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Influence of the back reaction of the Hawking radiation upon black hole quasinormal modes
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We consider the BTZ black hole surrounded by the conformal scalar field. Within general relativity, the
resonanguasinormal(QN) modes dominate in the response of a black hole to external perturbations. At the
same time, the metric of an evaporating black hole is affected by the Hawking radiation. We estimate the shift
in the quasinormal spectrum of the BTZ black hole stipulated by the back reaction of the Hawking radiation.
For the case of the (21)-dimensional black hole the correctéoly ~7%) metric is anexactsolution [C.
Martines and J. Zanelli, Phys. Rev.35, 3642(1997]. In addition, in this case quantum corrections come only
from matter fields and not from graviton loops, that is, one can solve the problem of influence of the back
reaction upon the QN ringing self-consistently. The dominant contribution to the corrections to the QNMs is
simply a shift ofw? proportional to— (A/M)¥%(4L2+M)#. Itis negligible for large black holes but essential
for small ones, giving rise to considerable increasing of the quality factor. Thus, the small evaporating black
hole is expected to be a much better oscillator than a large one.
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In classical regime a black hole does not emit anything. Itshell. Thus the two models are generally accepted. First,
is characterized by its three parameters: mass, charge, amdthen one specifies the total energy of the system at the shell.
angular momentum. When perturbing a black hole the backThat is microcanonical ensemble. The second choice, a ca-
ground geometry undergoes damping oscillations dominatedonical ensemble, is to fix the temperature at the gsek
at late times by the so callegiasinormamodes. They are of [13] for recent referenceslf one would like to find the QN
a great importance because they depend upon the above paedes of such “corrected” metric one have to deal with a
rameters of a black hole only and not on the way of excitastep function(or delta function in the corresponding effec-
tion. Thus these modes represent the characteristic resonartoge potential, at the radius of the shell. This delta-
spectrum of a black hole responsee[1] for a review. The  function would crucially change the eigenvalues to be deter-
QN modes have gained considerable interest owing to theimined. The search of QN modes for such a “dirty” black
interpretation in ADS-CFT correspondeni@-6], and loop  hole should be done in a model independent way, in order,
guantum gravity(see for instancg7] and references thergin  for example, that the found modes would not depend upon
Recent investigation of black holes within brane modelsr,. What is even more important in four dimensions, that if
stimulated the calculation of QN modes of different highertaking into consideration corrections from quantized fields of
dimensional black holeésee[8] and references therginin order i, one must include corrections of the same order
addition, the QN radiation of dilaton black holes have beercoming from quantum gravity.
recently studied i9] Fortunately, in 2-1 dimensions the situation is much

At the same time a black hole radiates energy with thereasier. First of all, the 21 gravity has no propagating de-
mal spectrum, when taking into account the effect of quangrees of freedom and at each point the Riemann tensor is
tized fields near the black hole. Thus a black hole can exist icompletely determined by the matter source there. A quan-
a thermal equilibrium with a heat bath composed of quantumum gravity in 2+1 dimensions is renormalizable and finite
fields interacting with the black hole geomeftyQ]. In four  [14]. Thus the only radiative corrections to the geometry are
dimensions the back reaction problem is solved usually asoming from guantum excitation of the matter fields, and, the
follows: one considers the expectation value of the renormalperturbative expansion receives no corrections from graviton
ized (approximatg stress-energy tensor in appropriate loops[14]. At the same time there is a useful black hole
“vacuum” state[11] as the source in the Einstein equationssolution in three dimensions with negative cosmological con-
and solves these equations self-consistently for the metristant, the Banados-Teitelboim-Zan€BTZ) black hole[15].
[12]. The QN behavior of asymptotically anti—de Sitt&DS)

In four dimensions the corrected metric diverges at largeblack holeq2,5] crucially depends upon the black hole size
r, and in order to restrict cumulative effect from the correctedrelative to the ADS radius: for large BHs the QN modes are
geometry, one need to put a shell outside of which the geproportional to the radius of a black hd2], while for small
ometry is “uncorrected.” As a result the final metric inside black holes they approach the modes of the empty ADS
the shell contains a constant, which is determined by boundspace-timg3]. The ADS space-time forms an effective con-
ary conditions at the shell. The latter is assumed to be posefthing box, and the potential diverges at spacial infinity. The
at some fixed distance from the event horizon. The picturease of conformal scalar field is different since the potential
significantly depends upon this boundary condition at theapproaches a constant at infinity. That is why the QN behav-

ior of conformal scalar field is different from that of the
“ordinary” minimally coupled field studied in2—4]. The
*Email address: konoplya_roma@yahoo.com ON modes of the BTZ black hole were calculated for con-
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formal scalar field if16], and for nonconformal scalar, elec-
tromagnetic and Dirac fields if6]. V=
Consider the system consisting of the BTZ black hole and

the conformal scalar field surrounding it. Let us find out what . . .
In the considered range of parameldy this potential as a

will happen with QN modes which govern the decay of this N " . i - :
conformal scalar field if taking into account the back reactionfuncuon of r* approaches its maximum at =0 (spacial

of quantum radiation of the same field upon the surroundiniaﬁ”_ity) and goes to zero af = —< (horizon without any
geometry. For this case and transparent boundary conditiorR@'Tiers near the black hole horizdas it takes place for
at infinity the stress-energy tens()'FW> was calculated in conformal scalar field around SAdS black hols]). Thus

