y� 	 Yy�

-i

2
Y#


�
3g2

16
�Yy#Y� 	 Y

y
�Y#��Yy#Y� 	 Yy�Y#�

	
3g2

4
Z0#Y

y
� �Z

#
2 Y

� 	 Z�2Y
#�

	
ig
2

������������������
3	 4s2W

q
cW

Yy#Y�Z0#�: (16)

From these Lagrangians we have derived the Feynman
rules shown in Table I, which are necessary for the
calculation of the gauge boson contribution to the
Y0Y0�� vertex. These results are in agreement with
Ref. [10]
lculation of the gauge boson contribution to
l the 4-momenta are directed inward.

Feynman rule

2�&g�/ � �k2 	 k1�/g&� � �k1 	 p��g/&�=
���
2

p

	 k1�#g&� � �q	 k2�&g#� � �k1 	 q��g#&�
g2�2g/�g3& 	 g/&g3� 	 g/3g&��=2
g2�2g/&g3� 	 g/3g&� 	 g/�g3&�=2
e�g/&g�# 	 2g/#g&� � g/�g&#�=

���
2

p
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FIG. 1. Feynman diagrams for the fermion contributions to
the static quantities of the Y0 boson.
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III. THE STATIC ELECTROMAGNETIC
PROPERTIES OF THE Y0 BOSON

We turn now to the calculation of the static electro-
magnetic properties of the non-self-conjugate neutral
boson Y0. In the usual notation, the most general on-shell
Y0/Y

0
3A# vertex can be written as [6,13]

�/3# � ie
�
2�4�q3g/# 	 q/g3#� �

4�Q

m2
Y0
p#q/q3

�2�e45/3#&q& � 4� eQ
m2
Y0
q35/#&�p&q�

�
: (17)

Note that the p#g/3 term, which is present for a charged
particle, is absent as it would violate gauge invariance.
This term can only arise through the electromagnetic
covariant derivative. The magnetic (electric) dipole mo-
ment #Y0 ( e#Y0) and the electric (magnetic) quadrupole

moment QY0 ( eQY0) are given in terms of the electromag-
netic form factors as follows

#Y0 �
e

2mY0
�2��4�; (18)

QY0 � 	
e

m2Y0
�1��4��Q�; (19)

e#Y0 �
e

2mY0
�e4; (20)

eQY0 � 	
e

m2
Y0
��e4�� eQ�: (21)

The CP-violating form factors �e4 and � eQ are not
induced in the 331 model with right-handed neutrinos.
In the fermionic sector, �e4 can be induced at the one-
loop level, but it requires that the neutral boson couples to
both left- and right-handed fermions simultaneously
[14,15].

In order to compute the contributions to the on-shell
Y0Y0�� vertex, we used the method described in
Refs. [8,16], which is a generalization of the Passarino-
Veltman reduction scheme [17]. Since the gauge invariant
form (17) is obtained once all the contributions are
summed over, the absence of the p#g/3 term and the
cancellation of ultraviolet divergences will serve as a test
to check the correctness of our results. Below we will
present separately the fermionic and gauge boson contri-
butions to the �Q and �4 form factors.

A. Fermion contribution

The contribution of this sector comes from the
Feynman diagrams shown in Fig. 1. There are two tri-
angle diagrams for each quark pair �d;D1�, �s;D2�, and
�t; T�. We will denote by q the SM quark and by q0 the
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exotic one. Once the reduction scheme described above is
applied to solve the loop amplitudes, the contribution
from the �q; q0� quark pair can be written as

�QFerm � 6aQ
�
2

�qq0
�xq0 	 xq��1	 3�xq0 � xq�

�2�xq0 	 xq�2�arccosh
�xq0 � xq 	 1
2
�����������xq0xq

p


�4�xq0 	 xq� � �xq0 � xq 	 2�xq0 	 xq�2�

� log
�xq0
xq

�
; (22)

�4Ferm � 9aQ�xq0 	 xq�
�
2

�qq0
�xq0 � xq 	 �xq0 	 xq�

2�

�arccosh
�xq0 � xq 	 1
2
�����������xq0xq

p


	 2� �xq0 	 xq�

� log
�xq0
xq

�
; (23)

with a � g2=�9672�, xi � m2i =m
2
Y0

and �2ij � �xi � xj 	
1�2 	 4xjxj. A factor of 3 has been included to account for
the quark color number, and Q stands for the quark
charge in units of that of the positron. Equations (22)
and (23) are to be summed over the �d;D1�, �s;D2�, and
�t; T� quark pairs.

