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Positive vacuum energy together with extra dimensions of space imply that our four-dimensional Universe
is unstable, generically to decompactification of the extra dimensions. Either quantum tunneling or thermal
fluctuations carry one past a barrier into the decompactifying regime. We give an overview of this process, and
examine the subsequent expansion into the higher-dimensional geometry. This is governed by certain fixed-
point solutions of the evolution equations, which are studied for both positive and negative spatial curvature.
In the case where there is a higher-dimensional cosmological constant, we also outline a possible mechanism
for compactification to a four-dimensional de Sitter cosmology.
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[. INTRODUCTION work on other approaches to vacua with positive cosmologi-
cal constant has included Ref47-19.

We now have good reason to believe that we live in an These developments have led to much discussion, as well
accelerating Universe; this point has particularly beenas criticism[20,21], of the resulting picture of a “landscape”
brought home with the recent Wilkinson microwave anisot-of stringy vacua. This picture has led to a forceful resurrec-
ropy probe(WMAP) results[1], combined with earlier cos- tion[22] of the idea that constants of nature—particularly the
mological observations. It is also widely believed that ourcosmological constant—are determined anthropically; the
fundamental description of nature should involve extra smallarge number of possible fluxes and resulting vai2@ 24
dimensions of space. These two statements alone lead one(for a review see Ref25]) together with the observation that
a very general argument that the Universe as we know it isn a sufficiently large distribution one expects to find a small
unstable to a catastrophic transitiffi. enough cosmological constd@6], have given strong fuel to

The generic instability is for the extra dimensions of this possibility.
space to begin to grow, and our world to evolve into a One of the criticisms from Ref20] is potentially relevant
higher-dimensional one. However, depending on the details our discussion, and so deserves comment. Banks and Dine
of the potential for the shape and size moduli of the extraargue that an effective potential description of the landscape
dimensions, there may also be basins of attraction with negas not justified and cannot be trusted. Underlying this argu-
tive potential, which lead to equally catastrophic bigment is the realization that there are regions in the combined
crunches. The instability towards expansion of the extra difield space of the moduli and metrics where the dynamics
mensions was first argued for in the context of string theorybecomes strongly coupled. While it is certainly not incon-
by Dine and Seiberd3]. Their arguments were based on ceivable that this could render the entire picture inconsistent,
supersymmetry. However, Rd2] points out that the under- we take a more sanguine perspective. It may well be that
lying mechanism is a simple dynamical one, driven by thethere are dragons off in the mountains of the landscape.
dynamics of long-distance gravity, and is independent of thédowever, the valley we find ourselves in seems perfectly
existence of supersymmetry. tame, and we expect that dynamics nearby is likewise tame.

Examples of potentials exhibiting this instability are now Of course we would very much like to understand the
being widely studied in string theory. Flat directions in strongly coupled dynamics to understand how we arrived to
moduli space have been a long-standing problem in stringur present vacuum, but for now we shall take the perspec-
theory. Recent developments in compactifications with fluxesive that the dynamics of the full guantum wave function has
and brane$4—14] have provided examples of dynamics that somehow deposited us here, and our problem is to see what
fixes these moduli15,16. In particular, Ref[16] showed happens next. We provisionally accept that the effective po-
that by adding an anti-D3 brane to the solutions of RES],  tential is a useful tool in this investigation.
one can lift the vacuum energy and find locally stable In the next section we review the derivation of the effec-
minima with positive cosmological constant. Subsequentive potential for the radial dilaton modulus. In particular,

this analysis shows that modular landscapes have a generic
feature, much like the “front range” of Colorado—the

*Email address: giddings@physics.ucsb.edu mountains taper off to a semi-infinite plain. As we roll into
"Present address. this region, the extra dimensions of space expand. Section I
*Email address: rmyers@perimeterinstitute.ca also discusses examples of potentials that can be obtained
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from fluxes and branes, for example in string theory. Section d32=d3§+ RA(X)gmn(y)dymdy". (2.2)
[l turns to the problem of analyzing the asymptotic dynam-
ics of solutions that have escaped a metastable minimum and . action governing solutions wifR(x) =™ varying

are running to infinitely expanded extra dimensions. ASympyq\ly on the compactification scale follows from dimen-

totically thes_e solutions become_fixed-point _solutions,_ WhOS&ignal reduction of Eq2.1). The Einstein-Hilbert term gives
form we derive from the equations of motion. Section IV 4 four-dimensional4D) effective action

discusses mechanisms for escape from the metastable

minimum—thermal excitation over or tunneling through the

barrier. Finally, in Sec. V, we assemble these results with a sEH:Mg”vdf d*—ga[ePYR,+d(d—1)
general discussion of the decompactification transition out of

