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Chaotic duality in string theory
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We investigate the general features of renormalization group flows near superconformal fixed points of four
dimensionalNV=1 gauge theories with gravity duals. The gauge theories we study arise as the world-volume
theory on a set of D-branes at a Calabi-Yau singularity where a del Pezzo surface shrinks to zero size. Based
mainly on field theory analysis, we find evidence that such flows are often chaotic and contain exotic features
such as duality walls. For a gauge theory where the del Pezzo is the Hirzebruch zero surface, the dependence
of the duality wall height on the couplings at some point in the cascade has a self-similar fractal structure. For
a gauge theory dual 8 blown up at a point, we find periodic and quasiperiodic behavior for the gauge theory
couplings that does not violate tlaeconjecture. Finally, we construct supergravity duals for these del Pezzos
that match our field theory beta functions.
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I. INTRODUCTION AND SUMMARY pli gratia, a class of nonspherical horizons which &r¢l)
bundles over the del Pezzo surfacg$5]. Using the

Understanding renormalization group flows out of confor-a-maximization procedures ¢6,7] to determine anomalous
mal fixed points of supersymmetric gauge theories is of vitadimensions and beta functions, the numerical studig& pf
importance in fully grasping the AdS-CFT correspondencehave convinced us that, sensitive to the type of geometry as
beyond superconformal theories and brings us closer to realvell as initial conditions, the quivers after a large number of
istic gauge theories such as QCD. In particular, e 1 Seiberg dualities may become hyperbolic in the language of
gauge theories arising from world-volume theories of[8]. After this, a finite energy scale is reached beyond which
D-brane probes on Calabi-Yau singularities have been extertuality cannot proceed. This phenomenon has been dubbed a
sively studied under this light. Dual to these theories are théduality wall” by [9].
so-called nonspherical horizons of A{§2]. The purpose of this paper was to elucidate some aspects

A prominent example, the conifold singularity, was ana-of flows, cascades, and walls for gauge theories arising from
lyzed by Klebanov and StrassléKS) in [3] where the RG  these more general geometries using both field theory and
flow takes the form of a duality cascade. Here, we have &uGRA techniques. To begin with, a more systematic, and
theory with two gauge group factors and four associated biwhere possible, analytic investigation of the duality wall
fundamental fields. With the addition of appropriate D5-phenomenon is clearly beckoning. For this purpose, we will
branes, the theory is taken out of conformality in the infra-use the exceptional collection techniques that become par-
red. Subsequently, the two gauge couplings evolve accordingcularly conducive for the del Pezzo surfadgd|, espe-
to non-trivial beta functions. Whenever one of the couplingscially for computing the beta functions and Seiberg dualities
becomes strong, we should perform Seiberg duality to mif11,12. We review these matters synoptically in Sec. Il. In
grate into a regime of weak couplifg]. And so on do we particular, we will formulate the general RG cascade as mo-
proceedad infinitum generating an intertwining evolution tion and reflections in certaisimplicesin the space of gauge
for the couplings. This is called the KS cascade. The duatouplings.

supergravity(SUGRA) solution, happily aided by our full Thus girt with the analytic form of the beta functions and
cognizance of the metric on the conifold, can be studied irSeiberg duality rule§5,11,14, we show in Sec. Ill the exis-
detail and matches the field-theory behavior. tence of the duality wall at finite energy. As an illustrative

One would imagine that a similar analysis, applied toexample, we focus of,, the zeroth Hirzebruch surface. In
more general Calabi-Yau singularities than the conifold,the numerical studies ¢6], two types of cascading behavior
could be performedmutatis mutandisindeed, a full field were noted foilF,. Depending on initial values of couplings,
theory treatment can be undertaken using various techniqueme type of cascade readily caused the quiver to become
for constructing the gauge theory for D-brane probes on widéyperbolic and hence an exponential growth of the ranks,
classes of singularities. Behavior that differs dramaticallywhereby giving rise to a wall. The other type, though seem-
from the KS flow has been subsequently observedefogm-  ingly asymptoting to a wall, was not conclusive from the

data. As an application of our analytic methods, we show
that duality walls indeed exist for both types and give the

*Email address: sfranco@mit.edu position thereof as a function of the initial couplings. These
TEmail address: yanghe@physics.upenn.edu results represent the first example in which the position of a
*Email address: herzog@Ekitp.ucsb.edu duality wall along with all the dual quivers in the cascade
$Email address: walcher@kitp.ucsb.edu have been analytically determined. Thus, we consider it to be
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an interesting candidate to attempt the construction of #ain qualitative features, such as period doubling. In some
SuGRA dual. Interestingly, the duality wall height function is sense, the flows we present here are in relation to the real RG
piece-wise lineaf4,5] and “fractal.” A highlight of this sec- flows as Feigenbaum’s analysis is to the real Navier-Stokes
tion will be the demonstration that feactal behavior is in-  equation.

deed exhibited in such RG cascades. As we zoom in on the

wall-position curve, a self-similar pattern of concave and Il. A SIMPLICIAL VIEW OF RG FLOW

convex cusps emerges.

Inspired by thischaotic behaviorwe seek further in our
plethora of geometries for signatures of chaos. Moving ontxﬂ
the next simplest horizon, namely that of tt@,, the first
del Pezzo surface, we again study the analytic evolution o
the cascade in detail. Here, we find Poincayeles for tra-
jectories of gauge coupling pairs. The shapes of these cycles A. The Klebanov-Strassler cascade
depend on the initial values of couplings. For some ranges, The Klebanov-StrasslgKS) flow [3] provides our para-
beautiful elliptical orbits emerge. This type of behavior is digm for an RG cascade. In the KS flow, one starts with an
reminiscent of the attractors and Russian doll renormalizaz’=1 SU(N)x SU(N+M) gauge theory with bifundamen-
tion group flow discussed ifiL3]. This example constitutes ta| chiral superfield$\; andB;, i=1,2 and a quartic super-
Sec. IV. potential. The couplings associated with the two gauge

Finally, in Sec. V, we move on to the other side of the groups we shall respectively cal, and g,. This quiver
AdS-CFT correspondence and attempt to find SUGRA solutheory can be geometrically realized as the world-volume
tions. We rely upon the methodologies [df4] to construct  theory of a stack oN coincident D3-branes together wikih

solutions that are analogous to those of Klebanov and Tseyps-branes probing a conifold singularity. The matter content
lin (KT) [15] for the conifold. The fact that explicit metrics and superpotential are given as follows:

for cones over del Pezzo surfaces are not yet known is only

In preparation for our discussions on renormalization
roup (RG) flow in the gauge theory duals to del Pezzo
orizons, we initiate our study with an abstract and recollec-
jve discussion of RG flows and duality cascades.

a minor obstacle. We are able to write down KT-like solu- A,
tions, complete with the warp factor, as an explicit function N o——9 N+M W= ée”’e’c‘ Tr A.B. A. B
of the Cartan matrices of the exceptional algebra associate( 2 R

with the del Pezzo. B,

These SuGRA solutions should be dual to field theory

ca}scades that_ are similar to the original K.S cascade. Idem\'ﬂ/here)\ is the superpotential coupling and the trace is taken
fying the precise SUGRA phenomenon which marks the dubver color indices

ality wall remains an open and tantalizing quest. For M=0 the gauge theory is conformal. Indeed, e
We woulld like to stress the importance of possible corecyg anes are added precisely to take us out of this confor-

tions to the R-charges of the matter fields, and hence to th al point, inducing a RG flow.

anon;alousbdimglnsionfsl;and Eeta functionz. We will se:e tha The or,1e loop NSVZ beta 'functiomG] determines the

in order to be able to follow the RG cascades accurately, w : .

need to be able to assume that the R-charges are correct?ﬁlgzgng of the gauge couplings. For each gauge group we

only at order O(M/N)2 where M is the number of D5-

branesN the number of D3-branes, atd/N a measure of

how close we are to the conformal poidt=0. In the case

(2.1

3T<G)—2i T(r)(1-2)

2/ ~2
of the conifold, the gauge theory possesset, symmetry :d(87r '9) - , 2.2
which forced the®(M/N) corrections to vanish. Our del ' o ding gi
Pezzo gauge theories generally lack such a symmetry. 1- WT(G)