[17]. TheO(#) correction to the black hole geometry due to the effective potential of the quantum corrected BTZ black

the radiative conformal field is governed by the semiclassicahrl‘g:g has the same features as that of the “pure” BTZ black

equations:

M+4L2_3IpF(M)
4r? 2r3

f(r). (6)

In asymptotically flat space-time the QN modes are deter-
(1) mined as the eigenvaluassuch that, under the choice of the
positive sign of the real part ab, QNMs satisfy the follow-

An exactsolution of these equations was found by Martinesi"d Poundary conditions
and Zanelli in[18]: W(r*)~Coexp+iwrt), r*—+o, @

G, +Ag,,=«(T

;uz>'

— 2 -1 2 2 2
ds’=—f(r)dt+fH(r)dr?+rde?, corresponding to purely ingoing waves at the event horizon

and purely outgoing waves at spacial infinity. In our case the

f(r)=|r2A-m— 2l ,F(M) @) space-time is asymptotically anti—de Sitter and the appropri-
r ' ate boundary condition at spacial infinity is the Dirichlet one
[20], while at the horizon it is, certainly, the requirement of
HereF (M) is determined in the following wal17]: purely ingoing waves.
From here and on, in order to find the dominant contribu-
Mm32 = _ coshi2mnyM]+3 tion to the QN spectrum fron®(%) correction to the BTZ
FIM)=—= 2 e -+ (3 space-time, we shall neglect the order ghigher than first.
2y2 =1 (costi2mnyM]-1) Thus inverting ther coordinate as a function o we find

i ) up to the first order of;:
where§ is an arbitrary phase.

We usedG=1/8, M can be associated with the black hole M1+a?2 F(M) 16(In e+ In(a+1))
mass,|,=#/8 is the Planck mass in three dimensions, ther(r*)= \/; ATV - PR
Planck massn,=7/l,=8 is independent ofi. The series 1-a a’ta “+2
(2) converges exponentially for anyl>0. For M>1 the +0o(l,) @)
; ; ; —=aM p/s
first term dominates the seri€{M)~e —0 and the
BTZ.bIack hole is recov'ered. The metr{@) is an exact where a=e ™™ The r* goes from— to 0 asr goes
solution of the back reaction problem for the one-loop effec- . N AW * -

rom the event horizon to infinity. Thus the valeé*™™ is

tive energy momentum tensor of a scalar field conformall | | han 1 and followi h
coupled to gravity. Formally the metr{®) coincides with an always less t an 1 -and we can, fotowing the pafief],
expand the effective potential into series of powera offhe

exact solution for the BTZ black hole “dressed” by confor- . . ) i
mal scalar field 19]. y first term, as it was shown ifiL6], gives the dominant QN

Next, we shall consider the corrected met@gas a back- behavior with good accuracy. Wishing to estimdtaminant

ground for conformal scalar field and find the correspondiniomribUtion to the shift of the QN spectrum we shall be

ON spectrum. The conformally coupled scalar wave equatio estricted here by considering corrections greater than
has the form O(12,a% a?l ). For large black holes it is understood that

next terms ina? are more important than even first correc-
1 tion ~7. Yet, in the regime of small black hole, where the
V2D(t,r,0)= §R<I>(t,r,¢9). 4) back reaction is significant, the higher order corrections in
a? is less important than-1,, corrections. Thus, the approxi-
mated potential we shall investigate, has the form

p

After the change of the wave functich=¥/\r, and the

radial coordinatedr* =dr/f(r), and, separation of angular (4L2+M)F(M) -
and time coordinateg(¥~e'“") and 6 (V~e'% one V(r*):—372_|p_|_(4|_2+M)A62\5AMr*
comes to the wave equation M)
A
d? 2 4 2
(ﬁ_i_wZ_V \I,(r*)IO, (5) +O(|p,a , Ip) (9)
r

The QN modes for “uncorrected” potentialVy(r*)
where the potentia¥ has the following form: =V ™™ o= (4L2+M)|A|, were calculated if16].
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FIG. 1. wge (top) and w, (bottom parts of w for BTZ BH
without back reactioribox, diamond and with back reactiofstar,
triangle (L=2, A=30, =0, n=0) as a function oM.

