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Chaotic duality in string theory
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We investigate the general features of renormalization group flows near superconformal fixed points of four
dimensionalN51 gauge theories with gravity duals. The gauge theories we study arise as the world-volume
theory on a set of D-branes at a Calabi-Yau singularity where a del Pezzo surface shrinks to zero size. Based
mainly on field theory analysis, we find evidence that such flows are often chaotic and contain exotic features
such as duality walls. For a gauge theory where the del Pezzo is the Hirzebruch zero surface, the dependence
of the duality wall height on the couplings at some point in the cascade has a self-similar fractal structure. For
a gauge theory dual toP2 blown up at a point, we find periodic and quasiperiodic behavior for the gauge theory
couplings that does not violate thea conjecture. Finally, we construct supergravity duals for these del Pezzos
that match our field theory beta functions.
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I. INTRODUCTION AND SUMMARY

Understanding renormalization group flows out of conf
mal fixed points of supersymmetric gauge theories is of v
importance in fully grasping the AdS-CFT corresponden
beyond superconformal theories and brings us closer to r
istic gauge theories such as QCD. In particular, theN51
gauge theories arising from world-volume theories
D-brane probes on Calabi-Yau singularities have been ex
sively studied under this light. Dual to these theories are
so-called nonspherical horizons of AdS@1,2#.

A prominent example, the conifold singularity, was an
lyzed by Klebanov and Strassler~KS! in @3# where the RG
flow takes the form of a duality cascade. Here, we hav
theory with two gauge group factors and four associated
fundamental fields. With the addition of appropriate D
branes, the theory is taken out of conformality in the inf
red. Subsequently, the two gauge couplings evolve accor
to non-trivial beta functions. Whenever one of the couplin
becomes strong, we should perform Seiberg duality to
grate into a regime of weak coupling@3#. And so on do we
proceedad infinitum, generating an intertwining evolutio
for the couplings. This is called the KS cascade. The d
supergravity~SuGRA! solution, happily aided by our ful
cognizance of the metric on the conifold, can be studied
detail and matches the field-theory behavior.

One would imagine that a similar analysis, applied
more general Calabi-Yau singularities than the conifo
could be performed,mutatis mutandis. Indeed, a full field
theory treatment can be undertaken using various techni
for constructing the gauge theory for D-brane probes on w
classes of singularities. Behavior that differs dramatica
from the KS flow has been subsequently observed for,exem-
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pli gratia, a class of nonspherical horizons which areU(1)
bundles over the del Pezzo surfaces@4,5#. Using the
a-maximization procedures of@6,7# to determine anomalou
dimensions and beta functions, the numerical studies of@5#
have convinced us that, sensitive to the type of geometry
well as initial conditions, the quivers after a large number
Seiberg dualities may become hyperbolic in the language
@8#. After this, a finite energy scale is reached beyond wh
duality cannot proceed. This phenomenon has been dubb
‘‘duality wall’’ by @9#.

The purpose of this paper was to elucidate some asp
of flows, cascades, and walls for gauge theories arising f
these more general geometries using both field theory
SuGRA techniques. To begin with, a more systematic, a
where possible, analytic investigation of the duality w
phenomenon is clearly beckoning. For this purpose, we
use the exceptional collection techniques that become
ticularly conducive for the del Pezzo surfaces@10#, espe-
cially for computing the beta functions and Seiberg dualit
@11,12#. We review these matters synoptically in Sec. II.
particular, we will formulate the general RG cascade as m
tion and reflections in certainsimplicesin the space of gauge
couplings.

Thus girt with the analytic form of the beta functions an
Seiberg duality rules@5,11,12#, we show in Sec. III the exis-
tence of the duality wall at finite energy. As an illustrativ
example, we focus onF0, the zeroth Hirzebruch surface. I
the numerical studies of@5#, two types of cascading behavio
were noted forF0. Depending on initial values of couplings
one type of cascade readily caused the quiver to bec
hyperbolic and hence an exponential growth of the ran
whereby giving rise to a wall. The other type, though see
ingly asymptoting to a wall, was not conclusive from th
data. As an application of our analytic methods, we sh
that duality walls indeed exist for both types and give t
position thereof as a function of the initial couplings. The
results represent the first example in which the position o
duality wall along with all the dual quivers in the casca
have been analytically determined. Thus, we consider it to
©2004 The American Physical Society06-1
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an interesting candidate to attempt the construction o
SuGRA dual. Interestingly, the duality wall height function
piece-wise linear@4,5# and ‘‘fractal.’’ A highlight of this sec-
tion will be the demonstration that afractal behavior is in-
deed exhibited in such RG cascades. As we zoom in on
wall-position curve, a self-similar pattern of concave a
convex cusps emerges.

Inspired by thischaotic behavior, we seek further in our
plethora of geometries for signatures of chaos. Moving o
the next simplest horizon, namely that of thedP1, the first
del Pezzo surface, we again study the analytic evolution
the cascade in detail. Here, we find Poincare´ cycles for tra-
jectories of gauge coupling pairs. The shapes of these cy
depend on the initial values of couplings. For some rang
beautiful elliptical orbits emerge. This type of behavior
reminiscent of the attractors and Russian doll renormal
tion group flow discussed in@13#. This example constitute
Sec. IV.

Finally, in Sec. V, we move on to the other side of t
AdS-CFT correspondence and attempt to find SuGRA s
tions. We rely upon the methodologies of@14# to construct
solutions that are analogous to those of Klebanov and Ts
lin ~KT! @15# for the conifold. The fact that explicit metric
for cones over del Pezzo surfaces are not yet known is o
a minor obstacle. We are able to write down KT-like so
tions, complete with the warp factor, as an explicit functi
of the Cartan matrices of the exceptional algebra associ
with the del Pezzo.

These SuGRA solutions should be dual to field the
cascades that are similar to the original KS cascade. Ide
fying the precise SuGRA phenomenon which marks the
ality wall remains an open and tantalizing quest.

We would like to stress the importance of possible corr
tions to the R-charges of the matter fields, and hence to
anomalous dimensions and beta functions. We will see
in order to be able to follow the RG cascades accurately,
need to be able to assume that the R-charges are corr
only at orderO(M /N)2 where M is the number of D5-
branes,N the number of D3-branes, andM /N a measure of
how close we are to the conformal pointM50. In the case
of the conifold, the gauge theory possessed aZ2 symmetry
which forced theO(M /N) corrections to vanish. Our de
Pezzo gauge theories generally lack such a symmetry.

We have two arguments to address these concerns. F
for KS type cascades, our SuGRA solutions match the fi
theory beta functions precisely, severely constraining
possibleM /N corrections to the R-charges. For more co
plicated cascades involving duality walls, we lack SuGR
solutions. Nevertheless, we shall push ahead, assuming
eventually appropriate supergravity solutions will be fou
and that R-charge corrections, even ifO(M /N), will not
change the qualitative nature of our results. The flows wh
we shall soon present are so interesting that we thin
worthwhile to describe them in their current, though le
than fully understood state. An analogy can be made to
Navier-Stokes equation. Turbulence is observed in fluids
many different situations but is very difficult to model e
actly. Instead, people have developed simple models, suc
Feigenbaum’s quadratic recursion relation, to understand
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tain qualitative features, such as period doubling. In so
sense, the flows we present here are in relation to the rea
flows as Feigenbaum’s analysis is to the real Navier-Sto
equation.

II. A SIMPLICIAL VIEW OF RG FLOW

In preparation for our discussions on renormalizati
group ~RG! flow in the gauge theory duals to del Pez
horizons, we initiate our study with an abstract and recoll
tive discussion of RG flows and duality cascades.

A. The Klebanov-Strassler cascade

The Klebanov-Strassler~KS! flow @3# provides our para-
digm for an RG cascade. In the KS flow, one starts with
N51 SU(N)3SU(N1M ) gauge theory with bifundamen
tal chiral superfieldsAi andBi , i 51,2 and a quartic super
potential. The couplings associated with the two gau
groups we shall respectively callg1 and g2. This quiver
theory can be geometrically realized as the world-volu
theory of a stack ofN coincident D3-branes together withM
D5-branes probing a conifold singularity. The matter cont
and superpotential are given as follows:

~2.1!

wherel is the superpotential coupling and the trace is tak
over color indices.

For M50 the gauge theory is conformal. Indeed, theM
D5-branes are added precisely to take us out of this con
mal point, inducing a RG flow.

The one loop NSVZ beta function@16# determines the
running of the gauge couplings. For each gauge group
have

b i5
d~8p2/gi

2!

d ln m
5

3T~G!2(
i

T~r i !~122g i !

12
gi

2

8p2 T~G!

~2.2!

wherem is a ratio of energy scales and for anSU(Nc) gauge
groupT(G)5Nc andT( f und)51/2.

Using g i5
3
2 Ri21, we can express the beta functio

b i 51,2 for the two gauge couplingsgi 51,2 in terms of
R-charges. As is done in@3#, we will work in the approxima-
tion that the denominator of Eq.~2.2! is neglected. Then, the
beta functions become

b153@N1~RA21!~N1M !1~RB21!~N1M !#,

b253@~N1M !1~RA21!N1~RB21!N#.