We have two arguments to address these concerns. First,
for KS type cascades, our SUGRA solutions match the fielgvherep is a ratio of energy scales and for &tJ(N.) gauge
theory beta functions precisely, severely constraining angroupT(G)=N, and T(fund)=1/2.
possibleM/N corrections to the R-charges. For more com-  Using y;=3R;—1, we can express the beta functions
plicated cascades involving duality walls, we lack SuGRAlgi:L2 for the two gauge couplingg;_,, in terms of
solutions. Nevertheless, we shall push ahead, assuming thRtcharges. As is done i8], we will work in the approxima-
eventually appropriate supergravity solutions will be foundtion that the denominator of ER.2) is neglected. Then, the
and that R-charge corrections, even@{M/N), will not beta functions become
change the qualitative nature of our results. The flows which
we shall soon present are so interesting that we think it B1=3[N+(Ra—1)(N+M)+(Rg—1)(N+M)],
worthwhile to describe them in their current, though less
than fully understood state. An analogy can be made to the  8,=3[(N+M)+(Ry—1)N+(Rg—1)N].
Navier-Stokes equation. Turbulence is observed in fluids in
many different situations but is very difficult to model ex- At the conformal point, the R-charges of the bifundamen-
actly. Instead, people have developed simple models, such &s can be calculated from the geometry and Rfe= Rg
Feigenbaum’s quadratic recursion relation, to understand cer=1/2. They can also be simply determined by using the
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B. General RG flows

We shall henceforth focus on the four dimensionél,
A A , =1 gauge theories engineered by placing D3-branes at the
\ / \ /\\ I\ / \ /\\ ﬁ\\ / singularity of a Calabi-Yau threefold cone over a del Pezzo
\/ y/ \/ \%/ \/ \/ \/ \/ surface(cf. e.g.[11,17—2Q for a comprehensive discussjon
A / A AA With some important caveats, these theories can be treated in
/ \ / \ / \ / \\ /\ / \ / \ / \ a fashion similar to the discussion above for the conifold.
NNV The field content of a del Pezzo gauge theory is described
t compactly by a quiver. For D-branes probing theh del
Pezzo, the number of gauge group factors in the quiver
FIG. 1. The KS cascade for the conifold. The two inverse gaugeheory is equal to
couplingsx; - = 1/gi2 for the two nodes evolve in weave pattern
against log-energy scalewhere Seiberg duality is applied when- k=n+3, (2.9
ever one of the;’s reaches zero.

which is the Euler characteristig(dP,)). We reserve the

. . . o indexi=1,2, ... k for labeling the nodes of the quiver. We
symmetries of the quiver and requesting the vanishing of th@ . Jie the adjacency matrix of the quiver fy. In other

beta fgnctions for the gauge and superpotential CO“p"”g%\/ords,fij is the number of arrows in the quiver from node

Generically, we would expect the R-charges to suffery nodej. We point out that by definition, thé;; are all

O(M/N) corrections forM #0. Here however, there is% non-negative.

symmetryM — — M for largeN that forces the corrections to Thus given a quiver, we need to specify the ranks of the

be of order at leasD(M/N)?. Thus, gauge groups in order to define a gauge theory. We will
denote the rank of the gauge group on thh node byd',

B1=—3M, B,=3M (2.9 nifold, the ranksd' are related to the number of branes that

realize the specific gauge theory in string theory. When prob-
ing the del Pezzos, we will reserito denote the number of

up to O(M/N) corrections. regular D3-branes, ant' to denote the number of D5-

If we trust these one loop beta functions, then flowing intobranes. The D3-brane corresponds to a unique dimension
the IR, we see that the couplirg will eventually diverge  vector which we will denote by =(r');_; . In distinc-
because of the positivity g8,. According to Klebanov and tion to the conifold and its ADE generalizations, the possible
Strassler, the appropriate remedy is a Seiberg duality. AfteP5-branes are constrained by chiral anomaly cancellation,
the duality, the gauge group becon®E(N) X SU(N—M) and we will parametrize their dimension vectors By
but otherwise the theory remains the same. After this duality=(s;) with I=1,2... n.
the beta functions change siggy=3M and B,=—3M. Summarizing, a D-brane configuration withregular D3-
This process of Seiberg dualizing and flowing can be continbranes andv' D5-branes of type corresponds to the gauge
ued for a long time in the larghl limit as shown in Fig. 1. groupH!‘ZISU(d') with
The number of colors in the gauge groups becomes smaller o _
and smaller. Klebanov and Strass[& demonstrated that d'=r'N+sM! (2.5
when one of the gauge groups becomes trivial, the gauge _ _
theory undergoes chiral symmetry breaking and confinemenand f;; chiral fields X;; in the SU(d')xSU(d') bi-

The phenomenon is realized geometrically in the SuGRAundamental representation.
dual by a deformation of the conifold in the IR. As shown in[11,12, the beta functions of the gauge

Clearly there are some weaknesses in this purely gaugheory can be computed effectively from geometry by taking
theoretic approach to the RG flow of a strongly coupledadvantage of the exceptional collection langugide-12,21.
gauge theory. Usually Seiberg duality is understood as an IRRn exceptional collectio€=(E4,E,, ... E,) is an ordered
equivalence of two gauge theories and is not performed irollection of sheaves, specifying the D-brane associated with
the limit g,—o. Can we really trust Seiberg duality here? each node. The intersections of the sheaves give rise to mass-
Also, we have dropped the denominator of the full NSVZless strings which in turn correspond to bifundamental fields
beta function(2.2), which is presumably important. Never- in the gauge theor¢ can roughly be thought of as a basis of
theless, the analysis is sound and the strongest argument foranes.
the validity of these Seiberg dualities comes not from gauge An important feature of exceptional collections for us will
theory but from the dual supergravity thed]. There is a be the ordering. The ordering of a collection induces an or-
completely well-behaved supergravity solution, the KS solu-dering of the nodes of the quiver. In order to use the excep-
tion of the conifold, which models this RG flow. On the tional collection technology to compute the beta functions,
gravity side, there is a radial dependence of the 5-form fluxve must keep track of the ordering.
which produces a logarithmic running of the effective num-  If a given quiver satisfies the well split condition [df1],
ber of D3-branes in complete accordance with the fieldhe order of the quiver changes in a simple way under
theory cascade, giving credence to these Seiberg dualities.Seiberg duality. To understand the well split condition, we
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first need to refine our understanding of the quiver orderingR-charges at the conformal point. Transcribing Eqg. 49 from
It was shown in[11] that the ordering of the quiver is only [12] to present notations, the R-charge of the bi-fundamental
determined up to cyclic permutations. If32. .n is a good  X;; is given by
ordering, then so is2...n1. If a quiver is well split, then
we can find a cyclic permutation such that for any ngdal
the outgoing arrows fron) go to nodesi<j and all the R(Xij)=1+
in-going arrows intg come from nodeg>j. After a Seiberg
duality on nodg, j would become the last node in the quiver.
An unproven conjecture ¢fl1] is that the Seiberg dual of
a well split quiver is again well split. The conjecture was
proven for four node quivers ifl1] and no counterexamples
are known to the authors. An appropriate understanding of il
split quivers is still lacking. For example, the correct deter-
mination of R-charges for them is still opghl]. Indeed, the
fractional Seiberg dualities encountered 21| may be prob-

(S_1+Sj_il)—1)sgr(i—j).

(9—n)riri- "

(2.9
It was shown in[12] that plugging Eq(2.9) into Eq.(2.9),
and going to the conformal pointt =r', one findsg;=0, as
Fxpected.

The flow is induced when we leave the conformal fixed
point by adding D5-branes. As i8], we will work in the
regimeM'<N. We will assume the R-charges do not receive
lematic precisely for this reason. As our examples in th corrections Of.O(MllN)' This ass_umption i_s supported k_)y
subsequent sections involve only Seiberg dualities of wel he supergravity solutions we write down in Sec. V, which

severely constrain the nature of such corrections for KS type

split, four node quivers, we can be confident in our calcula- . .
tigns q cascades. For more general cascades with duality walls, we

. . . believe that we can still trust the qualitative nature of our
In light of the exceptional collection language, we shall . X
co ! results. Ignoring the corrections, the nonconformal beta func-
also make use of the matri® which is an upper triangular tions can readily be obtained by substituting E2,9) into
matrix with ones along the diagonal and related joby y y g %o

Eq. (2.8 for general ranksl'. We obtain, to ordeM'/N,
fi=fi, 1<l 3 4
- =3sM'+ 5 > RysiM! 2.1
s;=1 L i=j, (2.6 Ai=3sM 45 2 RysiM, (2.10
0, i>],
where we have introduced the symmetric matrix
where we have assumed an ordering. The comporignts

i #], are still the number of arrows from nodeo nodej, NR”- =f;(Rj—D+f;(R;i—1). (2.11
except that now a negative entry corresponds to reversing the
arrow direction. We will find it convenient to use a matfix We will now evolve the inverse gauge couplings
which is simply the antisymmetrized version $for f) =872/g? with the beta function$2.10. Since the one-loop
beta functions are constant, the evolution proceeds in step-
I=S—-S'=f—f". (2.7 wise linear fashion, much like the KS cascade; we have
Using this, chiral anomaly cancellation can be concisely ex- 82 82

pressed as the condition that the dimension vettoe in the BiAt (212
kernel of Z. In other words,r and thes, form a basis of

kerZ.

GA(t+AD)  git)

during the stepAt in energy scalet=In w), before one has
to perform Seiberg duality on the node whose coupling
reaches zero first.

