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Leptonic CP violation phases using an ansatz for the neutrino mass matrix
and application to leptogenesis

Salah Nasri*
Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA

Joseph Schechter†

Department of Physics, Syracuse University, Syracuse, New York 13244-1130, USA

Sherif Moussa‡

Department of Mathematics, Faculty of Science, Ain Shams University, Egypt
(Received 17 February 2004; published 21 September 2004)
*Electronic
†Electronic
‡Electronic

0556-2821=20
We further study the previously proposed ansatz, Tr�M�� � 0, for a prediagonal light Majorana type
neutrino mass matrix. If CP violation is neglected this enables one to use the existing data on squared
mass differences to estimate (up to a discrete ambiguity) the neutrino masses themselves. If it is
assumed that only the conventional CP phase is present, the ansatz enables us to estimate this phase in
addition to all three masses. If it is assumed that only the two Majorana CP phases are present, the
ansatz enables us to present a one parameter family of solutions for the masses and phases. This enables
us to obtain a simple ‘‘global’’ view of lepton number violation effects. Furthermore using an SO(10)
motivation for the ansatz suggests an amusing toy (clone) model in which the heavy neutrinos have the
same mixing pattern and mass ratios as the light ones. In this case only their overall mass scale is not
known (although it is constrained by the initial motivation). Using this toy model we make a rough
estimate of the magnitude of the baryon to photon ratio induced by the leptogenesis mechanism.
Solutions close to the CP conserving cases seem to be favored.
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I. INTRODUCTION

Remarkably, the recent KamLAND [1], SNO [2] and
K2K [3] experiments have added so much to the results
obtained from earlier solar neutrino, atmospheric neu-
trino and accelerator experiments [4] that our knowledge
about the neutrino masses and presumed lepton mixing
matrix is almost as great as our knowledge of the corre-
sponding quantities in the quark sector. Still there is an
uncertainty about the interpretation due to the results of
the LSND experiment [5]. However, this experiment will
be checked soon by the miniBoone Collaboration so one
can wait for confirmation before considering whether
there is really a problem with the usual picture of three
massive neutrinos. In any event, there is a strong pre-
sumption that this knowledge will play an important role
in going beyond the standard model of electroweak
interactions.

One detail is, of course, lacking compared to the quark
case. Since the neutrino oscillation experiments measure
only the differences of the neutrino squared masses, the
neutrino masses themselves are not known. According to
address: snasri@physics.umd.edu
address: schechte@phy.syr.edu
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the latest analysis [6] the best fit to these differences is:

m2
2 �m2

1 � 6:9� 10�5 eV2;

jm2
3 �m2

2j � 2:6� 10�3 eV2: (1)

Now, there is a simple complementary ansatz for the
3� 3 neutrino mass matrix, M� which, with some as-
sumptions, enables one to obtain the neutrino masses
themselves from Eq. (1); it requires:

T r�M�� � 0: (2)

It should be remarked that M� is to be regarded as the
prediagonal neutrino mass matrix. Furthermore, in the
relation m1 �m2 �m3 � 0 which evidently results if the
neutrino mass matrix is taken to be real symmetric, the
individual masses may be either positive or negative. The
negative masses can be converted to positive ones by
adding appropriate factors of i in the diagonalizing
matrix.

Equation (2) was motivated in [7] from the grand
unified model, SO(10) [8] and in [9] by noting that it
would hold if M� is the commutator of two other matri-
ces, as may occur in certain models. If CP violation is
neglected there are essentially two possible solutions of
the ansatz: either m1 and m2 have the same sign and are
approximately equal to each other and to �m3=2 or else
m1 and m2 have the opposite sign and are approximately
equal to each other in magnitude but much larger than the
magnitude of m3.
05-1  2004 The American Physical Society
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In the present paper we will take the point of view that
the ansatz, Eq. (2), is motivated from SO(10). However,
the analysis is of course not dependent on the motivation.
The SO(10) motivation arises from the observation that
Eq. (2) is, although it seems at first different, essentially
the same as the characteristic prediction of grand unifi-
cation:

mb � rm�; (3)

relating the mass of the b quark with the mass of the tau
lepton (r � 3 takes account of the running of masses from
the grand unification scale to the low energy hadronic
scale of about 1 GeV [10]). Note that in SO(10) the
neutrino mass matrix takes the form:

M� � ML �MT
DM

�1
H MD; (4)

where ML, MH, and MD are, respectively, the mass ma-
trices of the light neutrinos, heavy neutrinos and heavy-
light mixing (or ‘‘Dirac matrix’’). To start with, M� is an
arbitrary symmetric matrix. If it is real we have CP
invariance. Generally the second, seesaw [11] term is
considered to dominate. However, as explained in [7],
the present model is based on the assumption that the first
term dominates. That might not be unreasonable since a
rough order of magnitude estimate for the second term
would be m2

t =10
17 or about 3� 10�4 eV. (The quantity

1017 includes a factor r2 � 10). Thus the second term
could be negligible if neutrino masses are appreciably
greater than this value.

In [7] the complementary ansatz was mainly studied
for the case of real M�. Here we will be primarily
interested in the more general complex case which allows
for nonzero CP violation. Furthermore, the input squared
mass differences were not taken to be very similar to
those in Eq. (1) but were based on a least squares fit [12]
of many different experiments including LSND. Here we
shall adopt the more conventional values given in Eq. (1).
A related analysis of Eq. (2) was recently made in [13].

For an understanding of the interesting leptogenesis
mechanism [14] of baryogenesis it is important to also
study the properties of the heavy neutrinos which appear
there. In the present SO(10) motivated framework this
task turns out to be remarkably simple; the heavy neu-
trino mass matrix is given by

MH � cM�; (5)

where c is a numerical constant. This means that the
eigenvalues of MH, to be denoted as M1;M2;M3 are
simple multiples of the light neutrino masses
m1; m2; m3. In addition the unitary matrix, U which
brings M� to diagonal form via

UTM�U � diag�m1; m2; m3� � M̂�; (6)

also diagonalizes MH. In other words the heavy neutrinos
are clones of the light neutrinos in this picture. The result
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follows from the choice of Higgs fields in SO(10).
Trilinear Yukawa terms which supply fermion masses
can contain Higgs fields in the 10, 120, and 126 dimen-
sional representations. To get the result just mentioned we
need to require that there is only one ‘‘126’’ representation
present, although any number of ‘‘10’s’’ and ‘‘120’s’’ are
allowed. Of course we are also assuming the second term
in Eq. (4) to be negligible for the purpose of generating
the light neutrino masses.

