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Positive vacuum energy together with extra dimensions of space imply that our four-dimensional Universe
is unstable, generically to decompactification of the extra dimensions. Either quantum tunneling or thermal
fluctuations carry one past a barrier into the decompactifying regime. We give an overview of this process, and
examine the subsequent expansion into the higher-dimensional geometry. This is governed by certain fixed-
point solutions of the evolution equations, which are studied for both positive and negative spatial curvature.
In the case where there is a higher-dimensional cosmological constant, we also outline a possible mechanism
for compactification to a four-dimensional de Sitter cosmology.
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I. INTRODUCTION

We now have good reason to believe that we live in
accelerating Universe; this point has particularly be
brought home with the recent Wilkinson microwave anis
ropy probe~WMAP! results@1#, combined with earlier cos
mological observations. It is also widely believed that o
fundamental description of nature should involve extra sm
dimensions of space. These two statements alone lead o
a very general argument that the Universe as we know
unstable to a catastrophic transition@2#.

The generic instability is for the extra dimensions
space to begin to grow, and our world to evolve into
higher-dimensional one. However, depending on the de
of the potential for the shape and size moduli of the ex
dimensions, there may also be basins of attraction with ne
tive potential, which lead to equally catastrophic b
crunches. The instability towards expansion of the extra
mensions was first argued for in the context of string the
by Dine and Seiberg@3#. Their arguments were based o
supersymmetry. However, Ref.@2# points out that the under
lying mechanism is a simple dynamical one, driven by
dynamics of long-distance gravity, and is independent of
existence of supersymmetry.

Examples of potentials exhibiting this instability are no
being widely studied in string theory. Flat directions
moduli space have been a long-standing problem in st
theory. Recent developments in compactifications with flu
and branes@4–14# have provided examples of dynamics th
fixes these moduli@15,16#. In particular, Ref.@16# showed
that by adding an anti-D3 brane to the solutions of Ref.@15#,
one can lift the vacuum energy and find locally stab
minima with positive cosmological constant. Subsequ
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work on other approaches to vacua with positive cosmolo
cal constant has included Refs.@17–19#.

These developments have led to much discussion, as
as criticism@20,21#, of the resulting picture of a ‘‘landscape
of stringy vacua. This picture has led to a forceful resurr
tion @22# of the idea that constants of nature—particularly t
cosmological constant—are determined anthropically;
large number of possible fluxes and resulting vacua@23,24#
~for a review see Ref.@25#! together with the observation tha
in a sufficiently large distribution one expects to find a sm
enough cosmological constant@26#, have given strong fuel to
this possibility.

One of the criticisms from Ref.@20# is potentially relevant
to our discussion, and so deserves comment. Banks and
argue that an effective potential description of the landsc
is not justified and cannot be trusted. Underlying this arg
ment is the realization that there are regions in the combi
field space of the moduli and metrics where the dynam
becomes strongly coupled. While it is certainly not inco
ceivable that this could render the entire picture inconsist
we take a more sanguine perspective. It may well be t
there are dragons off in the mountains of the landsca
However, the valley we find ourselves in seems perfec
tame, and we expect that dynamics nearby is likewise ta
Of course we would very much like to understand t
strongly coupled dynamics to understand how we arrived
our present vacuum, but for now we shall take the persp
tive that the dynamics of the full quantum wave function h
somehow deposited us here, and our problem is to see w
happens next. We provisionally accept that the effective
tential is a useful tool in this investigation.

In the next section we review the derivation of the effe
tive potential for the radial dilaton modulus. In particula
this analysis shows that modular landscapes have a ge
feature, much like the ‘‘front range’’ of Colorado—th
mountains taper off to a semi-infinite plain. As we roll in
this region, the extra dimensions of space expand. Sectio
also discusses examples of potentials that can be obta
©2004 The American Physical Society05-1
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S. B. GIDDINGS AND R. C. MYERS PHYSICAL REVIEW D70, 046005 ~2004!
from fluxes and branes, for example in string theory. Sec
III turns to the problem of analyzing the asymptotic dyna
ics of solutions that have escaped a metastable minimum
are running to infinitely expanded extra dimensions. Asym
totically these solutions become fixed-point solutions, wh
form we derive from the equations of motion. Section
discusses mechanisms for escape from the metas
minimum—thermal excitation over or tunneling through t
barrier. Finally, in Sec. V, we assemble these results wit
general discussion of the decompactification transition ou
~our?! metastable de Sitter~dS! space and into the decom
pactifying regime, with the resulting higher-dimension
evolution. We also briefly discuss a scenario in which tra
sitions can take place back and forth between a high
dimensional dS space and the four-dimensional one; in
case, the dominant configuration should be determined
the relative entropies, providing a possible mechanism
compactification. The Appendix provides a more detai
phase-plane analysis, for both positive and negative sp
curvatures, of the solutions arising in our discussion of
compactification,