Methods exist in the literature for the determination of the  Ap important constraint can be placed on this evolution.
R-charges as well as the beta function. Evaluating(Bq)  Even though now these beta functions do not vanish identi-
with the quiver notation introduced above, and denoting bycaly, it is still the case that
Rij the R-charge of the bifundaments);, one obtains for
the beta function of théth node[cf. Eq(5.7) of [5]] k

> Bir'=0. (2.13

dx; 3 K i

Tns A= 3d+ 5 2 (fi(Rj— D+ (R —1)d |, _ _ o
r =1 The reason is that this sum can be reorganized into a sum
(2.8 over each of the beta functions at the conformal point, and at
the conformal point, each of these beta functions vanishes

1. Beta functions and flows

where x; is related to thei-th gauge coupling viaX; individually. It follows from Egs.(2.10 and (2.13, there-
=8m2/gf . fore, that

One very insightful approach for the determination of the
R-charge is the procedure of maximization of the central Ko i
chargea in the CFT as advocated [6,7]. We shall however 2 — =const (2.19
adhere to the procedure of11,12, which gives the PO
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FIG. 2. The first class of duality cascades for

p,=-3M Fo. This is an immediate generalization of the

p.=3M KS conifold case and we alternate between the
:=—3M two theories upon dualizing node 3 of each and

B.=3M evolve according to the beta functions shown.

throughout the course of the cascade; on this constraint wguiver up to a change in the number of D3-branes, showing
shall expound next. no accumulation of dualization scales in the UV. Others will
be markedly different, exhibiting duality walls. In particular,
we shall describe an assortment of interesting flows for
] ) ,  D-branes probing cones over the del Pezzo surfaces, where
The space of possible gauge coupling constasl/gi e will be able, in addition to numerics, to gain some quan-
for a quiver withk gauge groups is a con& (). The rela- tjtative analytic understanding.
tion (2.14) cuts out assimplexin this cone. The beta functions
(2.10 establish the direction of the renormalization group
flow inside this simplex. For the KS conifold flow, having
two gauge couplings, the cone is the quadrankirparam- We begin with D-brane probe theories on the complex
etrized by 1gf=x>0 and 1g§=y>0. The simplex is the cone overF, the zeroth Hirzebruch surface. The addition of
line segmentx+y=const inside this cone. The beta func- D5-branes takes us out of conformality, whereby inducing a
tions tell us to move up and down this line segment until oneRG flow. Detailed numerical study was undertakefgh All
or the other coupling constant diverges. Seiberg dual theories for this geometry can be arranged into
In more general cases, under the renormalization group web which encodes all possible duality cascades. This web
flow, we will eventually reach a face of the simplex wheretakes the form of a flower and has been affectionately called
one of the couplings diverges. At this point, the insightthe Flos Hirzebruchiensigcf. Fig. 7 cit. ibid). The purpose
gained from the KS flow tells us we should Seiberg dualizeof this section is to derive analytical results for the existence
the corresponding gauge group. After the duality, we findof duality walls and their location. We also explain thac-
ourselves typically in a new gauge theory. The new gaugéal structureof the duality wall curve as a function of the
theory has some new associated simplex and renormalizatianitial couplings.
group flow direction given by some different set of beta
functions. The KS flow is very special in that the Seiberg A. Type A and type B cascades
dual theory is identical to the original one up to the total
number of D3-branehl.
One imagines in general some huge collection of si

2. Simplices in the space of couplings

Ill. DUALITY WALLS FOR Fq

Before proceeding with the analytical derivations, let us
m/make a brief summary of the findings 3], where two

plices glued together along their faces. In any given simplexg:Iasses of RG trajectories were identified. In one gauge
the renormalization group trajectory is a straight line. At theth€ory realization,Fo exhibits a Klebanov-Strassler type
faces, the trajectory “refracts.” One recomputes the petdlow that alternates between two quivers with constant inter-
functions to find the new direction for the RG flow. In Fig. 1 V&S in t=logu (for energy scaleu) between successive
for example, we have the evolution of the couplings re.ﬂect_d_uahzatlons. This type of flow is an immediate generaliza-

ing off the t-axis (corresponding to eithergf or 1/95 equal tion of the conifold cascade. The quivers of and the beta

to zerd, whereby giving the weave pattern. Note that Suchfunctions inter-connecting between the two theories are

RG flows are generically quite sensitive to initial conditions.ShOWn in Fig. 2. . R
Slightly altering the initial couplings may alter the trajectory _. The se(_:onql class of flows cc_;mmences_wnh the quiver in
such that a different face of a simplex is reached. A differenf 19- 3. Which is another theory in the duality flower fieg.
face corresponds to a Seiberg duality on a different node
which will generically completely alter the rest of the flow.
Such a sensitivity was noticed [#,5].

For four node quivers, the simplices are tetrahedra and the
RG flow can be visualized. There is only one vecowith
componentss;, corresponding to only one D5-brane. Thus,
the direction of the RG flow inside any given tetrahedron is,
up to sign, independent &fl. Moreover, one can show that
after a duality on nodé, Bi— — B; (see the Appendix for
details. FIG. 3. The second class of theories fy. Starting from this

Thus prepared, we can embark upon a detailed study Qjuiver and following the duality cascade give markedly different
the RG flows and duality cascades for various concrete expehavior from the KS case. It was seen in this case that the incre-
amples. Some of them will exhibit a KS type behavior, ment in energy scale decreases at each step and a “duality wall”
meaning that the cascade will periodically return to the samenay be reachefb].

N-M
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In this case, there is a decrease in thmterval between Taking the exceptional collection to bae,p,3,4), the al-
consecutive dualizations towards the UV, leading to the posternate dualizations of nodes 1 and 2 corresponds in this
sibility of a so-called “duality wall” past which no more language to the repeated left mutationaofith respect tdb.
dualization is possible and we have an accumulation point dtor everk (a,b)=(1,2), while for oddk (a,b)=(2,1). Fig-
finite energy. Considering initial couplings of the four gaugeure 3 corresponds tk=1 where the exceptional collection
group factors of the form (%;,x5,0), two qualitatively dif-  ordering is(2,1,3,4. This quiver is well split.

ferent behaviors were observed.
) . 1. Quivers at step k
(1) In theories withx3>0.9, the cascade corresponds to an

infinite set of alternate dualizations of nodes 1 and 2. Under Seiberg duality, the rank of the relevant gauge
The distance between dualizations is monotonically de9"0UP changes froml. to Ny—N.. Type A cascades corre-
creasing, as was shown in Figs. 12 and 1353 How- spond to always dualizing node By explicitly constructing

ovr, o conlusive evidenceof convergence (o acuaif €52 5 TSEEES, i chek et s ssupton -
wall was found therein. We will call such a cascadefan ) P

type cascadand will show shortly that in this case a ter the duality, nodea andb will switch places. Thus
duality wall is indeed approached smoothly.

(2) On the other hand, fax;<0.9, the third gauge group is Ng(k+1)=Np(k),
dualized at a finite scale. When this happens, all the in- Np(k+1)=2N(k) — N4(k). (3.2
tersection numbers in the quiver become larger than 2,
leading to an explosive growth of the ranks of the gauge ) ) _
groups and the number of bifundamental chiral fields It Is immediate to prove that aﬁé« iterations, the ranks of
and generating an immediate accumulation of the dualth® SU(Ni) gauge groups are given by
ization scales. This discontinuous behavior makes dual-
ity walls evident even in numerical simulations for these Na=(2k=1)N+(k=2)M,
flows. We will refer to these flows aB type cascades Np=(2k+1)N+(k—=1)M,

N3=N,

B. Duality walls in type A cascade Ny=N-+M. 32
Having elucidated the rudiments of the cascading behav-

ior of the F theories, let us explore whether there are indeed

duality walls for A type cascades, which we recall to be theThe number of bifundamental fields between each pair of

type for which numerical evidence is not conclusive. Wehodes follow from applying the usual rules for Seiberg dual-

shall proceed analytically. In order to do so, let us first condty of a quiver theory. In particular, we combine the bifunda-

struct the quiver at an arbitrary st&pWe can regard Seiberg Mentals Xas4, Xpa, and X3 into mesonic operator#/y,

duality as a matrix transformation on the rank vector and the= XpaXas and Mpz=XpaX53. We introduce new bifunda-

adjacency matrix as was done for example in Sec. 8[Eof mentalsX;,, Xa,, and X3, with dual quantum numbers

An elegant way to derive the quiver at a generic position inalong with the extra ternMp,;X;,X.p+Mp3X3,X,, to the

the cascade is by realizing Seiberg duality transformationsuperpotential. We then use the superpotential to integrate

as mutations in an exceptional collectidequivalently, out the massive fields, which appear in the quiver as bidirec-

by Picard-Lefschetz monodromy transformations on theional arrows between the pairs of nodesb(3and (4b).