Both �QFerm: and �4Ferm: are antisymmetric under the
interchange of xq and xq0 , which means that they vanish
when the q and q0 quarks are degenerate. Since it is
expected that the exotic quarks are heavier than the SM
ones (xq0 � xq), it would be interesting to have analytical
expressions for the scenario in which xq � 0 and xq0 is
arbitrary. After some algebra, Eqs. (22) and (23) yield

�QFerm � 12aQxq0
�
2� �2xq0 	 1� log

�
jxq0 	 1j

xq0

�
;

(24)

�4Ferm � 18aQxq0
�
1� xq0 log

�
jxq0 	 1j

xq0

�
: (25)
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In the heavy-mass limit, �4Ferm: ! 	9aQ and
�QFerm: ! 0. Of course, when xq0 ! 0, the degenerate
fermion case is recovered and both form factors vanish.

B. Gauge boson contribution

We found it convenient to make the calculation for this
contribution in the unitary gauge. Although the triangle
diagrams give rise to fourth-order tensor integrals due to
the longitudinal part of the gauge boson propagators, our
calculation scheme is suited to work out this class of
terms straightforwardly. The static electromagnetic prop-
erties of the Y0 boson arise from the six Feynman dia-
grams shown in Fig. 2, whose amplitudes can be
constructed out of the Feynman rules presented in
γ

Y 0Y 0

W±, Y ±W±, Y ±

Y ±↪ W±

γ

Y ±, W±Y ±, W±

Y 0 Y 0

γ

Y 0Y 0

Y ±

W±

γ

Y 0Y 0

W±

Y ±

FIG. 2. Feynman diagrams for the gauge boson contributions
to the static quantities of the Y0 boson.
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Table I. After solving the loop integrals, the full ampli-
tude can be cast in the form of Eq. (17), which leads to

�QBos �
a

2xYxW
��2YW � 12xXxW�

�
4�xY 	 xW�

�4��xY � xW� 	 2�xY 	 xW�
2� log

�
xY
xW


�

2

�YW
�xY 	 xW��1	 3�xW � xY�

�2�xY 	 xW�2�arccosh
�
xY � xW 	 1

2
�����������
xYxW

p

�
; (26)

and
�4Bos �
3a

2xYxW

�
�xY 	 xW��1� �xY 	 xW�2 	 2�xY � xW 	 6xYxW�� 	 fxY�1	 xY�2�3� xY�

�xYxW�xY�8xY 	 9xW 	 13� � 9� � xW�1	 xW�
2�3� xW� � xYxW�xW�8xW 	 9xY 	 13� � 9�g

� log
�
xY
xW


	 2�xY 	 xW��YW�3	 �xY 	 xW�2 � 2�xY � xW � 6xYxW�arccosh

�
xY � xW 	 1

2
�����������
xYxW

p

�
; (27)
with xW � mW=mY0 and xY � mY�=mY0 . Because of the
mass splitting (10), the bileptons would be nearly degen-
erate if mY� � mW . Therefore, it is worth obtaining ana-
lytical expressions for the form factors in this scenario.
Equations (26) and (27) yield the following results for
xY � 1:
�QBos �
a
2
�8� xW�

�
4�1	 xW� � �1� xW�2xW 	 5��

� log�xW� �
2�������������������������

�xW 	 4�xW
p �1	 xW�xW

��2xW 	 7�arccosh
� ������
xW

p

2

�
; (28)

and

�4Bos �
3a
4

�
2�1	 xW��8� xW� � �16� �xW 	 3�xW

��12� xW�� log�xW� 	 2�xW 	 1�

�
�������������������������
�xW 	 4�xW

q
�12� xW�arccosh

� ������
xW

p

2

�
: (29)

From the previous results, it is easy to see that the
contributions to the Y0 form factors are antisymmetric
under the interchange of the masses of the particles
circulating in the loop, which means that they vanish
when these particles are degenerate, i.e., mq � mq0 and
mW � mY .
IV. NUMERICAL EVALUATION

We turn now to the numerical analysis of the Y0 form
factors. We would like to emphasize that our main aim is
to estimate the size and behavior of the form factors in
some illustrative scenarios rather than making a careful
study of the allowed parameter space of the model, which
is beyond the present work.
-5
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FIG. 3. The fermion contribution to the �4 form factor as a
function of the mass of the exotic quarks, which are assumed to
be degenerate, for different values of the neutral bilepton mass:
300 (continuous line), 350 (dashes), and 400 GeV (dashes and
points).