Spontaneous decompactification has also been rece
discussed for simple compactifications with fluxes in R
@27#, which appeared while our paper was being written

II. RADIAL DILATON DYNAMICS: GENERALITIES

A. Dimensional reduction

We begin by discussing dynamics of the radial dilato
following Ref. @2#. Specifically, suppose that we begin wi
(d14)-dimensional action,

S5E dd14XA2G@M P
d12R1L~c!1L̂~c,R!#, ~2.1!

where X and G are the coordinates and metric of the fu
(d14)-dimensional spacetime,M P is the (d14)-
dimensional Planck mass,R is the Ricci scalar,L~c! is the
Lagrangian representing the leading contribution of gen
matter sources in a derivative expansion, possibly includ
localized sources such as D branes, andL̂(c,R) summarizes
possible corrections to the leading Lagrangian that invo
higher powers of the curvature and/or higher derivatives
matter fields. This action may be the effective action
string theory, or for some other fundamental theory of gr
ity. For our present purposes we assume that all the mo
except the overall volume modulus of the internal space
fixed, e.g., as in Ref.@15#; we will consider the coupled
dynamics of this modulus and the four-dimensional met
~It has been argued in Ref.@28# that in the case of multiple
moduli with exponential potentials, a single term dominat
leading to an obvious generalization of our analysis to
multimoduli case.! Thus we assume that Eq.~2.1! has solu-
tions of the form1

1Here we suppress a possible warp factor, which should
change our general picture.
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ds25ds4
21R2~x!gmn~y!dymdyn. ~2.2!

The action governing solutions withR(x)5eD(x) varying
slowly on the compactification scale follows from dime
sional reduction of Eq.~2.1!. The Einstein-Hilbert term gives
a four-dimensional~4D! effective action

SEH5M P
d12VdE d4xA2g4@edD~x!R41d~d21!

3~¹D !2edD~x!1e~d22!DRd#, ~2.3!

where Vd and Rd are the volume and curvature of th
d-dimensional compact metricgmn . However, in this frame
the 4D effective Planck mass varies withR. To make contact
with usual treatments of 4D dynamics, one should choos
new set of units by performing the Weyl rescaling,

g4mn→e2dDg4mn ; ~2.4!

the 4D Planck mass then becomes

M4
25M P

d12Vd . ~2.5!

The additional terms in Eq.~2.1! then contribute an addi
tional potential forD. The net result is an action of the form

S5M4
2E d4xA2g4HR42

1

2
d~d12!~¹D !22V~D !J .

~2.6!

A central observation of Ref.@2# is that any physics tha
stabilizes the radial dilaton from runaway to infinite volum
D→`, must do so only locally—the Weyl rescaling~2.4!
introduces an inverse power of the volume-squared into
potential. This means that to stabilize the radial dilaton,
higher-dimensional dynamics would have to produce an
ergy densitygrowing at least as fast as the internalvolume
for large volume. This does not appear realizable in any
alistic physical theory.

Therefore if there is a positive potential minimum repr
senting the present de Sitter phase of our Universe, this m
mum must be metastable, and the potential should gen
cally appear as in Fig. 1 or Fig. 2. Figure 2 produces
instability to a big crunch spacetime@29,30#. Our focus will
be the more generic case of runaway to infinitely extend
extra dimensions, as follows from Fig. 1.