3-cycles in the manifold mirror to the original Calabi-Yau The resulting incidence matrix for the quiver will change

We will use this language as was dong/i1,17. such that
fpa(k+1)=Tfpa(k) fap(k+1)="fa3(k) fag(k+1)="f45(k)
faa(k+1)=—f45(k) +2f4(k) fap(k+1)="fa4(k) faz(k+1)=—f3y(k) +2fa3(k) 3.3

which can be simplified to yield

fra(k)=2 fap(K)=2(k+1) fag(k)=6
faa(K)=2(k—1) fap(K)=2(k—2) fag(K)=2(k+2). (3.4
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N, 5 Np 3Mx,(0)
X1(1)=1, x5(1)=0, X3(1)=x3(0), X4(1)=

|B2(1)] °
(3.9

2(k-1) 2(k+1) i
So, as far as nodes 2 and 3 are concerned, the initial value
A X»(0) only affects the length of the first step, beyond which
any information about it is erased. In order to look for the
Ny 6 N3 initial couplings that lead to a type A flow, recall that we
) ) have to determine the possible initial valueg0) such that
FIG. 4. Quiver diagram at stepof a type A cascade fdFo. x3(k) remains greater than zero ks-« so that the third

o ) ) ) ) ) ~node never becomes dualized. Singg1)=0, this is com-
This information can be summarized in the quiver diagram iyjetely independent ofA(1) and hence independent of
Fig. 4. X,(0)

. . . 2 .

With the adjacency matrix3.4) and the nonconformal *That said, let us look at the cascade at the next step. The
ranks(3.2), we can readily compute the beta functions frompea functiong3.5) now give
Eqg. (2.10, to arrive at

27 9
ﬁl(z)z_gM' B2(2)=3M, ,33(2):—§M,

_ 9(k+1)kM <0
Pa= " “akr2)
9(k—1)kM B4(2)=3M. (3.10
b= =0 k=1,23... . , .
(4k—=2) b)=(21) K odd Since we are interested in type A cascades, we assume that
3(7k?—3k—4)M (a,b)=(2,1), kodd, the initial valuex3(0) is such that this node is never dual-
9= 58K <0 (a,b)=(1,2), k even. ized. Thus, the next node to undergo Seiberg duality is the
( ) other one with a negative beta function, namely node 1. Re-
3(7k?+3k—4)M calling thatx,(1)=1, the consequent step in the energy
— >0 .
Ba= (—2+8k?) ' (3.5 scaleA(2) is thus
Azy= 2 1 31
2. The RG flow X TXEI (313

Using the results in Sec. 11l B 1, we proceed to study the ) i .
evolution of the dualization scales starting with the initial 21d X2(2)=0 while x5(2)=85(2)A(2). Proceeding simi-
couplings (1%,(0),x3(0),0). Let us consider the first step in larly, the next step gives
the cascade. We are in a type A cascades;$6)>0.9. The

beta functions are, from E@3.5), - @ L
A= 5@ B3 (312
B1(1)=0, B(1)=—=3M, B3(1)=0, B4(1)=3M. We see that in general, at thé step, the interval (k) is

(3.6 given by

We see that only node 2 has a negative beta function at the k . _
first step and so its associated coupling will reach zero first, A(k)={H 'Bb(!) i (a,b)=(2,3), k odd,
i.e., the first step ends with the dualization of node 2. The i=2 | Ba(D)||Bo(k)" (a,b)=(1,2, k even,
subsequent increment(1) in the energy scale=log u be- (3.13
fore the dualization is performed is equal to

for k=2. This, using Eq(3.5), can be written as a telescop-

ing product
A(1l)= ﬂ (3.7
|B2(1)] ' MA(K =| T] (i—1) (2i+1)] (4k—2) (3.14
i (i+1) (2i—1)|9(k—1)k- T
Applying
Simplifying this expression we arrive at
i(k+1)=x;(k)+ Bi(k+1)A(k+1
Xi(k+1)=x;(K)+ B (k+ 1) A(k+1), 22kt 1)(ak-2)
MAK) =~z (3.19
t(k+1)=t(k) +A(K), (3.8 (k*~1)
for k=2. The total variation of the third coupling, afterk
we have at the end of this step steps, is given by

046006-7



FRANCOZet al. PHYSICAL REVIEW D 70, 046006 (2004

0 0.125 0.25 0.375 0.5 0.625 0.75
0.7}
0.6
Convex FIG. 5. Position of the duality wall foF, as a
function of x3(0) for initial conditions of the
form (1,1x5(0),0). A piecewise linear structure
0.5} is seen for the type B cascade region, xg(0)

< X3b~ 09
Concave
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k We would like to emphasize that, although derived in the
x3(k)—x3(0)=2 A(i)Bs(i). (3.16  approximation of vanishingD(M/N) corrections to the
=2 R-charges, Eq3.19 is the first analytical result for a duality
Il. Given the detailed understanding we have of every step
of the cascade on the gauge theory side, this example stands
as a natural candidate in which to try to look for a realization
of this phenomenon in a SUGRA dual.

As discussed, the boundary between type A and B cascad
corresponds to initial conditions such thaj(k) —0 for k
—oo, i.e., the initial conditions that separate the regime in
which node 3 gets dualized at some finktérom the one in
which it never undergoes a Seiberg duality. Then,

C. Fractal structure of the duality wall curve

xs(o)_xa(m)zg > .(27(:—11)): ;7772— g (3.17 Having analytically ascertained the existence and precise

i=21 position of the duality wall for type A cascades, and the

. . . _boundary valuex;,(0) of the inverse squared coupling at
We see that this sum is approximately equal to 0.906608, iYhich thye cascaea)és)become type B, 3ve now mopve gon to

agregment with the numenca! evidence, which chated th%ddress another fascinating question, hints of which were
trgnsmon atx3(0)~0.9. We wil henceforth .caII this cou- raised in[5,12], viz., the dependence of the position of the
pling x5(0) suchxs(«)=0, x3,, because it is a boundary a1 ypon the initial couplings. We will see that, in type B
value between type A and type B cascades. cascades, such dependence takes the form safifssimilar
curve.

Let us focus on the one dimensional subset of the possible

The computations in the previous section enable us ténitial conditions given by couplings of the form
address one of the questions left opefSh namely whether  (1,1x5(0),0) (more general initial conditions can be studied
duality walls exist in this case. Our flow, from E.17,  in a similar fashiop Figure 5 is a plot of the position of the
corresponds to an infinite cascade that only involves nodes duality wall as a function ofx3(0). Initial values x3(0)
and 2. Let us sum up all the stefygk) in the energy scalad  >x,,, correspond to type A cascades. Node 3 is not dualized
infinitunm; this is equal to in this case and thus the position of the wall is independent

of x3(0) in this range, as determined by E§.19. From
* * now on, we will focus on the;(0)<xsy, type B region. The
E A(k)=A(1)+E A(K). (3.18 curve exhibits in this region an apparent piecewise linear
k=1 k=2 structure as was noticed [B)].

In order to appreciate the piecewise structure more
8Iearly, it is useful to consider the derivative of the curve. We
§how in Fig 6 a numerical differentiation of Fig. 5. This
apparent linearity is in fact approximate, and an intricate
structure is revealed when we look at the curve in more
detail. While exploring the origin of the different features of
the curve, we will discover that self-similar fractal struc-
ture emerges.

3. Duality walls in type A cascades

Using A(1)=x,(0)/|B,(1)|=x%,(0)/3M and Eq.(3.15, we
see that this sum can actually be performed, giving us a finit
answer. This means that there is indeed a duality wall for ou
type A cascades, whose value is equal to

272

1
twau:m(xz(o)Jr -7 19/ (3.19
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FIG. 6. Derivative of the position of the dual-

ity wall for Fy as a function ofx3(0) for initial
conditions of the form (1,%¥3(0),0). The appear-

0.47 - ance of the constant segments evidences further
the piecewise linear behavior of position of the
wall with respect tax;(0).
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The most prominent features in Fig. 5 are to&icaveand  stepm+ 1 to it being dualized at step+2. The cascades at
convex cuspat the end points of apparently linear intervals. both sides of thanth concave cusp share the firststeps
In our notation(cf. figure), the bend at=0.2 is a convex cusp and are of the form
while the one at=0.3 is a concave one. We will explain now

their origin and give analytical expressions for their posi- 2121...a3

tions. (3.20
As we will illustrate with examples, this kind of structure .2121 -4 b3

appears at those values of the couplings at which a transition m

between different cascades occurs. A semi-quantitative meggnere @,b)=(1,2) form even and (2,1) fom odd. In this

sure of how different two cascades are is given by the numgay concave cusps fit in our general discussion of transi-
ber of stepsn that they share in common. In this sense, if ations petween cascades, and we see that cusps become
given cascade A shares, steps with cascade B ama, with  gmajler asm is increased. The values af(0) that corre-

cascade C, witlm;>m,, we say that A is closer to B than to spond to the concave cusps are obtained by seRifk)
C. The general principle is that the closer the cascades be:=g i, Egs.(3.16 and(3.17 for k=2, i.e.