(our) metastable de SitteidS) space and into the decom- X(VD)2edP() 1 g(d-2Dp2 |, (2.3
pactifying regime, with the resulting higher-dimensional
evolution. We also briefly discuss a scenario in which tran-

where V4 and Ry are the volume and curvature of the

sitions can take place back and forth between a highe.rd-dimensional compact metrig,,,,. However, in this frame

dimensional dS space and the four-dimensional one; in th'?he 4D effective Planck mass varies wighTo make contact

case, th? dominan_t conﬁgu_ra_\tion Shou'd be determ!ned b%ith usual treatments of 4D dynamics, one should choose a
the relative entropies, providing a possible mechanism fo ew set of units by performing the We,yl rescaling
compactification. The Appendix provides a more detaile '

phase-plane analysis, for both positive and negative spatial

curvatures, of the solutions arising in our discussion of de- Yaur—€ dD94w- 2.4
compactification,
Spontaneous decompactification has also been recentf)€ 4P Planck mass then becomes
discussed for simple compactifications with fluxes in Ref. ) 442
[27], which appeared while our paper was being written up. M3=Mp “Vq. (2.5

The additional terms in Eq2.1) then contribute an addi-
Il. RADIAL DILATON DYNAMICS: GENERALITIES tional potential forD. The net result is an action of the form

A. Dimensional reduction

We begin by discussing dynamics of the radial dilaton, S:Mif d*x —94[ R4—1d(d+2)(VD)2—V(D)].
following Ref.[2]. Specifically, suppose that we begin with 2
(d+4)-dimensional action, (2.6

s dio . A central observation of Ref2] is that any physics that
S:J d94XV=GIME 2R+ L(p)+L(#,R)], (2 stabilizes the radial dilaton from runaway to infinite volume,
D—c0, must do so only locally—the Weyl rescalin@.4)
introduces an inverse power of the volume-squared into the
where X and G are the coordinates and metric of the full potential. This means that to stabilize the radial dilaton, the
(d+4)-dimensional spacetime,Mp is the (d+4)- higher-dimensional dynamics would have to produce an en-
dimensional Planck mas% is the Ricci scalarL(y) is the  ergy densitygrowing at least as fast as the intervalume
Lagrangian representing the leading contribution of generigor large volume. This does not appear realizable in any re-
matter sources in a derivative expansion, possibly includingyjistic physical theory.
localized sources such as D branes, &g, R) summarizes Therefore if there is a positive potential minimum repre-
possible corrections to the leading Lagrangian that involvesenting the present de Sitter phase of our Universe, this mini-
higher powers of the curvature and/or higher derivatives ofmum must be metastable, and the potential should generi-
matter fields. This action may be the effective action forcally appear as in Fig. 1 or Fig. 2. Figure 2 produces an
string theory, or for some other fundamental theory of grav4nstability to a big crunch spacetini@9,30. Our focus will
ity. For our present purposes we assume that all the modube the more generic case of runaway to infinitely extended
except the overall volume modulus of the internal space arextra dimensions, as follows from Fig. 1.
fixed, e.g., as in Ref[15]; we will consider the coupled Of course, in full generality there will be a nontrivial
dynamics of this modulus and the four-dimensional metricmultidimensional moduli space of compact manifolds, and a
(It has been argued in RdR28] that in the case of multiple potential function on this space. This has recently been ex-
moduli with exponential potentials, a single term dominatesplored in the case of string theory for the region of string
leading to an obvious generalization of our analysis to theonfiguration space corresponding to flux compactifications,
multimoduli case. Thus we assume that ER.1) has solu- and the resulting configuration space dubp2?] “the land-
tions of the forn scape.” The argument given in R¢2] implies that the land-
scape has a general feature similar to the geology of the front
range of the Rocky Mountains in North America: the moun-
'Here we suppress a possible warp factor, which should notains and valleys of the landscape roll off into a flat plain,
change our general picture. extending to infinity.
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v From the actior(2.3), curvature on the internal manifold can
give a potential

VexR 42, (2.10

Nonperturbative effects give other contributions, e.g., Ref.
[16] included a potential of the form

V=Be 2R'/Rs, (2.12

@ with different constants and s arising from Euclidean D3-
brane instantons or gluino condensation. Finallycorrec-
- tions were argued in Ref31] to produce potential contribu-

b tions of the form

FIG. 1. A sketch of a potential with a metastable de Sitter re-
gion, and runaway to infinite dilaton. Vi % (2.13