Of course, in full generality there will be a nontrivia
multidimensional moduli space of compact manifolds, an
potential function on this space. This has recently been
plored in the case of string theory for the region of stri
configuration space corresponding to flux compactificatio
and the resulting configuration space dubbed@22# ‘‘the land-
scape.’’ The argument given in Ref.@2# implies that the land-
scape has a general feature similar to the geology of the f
range of the Rocky Mountains in North America: the mou
tains and valleys of the landscape roll off into a flat pla
extending to infinity.
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B. Dilaton potential—examples

In general the dilaton potential receives contributio
from nontrivial field configurations in the extra dimension
For illustration, it is particularly fruitful to consider example
provided from string theory, particularly branes and flux
There may well also be other effects, both perturbative
nonperturbative in the couplings.

Some of the examples from string theory were enum
ated in Ref.@2#. A q-form flux field with action

Sp}2E dd14XA2G
Fq

2

q!
~2.7!

gives a potential

VF}R2d22q ~2.8!

and a space-fillingp brane with action

Sp52
mp

gs
E

M43Cp23

dVp11 ~2.9!

gives a potential

Vp}Rp2322d. ~2.10!

FIG. 1. A sketch of a potential with a metastable de Sitter
gion, and runaway to infinite dilaton.

FIG. 2. A sketch of a potential with a metastable de Sitter
gion, and a minimum with negative cosmological constant. If
Universe fluctuates into the anti–de Sitter~AdS! basin of attraction,
it evolves to a big crunch singularity.
04600
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From the action~2.3!, curvature on the internal manifold ca
give a potential

VR}R2d22. ~2.11!

Nonperturbative effects give other contributions, e.g., R
@16# included a potential of the form

V5Be22aR4
/Rs, ~2.12!

with different constantsa ands arising from Euclidean D3-
brane instantons or gluino condensation. Finallya8 correc-
tions were argued in Ref.@31# to produce potential contribu
tions of the form

VK}
1

R18. ~2.13!

III. ASYMPTOTIC DILATON DYNAMICS

A. Fixed-point dynamics

Quantitative details of the de Sitter decay will depend
the contribution of these and other possible terms to the
tential. However, we will be particularly interested in th
asymptotic structure of the expanding region of high
dimensional space. The dynamics inside this region is g
erned by the asymptotics of the potential at large dilaton,
for this in general we need only to focus on the leading te
Since this will typically be of the formV}Rn, let us analyze
more closely the dilaton dynamics with a single such term
the potential. With canonically normalized dilaton,

f5Ad~d12!D, ~3.1!

we find an action of the form

S5M4
2E d4xA2gFR42

1

2
~¹f!22V~f!G ~3.2!

with

V~f!5
A

2
e2af. ~3.3!

In these conventions,

a5A d

d12 S 11
2q

d D q flux

5A d

d12 S 11
d132p

d D p brane

5Ad12

d
internal curvature. ~3.4!

Friedman-Robertson-Walker~FRW! solutions for actions
of this form, with exponential potentials, have been inves
gated previously in the literature, see, e.g., Refs.@32–39#.
Recently, there has been a great deal of discussion of an
gous solutions in string and M theory, see, e.g., Re
@40–53,27#.
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As we shall see in the next section, such FRW solutions, w
spatial curvaturek50, 61, are useful in studying the decom
pactification transition. These have the form

ds4
252dt21a2~ t !dx2, f5f~ t !, ~3.5!

where dx2 is the appropriate spatial metric with curvatu
k50, 61. The equations of motion take the form

ȧ2

a25
rg

6
1

ḟ2

12
1

V

6
, ~3.6!

S ȧ

aD •

1
grg

4
52

ḟ2

4
, ~3.7!

f̈523S ȧ

aD ḟ2
dV

df
. ~3.8!

Here we have included the possibility of a stress tensor w
a barotropic equation of state,

pg5~g21!rg , ~3.9!

for which the density evolves as

ṙg523g
ȧ

a
rg . ~3.10!

In the casek561, the dominant effective contribution tor
at largea is that summarizing the spatial curvature, whi
gives

r2/352
6k

a2 . ~3.11!