tween which a transition occurs at a given initial coupling,

the smaller the corresponding feature in the position of du- 2 K (7i+4)

ality wall versus coupling curve is. XKy = = > e,
It is important to remember what the physical meaning of 9= i+

our computations is. Numbering cascade steps increasing tQ- '

wards the UV and identifying the values of the initial cou- Erc&rgl Itzg.(3.21), the first concave cusps are locatex30)

plings are just a simple way to handle the process of recon:J

structing a duality cascade. This cascade represents a 1 79 467 2569 19133

traditional RG flow in the IR direction, in which Seiberg =, == =m = Foas ... (3.22

duality is used to switch to alternative descriptions of the 3' 162° 810° 4050° 28350

theory beyond infinite coupling. At some stage of this flow inin complete agreement with the numerical values of Figs. 5

the IR the model in Fig. 3 appears, with couplings givenand 6 '

precisely by what we called initial conditions. Thus, two cas- ’

cades that share a large number of Skeis common, cor- Let us move on and study the convex cusps in Fig. 5. In
respond to two RG flows initiated at different theories with analogy with Eq(3.20, we claim that thenth convex cusp

large gauge groups and number of bifundamental fields irc]:orresponds to cascades switching between

k=2. (3.21

the UV that converge at some point, sharing the fasteps 2121 ...a3a

prior to reaching the model in Fig. 3. Due to the fact that a 3.23
duality wall exists, the independent flows before conver- 2121 ...a3b

gence of the cascades take place in a very small range of —

energies.

We now investigate the convex and concave cusps of the
curve. Our approach consists of identifying what happens tavith (a,b)=(1,2) form even and (2,1) fom odd. In order
the cascades at those special points, and then computing tte check whether the proposal in E@.23 is correct, we
corresponding values of the initial couplings analytically. Letproceed to compute the positions for the cusps that it pre-
us first consider theoncave cuspsThe m-th concave cusp dicts. The calculation is similar to the one in Sec. 11l B 2 and
corresponds to the transition from node 3 being dualized awve only quote its result here
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cor (4+7k)(10+ 4%+ 50k>+ 14k3) —2313. e We.se_e ifFig. 7(c) how each of the convex
Xz (k)= OKA(1+K)2(3+ 22K+ 14KD) cusps splits again into two 5th order convex cusps with a
concave one in between.
g k71 (7i+4) This procedure can be repeated indefinitely. We conclude
+ 3 2’2 2+ 1)’ k=2. (3.29 that concave cusps are fundamental, while an infinite self-

similar structure that corresponds to increasingly closer cas-

Equation(3.21) determines the following positions for the ¢2des can be found by expanding convex cusps.
first convex cusps

70 21773 76733 457831 83386559 IV. RG FLOWS AND QUASIPERIODICITY

309'° 50544 141750 750060 126809550 " Having expounded in detail the analytic treatment of RG
(3.25 flows for the zeroth Hirzebruch theory as well as their asso-
ciated fractal behavior, let us move on to see what novel
which are in perfect accordance with Figs. 5 and 6, wherebyeatures arise for more complicated geometries. We recall the
validating Eq.(3.23. next simplest del Pezzo surface is the blow upPéfat 1
The fractal Something fascinating happens when the dupoint, the so-calleddP;. The gauge theory for D3-brane
ality wall curve is studied in further detail. Although convex probes on the cone oveiP; was constructed via toric algo-
cusps appear as such when looking at the curve at a relgithms in[18]. There are infinitely many quiver gauge theo-
tively small resolution as in Fig. 5, an infinite fractal series of ries which are dual to this geometry. Their connections under
concave and convex cusps blossoms when we zoom in fuSeiberg duality can be encoded in a duality tree. When D5-
ther and further. As an example, we show in Fig. 7 succespranes are included, the duality tree becomes a representa-
sive amplifications of the area around the first convex cuspion of the possible paths followed by a cascading RG flow.
indicating the dualization sequences associated to each sid®e tree ford P, appears in Fig. 18 d5]. This tree contains
of a given cusp. According to our previous discussion, thissolated sets of quivers with conformal ranks (1,1,1,1),
cusp is located at3(0) = 70/309 and corresponds to the tran- denoted toric islands if6]. We will find quasiperiodicity of

sition between two cascades differing at the third stepthe gauge couplings for RG cascades among these islands.
232 ... and 231...Figure 1b) zooms in. We can appre-

ciate that what originally seemed to be a convex cusp be-
comes a pair of convex cusps with a concave one in the
middle. Furthermore, the value ®£(0) given by Eq.(3.24) We are interested in studying the RG flow of a gauge
is in fact the one that corresponds to this originally hiddentheory corresponding tdP;. For simplicity, let us choose
concave cusp. The new convex cusps are of a higher ordesne of the dual quivers with a relatively small number of
corresponding to transitions between cascades at the 4th stdpfundamentals. Our quiver is described by the following
The first one in Fig. @) corresponds to 2&... (we have also included the inverse matrix as a preparation to
—2321 ... while the second one is associated to 231. compute the R-charggs

A. Initial theory

N N+3M

‘o> @’ 1 -2 -1 3 1235

0 1 -1 -1 011 3

S = Sl =
0 0 1 =2 00 1 2
4.0

4 1 0 0 0 1 0001

N+2M N+M

We start with a gauge theory with D3-branes andl D5-  in the kernel ofS—S'. In fact, the kernel oS—S' is two

branesM <N, corresponding to gauge groups dimensional, and these are the only kinds of D-branes that
are allowed. The R-charges of the bifundamental fields at the
SU(N+M)XSU(N+3M)XSUN) X SU(N+2M )(- ) conformal point are then, using E.9),
4.2

Chiral anomaly cancellation is satisfied since the D3-brane R(Xsp)= -
vectorr=(1,1,1,1) and the D5-brane vect®+ (1,3,0,2) are g
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FIG. 7. Successive amplifications of the regions around convex cusps show the self-similar nature of the curve for the position of the wall
versusxz(0). Weshow the first steps of the cascades at each side of the cusps, indicating between parentheses the first dualizations that are
different.
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FIG. 8. Scatter plot ofX5,x,) that are nonzero during 800 dualization steps for the initial value-6320)—x,(0),0X3(0),x4(0)). In
each plot, k3(0),x4(0)) is allowed to range over a rectangular region with lower left cotnempper right corneR, and minimum step size
in the x3(0) and x,(0) directions equal toS; and &5, respectively.(a) L=(9,15%), R=(10,168), 5=(%,3); (b) L=(9,15), R
=(10,1%), 6=(3,3); (0 L=(2,6),R=(5,9), 5=(1,1); (d) L=(7,11),R=(9,17), 5(1,3). We use a different color for every set of initial
conditions.

1 depending on the initial conditions. We will describe the KS
R(X21) =R(Xa9) = 3, type flows analytically in Sec. IV B 2.
3 1. Poincareorbits
R(X42) =R(X31) =R(X14) = 7. Let us explore the two-dimensional space of initial cou-

4.3 plings (c—x3(0)—x%4(0),0%3(0),x4(0)), wherec is some
) constant that fixes the overall normalization. Next, choose

As before, we assume the conformal R-charges get correome initial value for the paing(0),x,(0)) andevolve the
tions only at order K1/N)2. Subsequently, using E¢2.10 cascade for a large number of steps. An interesting way of

we calculate the one loop beta functions for the four gaugé{isualizing these flows is the following. We keep all the val-
groups to be ues of K5,X,) which are both nonzero, i.e., when either node

1 or 2 but neither node 3 nor 4 is dualized. A subsequent
BIM = (—15/4,27/4+27/4,15/4. (4.4 scatter plot can be made for these values, and is presented in
Fig. 8 for various choices of initial conditions, which are
identified by different colors.

We see different types of behavior according to the initial

As discussed above, we let the gauge couplings evolveonditions. First, there are elliptical trajectories. They corre-
according to the beta functions and we perform a Seibergpond to cascades that only involve (1,1,1,1) quivers. In
duality on the gauge group factor whose coupling divergeshe language of5], the entire RG flow takes place within a
first. Interestingly, a Seiberg duality on node 2 or 3 producesingle toric island. The next section will be devoted to a
the same quiver up to permutatigwith the rank of the detailed study of this case. Other trajectories jump among
dualized gauge group appropriately modijie@n the other three squashed ellipses. These cascades consist of both quiv-
hand, Seiberg duality on nodes 1 or 4 produces a differendérs withr=(1,1,1,1) and =(2,1,1,1)(and its permutations
quiver with larger numbers of bifundamentals. and correspond to hopping around the six toric islands. Fi-

In the next section, we will perform a numerical study of nally, other flows have a diffuse scatter plot, and correspond
the possible flows. We will see how certain RG flows involveto cascades that travel to quivers with arbitrarily large gauge
a single type of quiver and periodically return to the startinggroups. Outside the stable elliptical orbits, numerically we
point up to a change in the number of D3-branes. Theséind sensitive dependence on the initial conditions.
cases are théP; analogues of the KS cascade. We will also  The scatter plots are reminiscent of the Poincardace-
discover other more intricate flows with a beautiful structure,of-section(So9 plots used in the study of chaotic dynamics.