At the conformal point, the R-charges of the bifundame
tals can be calculated from the geometry and areRA5RB
51/2. They can also be simply determined by using
6-2
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symmetries of the quiver and requesting the vanishing of
beta functions for the gauge and superpotential couplin
Generically, we would expect the R-charges to suf
O(M /N) corrections forMÞ0. Here however, there is aZ2

symmetryM→2M for largeN that forces the corrections t
be of order at leastO(M /N)2. Thus,

b1523M , b253M ~2.3!

up to O(M /N) corrections.
If we trust these one loop beta functions, then flowing in

the IR, we see that the couplingg2 will eventually diverge
because of the positivity ofb2. According to Klebanov and
Strassler, the appropriate remedy is a Seiberg duality. A
the duality, the gauge group becomesSU(N)3SU(N2M )
but otherwise the theory remains the same. After this dua
the beta functions change signb153M and b2523M .
This process of Seiberg dualizing and flowing can be con
ued for a long time in the largeN limit as shown in Fig. 1.
The number of colors in the gauge groups becomes sm
and smaller. Klebanov and Strassler@3# demonstrated tha
when one of the gauge groups becomes trivial, the ga
theory undergoes chiral symmetry breaking and confinem
The phenomenon is realized geometrically in the SuG
dual by a deformation of the conifold in the IR.

Clearly there are some weaknesses in this purely ga
theoretic approach to the RG flow of a strongly coup
gauge theory. Usually Seiberg duality is understood as an
equivalence of two gauge theories and is not performed
the limit g2→`. Can we really trust Seiberg duality here
Also, we have dropped the denominator of the full NSV
beta function~2.2!, which is presumably important. Neve
theless, the analysis is sound and the strongest argumen
the validity of these Seiberg dualities comes not from ga
theory but from the dual supergravity theory@3#. There is a
completely well-behaved supergravity solution, the KS so
tion of the conifold, which models this RG flow. On th
gravity side, there is a radial dependence of the 5-form fl
which produces a logarithmic running of the effective nu
ber of D3-branes in complete accordance with the fi
theory cascade, giving credence to these Seiberg dualiti

FIG. 1. The KS cascade for the conifold. The two inverse ga
couplingsxi 51,251/gi

2 for the two nodes evolve in weave patte
against log-energy scalet where Seiberg duality is applied when
ever one of thexi ’s reaches zero.
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B. General RG flows

We shall henceforth focus on the four dimensional,N
51 gauge theories engineered by placing D3-branes at
singularity of a Calabi-Yau threefold cone over a del Pez
surface~cf. e.g.@11,17–20# for a comprehensive discussion!.
With some important caveats, these theories can be treate
a fashion similar to the discussion above for the conifold

The field content of a del Pezzo gauge theory is descri
compactly by a quiver. For D-branes probing then-th del
Pezzo, the number of gauge group factors in the qui
theory is equal to

k5n13, ~2.4!

which is the Euler characteristicx(dPn). We reserve the
index i 51,2, . . . ,k for labeling the nodes of the quiver. W
denote the adjacency matrix of the quiver byf i j . In other
words, f i j is the number of arrows in the quiver from nodei
to node j. We point out that by definition, thef i j are all
non-negative.

Thus given a quiver, we need to specify the ranks of
gauge groups in order to define a gauge theory. We
denote the rank of the gauge group on thei-th node bydi ,
and the dimension vector byd5(di) i 51, . . . ,k . As on the co-
nifold, the ranksdi are related to the number of branes th
realize the specific gauge theory in string theory. When pr
ing the del Pezzos, we will reserveN to denote the number o
regular D3-branes, andMI to denote the number of D5
branes. The D3-brane corresponds to a unique dimen
vector which we will denote byr 5(r i) i 51, . . .k . In distinc-
tion to the conifold and its ADE generalizations, the possi
D5-branes are constrained by chiral anomaly cancellat
and we will parametrize their dimension vectors bysI

5(sI
i ) with I 51,2 . . . ,n.

Summarizing, a D-brane configuration withN regular D3-
branes andMI D5-branes of typeI corresponds to the gaug
group) i 51

k SU(di) with

di5r iN1sI
i M I ~2.5!

and f i j chiral fields Xi j in the SU(di)3SU(dj ) bi-
fundamental representation.

As shown in @11,12#, the beta functions of the gaug
theory can be computed effectively from geometry by tak
advantage of the exceptional collection language@10–12,21#.
An exceptional collectionE5(E1 ,E2 , . . . ,Ek) is an ordered
collection of sheaves, specifying the D-brane associated w
each node. The intersections of the sheaves give rise to m
less strings which in turn correspond to bifundamental fie
in the gauge theory.E can roughly be thought of as a basis
branes.

An important feature of exceptional collections for us w
be the ordering. The ordering of a collection induces an
dering of the nodes of the quiver. In order to use the exc
tional collection technology to compute the beta functio
we must keep track of the ordering.

If a given quiver satisfies the well split condition of@11#,
the order of the quiver changes in a simple way un
Seiberg duality. To understand the well split condition, w

e

6-3
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first need to refine our understanding of the quiver orderi
It was shown in@11# that the ordering of the quiver is onl
determined up to cyclic permutations. If 123 . . .n is a good
ordering, then so is 23 . . .n1. If a quiver is well split, then
we can find a cyclic permutation such that for any nodej, all
the outgoing arrows fromj go to nodesi , j and all the
in-going arrows intoj come from nodesi . j . After a Seiberg
duality on nodej, j would become the last node in the quive

An unproven conjecture of@11# is that the Seiberg dual o
a well split quiver is again well split. The conjecture w
proven for four node quivers in@11# and no counterexample
are known to the authors. An appropriate understanding o
split quivers is still lacking. For example, the correct det
mination of R-charges for them is still open@11#. Indeed, the
fractional Seiberg dualities encountered in@21# may be prob-
lematic precisely for this reason. As our examples in
subsequent sections involve only Seiberg dualities of w
split, four node quivers, we can be confident in our calcu
tions.

In light of the exceptional collection language, we sh
also make use of the matrixS which is an upper triangula
matrix with ones along the diagonal and related tof i j by

Si j 5H f i j 2 f j i , i , j ,

1, i 5 j ,

0, i . j ,

~2.6!

where we have assumed an ordering. The componentsSi j ,
iÞ j , are still the number of arrows from nodei to nodej,
except that now a negative entry corresponds to reversing
arrow direction. We will find it convenient to use a matrixI
which is simply the antisymmetrized version ofS ~or f )

I5S2St5 f 2 f t. ~2.7!

Using this, chiral anomaly cancellation can be concisely
pressed as the condition that the dimension vectord be in the
kernel of I. In other words,r and thesI form a basis of
kerI.

1. Beta functions and flows

Methods exist in the literature for the determination of t
R-charges as well as the beta function. Evaluating Eq.~2.2!
with the quiver notation introduced above, and denoting
Ri j the R-charge of the bifundamentalXi j , one obtains for
the beta function of thei-th node@cf. Eq ~5.7! of @5##

dxi

d ln m
5b i5S 3di1

3

2 (
j 51

k

~ f i j ~Ri j 21!1 f j i ~Rji 21!!dj D ,

~2.8!

where xi is related to thei-th gauge coupling viaxi

[8p2/gi
2 .

One very insightful approach for the determination of t
R-charge is the procedure of maximization of the cen
chargea in the CFT as advocated in@6,7#. We shall however
adhere to the procedure of@11,12#, which gives the
04600
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R-charges at the conformal point. Transcribing Eq. 49 fr
@12# to present notations, the R-charge of the bi-fundame
Xi j is given by

R~Xi j !511S 2

~92n!r i r j
~Si j

211Sji
21!21D sgn~ i 2 j !.

~2.9!

It was shown in@12# that plugging Eq.~2.9! into Eq. ~2.8!,
and going to the conformal pointdi5r i , one findsb i50, as
expected.

The flow is induced when we leave the conformal fix
point by adding D5-branes. As in@3#, we will work in the
regimeMI!N. We will assume the R-charges do not recei
corrections ofO(MI /N). This assumption is supported b
the supergravity solutions we write down in Sec. V, whi
severely constrain the nature of such corrections for KS t
cascades. For more general cascades with duality walls
believe that we can still trust the qualitative nature of o
results. Ignoring the corrections, the nonconformal beta fu
tions can readily be obtained by substituting Eq.~2.9! into
Eq. ~2.8! for general ranksdi . We obtain, to orderMI /N,

b i53sI
i M I1

3

2 (
j

R̃i j sI
jM I , ~2.10!

where we have introduced the symmetric matrix

R̃i j 5 f i j ~Ri j 21!1 f j i ~Rji 21!. ~2.11!

We will now evolve the inverse gauge couplingsxi

58p2/gi
2 with the beta functions~2.10!. Since the one-loop

beta functions are constant, the evolution proceeds in s
wise linear fashion, much like the KS cascade; we have

8p2

gi
2~ t1Dt !

2
8p2

gi
2~ t !

5b iDt ~2.12!

during the stepDt in energy scale (t5 ln m), before one has
to perform Seiberg duality on the node whose coupl
reaches zero first.