Massive matter (g51) or radiation (g5 4
3 ) will make sub-

dominant contributions asa→` in these cases, but ifk50
their contribution can be relevant to this asymptotic behav

The asymptotic behavior of solutions of these equation
typically governed by fixed-point ‘‘tracker’’ solutions. Th
fixed points relevant to the casesk50, 21 have been found
via phase space analyses in Refs.@35,37#. A simple extension
of this work covers the casek511 as well, as described in
the Appendix. Let us understand how these solutions a
The starting point is the observation that for a scale fac
that increases as a power of time~which will be justified
shortly!,

a5a0~ct!b, ~3.12!

and for an exponential potential~3.3!, Eq. ~3.8! drivesef to
infinity as a power:

eaf5~ct!2, ~3.13!

where the constantc is fixed to be

c5
a

2
A A

3b21
. ~3.14!
04600
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Note that Eq. ~3.8! can also be integrated to give th
f-dependent terms in the Freedman equation:

ḟ2

12
1

V

6
5

b

a2t2 . ~3.15!

Thus, using Eq.~3.10!, the Freedman equation~3.6! becomes

ȧ2

a2 5
c8

t3gb 1
b

a2t2 ~3.16!

for some constantc8. First consider the casesk50, 21,
wherec8 is positive. Which term gives the dominant fixed
point asymptotic behavior ast→` depends on the relative
magnitudes ofa andg. A phase plane analysis of the dynam
ics appears in the Appendix, but the basic features can
understood straightforwardly directly from the equations. F
3gb.2, the first term becomes subdominant ast→`. Then,
using the power-law form of the solution, Eq.~3.12!, we find
b51/a2. This means the condition for this fixed point t
dominate isa2,3g/2. In contrast, fora2.3g/2 both terms
are relevant. Correspondingly, the power-law form~3.12!
now implies b52/3g. The complete phase plane analys
~see Refs.@35,37# and the Appendix! shows that these ar
indeed the fixed points to which the generic solution
attracted—in the Appendix, fixed point~a! for a2,3g/2 and
~b! for a2.3g/2 ~see Fig. 4!. Any other fixed points are
either unstable nodes or saddle points.

The case of positive spatial curvaturek511 allows
negativec8 and is somewhat more subtle. Fora2,3g/2
51, depending on initial conditions, the solution may rea
a turning point and reflect to a collapsing universe,ȧ,0,
rather than reaching the asymptotica→` region. If this hap-
pens, other terms in the Freedman equation~3.6!, e.g., due to
matter/radiation fields, become important in the dynam
and a general analysis is not possible. However, if the s
tion asymptotically expands, the analysis is similar to thek
521 case. Fora2.1, solutions generically reach a turnin
point and recollapse; this behavior is not well described
the power-law form~3.12!. These features are well illustrate
by the corresponding phase plot in the Appendix—see Fig

We can summarize the resulting asymptotically expand
solutions by

ds252dt21a0
2@c~ t2t0!#2bdx2, ~3.17!

and

ef5@c~ t2t0!#2/a, ~3.18!

with c given in Eq.~3.14!. The constanta0 may be fixed by
Eq. ~3.6! for k561 and the expansion exponentb is given
by

b5maxS 2

3g
,

1

a2D . ~3.19!
5-4
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B. Specific cases

Consider first the case of nonzero spatial curvature,k5
61. At large radius, the curvature dominates over the ma
contributions to the Friedmann equations, and curvature
responds tog5 2

3 . Thus fora.1, which is generically the
case for string-theory induced potentials, fork521 we have
b51, giving a nonaccelerating solution with a linearly grow
ing scale factor;2 for k511 we have collapse. For exampl
consider a flux-induced potential. We can easily see from
~3.4! that

aq flux
2 5S 112

q

dD S 112
q21

d12D , ~3.20!

which givesa2.1. Similarly for internal curvature, we find

acurvature
2 511

2

d
~3.21!

so againa2.1. The case of a brane-induced potential giv
from Eq. ~3.4!,

ap brane
2 5S 11

d132p

d D S 11
d112p

d12 D . ~3.22!

For p<d12, i.e., a brane of codimension 1 or higher, w
therefore also finda2.1. An exceptional case is that of
completely space-filling brane,p5d13, or equivalently
higher-dimensional cosmological constant, which gives

a5A d

d12
,1. ~3.23!

The corresponding solution then hasb51/a25112/d and
is accelerating.

Other string theory potentials typically fall off even mo
rapidly at infinity, removing them further from this accele
ating case.

