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Influence of the back reaction of the Hawking radiation upon black hole quasinormal modes

R. A. Konoplya*
Department of Physics, Dniepropetrovsk National University, St. Naukova 13, Dniepropetrovsk 49050, Ukraine

~Received 14 April 2004; published 18 August 2004!

We consider the BTZ black hole surrounded by the conformal scalar field. Within general relativity, the
resonantquasinormal~QN! modes dominate in the response of a black hole to external perturbations. At the
same time, the metric of an evaporating black hole is affected by the Hawking radiation. We estimate the shift
in the quasinormal spectrum of the BTZ black hole stipulated by the back reaction of the Hawking radiation.
For the case of the (211)-dimensional black hole the corrected~by ;\) metric is anexact solution @C.
Martines and J. Zanelli, Phys. Rev. D55, 3642~1997!#. In addition, in this case quantum corrections come only
from matter fields and not from graviton loops, that is, one can solve the problem of influence of the back
reaction upon the QN ringing self-consistently. The dominant contribution to the corrections to the QNMs is
simply a shift ofv2 proportional to2(L/M )3/2(4L21M )\. It is negligible for large black holes but essential
for small ones, giving rise to considerable increasing of the quality factor. Thus, the small evaporating black
hole is expected to be a much better oscillator than a large one.
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In classical regime a black hole does not emit anything
is characterized by its three parameters: mass, charge,
angular momentum. When perturbing a black hole the ba
ground geometry undergoes damping oscillations domina
at late times by the so calledquasinormalmodes. They are o
a great importance because they depend upon the abov
rameters of a black hole only and not on the way of exc
tion. Thus these modes represent the characteristic reson
spectrum of a black hole response~see@1# for a review!. The
QN modes have gained considerable interest owing to t
interpretation in ADS-CFT correspondence@2–6#, and loop
quantum gravity~see for instance@7# and references therein!.
Recent investigation of black holes within brane mod
stimulated the calculation of QN modes of different high
dimensional black holes~see@8# and references therein!. In
addition, the QN radiation of dilaton black holes have be
recently studied in@9#

At the same time a black hole radiates energy with th
mal spectrum, when taking into account the effect of qu
tized fields near the black hole. Thus a black hole can exis
a thermal equilibrium with a heat bath composed of quant
fields interacting with the black hole geometry@10#. In four
dimensions the back reaction problem is solved usually
follows: one considers the expectation value of the renorm
ized ~approximate! stress-energy tensor in appropria
‘‘vacuum’’ state @11# as the source in the Einstein equatio
and solves these equations self-consistently for the me
@12#.

In four dimensions the corrected metric diverges at la
r, and in order to restrict cumulative effect from the correc
geometry, one need to put a shell outside of which the
ometry is ‘‘uncorrected.’’ As a result the final metric insid
the shell contains a constant, which is determined by bou
ary conditions at the shell. The latter is assumed to be po
at some fixed distance from the event horizon. The pict
significantly depends upon this boundary condition at
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shell. Thus the two models are generally accepted. F
when one specifies the total energy of the system at the s
That is microcanonical ensemble. The second choice, a
nonical ensemble, is to fix the temperature at the shell~see
@13# for recent references!. If one would like to find the QN
modes of such ‘‘corrected’’ metric one have to deal with
step function~or delta function! in the corresponding effec
tive potential, at the radius of the shellr 0. This delta-
function would crucially change the eigenvalues to be de
mined. The search of QN modes for such a ‘‘dirty’’ blac
hole should be done in a model independent way, in or
for example, that the found modes would not depend up
r 0. What is even more important in four dimensions, tha
taking into consideration corrections from quantized fields
order \, one must include corrections of the same ord
coming from quantum gravity.

Fortunately, in 211 dimensions the situation is muc
easier. First of all, the 211 gravity has no propagating de
grees of freedom and at each point the Riemann tenso
completely determined by the matter source there. A qu
tum gravity in 211 dimensions is renormalizable and fini
@14#. Thus the only radiative corrections to the geometry
coming from quantum excitation of the matter fields, and,
perturbative expansion receives no corrections from grav
loops @14#. At the same time there is a useful black ho
solution in three dimensions with negative cosmological c
stant, the Banados-Teitelboim-Zanelli~BTZ! black hole@15#.

The QN behavior of asymptotically anti–de Sitter~ADS!
black holes@2,5# crucially depends upon the black hole si
relative to the ADS radius: for large BHs the QN modes a
proportional to the radius of a black hole@2#, while for small
black holes they approach the modes of the empty A
space-time@3#. The ADS space-time forms an effective co
fining box, and the potential diverges at spacial infinity. T
case of conformal scalar field is different since the poten
approaches a constant at infinity. That is why the QN beh
ior of conformal scalar field is different from that of th
‘‘ordinary’’ minimally coupled field studied in@2–4#. The
QN modes of the BTZ black hole were calculated for co
©2004 The American Physical Society03-1
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formal scalar field in@16#, and for nonconformal scalar, elec
tromagnetic and Dirac fields in@6#.