An important constraint can be placed on this evolutio
Even though now these beta functions do not vanish ide
cally, it is still the case that

(
i

k

b i r
i50. ~2.13!

The reason is that this sum can be reorganized into a
over each of the beta functions at the conformal point, an
the conformal point, each of these beta functions vanis
individually. It follows from Eqs.~2.10! and ~2.13!, there-
fore, that

(
i

k
r i

gi
2

5const ~2.14!
6-4
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FIG. 2. The first class of duality cascades f
F0. This is an immediate generalization of th
KS conifold case and we alternate between t
two theories upon dualizing node 3 of each a
evolve according to the beta functions shown.
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throughout the course of the cascade; on this constrain
shall expound next.

2. Simplices in the space of couplings

The space of possible gauge coupling constantsxi[1/gi
2

for a quiver withk gauge groups is a cone (R1)k. The rela-
tion ~2.14! cuts out asimplexin this cone. The beta function
~2.10! establish the direction of the renormalization gro
flow inside this simplex. For the KS conifold flow, havin
two gauge couplings, the cone is the quadrant inR2 param-
etrized by 1/g1

25x.0 and 1/g2
25y.0. The simplex is the

line segmentx1y5const inside this cone. The beta fun
tions tell us to move up and down this line segment until o
or the other coupling constant diverges.

In more general cases, under the renormalization gr
flow, we will eventually reach a face of the simplex whe
one of the couplings diverges. At this point, the insig
gained from the KS flow tells us we should Seiberg dual
the corresponding gauge group. After the duality, we fi
ourselves typically in a new gauge theory. The new ga
theory has some new associated simplex and renormaliza
group flow direction given by some different set of be
functions. The KS flow is very special in that the Seibe
dual theory is identical to the original one up to the to
number of D3-branesN.

One imagines in general some huge collection of s
plices glued together along their faces. In any given simp
the renormalization group trajectory is a straight line. At t
faces, the trajectory ‘‘refracts.’’ One recomputes the b
functions to find the new direction for the RG flow. In Fig.
for example, we have the evolution of the couplings refle
ing off the t-axis ~corresponding to either 1/g1

2 or 1/g2
2 equal

to zero!, whereby giving the weave pattern. Note that su
RG flows are generically quite sensitive to initial condition
Slightly altering the initial couplings may alter the trajecto
such that a different face of a simplex is reached. A differ
face corresponds to a Seiberg duality on a different n
which will generically completely alter the rest of the flow
Such a sensitivity was noticed in@4,5#.

For four node quivers, the simplices are tetrahedra and
RG flow can be visualized. There is only one vectors, with
componentssi , corresponding to only one D5-brane. Thu
the direction of the RG flow inside any given tetrahedron
up to sign, independent ofM. Moreover, one can show tha
after a duality on nodei, b i→2b i ~see the Appendix for
details!.

Thus prepared, we can embark upon a detailed stud
the RG flows and duality cascades for various concrete
amples. Some of them will exhibit a KS type behavi
meaning that the cascade will periodically return to the sa
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quiver up to a change in the number of D3-branes, show
no accumulation of dualization scales in the UV. Others w
be markedly different, exhibiting duality walls. In particula
we shall describe an assortment of interesting flows
D-branes probing cones over the del Pezzo surfaces, w
we will be able, in addition to numerics, to gain some qua
titative analytic understanding.

III. DUALITY WALLS FOR F 0

We begin with D-brane probe theories on the comp
cone overF0, the zeroth Hirzebruch surface. The addition
D5-branes takes us out of conformality, whereby inducin
RG flow. Detailed numerical study was undertaken in@5#. All
Seiberg dual theories for this geometry can be arranged
a web which encodes all possible duality cascades. This
takes the form of a flower and has been affectionately ca
the Flos Hirzebruchiensis~cf. Fig. 7 cit. ibid.!. The purpose
of this section is to derive analytical results for the existen
of duality walls and their location. We also explain thefrac-
tal structureof the duality wall curve as a function of th
initial couplings.

A. Type A and type B cascades

Before proceeding with the analytical derivations, let
make a brief summary of the findings in@5#, where two
classes of RG trajectories were identified. In one gau
theory realization,F0 exhibits a Klebanov-Strassler typ
flow that alternates between two quivers with constant in
vals in t5 logm ~for energy scalem) between successiv
dualizations. This type of flow is an immediate generaliz
tion of the conifold cascade. The quivers of and the b
functions inter-connecting between the two theories
shown in Fig. 2.

The second class of flows commences with the quive
Fig. 3, which is another theory in the duality flower forF0.

FIG. 3. The second class of theories forF0. Starting from this
quiver and following the duality cascade give markedly differe
behavior from the KS case. It was seen in this case that the in
ment in energy scale decreases at each step and a ‘‘duality w
may be reached@5#.
6-5



o

t
ge

an
2

de

li

a

s
in

g
ds
a

ua
se

a
e
h
e
n

g
th

i
on

th

this

n

ge
-

is
af-

of
al-
a-

rate
ec-

e

FRANCO et al. PHYSICAL REVIEW D 70, 046006 ~2004!
In this case, there is a decrease in thet interval between
consecutive dualizations towards the UV, leading to the p
sibility of a so-called ‘‘duality wall’’ past which no more
dualization is possible and we have an accumulation poin
finite energy. Considering initial couplings of the four gau
group factors of the form (1,x2 ,x3,0), two qualitatively dif-
ferent behaviors were observed.

~1! In theories withx3.0.9, the cascade corresponds to
infinite set of alternate dualizations of nodes 1 and
The distance between dualizations is monotonically
creasing, as was shown in Figs. 12 and 13 of@5#. How-
ever, no conclusive evidence of convergence to a dua
wall was found therein. We will call such a cascade anA
type cascadeand will show shortly that in this case
duality wall is indeed approached smoothly.

~2! On the other hand, forx3,0.9, the third gauge group i
dualized at a finite scale. When this happens, all the
tersection numbers in the quiver become larger than
leading to an explosive growth of the ranks of the gau
groups and the number of bifundamental chiral fiel
and generating an immediate accumulation of the du
ization scales. This discontinuous behavior makes d
ity walls evident even in numerical simulations for the
flows. We will refer to these flows asB type cascades.

B. Duality walls in type A cascade

Having elucidated the rudiments of the cascading beh
ior of theF0 theories, let us explore whether there are inde
duality walls for A type cascades, which we recall to be t
type for which numerical evidence is not conclusive. W
shall proceed analytically. In order to do so, let us first co
struct the quiver at an arbitrary stepk. We can regard Seiber
duality as a matrix transformation on the rank vector and
adjacency matrix as was done for example in Sec. 8.1 of@5#.
An elegant way to derive the quiver at a generic position
the cascade is by realizing Seiberg duality transformati
as mutations in an exceptional collection~equivalently,
by Picard-Lefschetz monodromy transformations on
3-cycles in the manifold mirror to the original Calabi-Yau!.
We will use this language as was done in@11,12#.
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Taking the exceptional collection to be (a,b,3,4), the al-
ternate dualizations of nodes 1 and 2 corresponds in
language to the repeated left mutation ofa with respect tob.
For evenk (a,b)5(1,2), while for oddk (a,b)5(2,1). Fig-
ure 3 corresponds tok51 where the exceptional collectio
ordering is~2,1,3,4!. This quiver is well split.

1. Quivers at step k

Under Seiberg duality, the rank of the relevant gau
group changes fromNc to Nf2Nc . Type A cascades corre
spond to always dualizing nodea. By explicitly constructing
these RG trajectories, we will check that this assumption
indeed consistent. The exceptional collection tells us that
ter the duality, nodesa andb will switch places. Thus

Na~k11!5Nb~k!,

Nb~k11!52Nb~k!2Na~k!. ~3.1!

It is immediate to prove that afterk iterations, the ranks of
the SU(Ni) gauge groups are given by

Na5~2k21!N1~k22!M ,

Nb5~2k11!N1~k21!M ,

N35N,

N45N1M . ~3.2!

The number of bifundamental fields between each pair
nodes follow from applying the usual rules for Seiberg du
ity of a quiver theory. In particular, we combine the bifund
mentals Xa4 , Xba , and Xa3 into mesonic operatorsMb4
5XbaXa4 and Mb35XbaXa3. We introduce new bifunda-
mentalsX4a8 , Xab8 , and X3a8 with dual quantum numbers
along with the extra termMb4X4a8 Xab8 1Mb3X3a8 Xab8 to the
superpotential. We then use the superpotential to integ
out the massive fields, which appear in the quiver as bidir
tional arrows between the pairs of nodes (3,b) and (4,b).
The resulting incidence matrix for the quiver will chang
such that
f ba~k11!5 f ba~k! f 3b~k11!5 f a3~k! f 43~k11!5 f 43~k!

f a4~k11!52 f 4b~k!12 f a4~k! f 4b~k11!5 f a4~k! f a3~k11!52 f 3b~k!12 f a3~k! ~3.3!

which can be simplified to yield

f ba~k!52 f 3b~k!52~k11! f 43~k!56

f a4~k!52~k21! f 4b~k!52~k22! f a3~k!52~k12!. ~3.4!
6-6
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This information can be summarized in the quiver diagram
Fig. 4.