B. RG flow
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We recall that a Poincar8oS is a surface in phase space _ 1 2i\2 _ 7 4i\2

which cuts the trajectory of a system. If the trajectory is glo=— 3t 3 e'h=— 3 9 4.9
periodic or quasiperiodic, the accumulation of intersection

points where the trajectory cuts the surface often produces | gt ys take our initial couplings to b&=av,+cv.,
cycles. In our case, instead of phase space, the RG cascade|ig«,, for coefficientsa and c. After a large number of

a trajectory inside the space of couplings, which we recalbeiberg dualities, the couplings become, by &5
from Sec. Il B 2 to be a glued set of tetrahedra. The ellipses ’ ' '

we observe are sections thereof. In the above plots, we have x(N)=M"x=av;+c\lv,+c*\"v_. (4.10
actually superimposed different surfacas=0 andx;=0,
but a symmetry has kept the picture from getting muddled. The components af(n) are straightforwardly obtained, us-

ing the above expressions for the various eigenvalues, as
2. Analytical evolution

; 4
!_et us foII_o_w the RQ flow analytlcally. through several x,=14a+ = |c|cog o+ a+ &)
Seiberg dualities. We will focus on a particular sequence of 3

dualities which repeats the sequence of dualizations on nodes

3,1, 4 and 2. We will check later that this is indeed a con- X;=0

sistent cascade that takes place once the initial conditions are

chosen appropriately. This set of dualizations never changes xg=9a+2|c|cognf+ B+ 5)

the quiver, but merely amounts to a permutation of the nodes

after each step. Furthermore, after four steps the cascade re- X4=9a+2|c|cognb+ o) (4.1
turns to the original quiver, with the same ordering of the )
nodes, but with the ranks changed Bis:>N; +4M. where we have set=|c|exp(d). We see that indeed,

Now we are ready to try to understand the regime of(Xs.Xs) give rise to the parametric equation for an ellipse
initial conditions which will allow for such a flow. Let the With respect to the parameter in accord with the scatter
M=1. The change in couplings from four steps of Seiberggbove analysis applicable, i.e., when is our dualization se-
dualities (3142 can be cast as a linear operation sending duence actually the sequence followed by the RG flow. Cer-

— Mx where M is a 4X 4 matrix: tainly a necessary condition is that the couplings x3, and
X4 remain greater than zero during the flow. Thus, we see
—55/729 5/9  6440/6561 56/81 that |c|<9a/2 with a>0. Indeed, under the conditio|
0 0 0 0 <9a/2, an elliptical disk in the coupling plang,=0 is
M= ) traced. The boundary of the disk is an ellipse tangent to the
154/729 —5/9 —1265/6561 70/8 X3=0 andx,=0 axes at the pointg/a=(16,0,0,16) and
70/81 1 154/729 —5/9 x/a=(16,0,16,0). This condition also appears to be suffi-

(4.5  cient, as the numerics bear out. Initial conditions violating
this condition will not generate ellipses, as demonstrated by

In particular, M has eigenvectors plots (a) and (b).
2 Though one might worry, there is in fact no contradiction
N = —5983+£1904 2_ (4.6) between this periodic behavior and the expectation that un-
Y 6561 der RG flow, there will be fewer degrees of freedom in the

) ) IR than in the UV. This expectation has been encoded more
The zero eigenvalue has eigenvectws=(—59-95), precisely in the so-called-conjecture(see for examplg6]
which can be used to sep=0. The eigenvalua =1 has o 3 recent discussion One can associate to any four-
eigenvectow; =(14,0,9,9), and corresponds to a fixed pointgimensional conformal theory a central charge denated
of the flow. If x=v,, then the couplings will remain un- \yhich can be interpreted as a measure of the number of
changed after a sequence of four Seiberg dualities. The NOffegrees of freedom in the theory. According to the
malization of this vector is the same one that was used "&—conjecture, given UV and IR conformal fixed poins,,
Fig. 8, .where we can verify that the center of the ellipses is>aIR_ Now for our field theory analysis to be valid, our
accordingly located abg,x4) =(9,9). Finally, the two com-  gayge theories should never be very far away from confor-
plex eigenvalues, which we note to have unit modulus, an ality, where this distance is measured by ¢@@v/N) cor-
henceforth define to be rections. One expects therefore thatan be loosely defined

N, imetif @.7) at any point in the RG cascade and moreover ¢hahould
- ' ' be nonincreasing as we move into the IR. Recall that
correspond to eigenvectors ~E¢,R(z,//)3 where the sum runs over the R-charges of all the

fermions in the theony22]. From the structure of these
quiver theories, one sees that-N? and moreover after a
sequence of four dualities for theP; flow above,N—N
—4M. Thusa is indeed decreasing as we move into the IR
where despite the periodic behavior of the gauge couplings.

2 *ia *ip
U= §e* ,0e7'71 (4.8
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Increments in energy scal®ne final question we can A. Self-dual (2,1) solutions
answer here is how does the _RG scale grow along the flow. put these type 1IB SUGRA solutions in historical con-
After a sequence of four Seiberg dualities, the RG scalgqy; note that they are closely related to a solution found by

changes by Becker and Beckef23] for M-theory compactified on a
41106 1108 4 Calabi-Yau four-fold with four-form flux. One takes the four-
- | = - - fold to be a three-folK timesT? and thenT-dualizes on the
At(n) X1(N)+Xo(n)+ X3(N)+ gXa(n) |. y ) . .
27\ 81 729 9 torus, as was done if24,25. The crucial point here is that

(4.12  the resulting complexified three-form flux has to be imagi-
o : nary self-dual and a harmonic representativeH3f{(X) to
In derlvmg this formula, we have had_ to look at_ t_he (laffe.ct Onpreserve supersymmetry. Geaand Polchinskil4] and also
the couplings of gach of t.he.four Seiberg dua!ltles |nd|V|du— ubser[26] later noticed that the KT and KS supergravity
glly. The process is very similar to the calcula'tlons d'scus’,segolutions were examples of these self-d@J1) type 1B
in Sec. 111 B 2 and we will not repeat the details here. Usinggq) tions [Indeed, the authors ¢8] also mention that their
the results(4.11), one finds that complexified three-form is of typ€2,1).]

s Let us briefly review the work of Granand Polchinski.

1 / The construction begins with a warped produc3f and a
Atm= 3 at 36 lcleogné+d+y), (413 Calabi-Yau three-foldX:
where ds’=Z"1%y,, dxtdx"+ZV4ds;, (5.1)
: 241 222 where the warp factaZ =2(p), pe X, depends on only the
er=- 243 243 - (4149 calabi-Yau coordinates. We are interested in the case where

X is the total space of the complex line bundé—K) over
Note thatAt>0, but thatt will have oscillations on top from ~ the del PezzalP, . HereK is the canonical class. The mani-
the cosine: fold X is noncompact.
There exists a class of supersymmetric solutions with
nontrivial flux

B 25X 7 coq &+ y+ndl2)sin((n+1)6/2)
t(n)—ganJr 3 c] Sin612) i
(415) G3:F3_g_H3, (52)

S

The previous approach can be applied to periodic KS type
cascades associated to other geometries. In the general cag@ereF;=dC, is the RR three-form field strength aith
as in theF, example of Fig. 2, more than one quiver can be=dB, the NSNS three-form. To find a supergravity solution,
involved in a period. the complex field strengti®; must satisfy several condi-
tions: Gz must
V. SUPERGRAVITY SOLUTIONS FOR DEL PEZZO

FLOWS (1) be supported only irX;

(2) be imaginary self-dual with respect to the Hodge star on
In the above, we have discussed in detail the RG flows for X, i.e., xxG3=iGg;

some del Pezzo gauge theories from a purely field-theoretit3) have signature (2,1) with respect to the complex struc-

point of view. This is only half of the story according to the ture onX; and finally,

AdS-CFT correspondence. It is important to find type IIB (4) be harmonic.

supergravity solutions that are dual to these field theory

flows. As already emphasiz4@], the main reason to trust If these conditions are met, a supergravity solution exists

that Seiberg duality cascades occur for the KS solution is not . '

the field theory analysis but that it is reproduced by a weIISUCh that the RR field strengffy, obeys

behaved supergravity solution. The purpose of this section is

to investigate these dual solutions. dFs=—F3/\H3, (5.3
Surprisingly, even without a metric for the del Pezzos, we

can demonstrate the existence of and almost completelynd the warp factor satisfies

characterize some of their supergravity solutions. The solu-

tions we find are analogous to the Klebanov-TseytKiT)

solution[15] for the conifold. Recall that the KS solution is

well behaved everywhere and asymptotes to the KT solution

in the ultraviolet(large radiug The KT solution, on the other where volX) is the volume form onX. In particular,

hand, is built not from the warped deformed conifold butvol(X)=r>dr/\vol(Y) whereY is the (5 real-dimensional

from the conifold itself and thus has a singularity in thelevel surface of the conX. The axion vanishes and the

infrared (small radius. dilaton is constante?=g;.