B. Dilaton potential—examples

In general the dilaton potential receives contributions ll. ASYMPTOTIC DILATON DYNAMICS
from nontrivial field configurations in the extra dimensions.
For illustration, it is particularly fruitful to consider examples
provided from string theory, particularly branes and fluxes. Quantitative details of the de Sitter decay will depend on
There may well also be other effects, both perturbative andéhe contribution of these and other possible terms to the po-

A. Fixed-point dynamics

nonperturbat|\/e in the Coup“ngs tential. However, we will be particularly interested in the
Some of the examples from string theory were enumerasymptotic structure of the expanding region of higher-
ated in Ref[2]. A g-form flux field with action dimensional space. The dynamics inside this region is gov-

erned by the asymptotics of the potential at large dilaton, and
dea Fq for this in general we need only to focus on the leading term.
Sp* J d X\/__Gq_| (2.7) Since this will typically be of the fornv«R", let us analyze
more closely the dilaton dynamics with a single such term in
gives a potential the potential. With canonically normalized dilaton,

VporR™ 0720 2.9 $=1/d(d+2)D, (3.2

and a space-filling brane with action we find an action of the form

4 _Z
5= Lo f dv,. . 2.9 f d*V-g (V¢ ~V(¢)| (32
Os Jmyxc,_g
with
gives a potential
A
3 = _pa ad
VpOCRp 3-2d (2.10 V(¢) 28 . (3.3
v In these conventions,
A
= d 1 2 fl
*=Vgiz2|ttg) afwx
B d 1 d+3-p b
~Va+2 d P brane
d+2
ds N g internal curvature. (3.9
AdS D Friedman-Robertson-WalkéFRW) solutions for actions

of this form, with exponential potentials, have been investi-
FIG. 2. A sketch of a potential with a metastable de Sitter re-gated previously in the literature, see, e.g., RE82-39.
gion, and a minimum with negative cosmological constant. If theRecently, there has been a great deal of discussion of analo-
Universe fluctuates into the anti—de Sitt&dS) basin of attraction, gous solutions in string and M theory, see, e.g., Refs.
it evolves to a big crunch singularity. [40-53,21.
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As we shall see in the next section, such FRW solutions, witiNote that Eq.(3.8) can also be integrated to give the
spatial curvaturé&=0, =1, are useful in studying the decom- ¢-dependent terms in the Freedman equation:
pactification transition. These have the form

d=—dP+al(t)dy?  é=d(t), (3.5 f+Y:£. (3.15
12 6 a%t?
wheredy? is the appropriate spatial metric with curvature
k=0, =1. The equations of motion take the form Thus, using Eq(3.10, the Freedman equati@B.6) becomes
=2 3 2 .
a’ p, ¢° V a® ¢ B
;_ 6 + 12+6' (3.6 ;ZW—’_W (3.19
a '+&=_f (3.7 for some constant’. First consider the casde=0, —1,
a 4 4 ' wherec’ is positive. Which term gives the dominant fixed-
point asymptotic behavior a@s—«~ depends on the relative
. dv magnitudes otr andy. A phase plane analysis of the dynam-
¢=-3 a9 @ 3.9 ics appears in the Appendix, but the basic features can be

understood straightforwardly directly from the equations. For
Here we have included the possibility of a stress tensor witi3y8>2, the first term becomes subdominant-as~. Then,

a barotropic equation of state, using the power-law form of the solution, E®.12, we find
B=1la?. This means the condition for this fixed point to

p,=(y—1)p,, (3.9  dominate isa®<37y/2. In contrast, forx®>37/2 both terms

_ _ are relevant. Correspondingly, the power-law fo(112)
for which the density evolves as now implies 8=2/3y. The complete phase plane analysis
) (see Refs[35,37 and the Appendixshows that these are
p =—37§p _ (3.10 indeed the fixed points to which the generic solution is

7 a’’ attracted—in the Appendix, fixed poitd) for «?<3+y/2 and

_ ) o (b) for a®>3y/2 (see Fig. 4 Any other fixed points are

at largea is that summarizing the spatial curvature, which  The case of positive spatial curvatuke=+1 allows
gives negativec’ and is somewhat more subtle. Faf<3y/2
=1, depending on initial conditions, the solution may reach
6k . . . -
—— (3.12) a turning point a_nd reflect to a (_:ollapsm_g unlverae;o,
a rather than reaching the asymptatie> o region. If this hap-
) o . pens, other terms in the Freedman equat&#), e.g., due to
Massive matter ¥=1) or radiation ¢/=3) will make sub-  matter/radiation fields, become important in the dynamics,
dominant contributions as—< in these cases, but K=0  and a general analysis is not possible. However, if the solu-
their contribution can be relevant to this asymptotic behaviorijgn asymptotically expands, the analysis is similar to khe
The asymptotic behavior of solutions of these equations is- _ 1 case. Fon?> 1, solutions generically reach a turning
typically governed by fixed-point “tracker” solutions. The point and recollapse; this behavior is not well described by
fixed points relevant to the casks-0, —1 have been found  the power-law forn(3.12). These features are well illustrated
via phase space analyses in R¢85,37. A simple extension  py the corresponding phase plot in the Appendix—see Fig. 5.