With the adjacency matrix~3.4! and the nonconforma
ranks~3.2!, we can readily compute the beta functions fro
Eq. ~2.10!, to arrive at

ba52
9~k11!kM

~4k12!
,0

bb5
9~k21!kM

~4k22!
>0

b35
3~7k223k24!M

~228k2!
,0

b45
3~7k213k24!M

~2218k2!
.0,

k51,2,3, . . .

~a,b!5~2,1!, k odd,

~a,b!5~1,2!, k even.

~3.5!

2. The RG flow

Using the results in Sec. III B 1, we proceed to study
evolution of the dualization scales starting with the init
couplings (1,x2(0),x3(0),0). Let us consider the first step
the cascade. We are in a type A cascade, sox3(0).0.9. The
beta functions are, from Eq.~3.5!,

b1~1!50, b2~1!523M , b3~1!50, b4~1!53M .
~3.6!

We see that only node 2 has a negative beta function a
first step and so its associated coupling will reach zero fi
i.e., the first step ends with the dualization of node 2. T
subsequent incrementD(1) in the energy scalet5 logm be-
fore the dualization is performed is equal to

D~1!5
x2~0!

ub2~1!u
. ~3.7!

Applying

xi~k11!5xi~k!1b i~k11!D~k11!,

t~k11!5t~k!1D~k!, ~3.8!

we have at the end of this step

FIG. 4. Quiver diagram at stepk of a type A cascade forF0.
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x1~1!51, x2~1!50, x3~1!5x3~0!, x4~1!5
3Mx2~0!

ub2~1!u
.

~3.9!

So, as far as nodes 2 and 3 are concerned, the initial v
x2(0) only affects the length of the first step, beyond whi
any information about it is erased. In order to look for t
initial couplings that lead to a type A flow, recall that w
have to determine the possible initial valuesx3(0) such that
x3(k) remains greater than zero ask→` so that the third
node never becomes dualized. Sinceb3(1)50, this is com-
pletely independent ofD(1) and hence independent o
x2(0).

That said, let us look at the cascade at the next step.
beta functions~3.5! now give

b1~2!52
27

5
M , b2~2!53M , b3~2!52

9

5
M ,

b4~2!53M . ~3.10!

Since we are interested in type A cascades, we assume
the initial valuex3(0) is such that this node is never dua
ized. Thus, the next node to undergo Seiberg duality is
other one with a negative beta function, namely node 1.
calling that x1(1)51, the consequent step in the ener
scaleD(2) is thus

D~2!5
x1~1!

ub1~2!u
5

1

ub1~2!u
, ~3.11!

and x1(2)50 while x2(2)5b2(2)D(2). Proceeding simi-
larly, the next step gives

D~3!5
b2~2!

b1~2!

1

b2~3!
. ~3.12!

We see that in general, at thekth step, the intervalD(k) is
given by

D~k!5F)
i 52

k
bb~ i !

uba~ i !uG 1

bb~k!
,

~a,b!5~2,1!, k odd,

~a,b!5~1,2!, k even,

~3.13!

for k>2. This, using Eq.~3.5!, can be written as a telescop
ing product

MD~k!5F)
i 52

k
~ i 21!

~ i 11!

~2i 11!

~2i 21!G ~4k22!

9~k21!k
. ~3.14!

Simplifying this expression we arrive at

MD~k!5
2~2k11!~4k22!

27k2~k221!
~3.15!

for k>2. The total variation of the third couplingx3, afterk
steps, is given by
6-7
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FIG. 5. Position of the duality wall forF0 as a
function of x3(0) for initial conditions of the
form (1,1,x3(0),0). A piecewise linear structure
is seen for the type B cascade region, i.e.,x3(0)
,x3b;0.9.
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x3~k!2x3~0!5(
i 52

k

D~ i !b3~ i !. ~3.16!

As discussed, the boundary between type A and B casc
corresponds to initial conditions such thatx3(k)→0 for k
→`, i.e., the initial conditions that separate the regime
which node 3 gets dualized at some finitek from the one in
which it never undergoes a Seiberg duality. Then,

x3~0!2x3~`!5
2

9 (
i 52

`
~7i 14!

i 2~ i 11!
5

4

27
p22

5

9
. ~3.17!

We see that this sum is approximately equal to 0.906608
agreement with the numerical evidence, which located
transition atx3(0);0.9. We will henceforth call this cou
pling x3(0) suchx3(`)50, x3b , because it is a boundar
value between type A and type B cascades.

3. Duality walls in type A cascades

The computations in the previous section enable us
address one of the questions left open in@5#, namely whether
duality walls exist in this case. Our flow, from Eq.~3.17!,
corresponds to an infinite cascade that only involves nod
and 2. Let us sum up all the stepsD(k) in the energy scalead
infinitum; this is equal to

(
k51

`

D~k!5D~1!1 (
k52

`

D~k!. ~3.18!

Using D(1)5x2(0)/ub2(1)u5x2(0)/3M and Eq.~3.15!, we
see that this sum can actually be performed, giving us a fi
answer. This means that there is indeed a duality wall for
type A cascades, whose value is equal to

twall5
1

3M S x2~0!1
2p2

27
1

5

9D . ~3.19!
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We would like to emphasize that, although derived in t
approximation of vanishingO(M /N) corrections to the
R-charges, Eq.~3.19! is the first analytical result for a duality
wall. Given the detailed understanding we have of every s
of the cascade on the gauge theory side, this example st
as a natural candidate in which to try to look for a realizati
of this phenomenon in a SuGRA dual.

C. Fractal structure of the duality wall curve

Having analytically ascertained the existence and pre
position of the duality wall for type A cascades, and t
boundary valuex3b(0) of the inverse squared coupling
which the cascades become type B, we now move on
address another fascinating question, hints of which w
raised in@5,12#, viz., the dependence of the position of th
wall upon the initial couplings. We will see that, in type
cascades, such dependence takes the form of aself-similar
curve.

Let us focus on the one dimensional subset of the poss
initial conditions given by couplings of the form
(1,1,x3(0),0) ~more general initial conditions can be studie
in a similar fashion!. Figure 5 is a plot of the position of the
duality wall as a function ofx3(0). Initial values x3(0)
.x3b correspond to type A cascades. Node 3 is not duali
in this case and thus the position of the wall is independ
of x3(0) in this range, as determined by Eq.~3.19!. From
now on, we will focus on thex3(0),x3b type B region. The
curve exhibits in this region an apparent piecewise lin
structure as was noticed in@5#.

In order to appreciate the piecewise structure m
clearly, it is useful to consider the derivative of the curve. W
show in Fig. 6 a numerical differentiation of Fig. 5. Thi
apparent linearity is in fact approximate, and an intrica
structure is revealed when we look at the curve in m
detail. While exploring the origin of the different features
the curve, we will discover that aself-similar fractal struc-
ture emerges.
6-8
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FIG. 6. Derivative of the position of the dual
ity wall for F0 as a function ofx3(0) for initial
conditions of the form (1,1,x3(0),0). The appear-
ance of the constant segments evidences furt
the piecewise linear behavior of position of th
wall with respect tox3(0).
ls

w
si

e
iti
e
m

f a

o
b
g
du

o
g
u-
o
ts
g
he
in
en
s

ith

t a
er
e

th
s
g
e

t

si-
come

. 5

. In

re-
nd
The most prominent features in Fig. 5 are theconcaveand
convex cuspsat the end points of apparently linear interva
In our notation~cf. figure!, the bend at.0.2 is a convex cusp
while the one at.0.3 is a concave one. We will explain no
their origin and give analytical expressions for their po
tions.

As we will illustrate with examples, this kind of structur
appears at those values of the couplings at which a trans
between different cascades occurs. A semi-quantitative m
sure of how different two cascades are is given by the nu
ber of stepsm that they share in common. In this sense, i
given cascade A sharesm1 steps with cascade B andm2 with
cascade C, withm1.m2, we say that A is closer to B than t
C. The general principle is that the closer the cascades
tween which a transition occurs at a given initial couplin
the smaller the corresponding feature in the position of
ality wall versus coupling curve is.

It is important to remember what the physical meaning
our computations is. Numbering cascade steps increasin
wards the UV and identifying the values of the initial co
plings are just a simple way to handle the process of rec
structing a duality cascade. This cascade represen
traditional RG flow in the IR direction, in which Seiber
duality is used to switch to alternative descriptions of t
theory beyond infinite coupling. At some stage of this flow
the IR the model in Fig. 3 appears, with couplings giv
precisely by what we called initial conditions. Thus, two ca
cades that share a large number of stepsm in common, cor-
respond to two RG flows initiated at different theories w
large gauge groups and number of bifundamental fields
the UV that converge at some point, sharing the lastm steps
prior to reaching the model in Fig. 3. Due to the fact tha
duality wall exists, the independent flows before conv
gence of the cascades take place in a very small rang
energies.