(V%Z)vol(X)=gF3/\H3, (5.4)
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B. (2,1) solutions for the del Pezzo

Let us construct such @5 for the del Pezzos. As a first
step, we construct the metric of. Let h,, be a Kaler-
Einstein metric ondP, such thatR,,=6h,,. Indeed, we
only know of the existence of and not the explicit fdriof
h,,. We want to consider the case whefels a cone over
dP,. In this case, the metric 04 can be writter{28,29 as

d2=dr2+r252+r2h,;d2d 2, (5.5
where »=(3dy+ o). The one-formo must satisfydo

=2w Wherew is the Kaler form ondP,, and 0< ¢<27 is
the coordinate on the circle bundle ow&P,, .

PHYSICAL REVIEW D 70, 046006 (2004

purely negative signature &h We conclude that theéy, must
all be purely anti-self-dualk ¢, = — ¢, .

With these preliminaries, it is now straightforward to con-
structGs. We let

K
F3:|21 a'ln/\¢y, Hz=

k

>

I=1

| dr
a gST/\¢)| ’ (51@

for expansion coefficienta'. Hence,

k
Gszz,l a' (5.11)

dr
W—IT)/\QS| .

Next, we describe a basis of self-dual and anti-self-duaiThis is a solution because by constructi@y is harmonic

harmonic forms orl P, .2 We begin with the Khler form w.
Locally, dP,, looks like C? and 2v~dz*/AdZ*+dZ2/\dZ.
Thus locally, it is easy to see that is self-dual under the

and is supported oiX so conditions(1) and (4) are met.
Moreover, @dr/r+i»n) is a holomorphic one-form orX.
Therefore G; must have signature (2,1) becausés a (1,1)

operation of the Hodge star. Because the Hodge star is a lockirm. Furthermore, it is easy to check thagG;=iGs.

operator,o must be self-dual everywhere. Now, recall our
dP, are Einstein. Thus

6w=iR5dZ2/\dZ2=i44dIn Jdeth. (5.6)
Clearly dwz(a+3)w=0 whencew must be closed. It fol-
lows thatw is a self-dual harmonic form odP,,.

There exists a cup produgiilinear form Q onHdP,)
defined as

Q((b.f):fdp PNE ¢ EeHM APy, (5.7)

The Hodge index theorem states ti@athas signature |,
—,...,—). FordP,, h?%=0 whileh*'=n+1, there being
n other harmonic (1,1) forms odP, in addition tow. We
denote these harmonic forms@g, 1 =1, ... n. Let us pick
a basis forQ such that

From the above discussion af one sees that
O<f w/\*wZJ w/\w, (5.9

where the inequality follows from the definition of the
Hodge star and the equality from the fact thats self-dual.
Hence the¢, span a vector spac¥é where Q has purely
negative signature.

Recall that the Hodge star in two complex dimensionsdi

squares to onexx ¢= ¢. Thus we can diagonalize on V
such thatx ¢, = = ¢, . However, ifx ¢, = ¢, , then one would
find [¢,/\¢, >0, in contradiction to the fact tha® has

1Such a metric is known not to exist fatP; anddP,. See for
example[27].

2We would like to thank Mark Stern and James McKernan for the
following argument.

Thus, conditiong2) and(3) are also met.

D5-branes.The number of D5-branes in this SUGRA so-
lution is given by the Dirac quantization condition on the RR
flux. More precisely, we have an integrality condition on the
integral ofF5 over compact three-cycles in the level surface
Y of the coneX. Given a basig®’ (J=1,...n) of such
cycles, we impose that writing

f Fy=4m%a’'M’, (5.12
H‘]

must give integeM”. From the construction of, it follows
that 7 will be some circle bundle over a cun@’CdP,

while the circumference of the circle isn23. Subsequently,
Eq. (5.12 reduces to

> a'f b =6ma’ M. (5.13
[ D?J

To understand the curv®’, we take a closer look at the
divisors that correspond to elementskbf{(dP,). Because
dP, is P? blown up atn points, there will be a divisoH
corresponding to the hyperplane il and exceptional divi-
sorsk; (i=1, ... ) for each of the blow ups. Essentially
because two lines intersect at a poi(H,H)=H-H=1.
From the blow-up construction, we also know that
Q(Ei ,Ej)=E;-Ej=—¢;. Finally, E;-H=0 because the
blow-ups are at general position. We see explicitly tRdtas
signature ¢-,—,—, ...,—). From Poincareluality, there is
a one-to-one map from the differential formsand ¢, to the
visorsH andE;, which we now explore.

The first chern class df? is ¢,(P?)=3H. By the adjunc-
tion formula, it follows thatc,(d Pn)=3H—E?:1Ej. Lo-
cally, the first chern class can be expressed in terms of the
Ricci tensor,

R~ =
¢ (dP,) =i =2dAAdZ, (5.14)
2w

and then from the Einstein conditigh.6), we find that
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w=50(dPy). (5.1 F=2 alalgdn(rirg) A\ di/Nby. (520

Thus, by Eq.(5.9), the ¢, must be orthogonal to;(dP,). Therefore one finds, using Eq$.17 and(5.18),
This orthogonality condition has an astonishingly beautiful

(and well known consequence. The orthogonal complement _ i | 3

of 3H—X|E; is the weight lattice of the corresponding ex- N= 27793"]“”0)% MIALM (5.2
ceptional Lie groups,. In this language the), must lie in

this weight lattice. for larger. In other words, the number of D3-branes grows

We now return to the following question: what are the logarithmically with the radius.
curvesD” in the integral(5.13? The problems we need to Warp factor.Now, recalling from[28] that forY=dP,,,
worry about in defining th®” are essentially the same prob-
lems we need to worry about in trying to quantize the flux in _m
a far simpler system, that of a collection of point electric YVO|(Y)_ E(g_n)’ (5.22
charges in three dimensions. In drawing a spliergerhaps
some shape with more complicated topolpgyound each e can use Eqg5.10 and(5.4) to solve for the warp factor.
charge, we want to make sure that the sphere wraps arounge equation reads
the selected charge exactly once and no other charges.

3

For thed P, this condition translates into the requirement 92 (6ma’gy)? 27
that — - —|Z(n)= > M'AMY.
gr2 ror Vol(Y) 3r 1
; (5.23
f J¢|:f ¢1/\cy(Dh)=467. (5.16 o
D dP,, This yields

Becausep,/\w=0, only the component af;(D") orthogo- 2% 34 In(r/ry) 1
nal to c,(dP,) need be defined. Let us choosgD”) N\ w Z(r)= a’zgi(—o+ — 1> M'A;M.
_ . . 9—n r4 4r4 J
=0. To avoid surrounding charges more than once, we need
to make theD” “as small as possible.” Thus we choose the (5.24

c,(DY) to be the generators of the weight lattice. The condi-
tion (5.16 then implies that thep, generate the root lattice.
For example, fordP3;, we could choosep;=E;—E,, ¢,
=E,—Ej3, and ¢3=H—E;—E,—Es. Indeed, the bilinear
form (5.7) can be written in the basis

In short, we have found the analog of the Klebanov-
Tseytlin solution, a solution that is perfectly well behaved at
large radius but has a curvature singularity at small radius
Z(r,)=0. We envision that there is some similar warped
deformed del Pezzo solution which resolves the singularity,
just as the warped deformed conifold of the KS solution
f & N\py=—A, (5.17  resolved the singularity of the KT solution.
dP,

. . . . li
whereA,; is the Cartan matrix for thé&, root lattice. C. Gauge couplings

Finally, using Eqgs(5.10, (5.13 and(5.16), we can nor- In order to move towards a comparison between SUGRA
malize F; andH3, giving us and gauge theory, let us determine the gauge couplings on
probe branes inserted into the geometry we have discussed

al=6mwa’'M?; (5.18 above. To begin with, let us study D3-branes. Their gauge

coupling is simply proportional to the string couplings,
hence the numbew’ of D5-branes is fixed in our SUGRA which as we have seen is constant in the self-d2d) so-
solutions. From a perturbative point of view, we can think oflutions. In gauge theory, this is expressed by the fact that the
this SUGRA solution as arising from the back reaction ofsum of gauge coupling®.14) is independent of the scale.