of this work covers the cade=+1 as well, as described in e can summarize the resulting asymptotically expanding
the Appendix. Let us understand how these solutions arisep|utions by

The starting point is the observation that for a scale factor
that increases as a power of ting@hich will be justified

P23~

shortly ds’=—dt?+a3[c(t—ty)]?dx?, (3.17
a=ag(ct)?, (3.12 and
anq _for an exponential potentié.3), Eq. (3.9 drivese? to e?=[c(t—ty)]%", (3.18
infinity as a power:
e*$=(ct)2 (3.13 with ¢ given in Eq.(3.14. The constang, may be fixed by
' ' Eg. (3.6) for k= =1 and the expansion exponedts given
where the constant is fixed to be by
_a A . B 2 1 31
C_E 3B_1 (3.19 B=ma 3_’)/'&7 . (3.19
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B. Specific cases duli case where that is dominated by an exponential potential
Consider first the case of nonzero spatial curvatkre, due to a single modulus, as in R¢28]. Thus we consider

+1. At large radius, the curvature dominates over the mattef® Lagrangian3.2), whereV(¢) has a form sketched in

contributions to the Friedmann equations, and curvature cof-'9- 1. For simplicity, we work in units wheri#,=1 in the

responds toy= 2. Thus fora>1, which is generically the °llowing. . . . .
case for string-theory induced potentials, ker —1 we have Any given region O.f the de. Sltter universe corresponding
B=1, giving a nonaccelerating solution with a linearly grow- to th_e r_netast_able minimum will ultimately decay to a decom-
ing scale facto?for k= +1 we have collapse. For example, pactifying universe. The time scale depends on the param-

consider a flux-induced potential. We can easily see from E Sters of th? pot_entiél.lf the minimum corresponds to our
(3.4) that resently inflating phase, we should hawg=V(¢g)

~10 '2%<1. For a general potential, without any further fine
tuning, we expect that the height of maximum of the barrier
) (3.20 at ¢, is V,~1 and that the width of the barrier is alaop

~1. There are then two basic mechanisms for inducing spon-

which givesa®>1. Similarly for internal curvature, we find taneous decompactification. The first is for thermal excita-
tions of de Sitter space to take one over the top of the barrier.
) 2 The second is quantum tunneling through the barrier, as de-

Ueuvawré™ 1+ 5 (32D scribed by Coleman and de Lucdi2g].

The thermal activation rate is given by the action of the
so0 againa®>1. The case of a brane-induced potential givesHawking-Moss instanto54], as has been argued from the
from Eq. (3.4, stochastic approach to inflatigg5—61]. This gives the prob-

ability of a thermal fluctuation to take one to the top of the
barrier. If the change in entropy for this fluctuatiomAs, the
(3.22 probability is given by the usual formuR=exp{AS}. This
probability is
For p=d+2, i.e., a brane of codimension 1 or higher, we
therefore also findx?>>1. An exceptional case is that of a Pthermai™ €
completely space-filling branep=d+3, or equivalently

- 20 i ; Heor
higher-dimensional cosmological constant, which gives ~ WhereéS(¢o) =—24m/V, is the action of the de Sitter in-
stanton, i.e., the four-sphere solution, witl+ ¢, the meta-

d stable minimum. Similarly,S(¢4) is the solution with¢
a=\giz~ 1. (323  =¢,, the maximum of the barrier. The de Sitter recurrence

time [62] is given by T,=exp{S(¢y)}. The thermal decay
The corresponding solution then hgs-1/a>=1+2/d and  lifetime is thus shorter than this by an exponential factor:
is accelerating.

qg—-1
1+2—OI+2

g
aj qux:(1+za

®p prane 1+

d d+2

d+3—p)( d+1-p

S(qﬁo)—s(m), 4.2

2

Other string theory potentials typically fall off even more Tiherma™= € 247 V1T, . (4.2
rapidly at infinity, removing them further from this acceler- ) o
ating case. The tunneling probability is given bj29,16]