We now investigate the convex and concave cusps of
curve. Our approach consists of identifying what happen
the cascades at those special points, and then computin
corresponding values of the initial couplings analytically. L
us first consider theconcave cusps. The m-th concave cusp
corresponds to the transition from node 3 being dualized
04600
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stepm11 to it being dualized at stepm12. The cascades a
both sides of them-th concave cusp share the firstm steps
and are of the form

~3.20!

where (a,b)5(1,2) for m even and (2,1) form odd. In this
way, concave cusps fit in our general discussion of tran
tions between cascades, and we see that cusps be
smaller asm is increased. The values ofx3(0) that corre-
spond to the concave cusps are obtained by settingx3(k)
50 in Eqs.~3.16! and ~3.17! for k>2, i.e.,

x3
conc~k!5

2

9 (
i 52

k
~7i 14!

i 2~ i 11!
, k>2. ~3.21!

From Eq.~3.21!, the first concave cusps are located atx3(0)
equal to

1

3
,

79

162
,

467

810
,

2569

4050
,

19133

28350
, . . . ~3.22!

in complete agreement with the numerical values of Figs
and 6.

Let us move on and study the convex cusps in Fig. 5
analogy with Eq.~3.20!, we claim that themth convex cusp
corresponds to cascades switching between

~3.23!

with (a,b)5(1,2) for m even and (2,1) form odd. In order
to check whether the proposal in Eq.~3.23! is correct, we
proceed to compute the positions for the cusps that it p
dicts. The calculation is similar to the one in Sec. III B 2 a
we only quote its result here
6-9
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x3
conv~k!5

~417k!~10149k150k2114k3!

9k2~11k!2~3122k114k2!

1
2

9 (
i 52

k21
~7i 14!

i 2~ i 11!
, k>2. ~3.24!

Equation ~3.21! determines the following positions for th
first convex cusps

70

309
,

21773

50544
,

76733

141750
,

457831

750060
,

83386559

126809550
, . . .

~3.25!

which are in perfect accordance with Figs. 5 and 6, wher
validating Eq.~3.23!.

The fractal. Something fascinating happens when the d
ality wall curve is studied in further detail. Although conve
cusps appear as such when looking at the curve at a
tively small resolution as in Fig. 5, an infinite fractal series
concave and convex cusps blossoms when we zoom in
ther and further. As an example, we show in Fig. 7 succ
sive amplifications of the area around the first convex cu
indicating the dualization sequences associated to each
of a given cusp. According to our previous discussion, t
cusp is located atx3(0)570/309 and corresponds to the tra
sition between two cascades differing at the third st
232 . . . and 231 . . . .Figure 7~b! zooms in. We can appre
ciate that what originally seemed to be a convex cusp
comes a pair of convex cusps with a concave one in
middle. Furthermore, the value ofx3(0) given by Eq.~3.24!
is in fact the one that corresponds to this originally hidd
concave cusp. The new convex cusps are of a higher o
corresponding to transitions between cascades at the 4th
The first one in Fig. 7~b! corresponds to 2323 . . .
→2321 . . . while the second one is associated to 2312 . . .
an
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→2313 . . . . We see inFig. 7~c! how each of the convex
cusps splits again into two 5th order convex cusps with
concave one in between.

This procedure can be repeated indefinitely. We concl
that concave cusps are fundamental, while an infinite s
similar structure that corresponds to increasingly closer c
cades can be found by expanding convex cusps.

IV. RG FLOWS AND QUASIPERIODICITY

Having expounded in detail the analytic treatment of R
flows for the zeroth Hirzebruch theory as well as their as
ciated fractal behavior, let us move on to see what no
features arise for more complicated geometries. We recal
next simplest del Pezzo surface is the blow up ofP2 at 1
point, the so-calleddP1. The gauge theory for D3-bran
probes on the cone overdP1 was constructed via toric algo
rithms in @18#. There are infinitely many quiver gauge the
ries which are dual to this geometry. Their connections un
Seiberg duality can be encoded in a duality tree. When D
branes are included, the duality tree becomes a represe
tion of the possible paths followed by a cascading RG flo
The tree fordP1 appears in Fig. 18 of@5#. This tree contains
isolated sets of quivers with conformal ranksr 5(1,1,1,1),
denoted toric islands in@5#. We will find quasiperiodicity of
the gauge couplings for RG cascades among these islan

A. Initial theory

We are interested in studying the RG flow of a gau
theory corresponding todP1. For simplicity, let us choose
one of the dual quivers with a relatively small number
bifundamentals. Our quiver is described by the followi
~we have also included the inverse matrix as a preparatio
compute the R-charges!:
~4.1!
that
the
We start with a gauge theory withN D3-branes andM D5-
branes,M!N, corresponding to gauge groups

SU~N1M !3SU~N13M !3SU~N!3SU~N12M !.
~4.2!

Chiral anomaly cancellation is satisfied since the D3-br
vectorr 5(1,1,1,1) and the D5-brane vectors5(1,3,0,2) are
e

in the kernel ofS2ST. In fact, the kernel ofS2ST is two
dimensional, and these are the only kinds of D-branes
are allowed. The R-charges of the bifundamental fields at
conformal point are then, using Eq.~2.9!,

R~X32!5
1

4
,

6-10
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FIG. 7. Successive amplifications of the regions around convex cusps show the self-similar nature of the curve for the position o
versusx3(0). Weshow the first steps of the cascades at each side of the cusps, indicating between parentheses the first dualizatio
different.
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FIG. 8. Scatter plot of (x3 ,x4) that are nonzero during 800 dualization steps for the initial value (322x3(0)2x4(0),0,x3(0),x4(0)). In
each plot, (x3(0),x4(0)) is allowed to range over a rectangular region with lower left cornerL, upper right cornerR, and minimum step size

in the x3(0) and x4(0) directions equal tod3 and d4 respectively.~a! L5(9,157
8 ), R5(10,162

8 ), dW 5( 1
4 , 1

8 ); ~b! L5(9,153
8 ), R

5(10,156
8 ), dW 5( 1

4 , 1
8 ); ~c! L5(2,6), R5(5,9), dW 5(1,1); ~d! L5(7,11),R5(9,17),dW (1,1

2 ). We use a different color for every set of initia
conditions.
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R~X21!5R~X43!5
1

2
,

R~X42!5R~X31!5R~X14!5
3

4
.

~4.3!

As before, we assume the conformal R-charges get cor
tions only at order (M /N)2. Subsequently, using Eq.~2.10!
we calculate the one loop beta functions for the four ga
groups to be

b/M5~215/4,27/4,227/4,15/4!. ~4.4!

B. RG flow

As discussed above, we let the gauge couplings evo
according to the beta functions and we perform a Seib
duality on the gauge group factor whose coupling diver
first. Interestingly, a Seiberg duality on node 2 or 3 produ
the same quiver up to permutation~with the rank of the
dualized gauge group appropriately modified!. On the other
hand, Seiberg duality on nodes 1 or 4 produces a diffe
quiver with larger numbers of bifundamentals.

In the next section, we will perform a numerical study
the possible flows. We will see how certain RG flows invol
a single type of quiver and periodically return to the start
point up to a change in the number of D3-branes. Th
cases are thedP1 analogues of the KS cascade. We will al
discover other more intricate flows with a beautiful structu
04600
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depending on the initial conditions. We will describe the K
type flows analytically in Sec. IV B 2.

1. Poincaréorbits

Let us explore the two-dimensional space of initial co
plings (c2x3(0)2x4(0),0,x3(0),x4(0)), where c is some
constant that fixes the overall normalization. Next, choo
some initial value for the pair (x3(0),x4(0)) andevolve the
cascade for a large number of steps. An interesting way
visualizing these flows is the following. We keep all the va
ues of (x3 ,x4) which are both nonzero, i.e., when either no
1 or 2 but neither node 3 nor 4 is dualized. A subsequ
scatter plot can be made for these values, and is present
Fig. 8 for various choices of initial conditions, which a
identified by different colors.

We see different types of behavior according to the init
conditions. First, there are elliptical trajectories. They cor
spond to cascades that only involver 5(1,1,1,1) quivers. In
the language of@5#, the entire RG flow takes place within
single toric island. The next section will be devoted to
detailed study of this case. Other trajectories jump amo
three squashed ellipses. These cascades consist of both
ers withr 5(1,1,1,1) andr 5(2,1,1,1)~and its permutations!
and correspond to hopping around the six toric islands.
nally, other flows have a diffuse scatter plot, and corresp
to cascades that travel to quivers with arbitrarily large gau
groups. Outside the stable elliptical orbits, numerically
find sensitive dependence on the initial conditions.

The scatter plots are reminiscent of the Poincare´ surface-
of-section~SoS! plots used in the study of chaotic dynamic
6-12
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We recall that a Poincare´ SoS is a surface in phase spa
which cuts the trajectory of a system. If the trajectory
periodic or quasiperiodic, the accumulation of intersect
points where the trajectory cuts the surface often produ
cycles. In our case, instead of phase space, the RG casca
a trajectory inside the space of couplings, which we rec
from Sec. II B 2 to be a glued set of tetrahedra. The ellip
we observe are sections thereof. In the above plots, we h
actually superimposed different surfaces,x250 andx150,
but a symmetry has kept the picture from getting muddle

2. Analytical evolution

Let us follow the RG flow analytically through sever
Seiberg dualities. We will focus on a particular sequence
dualities which repeats the sequence of dualizations on n
3, 1, 4 and 2. We will check later that this is indeed a co
sistent cascade that takes place once the initial conditions
chosen appropriately. This set of dualizations never chan
the quiver, but merely amounts to a permutation of the no
after each step. Furthermore, after four steps the cascad
turns to the original quiver, with the same ordering of t
nodes, but with the ranks changed as:Ni→Ni14M .