Next consider spatially flat universes,k50. In these
cases, the asymptotic density of matter or radiation, an
particular the dominant value ofg, is relevant for determin-
ing which attractor governs the dynamics. Note, howev
that one still only achieves acceleration fora,1.

We will discuss theD-dimensional interpretation of thes
solutions in the following section.

IV. DECOMPACTIFICATION TRANSITION

A. Escaping inflation

We next turn to the study of decay of a metastable
Sitter minimum in the potential for the radial dilaton. In pa
ticular, we assume that the relevant dynamics for our disc
sion is that of the radial modulus, and that other poss
moduli of the internal manifold are fixed, although as w
have pointed out this analysis should extend to the multim

2However, solutions approaching this fixed point may be etern
accelerating@40,48,50#.
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duli case where that is dominated by an exponential poten
due to a single modulus, as in Ref.@28#. Thus we consider
the Lagrangian~3.2!, whereV(f) has a form sketched in
Fig. 1. For simplicity, we work in units whereM451 in the
following.

Any given region of the de Sitter universe correspond
to the metastable minimum will ultimately decay to a deco
pactifying universe. The time scale depends on the par
eters of the potential.3 If the minimum corresponds to ou
presently inflating phase, we should haveV05V(f0)
;102120!1. For a general potential, without any further fin
tuning, we expect that the height of maximum of the barr
at f1 is V1;1 and that the width of the barrier is alsoDf
;1. There are then two basic mechanisms for inducing sp
taneous decompactification. The first is for thermal exc
tions of de Sitter space to take one over the top of the bar
The second is quantum tunneling through the barrier, as
scribed by Coleman and de Luccia@29#.

The thermal activation rate is given by the action of t
Hawking-Moss instanton@54#, as has been argued from th
stochastic approach to inflation@55–61#. This gives the prob-
ability of a thermal fluctuation to take one to the top of t
barrier. If the change in entropy for this fluctuation isDS, the
probability is given by the usual formulaP5exp$DS%. This
probability is

Pthermal5eS~f0!2S~f1!, ~4.1!

whereS(f0)5224p2/V0 is the action of the de Sitter in
stanton, i.e., the four-sphere solution, withf5f0 , the meta-
stable minimum. Similarly,S(f1) is the solution withf
5f1 , the maximum of the barrier. The de Sitter recurren
time @62# is given by Tr5exp$S(f0)%. The thermal decay
lifetime is thus shorter than this by an exponential factor

t thermal5e224p2/V1Tr . ~4.2!

The tunneling probability is given by@29,16#

Ptunnel5expH S~f0!

@11~4V0/3T2!#2J , ~4.3!

where the tension of the bubble wall is

T5E
f0

`

dfA2V~f!. ~4.4!

For the parameters that we generically expect, we see
V0!T2. The probability~4.3! therefore yields a decay time

t tunnel;e264p2/T2
Tr . ~4.5!

Comparing Eqs.~4.2! and ~4.5! shows that which process i
dominant clearly depends on the relative magnitudes of
tensionT and the barrier heightV1 .

y 3For a more detailed review of parameters and dynamics see
@16#.
5-5
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Once the field excites past the barrier, it classica
evolves towards decompactification. In the case of ther
activation, one expects a picture where an entire horizon
ume thermally excites over the barrier. The boundary con
tions then start the solution near the maximum of the pot
tial, and the resulting classical solution can roll into t
decompactification region. However, fluctuations are
pected to be important in this case, and so one cannot cle
identify the resulting dynamics as ak50, 61 universe.4

However, these may serve as rough indicators for the dyn
ics, bearing in mind that different regions may have differe
spatial curvatures. One also expects to have some ex
matter fields in the resulting solution; this is important
avoid certain collapsing solutions in the case of vanish
spatial curvature,k50, but more generally it seems plausib
that collapse could occur in some regions, and expansio
others.

In the case of tunneling, one can be a little more spec
about the resulting boundary conditions, by matching
Coleman–de Luccia instanton onto a Lorentzian geometr
the turning point. The O~4! symmetry of the instanton con
tinues to an SO~3, 1! symmetry of the subsequent classic
solution, implying@29,63# that one has evolution on spati
sections withk521. These features are illustrated in Fig.
The boundary conditions on the ‘‘initial slice’’ of the cosmo
ogy are

ḟ50, a50, ȧ51, and f5f t , ~4.6!

wheref t is the value at the turning point.