Next consider spatially flat universe&=0. In these
cases, the asymptotic density of matter or radiation, and in P _ ox S(0) 4.3
particular the dominant value of, is relevant for determin- tunnef™ [1+(4Vy/3T%)]%)" '
ing which attractor governs the dynamics. Note, however,
that one still only achieves acceleration fox 1. where the tension of the bubble wall is

We will discuss theD-dimensional interpretation of these
solutions in the following section. T L) A2V ). (4.4

0

IV. DECOMPACTIFICATION TRANSITION
For the parameters that we generically expect, we see that

Vo<T2. The probability(4.3) therefore yields a decay time
We next turn to the study of decay of a metastable de

Sitter minimum in the potential for the radial dilaton. In par- e~ € O TT, (4.5

ticular, we assume that the relevant dynamics for our discus-

sion is that of the radial modulus, and that other possibléComparing Eqs(4.2) and(4.5) shows that which process is

moduli of the internal manifold are fixed, although as wedominant clearly depends on the relative magnitudes of the

have pointed out this analysis should extend to the multimotensionT and the barrier heigh¥?; .

A. Escaping inflation

2However, solutions approaching this fixed point may be eternally 3For a more detailed review of parameters and dynamics see Ref.
acceleratind40,48,50Q. [16].

046005-5



S. B. GIDDINGS AND R. C. MYERS PHYSICAL REVIEW Y0, 046005 (2004

!

decompactification

B. Expansion to higher dimensions

In either case, even if we know the potential explicitly it
is typically hard to find an explicit solution. However, the
fixed-point behavior of these systems tells us that this is not
necessary to understand the asymptotic behavior. Specifi-
cally, we expect the asymptotic behavior of the decompacti-
fying solution to be governed by the leading term in the
potential asa— . This is expected to generically be one of
the exponentials we have considered, and so decompactifica-
tion is asymptotically described by one of the fixed-point

FIG. 3. A representation of the Coleman—de Luccia instantonsolutions of the preceding section, described (loy the k
describing tunneling from a metastable de Sitter region into a=0, —1 casesthe solution(3.17)—(3.19.
bubble of space in which the extra dimensions of space are expand- Since, as shown by E@3.18), the compact manifold ex-
ing. The lower half of the diagram is the Euclidean solution of Ref.pands, the relevant description becomes the higher-
[29], for the potentiaV(¢). This matches onto the Lorentzian so- dimensional description rather than that of four dimensions.
lution pictured in the upper half of the diagram. The straight linesRecall that these differ by the rescalit@4), so in terms of

correspond to the=0 surface of the resulting expandikg=—1  the fundamental units of the higher-dimensional theory, the
cosmology; the surfaces above these are surfaces of comstant asymptotic metric takes the form
this cosmology. The boundary of this decompactifying region is a

bubble wall (circular below, hyperbolic aboyevhich asymptoti- dst, j=e 9P —dt®+a?(t)dy?]+e*°PVdsi. (4.7)
cally expands at the speed of light into the metastable de Sitter
region. In discussing the higher-dimensional form of these solu-
tions, it proves easier to work with the coefficientrelated
Once the field excites past the barrier, it classicallyt0 a by
evolves towards decompactification. In the case of thermal 972
activation, one expects a picture where an entire horizon vol- A= A /T @ (4.9

ume thermally excites over the barrier. The boundary condi-

tions then start the solution near the maximum of the poten-h for f b dqi | find f
tial, and the resulting classical solution can roll into the (NUs for fluxes, branes, and internal curvature, we find from

decompactification region. However, fluctuations are ex-Eq' 34

pected to be important in this case, and so one cannot clearly 2q
identify the resulting dynamics as k=0, +1 univers¢'. )\:1+F g flux
However, these may serve as rough indicators for the dynam-
ics, bearing in mind that different regions may have different

- . d+3-p
spatial curvatures. One also expects to have some excited =1+——— p brane
matter fields in the resulting solution; this is important to d
avoid certain collapsing solutions in the case of vanishing
spatial curvatures= 0, but more generally it seems plausible
that collapse could occur in some regions, and expansion in
others.