-4

-2

 0

 2

 4

 6

 8

 10

 12

 14

 300  400  500  600  700  800

∆Q
/a

MQ [GeV]

FIG. 4. The same as in Fig. 3 for the �Q form factor.
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In addition to the mass of the Y0 boson, there are four
other unknown parameters which enter into the Y0 form
factors. These are the masses of the three exotic quarks
mD1 , mD2 , and mT , together with the charged bilepton
mass mY� . Since the splitting between the bilepton
masses is bounded, i.e., jm2

Y0
	m2Y�j � m

2
W� , mY� is

bounded once mY0 is fixed. Although in the minimal
331 model the bilepton masses are bounded from above
at 1 TeV as a result of matching the gauge couplings
constants at the Fermi scale, which leads to sin:W �
1=4 [18], in the version with right-handed neutrinos the
same condition leads to sin:W � 3=4, which yields less
stringent constraints on the bilepton masses. The most
recent bounds indicate that mY0 is greater than 100 GeV
[9,19]. We will thus analyze the form factors in the range
100 GeV � mY0 � 500 GeV.

As for the exotic quarks, although there are bounds on
the masses of the exotic quarks predicted in other SM
extensions, to our knowledge there are no such bounds in
the specific case of the 331 model with right-handed
neutrinos. However, it is reasonable to assume that the
exotic quarks are heavier than the top quark. Therefore,
for the corresponding masses we will consider values
ranging from 200 to 800 GeV. Furthermore, as will be
shown below, the maximal value of the fermionic con-
tribution to the static quantities of the Y0 boson is reached
in this mass range. Below we will evaluate separately the
fermion and boson contribution to the Y0 form factors.

A. Fermion contribution

The general behavior of the fermion contribution to the
static quantities of the charged W boson has been dis-
cussed to a large extent in the literature [14,15,20,21]. The
main peculiarity of the CP-even electromagnetic form
factors of a neutral particle is that the contribution arising
from a degenerate fermion pair vanishes since the ampli-
tude is antisymmetrical under the interchange mq ! mq0 .
Although the latter is also true for an arbitrarily charged
gauge boson, their CP-even static quantities do not vanish
for degenerate fermions since Qq � Qq0 . In the following
analysis we will consider the scenario in which the exotic
quarks are degenerate, with a mass mQ. As already ex-
plained, we will consider the range 200 GeV � mQ �

800 GeV. In Figs. 3 and 4 we show the �4 and �Q
form factors as a function of mQ for some illustrative
values of the neutral bilepton massmY0 , namely, 300, 350
and 400 GeV. We note that the curves displayed in Figs. 3
and 4 are the full contribution from the three quark
families. In the range under consideration for mQ, the
form factors are considerable smaller for mY0 �
200 GeV. We can clearly observe that there is a dramatic
enhancement in the mY0 threshold mY0 � mq �mQ,
which stems from the fact that the respective quark pair
(q;Q) can be directly produced from the bilepton pro-
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vided that mY0 � mq �mQ. Above the threshold and in
the heavy-mass limit, both form factors decrease rapidly
and vanish when mQ is much larger than the mass of the
SM quarks. It is interesting to point out that the individual
contributions to �4 from each fermion pair tend to the
constant value 	9a in the heavy fermion limit, whereas
�Q vanishes. This is in accordance with the decoupling
theorem [22]: since �4 is associated with a term that
arises from dimension-four operators, it is expected to
be sensitive to nondecoupling effects of heavy physics,
whereas �Q cannot be sensitive to this class of effects as
it is associated with a term generated by a nonrenorma-
lizable dimension-six operator [23]. In spite of the non-
decoupling nature of the contributions from each quark
family, the full �4 vanishes in the heavy fermion limit. It
turns out that the partial contributions, which are propor-
tional to the quark charge, become constant and their sum
-6
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FIG. 6. The same as in Fig. 5 for the �Q form factor.
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vanishes since it is proportional to QD1 �QD2 �QT � 0.
This is to be contrasted with the behavior of the fermion
contribution to the �4 form factor of the W boson in the
heavy fermion limit. In this case the contribution of each
quark family is proportional to Qu 	Qd � 1, thus the
sum over the three quark families does not vanish.