Consider the system consisting of the BTZ black hole a
the conformal scalar field surrounding it. Let us find out wh
will happen with QN modes which govern the decay of th
conformal scalar field if taking into account the back react
of quantum radiation of the same field upon the surround
geometry. For this case and transparent boundary condit
at infinity the stress-energy tensor^Tmn& was calculated in
@17#. TheO(\) correction to the black hole geometry due
the radiative conformal field is governed by the semiclass
equations:

Gmn1Lgmn5k^Tmn&. ~1!

An exactsolution of these equations was found by Martin
and Zanelli in@18#:

ds252 f ~r !dt21 f 21~r !dr21r 2du2,

f ~r !5S r 2L2M2
2l pF~M !

r D . ~2!

HereF(M ) is determined in the following way@17#:

F~M !5
M3/2

2A2
(
n51

`

e2 ind
cosh@2pnAM #13

~cosh@2pnAM #21!3/2
, ~3!

whered is an arbitrary phase.
We usedG51/8, M can be associated with the black ho

mass,l p5\/8 is the Planck mass in three dimensions,
Planck massmp5\/ l p58 is independent of\. The series
~2! converges exponentially for anyM.0. For M@1 the
first term dominates the seriesF(M );e2A2pM→0 and the
BTZ black hole is recovered. The metric~2! is an exact
solution of the back reaction problem for the one-loop eff
tive energy momentum tensor of a scalar field conforma
coupled to gravity. Formally the metric~2! coincides with an
exact solution for the BTZ black hole ‘‘dressed’’ by confo
mal scalar field@19#.

Next, we shall consider the corrected metric~2! as a back-
ground for conformal scalar field and find the correspond
QN spectrum. The conformally coupled scalar wave equa
has the form

¹2F~ t,r ,u!5
1

8
RF~ t,r ,u!. ~4!

After the change of the wave functionF5C/Ar , and the
radial coordinatedr* 5dr/ f (r ), and, separation of angula
and time coordinatest(C;eivt) and u (C;eiLu) one
comes to the wave equation

S d2

dr* 2
1v22VD C~r * !50, ~5!

where the potentialV has the following form:
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V5S M14L2

4r 2
2

3l pF~M !

2r 3 D f ~r !. ~6!

In the considered range of parameterM, this potential as a
function of r * approaches its maximum atr * 50 ~spacial
infinity! and goes to zero atr * 52` ~horizon! without any
barriers near the black hole horizon~as it takes place for
conformal scalar field around SAdS black hole@16#!. Thus
the effective potential of the quantum corrected BTZ bla
hole has the same features as that of the ‘‘pure’’ BTZ bla
hole.

In asymptotically flat space-time the QN modes are de
mined as the eigenvaluesv such that, under the choice of th
positive sign of the real part ofv, QNMs satisfy the follow-
ing boundary conditions

C~r * !;C6exp~6 ivr * !, r * →6`, ~7!

corresponding to purely ingoing waves at the event horiz
and purely outgoing waves at spacial infinity. In our case
space-time is asymptotically anti–de Sitter and the appro
ate boundary condition at spacial infinity is the Dirichlet o
@20#, while at the horizon it is, certainly, the requirement
purely ingoing waves.

From here and on, in order to find the dominant contrib
tion to the QN spectrum fromO(\) correction to the BTZ
space-time, we shall neglect the order ofl p higher than first.
Thus inverting ther coordinate as a function ofr * we find
up to the first order ofl p :

r ~r * !5AM

L

11a2

12a2
1

F~M !

2M S 22
16~ ln a1 ln~a11!!

a21a2212
D l p

1O~ l p!, ~8!

where a5eALMr* . The r * goes from2` to 0 as r goes
from the event horizon to infinity. Thus the valueeALMr* is
always less than 1 and we can, following the paper@16#,
expand the effective potential into series of powers ofa. The
first term, as it was shown in@16#, gives the dominant QN
behavior with good accuracy. Wishing to estimatedominant
contribution to the shift of the QN spectrum we shall
restricted here by considering corrections greater t
O( l p

2 ,a4,a2l p). For large black holes it is understood th
next terms ina2 are more important than even first corre
tion ;\. Yet, in the regime of small black hole, where th
back reaction is significant, the higher order corrections
a2 is less important than; l p corrections. Thus, the approx
mated potential we shall investigate, has the form

V~r * !5
~4L21M !F~M !

S M

L D 3/2 l p1~4L21M !Le2ALMr*

1O~ l p
2 ,a4,a2l p!. ~9!