In Sec. II, we give our conventions for the lepton
mixing matrix, including one conventional and two
Majorana type CP violation phases. An approximate
equation relating the complementary ansatz to the
parameters of the mixing matrix and the physical light
neutrino masses is written down. The solutions for the
neutrino masses in the CP conserving case, based on
the results of neutrino oscillation experiments, are
reviewed. In Sec. III, the ansatz equation is solved on
the assumption that only the conventional CP phase, � is
nonzero. It is found that the only solutions correspond
to maximal phase, sin2� � 1 and neutrino masses close
to the ones obtained in the CP conserving case. In Sec. IV
we investigate the more complicated but very interesting
case when only the two Majorana CP violation phases
are nonzero. In this case there is a family (modulo a
discrete ambiguity) of solutions. We choose the mass of
the third light neutrino, m3 as our free parameter and
calculate the remaining neutrino masses and the
Majorana phases as functions of m3. The model gives a
lower bound for m3 and the cosmology criterion on the
sum of neutrino masses effectively yields an upper bound.
The results for the full range are scanned numerically and
a simple analytic interpretation of the pattern is pre-
sented. The neutrinoless double beta decay parameter,
jmeej is also calculated for each value of m3. In Sec. V
we make a rough estimate of the baryon to photon ratio
based on the leptogenesis mechanism. In order to do this
it is necessary to make some statements on the masses and
mixings of the heavy neutrinos. Our motivation for the
original ansatz suggests a ‘‘clone’’ model in which the
heavy neutrinos have the same mass ratios and mixing
matrix as the light ones. The only new parameter besides
m3 is the overall mass scale, which however is con-
strained by the original motivation to be somewhat on
the large side. Then it is relatively easy to calculate the
lepton asymmetry parameters, �i for the heavy neutrino
decays as functions of mainly m3. We combine these
quantities in a semiquantitative way with criteria from
previous treatments of the Boltzmann evolution equations
for the decaying neutrinos. It is found that the most
plausible scenarios for leptogenesis involve small CP
violating Majorana phases and light neutrino masses
close to the ones predicted for the CP conserving cases.
Finally Sec. VI contains a brief discussion and a brief
summary.
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II. RELATING THE ANSATZ TO EXPERIMENT

Here we will obtain an approximate equation which
will be useful for relating the complementary ansatz to
experimental information on neutrino squared mass dif-
ferences and mixing angles in the general case where CP
violation is allowed. The notation is the same as in
Sec. III of [7] which contains more details. For conve-
nience, we will use what seems to be the most common
convention for the part of the leptonic mixing matrix,
Kexp, which is measured in the usual neutrino oscillation
experiments. This part can be constructed as a product of
elementary transformations in the (12), (23), and (13)
subspaces. For example in the (12) subspace one has:
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!12��12; �12� �
cos�12 ei�12 sin�12 0

�e�i�12 sin�12 cos�12 0
0 0 1

0
B@

1
CA

(7)

with clear generalization to the (23) and (13)
transformations.

Then the usual convention corresponds to the choice:

Kexp � !23��23; 0�!13��13;���!12��12; 0�; (8)

with three mixing angles and the CP violation phase �.
Multiplying out yields:
Kexp �
c12c13 s12c13 s13e

�i�

�s12c23 � c12s13s23ei� c12c23 � s12s13s23ei� c13s23
s12s23 � c12s13c23ei� �c12s23 � s12s13c23ei� c13c23

0
B@

1
CA (9)
where sij � sin�ij and cij � cos�ij. Since the neutrinos
are of Majorana type in this model, there are expected
also to be physical CP violating effects due to the
Majorana phases [15–18]. These may be introduced via
a unimodular diagonal matrix of phases,

!0��� � diag�ei�1 ; ei�2 ; ei�3�; �1 � �2 � �3 � 0:

(10)

The full lepton mixing matrix is then expressed as

K � Kexp!
�1
0 ���; (11)

which has three mixing angles and three independent CP
violating phases. We shall use this form in what follows.
As an aside, though, we remark that the full matrix could
also be written [7] in an unconventional, but more sym-
metrical, way as:

K � !23��23; �23�!13��13; �13�!12��12; �12�: (12)

As a final preliminary we need the leptonic W interac-
tion term :

L �
ig���
2

p W�
! �eL"!K�� H:c:; K � �yU; (13)

where U is defined in Eq. (6) and �y is a unitary matrix
which is needed to diagonalize the charged lepton mass
matrix. At this point we shall make the common approxi-
mation that � can be replaced by essentially the unit
matrix. This is certainly not perfect but it seems reason-
able for a start. This is a natural approximation in our
framework, as will be discussed in Sec. VI. Then U may
be replaced by K, for which some elements are already
well known. This enables us to present the ansatz in the
form:

T r�M̂�K
�1
expK

�
exp!0�2��
 � 0; (14)
where Eqs. (6) and (11) were used. In writing Eq. (14) we
assumed that an additional phase matrix given in
Eq. (5.2) of [7] is set equal to the unit matrix. This can
be accomplished by an allowed rephasing of the charged
lepton fields when � � 1. An alternate justification of our
treatment is to assume that the ansatz holds in a special
basis in which the charged lepton mass matrix is diago-
nal. With the parameterized mixing matrix of Eq. (9) the
ansatz reads:

m1e
2i�1�1� 2i�c12s13�

2 sin�e�i�
�

m2e
2i�2�1� 2i�s12s13�

2 sin�e�i�
�

m3e
2i�3�1� 2i�s13�

2 sin�ei�
 � 0: (15)

In this equation we can choose the diagonal masses
m1; m2; m3 to be real positive. However it will be a little
more convenient in the CP conserving case to allow some
of them to be negative as well as positive. We shall, for
definiteness, mainly use the following best fit values [6]
for the mixing angles:

s212 � 0:30; s223 � 0:50; s213 � 0:003: (16)

It should be remarked that the precise value of s13 is not
well known, in contrast to the other two.