Comparison of the results obtained throug(r*) with
higher order corrections ia shows that the dominant behav-
ior is stipulated by this approximated potentig(r*) [16].

In fact, the above potential given by the formuld9) differs
from  Vo(r*) only by a constant shift [(4L2
+M)F(M)/(M/A)34]1,, which simply can be thought of
as a shift ofw?. Therefore, an exact solution of the wave
equation(5) will have the similar form as that obtained in
[16]. Namely, the Green functioB(r*,¢; »), satisfying the
wave equation

d2
(dr*2

has the form

+ 02—V

G(r*,&w)=—8(r*—¢), (10

G(r*,é<r*; )

_LUZE A Zo)K(2(r*) =K (Zo)l (2(r*))]
VAMI (Z,) '

(11)

Here

2
0’=0w’~ —37“' (+M'\/5)F(M)|p, (12)

A

~ | Vo [ Vo
v——lw/\/AM, VA ma, ZO_ m

The QN modes are the poles of this Green function and

thereby are zeros of the modified Bessel function
1,(Zo)=0. (13

We segFigs. 1, 2, 3 that this shift, being negligible for large

black holes, becomes significant for small black holes and
gives rise to increasing of the real oscillation frequency and
to decreasing of the damping rate in this regime. Therefore

the quality factor, which is proportional thvgd/|wm|, is
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FIG. 2. wge (top) and w,,, (bottom parts of w for BTZ BH
without back reactioribox, diamond and with back reactiofstar,
triangle (L=2, A=30, §=0, n=1) as a function oM.

including the back reaction of the Hawking radiation. From
this, one can conclude that the small evaporating black hole
is expected to be much better oscillator than a large one.
Remember, that the quality factor of the large Schwarzschild
black hole is of ordeL at the fundamental overtone which
is, for instance, roughly fOtimes is less than that of an
atom. That is, the large black hole is a very poor oscillator
[21]. Note also, that for very small mass, next corrections in
f should be considered in the semiclassical equations.

The QN frequencies shown in Figs. 1, 2, 3 are found
under the Dirichlet boundary conditions as closest to the
wgreaxis poles of the modified Bessel function. Neverthe-
less, the shift given by the formuld2) does not depend
upon the boundary conditions to be chosen. The dependence
on L of the QNMs is demonstrated on Fig. 4. We see that
both wge and w,,,, are roughly proportional ta.

The influence of the back reaction on higher overtones is
simply the above shift given by Eq12) and certainly is
negligible for modes with huge imaginary part. The higher
overtones can be found by extensive numerical search of the
zeros of the modified Bessel function. The higher overtone
behavior strongly depends upon the valuezofvhile first
several overtones have both nonvanishing real and imaginary
parts, the higher ones have tiny real parts, and the madhe
greater the number of modes with nonvanishing real part.
Asymptotically, for highly damping modes, governed by an
approximated potentidB), one has

Rew—0, Imw—n+z—1 as n—o. (14
Rew/Imw
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FIG. 3. The ratiowge/ ), for BTZ BH without back reaction

increasing considerably when one goes over to considerin@tay and with back reactioridiamond (L=2, A=30, =0, n
of smaller mass of the black hole and, at the same times0) as a function oM.
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FIG. 4. wge (top) andw,,, (botton) parts of QNM without(box,

sta)) and with(diamond, triangleback reaction for different values

of L, (M=0.2,5=0,n=0).

takes place already at fifth overtone o+ 3 and at some-
what greater overtone number for greatetet us hope that
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ering complete effective potential with no approximations.

This quick falling into the asymptotic regime repeats the
high overtone behavior of nonconformal scalar field around

ADS black hole[4].

Note that under the metric perturbations of the above

mentioned conformally dressed black hpl®] there appear
the physically accepted growing gravitational modes if im-
posing Dirichlet boundary conditio22]. Even though this

indicates upon classical instability of the black hole, the con-
sidered here spectral problem for the system, consisting of
the black hole and the conformal scalar field, remains con-
sistent since we are interested in study of decay of the scalar

field only and there is no coupling with gravitational pertur-

bations. For realistic 4-dimensional models such instability

would certainly “cut off” the motivation of study of the QN

spectrum. In three dimensions it is much more important that
we have consistent quantum corrected solution allowing to
Note that this asymptotic regime comes very rapidly, i.e. itavoid considering the problem in the realm of quantum grav-

ity. After all, the obtained shift ofs? does not depend upon

boundary conditions which are very controversial in anti—de

the same asymptotic behavior will take place when considSitter space-tim¢20,16,5,23.
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