In the case of tunneling, one can be a little more specificThen given the asymptotic solution in E¢8.17) and(3.18),
about the resulting boundary conditions, by matching thehe higher-dimensional metri@.7) becomes
Coleman—de Luccia instanton onto a Lorentzian geometry at
the turning point. The @) symmetry of the instanton con- dsi, ,=[c(t—to)] M —dt?+ad c(t—tg)]*Pdx?}
tinues to an S8, 1) symmetry of the subsequent classical
solution, implying[29,63 thatB(/)ne has evolugon on spatial +[c(t—tg)]*Mds]. (4.10
sections withk= — 1. These features are illustrated in Fig. 3.
The boundary conditions on the “initial slice” of the cosmol-

2
=1+a internal curvature. (4.9

For A>1, this metric can be simplified by defining a new
time coordinate,

ogy are
1 A\
_ T:Em[c(t—to)]l_m, (4.1)
¢$=0, a=0, a=1, and ¢= ¢y, (4.6)
with which we find
where ¢, is the value at the turning point. ds?=—dr?+ad(er) 2" V/0- D24 (g7 -Dgs?.
(4.12
“We thank A. Linde for a discussion on this point. Here the constart is given by
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A—1 attraction corresponding to decompactification. This is the
c= TC: (4.13 one that we have considered in this paper. We also expect

this basic picture to extend to the case of multimoduli run-

recall thatc was given in Eq.3.14, and 8 in Eq. (3.19.  away; Ref[28] has argued that the case of multiple runaway
Both the three large dimensions and the compact dimensiorgalars with exponential potentials can be reduced to the
expand. However, the compact dimensions expand morsingle-scalar case. There also may be basins of attraction
slowly unless where some of the dimensions of space decompactify and
others remain stabilized. These would be described by

(BA—1)d=2. (4.14  straightforward generalization of our analysis.
, , Once we find ourselves in such a basin of attraction, the
Thus fork=—1 they do so in the case of flux-induced po- yhiverse decompactifies, with asymptotic dynamics typi-
tentials and of potentials arising from branes of C€O-cq\y given by Eqs(4.12 or (4.16. In the case of a thermal

dimension gr.eater than 2. - fluctuation, we expect an entire horizon-sized region to

The special case of a wrappgu=d+3 space-filling g\ jye into the region where higher-dimensional dynamics is
brane corresponds %=1 andg=1+2/d. Now we define  gjeyant, but the actual configuration may be highly nonuni-

1 form, with collapse in some regions and expansion in others.
= —In[c(t—tg)], (4.15 It is in this context that we imagine that our results kot
c +1 might be applicable. That is, they might describe the
dynamics of a small patch with positive spatial curvature in a
larger inhomogeneous solution. The surprising result from
ds2= _de+e4cT/d(a(2)dX2+dS§)_ (4.16 the phase.plane anglysis—see the Appendix—is that for t_ypi—
cal potentials, e.g., induced by fluxes or branes, the solutions
Thus, locally, the metric looks like a patch of inflating de 9enerically evolve to a big crunch. We expect that such re-
Sitter space—for a discussion of such asymmetric foliationgions collapse into black holes and are thus casually discon-
of de Sitter space, see RE64]. nected from the expanding regions. _ _ _

As the size of the compact dimensions become compa- !N the case of tunneling, a bubble of higher-dimensional
rable to that of the other three, in general the four-SPace forms, and its walls expand into the four-dimensional
dimensional effective description will break down and onef€gion at the speed of light. The solution inside the bubble is
must describe the solutions as fully higher-dimensional soludiven by the asymptotic dynamics that we have described.
tions. Since the field configurations, e.g., branes and fluxe€S in old inflation, the majority of space continues to be
on the compact manifold will generically be nonuniform, this inflating four-dimensional spad€3,63, but any given point
means that the resumng higher-dimensiona] solution is ger“ Ultlmately transition into the hlgher-dlmenSIOﬂgl realm.
nerically nonuniform. Moreover, fluctuations of modes that Now we return to a special case of space-filling brane
get light in this limit can become relevant. Nonetheless, inVith p=d+3, i.e., a(positive cosmological constant ind(
many cases we expect the four-dimensional solutions that we 4) dimensions. In this case, the landscape as illustrated in
have described to lift to give a higher-dimensional solution Fig. 1 is deceptive. Despite the appearance of the usual infi-

dimensional dynamics. pactified space ind+4) dimensions. Rather as we have

explicitly shown in Eq.(4.16), the (apparently metastable

dS space transitions to a spacetime which asymptoted to (

+4)-dimensional de Sitter space. Recall from the discussion
Let us assemble the pieces of the picture that we havaround Eq(3.23 that this was the special case for which the

discussed. Beginning with our Universe in its currently in-Universe appeared to be accelerating from a 4D point of

flating phase, ultimately a fluctuation will carry it out of our view.

metastable minimum. This may either be a thermal fluctua- Hence this introduces the following interesting possibility.