Equation (15) contains three unknown masses and
three unknown CP phases. It can be written as two real
equations and augmented by two equations for two neu-
trino mass squared differences. Thus there are four equa-
tions for six unknowns. By assuming some special
simplifications we can make the analysis tractable.

For orientation let us first review the case when the
theory is CP conserving so that all the three independent
CP phases vanish. Then we will have three equations for
three unknowns. The ansatz now reads m1 �m2 �m3 �
0. Define:
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A � �m2�
2 � �m1�

2 B � �m3�
2 � �m2�

2 (17)

It can be deduced [19] from the experimental data that A
is positive while the sign of B is not yet known. Their
magnitudes are given in Eq. (1). Thus there are two
separate cases to be considered. First consider both A
and B positive. Then solving as in [7] gives the type I
solution:

m1 � 0:0291 eV; m2 � 0:0302 eV;

m3 � �0:0593 eV:
(18)

Next consider the type II solution where B is negative; it
gives:

m1 � 0:0503 eV; m2 � �0:0510 eV;

m3 � 0:000 68 eV:
(19)

Here m1 and m2 are still almost degenerate but differ in
sign. However m3 is now relatively small compared to the
others.
III. CONVENTIONAL CP VIOLATION

A fully predictive simple case would correspond to
keeping � as the only CP violation phase. Then the real
part of the ansatz equation, (15) reads

m1 �m2 �m3 � 2s213sin
2��c212m1 � s212m2 �m3� � 0;

(20)

while the imaginary part yields

s213 sin2��c
2
12m1 � s212m2 �m3� � 0: (21)

Note that the mi’s are being taken real here, although they
will be allowed to be either positive or negative. A nega-
tive mi is not a source of CP violation even though it
corresponds to a Majorana phase �i of %=2 when the
masses are taken positive [20]. Now Eqs. (17), (20) and
(21) constitute four equations for the three mi’s and �.

However it turns out that, except for the special case
when s213 sin2� � 0, there is no consistent solution of this
set of four equations for four unknowns. To see this, first
consider solving simultaneously the three Eqs. (17) and
(21) when the special case does not hold. The numerical
solution is seen to require B< 0 and is found to be (with
A > 0):

m1 � �0:0548 eV; m2 � 0:0554 eV;

m3 � �0:0217 eV:
(22)

We must now check to see if this is consistent with the
remaining Eq. (20). That leads to the requirement:

s213sin
2� �

1

4

�
1�

m1 �m2

m3

	
� 0:25; (23)

which, given the numerical value of s213 in Eq. (16) clearly
leads to the contradiction sin2� � 80. This contradiction
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will persist even if the upper bound (about 0.044) rather
than the best fit for s213 is used. The result is also not
changed if the signs of all the mi’s are reversed.

Thus the only possibility for pure � type CP violation
in the present scheme is the special case where sin2� � 1.
Then we must solve simultaneously the three equations
consisting of Eq. (20) in which this substitution has been
made for sin2� as well as Eqs. (17). This results in the
equation for, say m2,

sign�m1��m
2
2 � A�1=2�1� 2s213c

2
12��

m2�1� 2s213s
2
12� � �B�m2

2�
1=2�1� 2s213� � 0; (24)

where sign�m3� has been arbitrarily taken positive.
Knowing m2, the other two masses may of course be
obtained from Eqs. (17).

Taking, for definiteness, the mixing angle from
Eq. (16), one finds essentially two different solutions.
These are quite similar to the type I and type II solutions
given above in the CP conserving case. The type I solu-
tion, with B> 0 is

m1 � �0:0289 eV; m2 � �0:0301 eV;

m3 � 0:0592 eV:
(25)

The type II solution, with B< 0, reads

m1 � 0:0503 eV; m2 � �0:0510 eV;

m3 � 0:000 81 eV:
(26)

The very close similarity between the CP conserving
solutions and the solutions with sin2� � 1 is understand-
able due to the small value of s213.
IV. CP VIOLATION DUE TO MAJORANA TYPE
PHASES

Since, as we have just seen, there is only one particular
allowed value for the conventional CP phase, � if it is
considered as the only source of CP violation in the
present scheme, it is of great interest to investigate the
Majorana phases. Clearly, it seems sensible to study these
phases with the simplification of putting � to zero. From
Eqs. (7) and (8) it is seen that the same effect is accom-
plished by setting s13 � 0. Then the ansatz Eq. (15) takes
the form

m1e2i�1 �m2e2i�2 �m3e2i�3 � 0: (27)

For our present case it is convenient to take all three mi’s
to be real and positive (note that a phase angle �i � %=2
corresponds to what was taken as a shorthand to be a
negative value of mi). Together, Eq. (27) and Eq. (17)
comprise four real equations for five unknowns (three
masses and two independent �i’s). To proceed we shall
thus assume a value for m3 so that we have four equations
for four unknowns. In addition there is the twofold am-
biguity due to the unknown sign of B. Finally we shall
-4
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allow m3 to vary to obtain a global picture of the
situation.

Now, once we have assumed a value for m3, we can
immediately findm1 and m2 from Eqs. (17). Furthermore,
Eq. (27) can be pictured in the complex plane as a triangle
formed from vectors with lengthsmi, having angles 2�i as
measured from the positive horizontal axis. Then let !i
be the interior angle opposite side mi as illustrated by the
choice of triangle in Fig. 1.

The problem reduces to one from elementary plane
geometry. Given the three sides (mi), of a triangle, find
the three interior angles (!i). We may start, for example,
by using the law of cosines to get

cos!1 �
�m2

1 �m2
2 �m2

3

2m2m3
; (28)

and continue similarly to get the others. Finally the
parameters �i which appear in the actual parameteriza-
tion of Eq. (10) are found from Fig. 1 as

�1 �
1

6
�%�!1 � 2!2�;

�2 �
1

6
�%� 2!1 �!2�;

�3 �
1

6
��2%�!1 �!2�:

(29)

In particular, the quantities

sin�2��1 � �2�
 � � sin�!1 �!2�;

sin�2��1 � �3�
 � sin!2;

sin�2��2 � �3�
 � � sin!1;
(30)

will turn out to be of interest. Actually, given the three
FIG. 1. Vector triangle representing Eq. (27).
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interior angles !i of a triangle we do not get a unique
choice of phase differences ��i � �j�. While a rotation in
the plane of the triangle will not change these phase
differences, it is straightforward to see that the reflection
of the triangle about any line in the plane will reverse the
signs of all the phase differences. Thus there is another
solution in which an extra minus sign appears on each
right-hand side of (30).