4We thank A. Linde for a discussion on this point.

FIG. 3. A representation of the Coleman–de Luccia instant
describing tunneling from a metastable de Sitter region into
bubble of space in which the extra dimensions of space are exp
ing. The lower half of the diagram is the Euclidean solution of R
@29#, for the potentialV(f). This matches onto the Lorentzian s
lution pictured in the upper half of the diagram. The straight lin
correspond to thea50 surface of the resulting expandingk521
cosmology; the surfaces above these are surfaces of constant in
this cosmology. The boundary of this decompactifying region i
bubble wall ~circular below, hyperbolic above! which asymptoti-
cally expands at the speed of light into the metastable de S
region.
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B. Expansion to higher dimensions

In either case, even if we know the potential explicitly
is typically hard to find an explicit solution. However, th
fixed-point behavior of these systems tells us that this is
necessary to understand the asymptotic behavior. Spe
cally, we expect the asymptotic behavior of the decompa
fying solution to be governed by the leading term in t
potential asa→`. This is expected to generically be one
the exponentials we have considered, and so decompact
tion is asymptotically described by one of the fixed-po
solutions of the preceding section, described by~in the k
50, 21 cases! the solution~3.17!–~3.19!.

Since, as shown by Eq.~3.18!, the compact manifold ex-
pands, the relevant description becomes the high
dimensional description rather than that of four dimensio
Recall that these differ by the rescaling~2.4!, so in terms of
the fundamental units of the higher-dimensional theory,
asymptotic metric takes the form

ds41d
2 5e2dD~ t !@2dt21a2~ t !dx2#1e2D~ t !dsd

2. ~4.7!

In discussing the higher-dimensional form of these so
tions, it proves easier to work with the coefficientl, related
to a by

l5Ad12

d
a; ~4.8!

thus for fluxes, branes, and internal curvature, we find fr
Eq. ~3.4!

l511
2q

d
q flux

511
d132p

d
p brane

511
2

d
internal curvature. ~4.9!

Then given the asymptotic solution in Eqs.~3.17! and~3.18!,
the higher-dimensional metric~4.7! becomes

dsd14
2 5@c~ t2t0!#22/l$2dt21a0

2@c~ t2t0!#2bdx2%

1@c~ t2t0!#4/lddsd
2. ~4.10!

For l.1, this metric can be simplified by defining a ne
time coordinate,

t5
1

c

l

l21
@c~ t2t0!#121/l, ~4.11!

with which we find

ds252dt21a0
2~ ĉt!2~bl21!/~l21!dx21~ ĉt!4/d~l21!dsd

2.
~4.12!

Here the constantĉ is given by

,
a
d-

.

s

a

er
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ĉ5
l21

l
c; ~4.13!

recall thatc was given in Eq.~3.14!, and b in Eq. ~3.19!.
Both the three large dimensions and the compact dimens
expand. However, the compact dimensions expand m
slowly unless

~bl21!d<2. ~4.14!

Thus fork521 they do so in the case of flux-induced p
tentials and of potentials arising from branes of c
dimension greater than 2.

The special case of a wrappedp5d13 space-filling
brane corresponds tol51 andb5112/d. Now we define

t5
1

c
ln@c~ t2t0!#, ~4.15!

and the metric becomes

ds252dt21e4ct/d~a0
2dx21dsd

2!. ~4.16!

Thus, locally, the metric looks like a patch of inflating d
Sitter space—for a discussion of such asymmetric foliati
of de Sitter space, see Ref.@64#.

As the size of the compact dimensions become com
rable to that of the other three, in general the fo
dimensional effective description will break down and o
must describe the solutions as fully higher-dimensional so
tions. Since the field configurations, e.g., branes and flu
on the compact manifold will generically be nonuniform, th
means that the resulting higher-dimensional solution is
nerically nonuniform. Moreover, fluctuations of modes th
get light in this limit can become relevant. Nonetheless,
many cases we expect the four-dimensional solutions tha
have described to lift to give a higher-dimensional solutio
and thus a reasonably accurate picture of the high
dimensional dynamics.