tion over the barrier, or a tunneling event through the barrierHere we may consider the transition our four-dimensional dS

In the thermal case, an entire horizon-sized region fluctuatespace to a higher-dimensional dS space. However, in this

over the barrier. In the tunneling case, a bubble forms, andase, we also expect the reverse process to be possible.

then expands. Moreover, we expect that, if the system can indeed be
The relevant time scales are extremely long, as they corthought of as a thermal ensemble and the de Sitter entropies

tain a factor of the recurrence time&,~exp{10'?%. The de-  as accurate representations of the number of states, the solu-

cay time, expressed as a fraction of the recurrence time, itlon that dominates the ensemble should be that with the

given in Egs.(4.2 and (4.5, and depends on the relative higher entropy. This could be either the higher-dimensional

magnitude of the bubble tension and the barrier height.  or lower-dimensional de Sitter spap@6], depending on the
What happens next depends on which basin of attractiorelative magnitudes of the entropies,

the fluctuation takes us into. There may be accessible basins

of attraction with negative effective cosmological constant;

in that case the Universe will undergo a big crunch. Alterna- °A similar description has been advocated for the crunch singu-

tively, we know that there is generically an infinite basin of larities appearing in transitions towards AdS minifaa].

and the metric becomes

V. OVERVIEW: THE FALL
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ng+4>(d+2)/2 With this choice of variables, the Freedman constré&®ng)
Syra~ AT (5.)  becomes
d+4
and x2+y?—kZ=1 (A2)
M4 MEAT\2 which can be used to eliminateThe second-order equations
Sy~ A—4~ A—4’ (5.2 (3.7 and (3.8) can be written in the form

r_ 2 2
where Vy is the volume of the compact manifold at the X' ==2x(1=x) +y(V3a—x), (A3)

“metastable” minimum. In fact, it is not difficult to construct
examples where the compactified solution has the larger en- y'=y(1-y?)—xy(V3a—2X), (A4)
tropy [66]. In particular, we know that a minimum corre-

sponding to the present Universe has an ent®py10*,  \where prime denotes/dloga and « is the (positive) con-
and so if the hypothetical higher-dimensional theory had &tant characterizing the exponential potential, as in(E4).
cosmological constant that is order unity in Planck units, oulNote that these equations are independerk. afhe feature
four-dimensional metastable minimum would be expected tquhich then distinguishes these two cases is the range of the
strongly dominate such an ensemble. Hence this scenarigariables as determined by the constrgif®), i.e., x?+y?
could provide a mechanism for compactification from the<j for k= —1 andx?+y2=1 for k= + 1. We are also gen-
higher-dimensional theory. _ ~ erally interested in solutions describing an expanding uni-
Certainly, this is not the entire story. Typically within this yerse and so we focus our attentionysn 0. Since Eqs(A3)

framework, compactified anti—de Sitter solutions will also ang(A4) are symmetric undey— —y, they<0 dynamics is
arise, e.g., by adjusting flux¢66]. It is not clear what their 5 simple extrapolation.

role should be in such a scenaf®0,21,30. However, this These equations exhibit the following fixed points:
aspect of the dynamics seems a fruitful ground for future(a) X=Xo= alV3, y=y.= V1= a?3, 22=0
research. (b) x=x,=1M3a, y=y,=v2IV3a, 22=k(a 2-1),
(© x=0,y=0,7*=-k,
ACKNOWLEDGMENTS (d x=1,y=0, 22=0,
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preparing P P 9UreS- 3 in order thaty, is real. While(b) hasx, andy, real for
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of Energy under Contract No. DE-FG02-91ER40618. This | /alues Ofa, itis only relevant fora=1 with k= +1 an

a>1 with k= —1 so that the fixed point lies in the appro-

work was initiated at the Perimeter Institute, which S'B'G'priate domain of the phase plane, iZ=0. Similarly, (0) is
. . . . . y a U, 3
would like to thank for its kind hospitality. Research at the only relevant fork= — 1. Finally the fixed pointsd) and (e

Perimeter Institute is supported in part by funds from Iways appear relevant independent of the parameters. Fig-
NSERC of Canada. Part of this work was also carried ouft " 2> apbeal =P ! P 'S. 719
ures 4 and 5 illustrate the fixed points and the flows in the

during the Superstring Cosmology workshop at the Kavli hase plane for the various distinct parameter ranges. We
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acknowledged; research at the KITP was supported in part b?/ Consider the case— — 1, as described by Fig. 4. First for

gh7e9Alr\I9atlonal Science Foundation under Grant No. PHY99-a< 1, (a) is the only stable fixed point and then describes the

end-point behavior of generic solutions. As described in the
text, amongst the string theory potentials, this situation only
APPENDIX: PHASE PLANE ANALYSIS FOR k=%1 seems to be realized with a completely space-filling brane