Now let us discuss the solutions of the complementary
ansatz equation for various assumed values of m3. In
Table I the three real positive masses as well as the
corresponding values of the two independent internal
angles !1; !2 of the triangle are listed. Of course, !1 �
!2 �!3 � %. The solution with B> 0 (type I with m3 >
m2) will be listed when it exists as well as the type II
solution (B< 0 or m2 >m3).

Let us start with large values of m3 and go down. Just
from the ansatz there is no upper bound on the value of
m3. However there is a recent cosmology bound [21]
which requires,

jm1j � jm2j � jm3j< 0:7 eV: (31)

Thus values of m3 greater than about 0.3 eVare physically
disfavored. Table I shows that at this value both type I and
type II solutions exist and correspond to almost equi-
lateral triangles. This is true also for higher values of m3.
Notice that since the triangles are close to being equi-
lateral, they have large interior angles and hence [see, for
example, Eq. (30)] large CP phases. The picture remains
very similar down to around m3 � 0:1 eV but as one gets
closer to the value, roughly 0.0593 eV, where the real type
I solution of Eq. (18) exists, there is a marked change. It is
seen that the interior angles of the type I solution become
small as it prepares to go to the degenerate triangle
corresponding to the real solution. We may get as small
CP phases as we like by tuning close to the real solution;
this is illustrated in Table I for a particular value of m3. If
one further lowers m3, it is found that the type I solution
no longer exists. On the other hand the type II solution
persists and does not change much until m3 approaches
the small value of roughly 0.000 68 eV. There are no
solutions for m3 smaller than this value. We can also
tune m3 as illustrated in the table to get as small CP
phases as we like for the type II case. It should be
remarked that the precise numbers in Table I are based
on the assumption that the best fit numbers given in
Eq. (1) are exact and hence are meaningful to the accu-
racy given only in the sense of comparing the various
solutions with each other, not with experiment. It is
straightforward to give an analytic interpretation of the
pattern of solutions just observed. First note that CP
violation corresponds to a non degenerate triangle. Note
also that the orientation of the triangle in the complex
plane is just obtained by imposing the unimodularity
condition for !��� in Eq. (10). Hence the internal angles,
-5



TABLE I. Panorama of solutions as m3 is lowered from about the highest value which is experimentally reasonable to the lowest
value imposed by the model. In the type I solutions m3 is the largest mass while in the type II solutions m3 is the smallest mass. For
each value of m3, the values of the model predictions for m1 and m2 as well as the internal angles !1 and !2 are given. The model
prediction for the neutrinoless double beta decay quantity jmeej is next shown. Finally, the last column shows the estimated lepton
asymmetries due to the decays of the heavy neutrinos. Note that the reversed sign of lepton asymmetry is also possible, as discussed
in the text.

type m1; m2; m3 in eV !1; !2 in radians jmeej in eV �1, �2, �3

I 0.2955, 0.2956, 0.3000 1.038, 1.039 0.185 0.342, 0.433, 0.017
II 0.3042, 0.3043, 0.3000 1.055,1.056 0.187 0.330, 0.426, -0.0172
I 0.0856, 0.0860, 0.1000 0.946, 0.952 0.058 0.138, 0.060, 0.001 37
II 0.1119, 0.1122, 0.1000 1.106, 1.111 0.065 0.194, 0:088� 0:0024
I 0.0305, 0.0316, 0.0600 0.258, 0.268 0.030 0.00982, 0.00422, 0.00004
II 0.0783, 0.0787, 0.0600 1.172, 1.186 0.043 0.094, 0.041, � 0:0011
I 0.0291, 0.0302, 0.059 271 564 9 0.000 552, 0.000 574 0.030 1:96� 10�6, 0:84� 10�6, 0:71� 10�7

II 0.0774, 0.0782, 0.059 271 564 9 1.174, 1.188 0.042 0.047, 0.020, �0:0011
II 0.0643, 0.0648, 0.0400 1.243, 1.268 0.033 0.052, 0.023, � 0:000 681
II 0.0541, 0.0548, 0.0200 1.355. 1.417 0.024 0.018, 0.0078, � 0:000 335
II 0.0506, 0.0512, 0.0050 1.386, 1.658 0.021 0.0057, 0.0025, � 0:000 082 4
II 0.0503, 0.0510, 0.0010 0.814, 2.313 0.021 0.00073, 0.000 31, � 0:000 012 2
II 0.0503, 0.0510, 0.000 681 0.051 361, 3.089 536 0.021 0.000 034 8, 0.000 015 0, �0:601� 10�6
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!i are really the intrinsic carriers of CP violation. The
determinant of whether one has CP violation is the non
vanishing of the quantity:

A � �m�m�m1��m�m2��m�m3�

1=2;

m �
1

2
�m1 �m2 �m3�;

(32)

which just expresses the area, A of a triangle in terms of
the lengths of its sides. This area may be rewritten in the
convenient form:

A �
1

4

�
��m1 �m2�

2 �m2
3
�m

2
3 � �m1 �m2�

2


	
1=2
:

(33)

Now we may see that the vanishing of the first factor
corresponds to the type I real solution while the vanishing
of the second factor corresponds to the type II real
solution. Furthermore, for a solution to exist, the argu-
ment of the square root should be positive. With the
second factor, that establishes the minimum allowed
value of m3 while with the first factor, that establishes
the minimum value of m3 which allows a type I solution.