V. OVERVIEW: THE FALL

Let us assemble the pieces of the picture that we h
discussed. Beginning with our Universe in its currently
flating phase, ultimately a fluctuation will carry it out of ou
metastable minimum. This may either be a thermal fluct
tion over the barrier, or a tunneling event through the barr
In the thermal case, an entire horizon-sized region fluctu
over the barrier. In the tunneling case, a bubble forms,
then expands.

The relevant time scales are extremely long, as they c
tain a factor of the recurrence time,Tr;exp$10120%. The de-
cay time, expressed as a fraction of the recurrence time
given in Eqs.~4.2! and ~4.5!, and depends on the relativ
magnitude of the bubble tension and the barrier height.

What happens next depends on which basin of attrac
the fluctuation takes us into. There may be accessible ba
of attraction with negative effective cosmological consta
in that case the Universe will undergo a big crunch. Altern
tively, we know that there is generically an infinite basin
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attraction corresponding to decompactification. This is
one that we have considered in this paper. We also ex
this basic picture to extend to the case of multimoduli ru
away; Ref.@28# has argued that the case of multiple runaw
scalars with exponential potentials can be reduced to
single-scalar case. There also may be basins of attrac
where some of the dimensions of space decompactify
others remain stabilized. These would be described
straightforward generalization of our analysis.

Once we find ourselves in such a basin of attraction,
Universe decompactifies, with asymptotic dynamics ty
cally given by Eqs.~4.12! or ~4.16!. In the case of a therma
fluctuation, we expect an entire horizon-sized region
evolve into the region where higher-dimensional dynamic
relevant, but the actual configuration may be highly nonu
form, with collapse in some regions and expansion in oth
It is in this context that we imagine that our results fork5
11 might be applicable. That is, they might describe t
dynamics of a small patch with positive spatial curvature i
larger inhomogeneous solution. The surprising result fr
the phase plane analysis—see the Appendix—is that for t
cal potentials, e.g., induced by fluxes or branes, the solut
generically evolve to a big crunch. We expect that such
gions collapse into black holes and are thus casually disc
nected from the expanding regions.5

In the case of tunneling, a bubble of higher-dimensio
space forms, and its walls expand into the four-dimensio
region at the speed of light. The solution inside the bubble
given by the asymptotic dynamics that we have describ
As in old inflation, the majority of space continues to b
inflating four-dimensional space@63,65#, but any given point
will ultimately transition into the higher-dimensional realm

Now we return to a special case of space-filling bra
with p5d13, i.e., a~positive! cosmological constant in (d
14) dimensions. In this case, the landscape as illustrate
Fig. 1 is deceptive. Despite the appearance of the usual
nite plain, there are no solutions rolling towards flat deco
pactified space in (d14) dimensions. Rather as we hav
explicitly shown in Eq.~4.16!, the ~apparently! metastable
dS space transitions to a spacetime which asymptotes td
14)-dimensional de Sitter space. Recall from the discuss
around Eq.~3.23! that this was the special case for which t
Universe appeared to be accelerating from a 4D point
view.

Hence this introduces the following interesting possibili
Here we may consider the transition our four-dimensional
space to a higher-dimensional dS space. However, in
case, we also expect the reverse process to be poss
Moreover, we expect that, if the system can indeed
thought of as a thermal ensemble and the de Sitter entro
as accurate representations of the number of states, the
tion that dominates the ensemble should be that with
higher entropy. This could be either the higher-dimensio
or lower-dimensional de Sitter space@66#, depending on the
relative magnitudes of the entropies,

5A similar description has been advocated for the crunch sin
larities appearing in transitions towards AdS minima@22#.
5-7
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Sd14;
M P

~d14!~d12!/2

Ld14
~d12!/2 ~5.1!

and

S4;
M4

4

L4
;

M P
2~d12!Vd

2

L4
, ~5.2!

where Vd is the volume of the compact manifold at th
‘‘metastable’’ minimum. In fact, it is not difficult to construc
examples where the compactified solution has the larger
tropy @66#. In particular, we know that a minimum corre
sponding to the present Universe has an entropyS4;10120,
and so if the hypothetical higher-dimensional theory ha
cosmological constant that is order unity in Planck units,
four-dimensional metastable minimum would be expected
strongly dominate such an ensemble. Hence this scen
could provide a mechanism for compactification from t
higher-dimensional theory.