The QN modes for ‘‘uncorrected’’ potentialV0(r * )
5V0e2ALMr* , V05(4L21M )uLu, were calculated in@16#.
3-2
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Comparison of the results obtained throughV0(r * ) with
higher order corrections ina shows that the dominant beha
ior is stipulated by this approximated potentialV0(r * ) @16#.
In fact, the above potentialV given by the formula~9! differs
from V0(r * ) only by a constant shift @(4L2

1M )F(M )/(M /L)3/2# l p , which simply can be thought o
as a shift ofv2. Therefore, an exact solution of the wav
equation~5! will have the similar form as that obtained i
@16#. Namely, the Green functionG(r * ,j;ṽ), satisfying the
wave equation

S d2

dr* 2
1ṽ22VD G̃~r * ,j;ṽ !52d~r * 2j!, ~10!

has the form

G~r * ,j,r * ;ṽ !

5
I n~z~j!!@ I n~Z0!Kn~z~r * !!2Kn~Z0!I n~z~r * !!#

ALMI n~Z0!
.

~11!

Here

ṽ25v22
~4L21M !F~M !

S M

L D 3/2 l p , ~12!

n52 i ṽ/ALM , z5A V0

LM
a, Z05A V0

LM
.

The QN modes are the poles of this Green function a
thereby are zeros of the modified Bessel function

I n~Z0!50. ~13!

We see~Figs. 1, 2, 3! that this shift, being negligible for large
black holes, becomes significant for small black holes a
gives rise to increasing of the real oscillation frequency a
to decreasing of the damping rate in this regime. Theref
the quality factor, which is proportional touvReu/uv Imu, is
increasing considerably when one goes over to conside
of smaller mass of the black hole and, at the same ti

FIG. 1. vRe ~top! and v Im ~bottom! parts of v for BTZ BH
without back reaction~box, diamond! and with back reaction~star,
triangle! (L52, L530, d50, n50) as a function ofM.
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including the back reaction of the Hawking radiation. Fro
this, one can conclude that the small evaporating black h
is expected to be much better oscillator than a large o
Remember, that the quality factor of the large Schwarzsc
black hole is of orderL at the fundamental overtone whic
is, for instance, roughly 106 times is less than that of a
atom. That is, the large black hole is a very poor oscilla
@21#. Note also, that for very small mass, next corrections
\ should be considered in the semiclassical equations.

The QN frequencies shown in Figs. 1, 2, 3 are fou
under the Dirichlet boundary conditions as closest to
vRe-axis poles of the modified Bessel function. Neverth
less, the shift given by the formula~12! does not depend
upon the boundary conditions to be chosen. The depend
on L of the QNMs is demonstrated on Fig. 4. We see t
both vRe andv Im are roughly proportional toL.

The influence of the back reaction on higher overtone
simply the above shift given by Eq.~12! and certainly is
negligible for modes with huge imaginary part. The high
overtones can be found by extensive numerical search o
zeros of the modified Bessel function. The higher overto
behavior strongly depends upon the value ofz: while first
several overtones have both nonvanishing real and imagi
parts, the higher ones have tiny real parts, and the morez, the
greater the number of modes with nonvanishing real p
Asymptotically, for highly damping modes, governed by
approximated potential~9!, one has

Reṽ→0, Imṽ→n1z21 as n→`. ~14!

FIG. 2. vRe ~top! and v Im ~bottom! parts of v for BTZ BH
without back reaction~box, diamond! and with back reaction~star,
triangle! (L52, L530, d50, n51) as a function ofM.

FIG. 3. The ratiovRe/v Im for BTZ BH without back reaction
~star! and with back reaction~diamond! (L52, L530, d50, n
50) as a function ofM.
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Note that this asymptotic regime comes very rapidly, i.e
takes place already at fifth overtone forz53 and at some-
what greater overtone number for greaterz. Let us hope that
the same asymptotic behavior will take place when con

FIG. 4. vRe ~top! andv Im ~bottom! parts of QNM without~box,
star! and with~diamond, triangle! back reaction for different value
of L, (M50.2, d50, n50).
J.
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ering complete effective potential with no approximation
This quick falling into the asymptotic regime repeats t
high overtone behavior of nonconformal scalar field arou
ADS black hole@4#.

Note that under the metric perturbations of the abo
mentioned conformally dressed black hole@19# there appear
the physically accepted growing gravitational modes if i
posing Dirichlet boundary conditions@22#. Even though this
indicates upon classical instability of the black hole, the co
sidered here spectral problem for the system, consisting
the black hole and the conformal scalar field, remains c
sistent since we are interested in study of decay of the sc
field only and there is no coupling with gravitational pertu
bations. For realistic 4-dimensional models such instabi
would certainly ‘‘cut off’’ the motivation of study of the QN
spectrum. In three dimensions it is much more important t
we have consistent quantum corrected solution allowing
avoid considering the problem in the realm of quantum gr
ity. After all, the obtained shift ofv2 does not depend upo
boundary conditions which are very controversial in anti–
Sitter space-time@20,16,5,23#.
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