An important test of the model is the experimental
bound on neutrinoless double beta decay. This implies
[22]

jmeej< �0:35 ! 1:30� eV; (34)

where

jmeej � jm1�Kexp11�
2e�2i�1 �m2�Kexp12�

2e�2i�2

�m3�Kexp13�
2e�2i�3 j: (35)

Using the parameterization of Eq. (9) and approximating
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s13 � 0 (which is reasonable in the present model since
m3 is never much larger than m1 or m2), this can be
written simply as:

jmeej � ��c212m1�
2 � �s212m2�

2

�2m1m2c
2
12s

2
12 cos�!1 �!2�


1=2: (36)

Here Eqs. (29) were also used. Reading s212 from (16) then
enables us to calculate jmeej for each line of Table I. It is
seen that jmeej decreases smoothly with decreasingm3 for
each of the type I and type II solutions. All the values of
m3 listed are consistent with the present bound. It is
interesting that an improvement of the experimental
bound by an order of magnitude [23] would provide a
good test of the model.
V. ESTIMATE FOR LEPTOGENESIS

When one adopts the SO(10) motivation for the present
ansatz, it turns out that the resulting model predicts in a
simple way the properties of the heavy neutrinos which
are intrinsically contained in the SO(10) theory. This
feature may be used in connection with the leptogenesis
mechanism [14] of baryogenesis. According to this
mechanism, the CP violating and lepton number violat-
ing decays of the heavy neutrinos at a high temperature
(corresponding to the grand unification scale) in the very
early universe establish a lepton asymmetry. As the uni-
verse cools further, the (B� L) violating but (B� L)
conserving ‘‘sphaleron’’ interaction [24] converts this
into a baryon asymmetry which may be compared with
the observed ratio of baryons to photons in the universe.
There are many interesting discussions of this mechanism
in the literature [25–29]. Here, we will estimate the
-6
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dependence on neutrino masses and CP phases of the
predicted baryon asymmetry in the present model.

The starting point of this discussion is theYukawa term
of the Lagrangian density which describes the tree level
decay of a heavy Majorana neutrino, Nj (where the sub-
script denotes a three-valued generation index) to a Higgs
doublet member,

�c �

� ��0

���

	
(37)

plus the appropriate member of the left-handed lepton
doublet,

Li �

�
�iL
eiL

	
: (38)

Then the Yukawa term reads:

L Yukawa � �
X

�Li)ij�
cNj � H:c:; (39)

where )ij is the matrix of Yukawa coupling constants. We
can simplify this expression, which is supposed to con-
tain the fermion fields in prediagonal bases, in several
ways. First, at the high temperature for which the N
decays are relevant, the phase transition to spontaneously
broken SU�2� � U�1� has not yet taken place. Thus we can
consider the light fermions in Li to be massless and there
is no need to insert suitable unitary matrices to bring the
light field mass matrices to diagonal form. However the
heavy neutrino, N should be related to the physical field N̂
with a unitary matrix U as N � UN̂. As mentioned in
Sec. I, if the SO(10) model contains only a single 126
Higgs type field (although any number of 10’s and 120’s
are allowed) and also if the first (non-seesaw) term in
Eq. (4) is dominant, the prediagonal mass matrices for the
light and heavy neutrinos must be proportional to each
other and the diagonalizing matrix U must be the same
one which appears in Eq. (13). Approximating, as we did
earlier, � to be essentially the unit matrix we can set U �
K. If the model of Sec. IV is adopted, for example, we can
specify K, including CP phases, to a fair approximation
for each assumed value of m3. Finally we approximate the
matrix of Yukawa couplings by:

)ij �
�ijm

U
i

r0h�0i
; (40)

where mU
i are the three charge 2=3 quark masses at a low

energy scale, r0 � 3 is a suitable factor for running these
masses from the grand unified scale to the low energy
scale and h�0i � 246=

���
2

p
GeV. Note that LYukawa is the

term responsible for generating the neutrino Dirac ma-
trix, MD in Eq. (4). In the simplest approximation to the
SO(10) theory the charge 2=3 quark mass matrix and
neutrino Dirac mass matrix are proportional to each other
and diagonal (since the quark mixings are after all small).
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Putting these things together we arrive at the ‘‘effec-
tive’’ term for calculating the heavy neutrino decays (at
grand unified scale temperature):

L Yukawa � �
X

�Lihij�cN̂j � H:c:; (41)

where

hij �
mU

i Kexpije
�i�j

<�0 > r0
: (42)

The quantities needed for the calculation are the matrix
products �hyh�ij. We may further simplify these products
by noting that the top quark mass is much heavier than
the others so the products approximately become hyi3h3j.
Specifically, the diagonal products are:

�hyh�11 � �s12s23=r
0�2;

�hyh�22 � �c12s23=r
0�2;

�hyh�33 � �c12=r0�2;

(43)

where we used the numerical coincidence that mt � h�i.
Furthermore, we set s13 � 0 in agreement with the model
of Sec. IV [See the parameterization of Eq. (9)].
Numerically, with Eq. (16) and �r0�2 � 10 one obtains
�hyh�11 � 1:50� 10�2, �hyh�22 � 3:50� 10�2 and
�hyh�33 � 7:00� 10�2. In terms of these diagonal prod-
ucts, the tree level widths of the heavy neutrinos are given
by,

&i �
�hyh�iiMi

8%
; (44)

where Mi is the mass of the ith heavy neutrino. The off-
diagonal products play an important role in determining
the lepton asymmetry. They are explicitly given in the
model of Sec. IV as:

�hyh�12 � �s12c12s223e
i��1��2�=�r0�2;

�hyh�13 � s12s23c23c13ei��1��3�=�r0�2;

�hyh�23 � �s23c12c23c13e
i��2��3�=�r0�2;

�hyh�ij � �hyh��ji;

(45)

where the CP phases �i depend on the choice of m3 as
explained in Sec. IV. Numerically, one has �hyh�12 �
�2:29� 10�2exp�i��1 � �2�
, �hyh�13 � 2:74�
10�2exp�i��1 � �3�
 and �hyh�23 � �4:18�
10�2exp�i��2 � �3�
. In arriving at these estimates from
Eq. (16) we arbitrarily took all the signs of the trigono-
metric functions to be positive. This will not lead to any
ambiguity since, for the application of interest, the off-
diagonal products must be squared.