Now we are ready to try to understand the regime
initial conditions which will allow for such a flow. Let the
initial inverse gauge couplings bex5(x1 ,x2 ,x3 ,x4) and set
M51. The change in couplings from four steps of Seib
dualities~3142! can be cast as a linear operation sendinx
→Mx whereM is a 434 matrix:

M5S 255/729 5/9 6440/6561 56/81

0 0 0 0

154/729 25/9 21265/6561 70/81

70/81 1 154/729 25/9

D .

~4.5!

In particular,M has eigenvectors

l50,1,
2598361904iA2

6561
. ~4.6!

The zero eigenvalue has eigenvectorv05(25,9,29,5),
which can be used to setx250. The eigenvaluel51 has
eigenvectorv15(14,0,9,9), and corresponds to a fixed po
of the flow. If x5v1, then the couplings will remain un
changed after a sequence of four Seiberg dualities. The
malization of this vector is the same one that was used
Fig. 8, where we can verify that the center of the ellipses
accordingly located at (x3 ,x4)5(9,9). Finally, the two com-
plex eigenvalues, which we note to have unit modulus,
henceforth define to be

l6ªe6 iu, ~4.7!

correspond to eigenvectors

v6ªS 2

3
e6 ia,0,e6 ib,1D ~4.8!

where
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eia52
1

3
1

2iA2

3
, eib52

7

9
2

4iA2

9
. ~4.9!

Let us take our initial couplings to bex5av11cv1

1c* v2 for coefficientsa and c. After a large number of
Seiberg dualities, the couplings become, by Eq.~4.5!,

x~n!5M nx5av11cl1
n v11c* l2

n v2 . ~4.10!

The components ofx(n) are straightforwardly obtained, us
ing the above expressions for the various eigenvalues, a

x1514a1
4

3
ucucos~nu1a1d!

x250

x359a12ucucos~nu1b1d!

x459a12ucucos~nu1d! ~4.11!

where we have setc5ucuexp(id). We see that indeed
(x3 ,x4) give rise to the parametric equation for an ellip
with respect to the parametern, in accord with the scatte
plots~c! and~d! in Fig. 8. However, we must ask when is th
above analysis applicable, i.e., when is our dualization
quence actually the sequence followed by the RG flow. C
tainly a necessary condition is that the couplingsx1 , x3, and
x4 remain greater than zero during the flow. Thus, we
that ucu,9a/2 with a.0. Indeed, under the conditionucu
,9a/2, an elliptical disk in the coupling planex250 is
traced. The boundary of the disk is an ellipse tangent to
x350 and x450 axes at the pointsx/a5(16,0,0,16) and
x/a5(16,0,16,0). This condition also appears to be su
cient, as the numerics bear out. Initial conditions violati
this condition will not generate ellipses, as demonstrated
plots ~a! and ~b!.

Though one might worry, there is in fact no contradictio
between this periodic behavior and the expectation that
der RG flow, there will be fewer degrees of freedom in t
IR than in the UV. This expectation has been encoded m
precisely in the so-calleda-conjecture~see for example@6#
for a recent discussion!. One can associate to any fou
dimensional conformal theory a central charge denotea
which can be interpreted as a measure of the numbe
degrees of freedom in the theory. According to t
a-conjecture, given UV and IR conformal fixed points,aUV
.aIR . Now for our field theory analysis to be valid, ou
gauge theories should never be very far away from con
mality, where this distance is measured by theO(M /N) cor-
rections. One expects therefore thata can be loosely defined
at any point in the RG cascade and moreover thata should
be nonincreasing as we move into the IR. Recall thaa
;(cR(c)3 where the sum runs over the R-charges of all
fermions in the theory@22#. From the structure of thes
quiver theories, one sees thata;N2 and moreover after a
sequence of four dualities for thedP1 flow above,N→N
24M . Thusa is indeed decreasing as we move into the
despite the periodic behavior of the gauge couplings.
6-13
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Increments in energy scale. One final question we can
answer here is how does the RG scale grow along the fl
After a sequence of four Seiberg dualities, the RG sc
changes by

Dt~n!5
4

27S 106

81
x1~n!1x2~n!1

1108

729
x3~n!1

4

9
x4~n! D .

~4.12!

In deriving this formula, we have had to look at the effect
the couplings of each of the four Seiberg dualities individ
ally. The process is very similar to the calculations discus
in Sec. III B 2 and we will not repeat the details here. Usi
the results~4.11!, one finds that

Dt~n!5
16

3
a1

2537

36
ucucos~nu1d1g!, ~4.13!

where

eig52
241

243
2

22iA2

243
. ~4.14!

Note thatDt.0, but thatt will have oscillations on top from
the cosine:

t~n!5
16

3
an1

2537

36
ucu

cos~d1g1nu/2!sin~~n11!u/2!

sin~u/2!
.

~4.15!

The previous approach can be applied to periodic KS t
cascades associated to other geometries. In the general
as in theF0 example of Fig. 2, more than one quiver can
involved in a period.

V. SUPERGRAVITY SOLUTIONS FOR DEL PEZZO
FLOWS

In the above, we have discussed in detail the RG flows
some del Pezzo gauge theories from a purely field-theor
point of view. This is only half of the story according to th
AdS-CFT correspondence. It is important to find type I
supergravity solutions that are dual to these field the
flows. As already emphasized@3#, the main reason to trus
that Seiberg duality cascades occur for the KS solution is
the field theory analysis but that it is reproduced by a w
behaved supergravity solution. The purpose of this sectio
to investigate these dual solutions.

Surprisingly, even without a metric for the del Pezzos,
can demonstrate the existence of and almost comple
characterize some of their supergravity solutions. The s
tions we find are analogous to the Klebanov-Tseytlin~KT!
solution @15# for the conifold. Recall that the KS solution i
well behaved everywhere and asymptotes to the KT solu
in the ultraviolet~large radius!. The KT solution, on the othe
hand, is built not from the warped deformed conifold b
from the conifold itself and thus has a singularity in t
infrared ~small radius!.
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A. Self-dual „2,1… solutions

To put these type IIB SuGRA solutions in historical co
text, note that they are closely related to a solution found
Becker and Becker@23# for M-theory compactified on a
Calabi-Yau four-fold with four-form flux. One takes the fou
fold to be a three-foldX timesT2 and thenT-dualizes on the
torus, as was done in@24,25#. The crucial point here is tha
the resulting complexified three-form flux has to be ima
nary self-dual and a harmonic representative ofH2,1(X) to
preserve supersymmetry. Gran˜a and Polchinski@14# and also
Gubser@26# later noticed that the KT and KS supergravi
solutions were examples of these self-dual~2,1! type IIB
solutions.@Indeed, the authors of@3# also mention that their
complexified three-form is of type~2,1!.#

Let us briefly review the work of Gran˜a and Polchinski.
The construction begins with a warped product ofR3,1 and a
Calabi-Yau three-foldX:

ds25Z21/2hmndxmdxn1Z1/2dsX
2 , ~5.1!

where the warp factorZ5Z(p), pPX, depends on only the
Calabi-Yau coordinates. We are interested in the case w
X is the total space of the complex line bundleO(2K) over
the del PezzodPn . HereK is the canonical class. The man
fold X is noncompact.

There exists a class of supersymmetric solutions w
nontrivial flux

G35F32
i

gs
H3 , ~5.2!

whereF35dC2 is the RR three-form field strength andH3
5dB2 the NSNS three-form. To find a supergravity solutio
the complex field strengthG3 must satisfy several condi
tions: G3 must

~1! be supported only inX;
~2! be imaginary self-dual with respect to the Hodge star

X, i.e., !XG35 iG3;
~3! have signature (2,1) with respect to the complex str

ture onX; and finally,
~4! be harmonic.

If these conditions are met, a supergravity solution ex
such that the RR field strengthF5 obeys

dF552F3`H3 , ~5.3!

and the warp factor satisfies

~¹X
2Z!vol~X!5gsF3`H3 , ~5.4!

where vol(X) is the volume form onX. In particular,
vol(X)5r 5dr`vol(Y) whereY is the ~5 real-dimensional!
level surface of the coneX. The axion vanishes and th
dilaton is constant:ef5gs .
6-14
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B. „2,1… solutions for the del Pezzo

Let us construct such aG3 for the del Pezzos. As a firs
step, we construct the metric onX. Let hab̄ be a Kähler-
Einstein metric ondPn such thatRab̄56hab̄ . Indeed, we
only know of the existence of and not the explicit form1 of
hab̄ . We want to consider the case whereX is a cone over
dPn . In this case, the metric onX can be written@28,29# as

dsX
2 5dr21r 2h21r 2hab̄dzadz̄b̄, ~5.5!

where h5( 1
3 dc1s). The one-forms must satisfy ds

52v wherev is the Kähler form ondPn and 0<c,2p is
the coordinate on the circle bundle overdPn .