Following the phase plane analysis of RES7], we de- (with p=d+3), in which case this fixed point corresponds

scribe the general solutions of Eq8.6)—(3.8) for the cases @ an asymptotically de Sitter solution in the full
where the spatial metric is either positively or negatively(d+4)-dimensional spacetime. Forda<v3, (a) becomes
2 a saddle point and then disappeérs., moves off into the

curved. Hence in Eq93.6) and (3.7), we havey=$% and ” v )
substitute forp., as in Eq.(3.10. The phase plane dynamics complex plangfor a>v3. Hence in the regime>1 which

explicitly reveals the presence of fixed-point “tracker” solu- S€Mms to be the generic case for string thedoy,is the

tions, discussed in the main text, as the generic end points Gfable fixed _poin?. _
various solutions. Figure 5 illustrates the flows fdt= +1. In this case(a)

We begin by defining

('1) \/v 1 SQualitatively, these results apply for the case of any barotropic
X=———, y=——, Z=—. (A1) fluid with a positive energy density37]—the latter would be the
2v3ala \/Ea/a a dominant energy contribution for the calse 0.
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FIG. 4. Fixed points and some typical trajectoriesker—1 in
the regimegi) a<1, (i) 1<a<v3, and(iii) «>v3. (The specific
plots above were made far=1//3, 5/2/3, and 2)

FIG. 5. Fixed points and some typical trajectoriesker+1 in
the regimes(i) a<1, (i) 1<a<v3, and(iii) a>v3. (The specific
plots above were made far= % 5/2/3, and 2)
is again a stable fixed point far<1 and the same comments
given above apply here. In fadh) only appears in this pa- bations, to become important in the final stage of this crunch.
rameter range as well, but it is an unstable saddle point. Note that during the collapse stage above, we have

Hence fora>1, the generic flows run off to infinity in di- <0 and hencep>0. That is, the internal space continues to
rections bounded by?/x*<2. This behavior is also generic expand for these solutions. From a higher-dimensional per-
for a broad range of initial conditions when<1. Physically  spective, however, we would still regard this as a collapsing
these flows correspond to expanding cosmologies where thshase, as given the full metrid.7), one can easily show that
kinetic energy in the scalar field dominates the potential, anghe proper volume element is contracting both in the non-
the spatial curvature leads to decelerated expansion. As @mpact four dimensions and in the full ¢ 4)-dimensional
resulta=1/z reaches zero at some finite valueafandt). solution.

Hence beyond this point, they begin collapsing. In the phase We have focused on the end point of the decompactifica-
plane, this transition is realized by mapping the asymptotigion trajectories, but it is interesting to consider the full tra-
flow with (x,y) to (—x,—y) and following the flow back- jectories and follow the flows backwards to an initial fixed
wards with respect to the arrows indicated in the figures. Ipoint. Generically, for the entire range of parameters, the
the present context, the solutions of interest in the presenfows originate at one of the repulsive fixed poifds or (e).
context are those which run off to infinity witk>0, i.e.,&,  Hence these solutions emerge from a singular big bang. As
#>0. In this case, for any value af, they flow towards a Wwith the crunch above, the analysis provided here is expected
big crunch at the fixed poir(e). However, as commented in to be incomplete as many other terms will be important near
the main text, we expect other terms, e.g., matter and pertuthis initial singularity. The generic appearance of these sin-
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gularities was, of course, observed by R¢#0,21,3(Q and We might also comment that, in any range of parameters
used as part of their criticism of string theory landscape pic€onsidered above, there are many trajectories which begin
ture. However, for tunneling from a metastable dS vacuumwith negativex and cross over to positive These would fall
these singularities do not appear as part of the evolution ahto the class of M-theory solutions, which were recently
the system. Another possible viewpoint on this may be tadiscussed[40—-49 because they exhibit an accelerating
consider an “extended” landscape, in which the 4D radiusphase. As first noted in Ref42], nearx=0, the scalar po-

(or even more general metric degrees of freefamin-  tential momentarily dominates the energy density and so cos-
cluded; in this space the singular regions may be well sepanic acceleration is seen by four-dimensional observers.
rated from the solutions of interest, e.g., by being in differentHowever, this is only a momentary phase since, as noted in
basins of attraction, though this question deserves furthehe main text, generically the M-theory potentials are too

exploration.

steep to generate gnontinuously accelerating solution.
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