The lepton asymmetry �i, due to the decay of the ith
heavy neutrino is defined as the ratio of decay widths:

�i �
&�Ni ! L��� � &�Ni ! �L� ���

&�Ni ! L��� � &�Ni ! �L� ���
: (46)
-7
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In this formula L�� stands for all pairs of the types
e�j ��� and �j � ��0. This is an effect which violates C
and CP conservation, in agreement with the requirement
of Sakharov [25]. To get a nonzero value one must include
the interference between the tree diagram from Eq. (41)
and the one loop diagrams (of both ‘‘self-energy’’ and
‘‘triangle’’ types). If the masses of the heavy neutrinos
are well separated the result [14,30] is:

�i �
1

8%

X
j�i

Im��hyh�ij�hyh�ij


�hyh�ii
f�M2

j =M
2
i �;

f�x� �
���
x

p
�

1

1� x
� 1� �1� x� ln�1� 1=x�

�
:

(47)

Note that the contribution to the lepton asymmetry of the
lightest heavy neutrino is expected to be the most impor-
tant one for the final calculation of baryon asymmetry
[26].

Now let us make numerical estimates for the lepton
asymmetries when all CP violation is due to Majorana
phases (Sec. IV). From Eq. (5) we relate the heavy neu-
trino masses to the light neutrino masses simply as:

Mi � cmi; (48)

where c is a real, positive constant. This equation has
earlier been used [31] for the study of leptogenesis in the
framework of a left-right symmetric model. It should be
noted that renormalization group effects [32] will modify
the exact proportionality of the light and heavy neutrino
masses as well as the equality of the corresponding
diagonalizing matrices. This should be taken into account
for a more accurate treatment. In the model of Sec. IV the
third neutrino is typically somewhat further away in mass
from the other two, which are always relatively close. For
example, in the type II situation, m3 is the lightest of the
light neutrino masses so M3 will be the lightest of the
heavy neutrino masses and the contribution to the lepton
asymmetry is �3. Using Eqs. (47), (48), (45) and (30) we
obtain:

�3 � ��4:27f��m1=m3

2� sin!2

�9:94f��m2=m3

2� sin!1
 � 10�4: (49)

Notice that c has canceled out in this formula and
also cancels out in the determination of the angles !i.
Thus the lepton asymmetry given by this formula does
not depend on the overall scale of the heavy neutrino
masses.

In the type I case, the heavy neutrino spectrum consists
of two nearly degenerate lighter states, (N1, N2) and a
heavier state, N3. For the corresponding asymmetries �1
and �2, the diagrams involving self-energy type correc-
tions are enhanced since an internal heavy neutrino line
will be close to its mass shell. The formulas [30] thus, for
greater accuracy, involve the decay widths and we will
approximate:
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�1 �
Im��hyh�12�hyh�12


�hyh�11�h
yh�22

�M2
1 �M2

2�M1&2

�M2
1 �M2

2�
2 �M2

1&
2
2

;

�2 �
Im��hyh�12�h

yh�12


�hyh�11�hyh�22

�M2
1 �M2

2�M2&1

�M2
1 �M2

2�
2 �M2

2&
2
1

:
(50)

Again, we may replace the heavy neutrino masses using
Eq. (48) and note that the factor c cancels out. Inserting
numbers, we obtain:

�1 � �
1:39� 10�3 sin�!1 �!2�m1m2�m

2
1 �m2

2�

�m2
1 �m2

2�
2 � 1:94� 10�6m2

1m
2
2

�2 � �
5:96� 10�4 sin�!1 �!2�m1m2�m2

1 �m2
2�

�m2
1 �m2

2�
2 � 3:56� 10�7m2

1m
2
2

:

(51)

The values of all these asymmetries for the range of
possibilities are listed in the last column of Table I.

Furthermore it must be noted that, owing to the non-
uniqueness of sign for all of Eqs. (30), reversing the signs
of all the lepton asymmetries also yields a solution cor-
responding to our initial ansatz.

Although the scale of the heavy neutrinos has been
seen to cancel out of the formulas (49) and (51) for the
lepton asymmetries in favor of their ratios (which are the
same as those of the light neutrinos in this model), there is
nevertheless a consistency condition implied by the
SO(10) motivation for the starting ansatz. This arises
since Eq. (39) is not only the source of the lepton asym-
metry but also provides the seesaw contribution to the
light neutrino masses. For our motivation we assumed
that this contribution was dominated by the first term of
Eq. (4). To make a rough estimate of what this means we
assume all matrices of the seesaw term to be diagonal.
Then the value of c1=2 defined in Eq. (48) should be
greater than mU

i =�mir
0� in order that the first term of

Eq. (4) be greater than the second term. In the case of
the type I solution with m3 � 0:06 eV shown in Table I,
this implies that the lightest heavy neutrino should be
heavier than about 2:6� 1013 GeV. For the case of the
type II solution with m3 � 7� 10�4 eV, the lightest
heavy neutrino should be heavier than about
4:4� 1015 GeV.

The goal of the baryogenesis problem is to understand
the ratio -B � nB=n", the net baryon number density
divided by the photon density. Experimentally, this quan-
tity is found [21], from the study of big bang nucleosyn-
thesis, to be

-B � �6:5� 0:4� � 10�10: (52)

To obtain nonzero -B, it is not sufficient, as pointed out
by Sakharov [25], just to have nonzero values of the
lepton asymmetry �i, defined in Eq. (46). In addition,
the CP violating decays of the heavy neutrinos must
occur out of thermal equilibrium. A detailed treatment
requires solution of the Boltzmann evolution equations
for the system [33]. Here we shall make a rough estimate
-8
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which we use to draw what might be a fairly robust
conclusion.

First, we should remark that the baryon asymmetry
generated by the sphaleron mechanism would be about
�1=3 [34] (for a review see [26]) of an initial lepton
asymmetry. The lepton number violating decays of the
ith heavy neutrino are usually roughly taken to be out of
equilibrium if the decay rate &i in Eq. (44) is less than the
Hubble rate,

H � 1:7g1=2� T2=MP; (53)

where g� � 100 is the number of effective light degrees of
freedom at the leptogenesis scale, T is the temperature
(corresponding to the mass of the decaying heavy neu-
trino) and MP � 1:22� 1019 GeV. In the present model
this ratio takes the explicit form:

Ki �
&i

H
�

�hyh�iiMP

427Mi
; (54)

which is seen to be inversely proportional to Mi. The net
baryon asymmetry is estimated as [26],

-B � �
7

3g�

X
�iDi; (55)

where the Di are suppression factors to be obtained by
numerical solution [33] of the Boltzmann equations. It is
generally accepted that only the contributions of the
lightest heavy neutrinos should not get washed out; thus
we will set Di � 0 for the heavier neutrinos. If 10<Ki &

106, the suppression factor is often approximated by the
analytic form [35]

Di �
0:3

Ki�ln�Ki�

0:6 : (56)

When Ki < 1, the suppression factor is expected to be of
order unity if Mi is not too large. However, as Mi gets
larger there is a sizeable washout effect [36].