D5-branes wrapped around vanishing cur@gof X, which We can also probe with D5-branes. Consider a D5-brane
are the Poincarduals of theg, . This follows from the defi- wrapped on a curv€,CdP,CY at a fixed radial positiom
nition dF;=3a'd(7/\¢))=3a'sc,. in X. We takeC, to be the Poincardual of the harmonic

D3-branesHaving discussed some detailed algebraic gefwo-form ¢, . As is well known(see, e.g.[30]), the gauge
ometry for thedP,,, we are now ready to quantize the num- coupling on such a brane is related to the integral of the NS
ber N of D3-branes as well. The condition reads, using Eq.2-form aroundC, by

5.3,
59 8m? 1
X|:_2: - , j Bz. (525}
f Fs=(4m%a’)’N, (5.19 9i 2ma’gs)
Y
Thus, using the expression B, by integratingH 5 from Eq.
whereFs=F+xoF, and (5.10, as well as the value af’ from Eq.(5.18), we find
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5 whereQ; is a charge associated with the nodes of the quiver
X=-3 Inrg JC dM”. (5.26  and is equal tor 1 for incoming arrows and-1 for outgo-
! ing arrows. In other words,
This yields for the beta function P
/ Qi(X;)=af—q}. (533
X
B,zﬁz —3(C,-CyM?, (5.27 For purposes of anomaly cancellation, these charges are re-

lated to the null vectors} of 7=S—S' via[7,12]

whereC,-C;= [ ¢,/\ ¢; is theintersection pairingof two- i
cycles indP,, and the sum od is implied. ar=s. (5.34
To compare this result with gauge theory, we first need to
recall the fact from Sec. Il B that a D5 brane wrapped arouncb
C, is associated with a certain combination of fractional ;!
branes that we have encoded in the vester(s;). Thus, the
beta functiong, is related to the beta functions of the frac-
tional branes via

It was then shown if12] that the baryoni¢tJ(1) charges
are also in one-to-one correspondence with cu@em
the del Pezzo orthogonal to the ldar class. Moreover, it
was shown in[12] that one could identify the intersection
product of the curve€, as the cubic anomaly associated
with the baryonic charge®,,

=3 sib:. (528 C1-Co=5RQQ. (539

Inserting the expression fg; from Eq.(2.10, we obtain the

X Now let us relate this cubic anomaly to the beta functions
gauge theory expression

I=MmJ (R — - rird
=33 SilSiJngzsilﬁ”SgM{ G529  (TRQQIMI=M2 (R~ 1)Qu(Xy) Qu(Xy)r'r
i i

whereR is given in Eq.(2.11). Let us now use the vanishing = MJZ fij(Ri;— 1) (al—ap(ay—ayr'r’
of the beta function for the conformal thedmorresponding tl

to puttingd'=r" in Eq. (2.8) and using Eq(2.10] to rewrite
the first term as

- - MJE flj(le _l) SiS&-i—S{Sf]

. j

E ii:_lz ii"R_ﬂ 3 ) .
2, SIS; 5 < SiISRij - (5.30 oy .r')
i 1 r (]

Using the definition ofﬁij in Eq. (2.11), we find the gauge

theory result This expression, upon substituting into the SuGRA result

(5.27 gives the gauge theory result for the beta function in

; Eq. (5.31), whereby giving us the link we needed.
M

39 = [ aid”
Bi=3 % Rij SIS;T SISy
D. Discussion

N € On the one hand it is impressive that we can write down
S:S'JJFSfS'J_S:S'J—i such a complicated supergravity solution that encodes inter-

r esting field theoretic behavior without knowing the precise

metric on the del Pezzos. On the other, it is a little disap-

M. (5.30 pointing that we have found no smoking gun for the exis-

tence of duality walls from the supergravity perspective.
Let us consider the implications of this KT-like solution

To finish up and relate this long-winded expression to thefor del Pezzos. Such a solution indicates that the dual del

intersection pairing in Eq5.27), we need to rely on certain  pezzo field theory should behave like the KS field theory. In
results concerning baryonid(1) charges in quiver gauge other words, one expects a sequence of Seiberg dualities
theories related to del PezzEﬁ;,?,lZB:]. First of all, these where as we move into the UV, the number of D3-branes
baryonic U(1) charges are in one-to-one correspondencgradually increases, the number of D5-branes remains fixed,
with possible nonconformal deformations. In formulas, oneand no duality wall is reached. We have seen such behavior

3
=3 % fij(Rij—1)

oo
—s{s)—
r!

can write all baryonidJ(1) chargesQ, as a sum for some of the phases of the del Pezzos. For example, the
model A or model B flow of5] and thed P; flow considered
lezi q0Q, (5.32 here exhibit such behavior. We expect that such flows can

probably be constructed for all del Pezzos.

046006-17



FRANCOZ et al. PHYSICAL REVIEW D 70, 046006 (2004

Our supergravity solutions severely constrain possible cd—bet+af=0 (A2)
O(M/N) corrections to the R-charges for KS type flows. In
particular, both on the field theory side and on the supergravsq
ity side, we saw that the sum of the beta functig@sl4)
must vanish. Additionally, we calculated tmeg, for dP,
both in field theory and in supergravity and saw that the two
expressions agreed. In total, we have 1 constraints om =0. (A3)
+3 beta functions. Thus, any corrections to the beta func-

tions for KS flows must lie in the remaining two dimensional |y order to compute the beta functions, we also need ex-

vector space(Note that for the original KT solution for the pressions for the ranks of the gauge groups at the conformal
conifold, the two constraints are enough to eliminate anyyoint. Again from[11], we find that

possible corrections to the two beta functions.
We have also seen behavior vastly different from KS type 2_ 424 a2 £2_ 2_ 124 24 §2_

cascades. For example, for the surface, we saw duality Bri=d"+e+fi-def  8ry=b+c+1"—bef,

walls. Note also in this flow that the number of D3-branes 2 o o 2 oo

does not increase but is pinned by nodes three and four. 8rz=a‘+c°+e‘—ace 8rz=a“+b“+d°—abd,

Presumably there is some other supergravity solution which

describes this flow. One way of constructing a more general gr,r,=cdf—bd—ce, 8r;ry=ad-—cf,

type of supergravity solution would be to try to constrigt

with a dependence adr or to start with a nonconical metric

on X.

a?+b%+c?+d?+e?+f2—abd-ace-bcf—def+acdf

8rr,=aet+bf—adf,
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under Grant No. PHY99-07949. We now have enough to compute the beta functions using
Egs.(2.9 and(2.10. The expressions are messy, and we will
APPENDIX: SEIBERG DUALITY AND THE BETA not reproduce them here. . .
FUNCTION To verify that theg; flips sign after Seiberg duality on

nodei, we have to see what happens to our quiver after
We show how to demonstrate that after Seiberg duality orduality on nodes 1, 2, 3, and 4.
nodei of a four-node, well split quiver, the value @, Node 1.After Seiberg duality on node 1, the resulting
changes sign. The proof makes extensive use of results froguiver can be described by the matrix
[11].

Any well split, four-node quiver can be represented by the 1 a d—ab e—ac
matrix,
01 -b —C
1 a b c ST o o ¢ (A5)
0 1 d e 0 0 0 1
o o 11 A
00 0 1 and the vectosis transformed inte’ = (f,—af,—e,d). The

r; are still given by Eq(A4) but with the appropriate substi-
where all the entries are integets=0, c=0, anda, d, e,  tutions indicated by5;.
andf are non-positivé11]. Note that one may have to cycli- Note that Seiberg duality changes the ordering of the
cally permute the ordering of the nodes to satisfy these signodes. After duality, node 1 becomes node 2. Thus, we
requirements. 1fi11] such a quiver was calletli. The cyclic ~ checked using a computer algebra package and the relations
permutations were labeledii, Aiii, andAiv. The conditions (A2) and(A3) that 8, + 85,=0.
that S be rank two and that T8S =4 put the following Node 2.After Seiberg duality on node 2, the resulting
two constraints on the matrix entries: quiver can be described by the matrix
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1 a -—d —e and the vectos is transformed ints’ = (0,e—df,f,d).
0 1 b-ad c—ea After duality, node 3 becomes node 2. Thus, we checked
S,= (A6) that 83+ 8,=0.
0 0 1 f Node 4.After Seiberg duality on node 4, the resulting
0 0 0 1 quiver can be described by the matrix
and the vectos is transformed ints' =(—f,0,—e,d).
After duality, node 2 becomes node 1. Thus, we checked 1 e f c
that 8+ 8,=0. 0 1 d —a+ce
Node 3.After Seiberg duality on node 3, the resulting S,= 0 0 1 —bct (A8)
quiver can be described by the matrix ¢
0 0O 1
1 —-b a—hd c
0 1 d —f . .
S;= (A7)  and the vectos is transformed ints’=(—d,f,—e,0).
UNY 1 e—fd After duality, node 4 becomes node 1. Thus, we checked
0 O 0 1 that 84+ B1=0.
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