From Figs. 3 and 4 we can conclude that �4 can be of
the order of 10a, whereas �Q is about 1 order of magni-
tude below. This behavior is similar to that observed for
the size of the fermion contribution to the electromag-
netic form factors of theW boson in the SM [20] and some
of its extensions [21]. Although the maximal value of the
form factors is reached around the threshold mY0 � mq �
mQ, there is no reason to expect that such a scenario is
realized in nature. The scenarios shown through Figs. 3
and 4 are very illustrative of the behavior of the quark
contribution to the static quantities of the Y0 boson and so
we refrain from presenting the most general case in which
the exotic quark are nondegenerate.

B. Gauge boson contribution

In Figs. 5 and 6, we show the contributions from the
gauge bosons to the electromagnetic form factors of the
Y0 boson as a function of mY0 when the bileptons are
degenerate and also when mY� reaches its minimal and
maximal allowed values: m2Y� � m2Y0 	m

2
W and m2Y� �

m2Y0 �m
2
W . The form factors are restricted to lie in the

strip bounded by the extremal lines. Although the form
factors seem to increase indefinitely asmY0 increases, they
tend to a constant value for very large mY0 . There is no
contradiction with the decoupling limit, as one cannot
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FIG. 5. The gauge boson contribution to the�4 form factor of
the Y0 boson as a function of its mass when mY� � mY0
(continuous line), m2Y� � m2

Y0
	m2W (dashes) and m2Y� �

m2
Y0

�m2W (dashes and points). The last two curves correspond
to the case when the mY� reaches its maximal and minimal
allowed values. �4 is restricted to lie in the strip bounded by
the extremal lines.
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make large the internal massmY� while keeping fixed the
external massmY0 due to the bound (10). Furthermore, the
quantities which have physical meaning are the magnetic
dipole and electric quadrupole moments [See Eqs. (18)
and (19)], which do vanish for very large mY0 . From
Figs. 5 and 6, it is evident that �4 is 1 order of magnitude
larger than �Q for each value of mY0 . The fact that the
size of �4 is larger than that of �Q has been also
observed for the case of the electromagnetic form factors
of the charged W boson form within all of the theories
studied up to now.

To obtain the total contribution to the Y0 form factors,
it is necessary to sum over the fermion and gauge boson
contributions, along with the one arising from the scalar
sector of the theory. Apart from the specific details of the
model, we do not expect that the size of the scalar con-
tribution is different to that observed in the case of theW
form factors. In that case, the scalar sector yields a
marginal correction. In fact a very large number of
Higgs bosons would be required to yield a large
correction.
V. SUMMARY

A neutral vector boson can have static electromagnetic
properties provided that the associated field is non-self-
conjugate. We have presented the calculation of the static
electromagnetic properties of the neutral non-self-
conjugate boson Y0 which arises in the SU�3�c �
SU�3�L � U�1�N model with right-handed neutrinos.
This model is interesting since it requires that the fermion
families be a multiple of the quark color number in order
to cancel anomalies, thereby suggesting a solution to the
family problem. It has been pointed out that the Y0 boson
is a good candidate in high energy experiments since it
may be the source of neutrino oscillations as it is respon-
sible of lepton-number violating interactions. The calcu-
lation was done in the unitary gauge and the fermion and
-7
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gauge boson contributions were obtained by a modified
version of the Passarino-Veltman reduction scheme. As a
crosscheck, the form factors were obtained independently
by the Feynman parameter technique and the results,
expressed in terms of parametric integrals, were numeri-
cally evaluated and compared with the results obtained
via the Passarino-Veltman method. A perfect agreement
was observed. In this model the Y0 boson only couples to
left-handed fermions and so only the CP-even form
factors are induced at the one-loop level. The behavior
of both contributions was analyzed. In the fermion sector
there is the contribution of the three quark pairs �D1; d�,
�D2; s�, and �T; t�, with D1, D2, and T three exotic quarks
whose charge is identical to that of the respective SM
quark. As for the gauge boson contribution, there is the
053006
contribution of a singly-charged bilepton Y�. The
symmetry-breaking hierarchy yields an upper bound on
the splitting between the bilepton masses such that
jm2
Y0

	m2Y�j � m
2
W , which means that the bileptons are

nearly degenerate provided that their mass is heavier than
mW . From the numerical analysis we can conclude that
the size of the Y0 form factors is somewhat similar to that
observed for the W boson form factors in the SM and
some of its extensions.
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