Next, we describe a basis of self-dual and anti-self-d
harmonic forms ondPn .2 We begin with the Ka¨hler formv.
Locally, dPn looks like C2 and 2v;dz1`dz̄1̄1dz2`dz̄2̄.
Thus locally, it is easy to see thatv is self-dual under the
operation of the Hodge star. Because the Hodge star is a
operator,v must be self-dual everywhere. Now, recall o
dPn are Einstein. Thus

6v5 iRab̄dza`dz̄b̄5 i ]]̄ ln Adeth. ~5.6!

Clearly dv5(]1 ]̄)v50 whencev must be closed. It fol-
lows thatv is a self-dual harmonic form ondPn .

There exists a cup product~bilinear form! Q onH1,1(dPn)
defined as

Q~f,j!5E
dPn

f`j, f,jPH1,1~dPn!. ~5.7!

The Hodge index theorem states thatQ has signature (1,
2, . . . ,2). FordPn , h2,050 while h1,15n11, there being
n other harmonic (1,1) forms ondPn in addition tov. We
denote these harmonic forms asf I , I 51, . . . ,n. Let us pick
a basis forQ such that

f I`v50. ~5.8!

From the above discussion ofv one sees that

0,E v`!v5E v`v, ~5.9!

where the inequality follows from the definition of th
Hodge star and the equality from the fact thatv is self-dual.
Hence thef I span a vector spaceV where Q has purely
negative signature.

Recall that the Hodge star in two complex dimensio
squares to one:!!f5f. Thus we can diagonalize! on V
such that!f I56f I . However, if!f I5f I , then one would
find *f I`f I.0, in contradiction to the fact thatQ has

1Such a metric is known not to exist fordP1 and dP2. See for
example@27#.

2We would like to thank Mark Stern and James McKernan for
following argument.
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purely negative signature onV. We conclude that thef I must
all be purely anti-self-dual,!f I52f I .

With these preliminaries, it is now straightforward to co
structG3. We let

F35(
I 51

k

aIh`f I , H35(
I 51

k

aIgs

dr

r
`f I , ~5.10!

for expansion coefficientsaI . Hence,

G35(
I 51

k

aI S h2 i
dr

r D`f I . ~5.11!

This is a solution because by construction,G3 is harmonic
and is supported onX so conditions~1! and ~4! are met.
Moreover, (dr/r 1 ih) is a holomorphic one-form onX.
Therefore,G3 must have signature (2,1) becausef is a (1,1)
form. Furthermore, it is easy to check that!XG35 iG3.
Thus, conditions~2! and ~3! are also met.

D5-branes.The number of D5-branes in this SUGRA s
lution is given by the Dirac quantization condition on the R
flux. More precisely, we have an integrality condition on t
integral ofF3 over compact three-cycles in the level surfa
Y of the coneX. Given a basisH J (J51, . . . ,n) of such
cycles, we impose that writing

E
H J

F354p2a8MJ, ~5.12!

must give integerMJ. From the construction ofY, it follows
that H J will be some circle bundle over a curveDJ,dPn
while the circumference of the circle is 2p/3. Subsequently,
Eq. ~5.12! reduces to

(
I

aIE
DJ

f I56pa8MJ. ~5.13!

To understand the curveDJ, we take a closer look at the
divisors that correspond to elements ofH1,1(dPn). Because
dPn is P2 blown up atn points, there will be a divisorH
corresponding to the hyperplane inP2 and exceptional divi-
sorsEi ( i 51, . . . ,n) for each of the blow ups. Essentiall
because two lines intersect at a point,Q(H,H)5H•H51.
From the blow-up construction, we also know th
Q(Ei ,Ej )5Ei•Ej52d i j . Finally, Ei•H50 because the
blow-ups are at general position. We see explicitly thatQ has
signature (1,2,2, . . . ,2). From Poincare´ duality, there is
a one-to-one map from the differential formsv andf I to the
divisorsH andEi , which we now explore.

The first chern class ofP2 is c1(P2)53H. By the adjunc-
tion formula, it follows thatc1(dPn)53H2( j 51

n Ej . Lo-
cally, the first chern class can be expressed in terms of
Ricci tensor,

c1~dPn!5 i
Rab̄

2p
dza`dz̄b̄, ~5.14!

and then from the Einstein condition~5.6!, we find that
e

6-15
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v5
p

3
c1~dPn!. ~5.15!

Thus, by Eq.~5.8!, the f I must be orthogonal toc1(dPn).
This orthogonality condition has an astonishingly beaut
~and well known! consequence. The orthogonal complem
of 3H2( jEj is the weight lattice of the corresponding e
ceptional Lie groupEn . In this language thef I must lie in
this weight lattice.

We now return to the following question: what are t
curvesDJ in the integral~5.13!? The problems we need t
worry about in defining theDJ are essentially the same pro
lems we need to worry about in trying to quantize the flux
a far simpler system, that of a collection of point elect
charges in three dimensions. In drawing a sphere~or perhaps
some shape with more complicated topology! around each
charge, we want to make sure that the sphere wraps aro
the selected charge exactly once and no other charges.

For thedPn , this condition translates into the requireme
that

E
DJ

f I5E
dPn

f I`c1~DJ!5d I
J . ~5.16!

Becausef I`v50, only the component ofc1(DJ) orthogo-
nal to c1(dPn) need be defined. Let us choosec1(DJ)`v
50. To avoid surrounding charges more than once, we n
to make theDJ ‘‘as small as possible.’’ Thus we choose th
c1(DJ) to be the generators of the weight lattice. The con
tion ~5.16! then implies that thef I generate the root lattice
For example, fordP3, we could choosef15E12E2 , f2
5E22E3, and f35H2E12E22E3. Indeed, the bilinear
form ~5.7! can be written in the basis

E
dPn

f I`fJ52AIJ , ~5.17!

whereAIJ is the Cartan matrix for theEn root lattice.
Finally, using Eqs.~5.10!, ~5.13! and ~5.16!, we can nor-

malizeF3 andH3, giving us

aJ56pa8MJ; ~5.18!

hence the numberMJ of D5-branes is fixed in our SUGRA
solutions. From a perturbative point of view, we can think
this SUGRA solution as arising from the back reaction
D5-branes wrapped around vanishing curvesCI of X, which
are the Poincare´ duals of thef I . This follows from the defi-
nition dF35(aId(h`f I)5(aIdCI

.
D3-branes.Having discussed some detailed algebraic

ometry for thedPn , we are now ready to quantize the num
ber N of D3-branes as well. The condition reads, using E
~5.3!,

E
Y
F55~4p2a8!2N, ~5.19!

whereF55F1!10F, and
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F5(
I ,J

aIaJgsln~r /r 0!h`f I`fJ . ~5.20!

Therefore one finds, using Eqs.~5.17! and ~5.18!,

N5
3

2p
gsln~r /r 0!(

I ,J
MIAIJMJ ~5.21!

for large r. In other words, the number of D3-branes grow
logarithmically with the radius.

Warp factor.Now, recalling from@28# that for Y5dPn ,

E
Y
vol~Y!5

p3

27
~92n!, ~5.22!

we can use Eqs.~5.10! and~5.4! to solve for the warp factor.
The equation reads

F ]2

]r 2
1

5

r

]

]r GZ~r !5
~6pa8gs!

2

Vol~Y!

2p

3r (
I ,J

MIAIJMJ.

~5.23!

This yields

Z~r !5
2334

92n
a82gs

2S ln~r /r 0!

r 4
1

1

4r 4D(I ,J MIAIJMJ.

~5.24!

In short, we have found the analog of the Klebano
Tseytlin solution, a solution that is perfectly well behaved
large radius but has a curvature singularity at small rad
Z(r * )50. We envision that there is some similar warp
deformed del Pezzo solution which resolves the singular
just as the warped deformed conifold of the KS soluti
resolved the singularity of the KT solution.

C. Gauge couplings

In order to move towards a comparison between SUG
and gauge theory, let us determine the gauge couplings
probe branes inserted into the geometry we have discu
above. To begin with, let us study D3-branes. Their gau
coupling is simply proportional to the string coupling,gs ,
which as we have seen is constant in the self-dual~2,1! so-
lutions. In gauge theory, this is expressed by the fact that
sum of gauge couplings~2.14! is independent of the scale.

We can also probe with D5-branes. Consider a D5-br
wrapped on a curveCI,dPn,Y at a fixed radial positionr
in X. We takeCI to be the Poincare´ dual of the harmonic
two-form f I . As is well known~see, e.g.,@30#!, the gauge
coupling on such a brane is related to the integral of the
2-form aroundCI by

xI5
8p2

gI
2

52
1

2pa8gs
E

CI

B2 . ~5.25!

Thus, using the expression forB2 by integratingH3 from Eq.
~5.10!, as well as the value ofaJ from Eq. ~5.18!, we find
6-16
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xI523 ln r(
J
E

CI

fJM
J. ~5.26!