Glancing at the last column in Table I and comparing
with the experimental value of -B in Eq. (52) as well as
Eqs. (55) and (56) suggests that the values of -B obtained
for typical values of the assumed light neutrino mass
parameter m3 would be considerably larger than the
experimental baryon asymmetry. However, we can ex-
pect to be able to obtain agreement with the experimental
value since, as discussed in Sec. IV, we may make the
Majorana CP phases as small as we like by continuously
tuning the independently chosen variable, m3 so that the
triangle of mass vectors gets arbitrarily close to 1 of the
two degenerate straight line cases which causes A in
Eq. (33) to vanish. Thus the solutions of the model which
would be consistent with the observed baryon asymmetry
correspond to neutrino masses more or less close the real
cases of either Eq. (18) or Eq. (19).

The qualitative points: (i) that in the present model the
value of the free parameter, m3 can always be tuned to be
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arbitrarily close to its values for the two real solutions (so
that the CP violation and hence leptogenesis strength
becomes as small as desired) and (ii) that the character-
istic lepton asymmetries, �i for values of m3 away from
these two real solutions are rather large, comprise the
main result of our discussion of the application of the
Tr�M�� � 0 ansatz to the baryogenesis problem. These
points lead to the expectation that the physical value of
m3 is likely to be close to 1 of the two values in Eq. (18) or
Eq. (19) and that this conclusion might persist even when
our simplifications are not made. A more accurate treat-
ment would include the features: (a) effect of nontrivial
charged lepton mixing matrix, (b) renormalization group
induced deviations from the clone treatment of the heavy
Majorana neutrinos and (c) full integration of the
Boltzmann evolution equations. Even though our main
conclusion is a qualitative one, it seems nevertheless an
interesting exercise to find what values of light and heavy
neutrino masses correspond to the correct order of mag-
nitude of the observed baryon asymmetry. Note that the
seeming great accuracy of the entries in Table I is not
meant for precise comparison with experiment, but for
comparison of the results of different m3 choices with
each other.

Specifically, consider the tuned type I solution in
Table I with m3 � 0:059 27 eV. We noted in the discus-
sion after Eq. (51) that this would correspond to heavy
neutrino clone masses �M1;M2;M3� greater than about
�2:60; 2:70; 5:27� � 1013 GeV, respectively. We assume
that the two lighter neutrinos are the important ones
and set D3 � 0. The ratios �K1; K2� defined in Eq. (54)
would then be less than about (16.5, 37.1) and would result
in suppression factors �D1; D2� greater than (0.010,
0.0037). Using Eq. (55) and Table I for �1 and �2 then
gives j-Bj � 5:4� 10�10, close to the experimental value
in Eq. (52). This can be adjusted by further tuning m3 or
to some extent by varying the overall mass scale of
�M1;M2;M3�.

For the type II case, first consider the solution in Table I
with m3 � 0:0007 eV. As discussed before, this would
correspond to heavy neutrino clone masses �M1;M2;M3�
greater than about �320 320 4:4� � 1015 GeV. In this case,
M3 is the lightest of the three heavy neutrinos and is
assumed to be the relevant one. We thus set D1 � D2 � 0.
The ratio K3 given in Eq. (54) is then about 0.45 and
indicates that the lightest heavy neutrino is, as desired,
decaying out of equilibium. However, because its mass is
considerably higher than that of the type I case just
discussed, there is more wash out [36], D3 � 3:5�
10�5. Reading �3 from Table I then gives -B �
5� 10�13, about 3 orders of magnitude too small. Thus
we must raise the value of m3 a bit. Backing off a little to
the case m3 � 0:005 eV in Table I increases the value of
�3 and also allows us [in line with the dominance of the
first term in Eq. (4)] to choose the lower bound of M3 to
-9
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be smaller, around 6� 1014 GeV. This results in an esti-
mate j-Bj � 16� 10�10, which is the correct order of
magnitude. One might wonder whether the contributions
to -B from �1 and �2 are completely washed out in a case
like the present. However, even if they were dominant, it
would just require us to tune more closely toward small
m3.

Thus, if the model of CP violation with just the
Majorana phases is correct, the magnitude of the baryon
to photon ratio can be understood when either the sum of
the three light neutrino masses is about 0.118 eV and
jmeej � 0:030 eV (type I) or the sum of the three light
neutrino masses is about 0.107 eV and jmeej � 0:021 eV
(type II). In both cases the CP violating Majorana phases
are extremely small. That might suggest a possible model
in which a small CP violating perturbation due to some
separate effect modifies an otherwise CP conserving
lepton sector.

We can also calculate the baryon to photon ratio in the
model of Sec. III, where � is the only CP violating phase.
There we noted that the only possible choices of � con-
sistent with our ansatz satisfy sin2� � 1. Then we have
the type I solution for light neutrino masses given in
Eq. (25) and the type II solution given in Eq. (26). The
corresponding CP violation factors are now (to first order
in the small parameter s13) for the type I case:

Im��hyh�12�hyh�12
 �
s13 sin� sin�2�12�

�r0�4
c23s323;

Im��hyh�13�h
yh�13
 � �

s13 sin� sin�2�12�

�r0�4
s23c

3
23;

Im��hyh�23�h
yh�23
 � �Im��hyh�13�h

yh�13
;

(57)

and for the type II case:

Im��hyh�12�h
yh�12
 � �

s13 sin� sin�2�12�

�r0�4
c23s

3
23;

Im��hyh�13�hyh�13
 �
s13 sin� sin�2�12�

�r0�4
s23c

3
23;

Im��hyh�23�hyh�23
 � Im��hyh�13�hyh�13
;

(58)

As in the cases where only the Majorana phases contrib-
ute to the CP violation, the predicted lepton asymmetries,
�i will typically lead to a value of the baryon to photon
ratio much larger than the experimental one. In the
present case it is not possible to fine tune �. The only
possibility would be to fine tune s13 to an extremely small
value. This seems more artificial since s13 is not required
to vanish in the CP conserving situation. In any event, an
experimental measurement of nonzero s13 would, practi-
cally speaking, rule out this case as a candidate for
leptogenesis.
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VI. DISCUSSION AND SUMMARY

In this paper, we investigated an ansatz which corre-
lates information about the four quantities in the light
neutrino sector which are not yet known from experi-
ment; namely, the absolute mass of any particular neu-
trino, the ‘‘conventional’’ CP violation phase and the two
Majorana phases. Of course, with input from analyses of
neutrino oscillation experiments, the masses of the other
two neutrinos can be found, up to a discrete ambiguity, if
the mass of one is specified. The results of the present
paper can be used for calculating many quantities of
experimental interest like the neutrinoless double beta
decay amplitude factor mee (presented in Sec. IV) and
various lepton number violating decays.