This yields for the beta function

b I5
dxI

d ln r
523~CI•CJ!M

J, ~5.27!

whereCI•CJ5*f I`fJ is the intersection pairingof two-
cycles indPn and the sum onJ is implied.

To compare this result with gauge theory, we first need
recall the fact from Sec. II B that a D5 brane wrapped arou
CI is associated with a certain combination of fraction
branes that we have encoded in the vectorsI5(sI

i ). Thus, the
beta functionb I is related to the beta functions of the fra
tional branes via

b I5(
i

sI
i b i . ~5.28!

Inserting the expression forb i from Eq.~2.10!, we obtain the
gauge theory expression

b I53(
i

sI
i sJ

i MJ1
3

2 (
i j

sI
i R̃i j sJ

j MJ, ~5.29!

whereR̃ is given in Eq.~2.11!. Let us now use the vanishin
of the beta function for the conformal theory@corresponding
to puttingdi5r i in Eq. ~2.8! and using Eq.~2.10!# to rewrite
the first term as

(
i

sI
i sJ

i 52
1

2 (
i j

sI
i sJ

i R̃i j

r j

r i
. ~5.30!

Using the definition ofR̃i j in Eq. ~2.11!, we find the gauge
theory result

b I5
3

2 (
i j

R̃i j S sI
i sJ

j 2sI
i sJ

i r
j

r i D MJ

5
3

2 (
i j

f i j ~Ri j 21!S sI
i sJ

j 1sI
jsJ

i 2sI
i sJ

i r j

r i

2sI
jsJ

j r i

r j D MJ. ~5.31!

To finish up and relate this long-winded expression to
intersection pairing in Eq.~5.27!, we need to rely on certain
results concerning baryonicU(1) charges in quiver gaug
theories related to del Pezzos@2,7,12,31#. First of all, these
baryonic U(1) charges are in one-to-one corresponde
with possible nonconformal deformations. In formulas, o
can write all baryonicU(1) chargesQI as a sum

QI5(
i

qI
i Qi , ~5.32!
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whereQi is a charge associated with the nodes of the qui
and is equal to11 for incoming arrows and21 for outgo-
ing arrows. In other words,

QI~Xi j !5qI
j2qI

i . ~5.33!

For purposes of anomaly cancellation, these charges ar
lated to the null vectorssI

i of I5S2St via @7,12#

qI
i r i5sI

i . ~5.34!

It was then shown in@12# that the baryonicU(1) charges
QI are also in one-to-one correspondence with curvesCI in
the del Pezzo orthogonal to the Ka¨hler class. Moreover, it
was shown in@12# that one could identify the intersectio
product of the curvesCI as the cubic anomaly associate
with the baryonic chargesQI ,

CI•CJ5
1

2
tr RQIQJ . ~5.35!

Now let us relate this cubic anomaly to the beta function

~ tr RQIQJ!M
J5MJ(

i , j
f i j ~Ri j 21!QI~Xi j !QJ~Xi j !r

i r j

5MJ(
i , j

f i j ~Ri j 21!~qI
j2qI

i !~qJ
j 2qJ

i !r i r j

52MJ(
i , j

f i j ~Ri j 21!S sI
i sJ

j 1sI
jsJ

i

2sI
i sJ

i r j

r i
2sI

jsJ
j r i

r j D 52
2

3
b I .

This expression, upon substituting into the SuGRA res
~5.27! gives the gauge theory result for the beta function
Eq. ~5.31!, whereby giving us the link we needed.

D. Discussion

On the one hand it is impressive that we can write do
such a complicated supergravity solution that encodes in
esting field theoretic behavior without knowing the prec
metric on the del Pezzos. On the other, it is a little disa
pointing that we have found no smoking gun for the ex
tence of duality walls from the supergravity perspective.

Let us consider the implications of this KT-like solutio
for del Pezzos. Such a solution indicates that the dual
Pezzo field theory should behave like the KS field theory.
other words, one expects a sequence of Seiberg dua
where as we move into the UV, the number of D3-bran
gradually increases, the number of D5-branes remains fi
and no duality wall is reached. We have seen such beha
for some of the phases of the del Pezzos. For example,
model A or model B flow of@5# and thedP1 flow considered
here exhibit such behavior. We expect that such flows
probably be constructed for all del Pezzos.
6-17
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Our supergravity solutions severely constrain poss
O(M /N) corrections to the R-charges for KS type flows.
particular, both on the field theory side and on the superg
ity side, we saw that the sum of the beta functions~2.14!
must vanish. Additionally, we calculated then b I for dPn
both in field theory and in supergravity and saw that the t
expressions agreed. In total, we haven11 constraints onn
13 beta functions. Thus, any corrections to the beta fu
tions for KS flows must lie in the remaining two dimension
vector space.~Note that for the original KT solution for the
conifold, the two constraints are enough to eliminate a
possible corrections to the two beta functions.!

We have also seen behavior vastly different from KS ty
cascades. For example, for theF0 surface, we saw duality
walls. Note also in this flow that the number of D3-bran
does not increase but is pinned by nodes three and f
Presumably there is some other supergravity solution wh
describes this flow. One way of constructing a more gen
type of supergravity solution would be to try to constructF3
with a dependence ondr or to start with a nonconical metri
on X.
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APPENDIX: SEIBERG DUALITY AND THE BETA
FUNCTION

We show how to demonstrate that after Seiberg duality
node i of a four-node, well split quiver, the value ofb i
changes sign. The proof makes extensive use of results
@11#.

Any well split, four-node quiver can be represented by
matrix,

S5S 1 a b c

0 1 d e

0 0 1 f

0 0 0 1

D ~A1!

where all the entries are integers,b>0, c>0, anda, d, e,
andf are non-positive@11#. Note that one may have to cycl
cally permute the ordering of the nodes to satisfy these s
requirements. In@11# such a quiver was calledAi. The cyclic
permutations were labeledAii, Aiii , andAiv. The conditions
that S be rank two and that TrSS2T54 put the following
two constraints on the matrix entries:
04600
e

v-

o

-
l

y

e

s
ur.
h
al

,
-
.
f
-

o.
-

3
o.

F

n

m

e

n

cd2be1a f50 ~A2!

and

a21b21c21d21e21 f 22abd2ace2bc f2de f1acd f

50. ~A3!

In order to compute the beta functions, we also need
pressions for the ranks of the gauge groups at the confor
point. Again from@11#, we find that

8r 1
25d21e21 f 22de f, 8r 2

25b21c21 f 22bc f,

8r 3
25a21c21e22ace, 8r 4

25a21b21d22abd,

8r 1r 25cd f2bd2ce, 8r 1r 35ad2c f ,

8r 1r 45ae1b f2ad f,

8r 2r 35ac f2ab2e f, 8r 2r 452ac1 f d,

8r 3r 45acd2de2bc. ~A4!

Note that these values of ther i are independent of the sign
of the entries ofS.

Finally, we need to know how many D5-branes a
present.S2ST has only a two dimensional kernel. We kno
that r is one element of the kernel. From Eq.~A2!, we can
read off another, linearly independent elements5(0,f ,
2e,d). The vectorss and r span the kernel, and we wil
assume we have one D5-brane,M51, of the types.

We now have enough to compute the beta functions us
Eqs.~2.9! and~2.10!. The expressions are messy, and we w
not reproduce them here.

To verify that theb i flips sign after Seiberg duality on
node i, we have to see what happens to our quiver a
duality on nodes 1, 2, 3, and 4.

Node 1.After Seiberg duality on node 1, the resultin
quiver can be described by the matrix

S15S 1 a d2ab e2ac

0 1 2b 2c

0 0 1 f

0 0 0 1

D ~A5!

and the vectors is transformed intos85( f ,2a f ,2e,d). The
r i are still given by Eq.~A4! but with the appropriate substi
tutions indicated byS1.

Note that Seiberg duality changes the ordering of
nodes. After duality, node 1 becomes node 2. Thus,
checked using a computer algebra package and the rela
~A2! and ~A3! that b11b2850.

Node 2.After Seiberg duality on node 2, the resultin
quiver can be described by the matrix
6-18
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S25S 1 a 2d 2e

0 1 b2ad c2ea

0 0 1 f

0 0 0 1

D ~A6!

and the vectors is transformed intos85(2 f ,0,2e,d).
After duality, node 2 becomes node 1. Thus, we chec

that b21b1850.
Node 3.After Seiberg duality on node 3, the resultin

quiver can be described by the matrix

S35S 1 2b a2bd c

0 1 d 2 f

0 0 1 e2 f d

0 0 0 1

D ~A7!
e,

ity
; S
,

n-
.

nd
a-
g

//

a,

g

04600
d

and the vectors is transformed intos85(0,e2d f , f ,d).
After duality, node 3 becomes node 2. Thus, we chec

that b31b2850.
Node 4.After Seiberg duality on node 4, the resultin

quiver can be described by the matrix

S45S 1 e f c

0 1 d 2a1ce

0 0 1 2b1c f

0 0 0 1

D ~A8!

and the vectors is transformed intos85(2d, f ,2e,0).
After duality, node 4 becomes node 1. Thus, we chec

that b41b1850.
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