The ansatz is not completely predictive, unless some
assumptions are made. We first reviewed the case
of assumed CP conservation (where just the three
neutrino masses are obtained). Then we showed that
if only the conventional CP violation phase is assumed
to be nonzero, its value is fixed by the ansatz to
be maximal. A possibly more interesting case appears
if we assume that only the two Majorana phases are
nonzero. This enables us to scan the limited allowed
range of assumed neutrino mass, m3 (say) and find the
other two neutrino masses as well as the two Majorana
phases for each value of m3. The result seems to cut
through a ‘‘cross section’’ of interesting possibilities
which are described in a simple way. The still more
complicated case without setting any of the three CP
phases to zero gives a two parameter family of solutions
and will be treated elsewhere. Another (common) as-
sumption we made for a first analysis is that the measured
lepton mixing matrix is dominated by the neutrino factor.
This is consistent with the finding in recent years that the
mixing in the neutrino sector is apparently much larger
than the mixing in the quark sector (which in models is
usually relatively small and similar to that of the charged
lepton factor).

It seems relevant to discuss briefly the status of
the motivations for the complementary ansatz we
are using. One motivation, based on a loop mechanism
for generating neutrino masses was discussed recently
by He and Zee [9]. Our motivation [7] was based on
the grand unification group SO(10). This group is well
known to have the elegant feature that it accommodates
one generation of elementary fermions as well as an extra
(now desired) neutrino field in its fundamental spinor
irreducible representation. Naturally, there are many
possibilities for doing a detailed calculation using this
group. One may ask whether it should be regarded
as being derived from a superstring theory, whether
it should be supersymmetric, whether the symmetry
breakdown should be dynamical, whether the symmetry
breakdown should be induced by Higgs fields and if
so what kind and how many, etc.? We focus, in our
-10
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motivation, on the conventional possibility of using Higgs
fields since it seems almost kinematical now (although
since no Higgs field has yet been seen one should keep
an open mind). Of course, there have been many interest-
ing treatments along these lines [37]. Our ansatz is sug-
gested by a relation involving only the neutrino mass
matrix which might be true (or at least approximately
correct) in a large number of models. In SO(10), tree level
masses from a renormalizable Lagrangian can be ob-
tained by using any number of Higgs mesons belonging
to the 10, 120, and 126 dimensional representations.
However, examining the form of the predicted mass
matrices shows that the following fairly general relation
[38] holds:

T r�MD � rME� / Tr�ML�; (59)

for any number of 10’s and 120’s but only a single 126
present. Here MD and ME are, respectively, the prediag-
onal mass matrices of the charge �1=3 quarks and charge
�1 leptons while r � 3, as previously mentioned. ML,
which arises from the 126 Higgs field Yukawa couplings,
is the non-seesaw part of the light neutrino mass matrix
which appears in Eq. (4). Taking traces cancels the con-
tributions (antisymmetric matrices) of any 120 Higgs
multiplets to the left-hand side. Then, assuming the trans-
formations which bring MD and ME to diagonal form to
be roughly close to the identity we observe that the left-
hand side is approximately equal to mb � rm�, which is
about zero. In fact this is a characteristic prediction of
grand unification. In turn the right-hand side gives us the
starting ansatz when it is assumed that the non-seesaw
term dominates in Eq. (4). Of course, if this domination is
to hold the masses of the heavy neutrinos should not be
too low. The present paper is in effect exploring the range
of possibilities which exist when these assumptions are
made in SO(10) models. An interesting question is
whether this kind of limit or the pure seesaw limit gives
a better description of nature, even if both terms are
actually required.

We remark that SO(10) also gives another similar rela-
tion,

T r�MU � r0MD� / Tr�ML�; (60)

when only one 126 Higgs field exists. Here MU and MD
respectively denote the prediagonal charge 2=3 quark
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mass matrix and the prediagonal neutrino ‘‘Dirac’’ ma-
trix connecting the heavy and light neutrino fields.

An intriguing way to learn more about CP violation in
the lepton sector is the study of the leptogenesis mecha-
nism of baryogenesis. We saw that the treatment of this
process simplifies when one adopts the present SO(10)
motivation. Then the light neutrino mass matrix M� and
ML are approximately equal and proportional (due to the
assumption of only one 126 field in the theory) to the
heavy neutrino mass matrix MH. The only free parameter
for the heavy neutrinos is their overall mass scale and this
should not be too small to preserve non-seesaw domi-
nance. We showed in Sec. V that it is easy to estimate the
lepton asymmetry parameters �i for a ‘‘panorama’’ of
values of the independent variable m3 since they are
actually independent of the overall heavy neutrino mass
scale. As far as the resulting baryon to photon ratio, -B
[parameterized in Eq. (55)] is concerned, the typical
values of the �i give -B much greater than the experi-
mental one for suppression factors Di of order unity. We
observed that if the suppression factors are not too small
one can therefore always choose a value of m3 close
enough to one of the two essentially different CP con-
serving solutions so that the Majorana phases are small
enough to get experimental agreement for -B. Using
estimates of the suppression factors taken from other
earlier studies, we noted that this conclusion seems rea-
sonable. Of course the study of the suppression factors by
solving the Boltzmann evolution equations is an impor-
tant topic which involves many subtleties and would
repay further work in the present model. Finally, the
possible indication of very small CP phases might suggest
a model in which the CP violation in the lepton sector has
a separate identifiable source.
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