Certainly, this is not the entire story. Typically within th
framework, compactified anti–de Sitter solutions will al
arise, e.g., by adjusting fluxes@66#. It is not clear what their
role should be in such a scenario@20,21,30#. However, this
aspect of the dynamics seems a fruitful ground for fut
research.
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APPENDIX: PHASE PLANE ANALYSIS FOR kÄÁ1

Following the phase plane analysis of Ref.@37#, we de-
scribe the general solutions of Eqs.~3.6!–~3.8! for the cases
where the spatial metric is either positively or negative
curved. Hence in Eqs.~3.6! and ~3.7!, we haveg5 2

3 and
substitute forrg as in Eq.~3.10!. The phase plane dynamic
explicitly reveals the presence of fixed-point ‘‘tracker’’ sol
tions, discussed in the main text, as the generic end poin
various solutions.

We begin by defining

x5
ḟ

2)ȧ/a
, y5

AV

A6ȧ/a
, z5

1

ȧ
. ~A1!
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With this choice of variables, the Freedman constraint~3.6!
becomes

x21y22kz251 ~A2!

which can be used to eliminatez. The second-order equation
~3.7! and ~3.8! can be written in the form

x8522x~12x2!1y2~)a2x!, ~A3!

y85y~12y2!2xy~)a22x!, ~A4!

where prime denotesd/d loga and a is the ~positive! con-
stant characterizing the exponential potential, as in Eq.~3.3!.
Note that these equations are independent ofk. The feature
which then distinguishes these two cases is the range o
variables as determined by the constraint~A2!, i.e., x21y2

<1 for k521 andx21y2>1 for k511. We are also gen-
erally interested in solutions describing an expanding u
verse and so we focus our attention ony>0. Since Eqs.~A3!
and~A4! are symmetric undery→2y, they,0 dynamics is
a simple extrapolation.

These equations exhibit the following fixed points:
~a! x5xa5a/), y5ya5A12a2/3, z250,
~b! x5xb51/)a, y5yb5&/)a, z25k(a2221),
~c! x50, y50, z252k,
~d! x51, y50, z250,
~e! x521, y50, z250.
Which of these fixed points is physically realized~and their
stability properties! depends on the values of parametersk
and a. In particular, the fixed point~a! only appears fora
,) in order thatya is real. While~b! hasxb andyb real for
all values ofa, it is only relevant fora,1 with k511 and
a.1 with k521 so that the fixed point lies in the appro
priate domain of the phase plane, i.e.,z2>0. Similarly, ~c! is
only relevant fork521. Finally the fixed points~d! and~e!
always appear relevant independent of the parameters.
ures 4 and 5 illustrate the fixed points and the flows in
phase plane for the various distinct parameter ranges.
now comment briefly on these results.

Consider the casek521, as described by Fig. 4. First fo
a,1, ~a! is the only stable fixed point and then describes
end-point behavior of generic solutions. As described in
text, amongst the string theory potentials, this situation o
seems to be realized with a completely space-filling bra
~with p5d13), in which case this fixed point correspond
to an asymptotically de Sitter solution in the fu
(d14)-dimensional spacetime. For 1,a,), ~a! becomes
a saddle point and then disappears~i.e., moves off into the
complex plane! for a.). Hence in the regimea.1 which
seems to be the generic case for string theory,~b! is the
stable fixed point.6

Figure 5 illustrates the flows fork511. In this case,~a!

6Qualitatively, these results apply for the case of any barotro
fluid with a positive energy density@37#—the latter would be the
dominant energy contribution for the casek50.
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is again a stable fixed point fora,1 and the same commen
given above apply here. In fact,~b! only appears in this pa
rameter range as well, but it is an unstable saddle po
Hence fora.1, the generic flows run off to infinity in di-
rections bounded byy2/x2<2. This behavior is also generi
for a broad range of initial conditions whena,1. Physically
these flows correspond to expanding cosmologies where
kinetic energy in the scalar field dominates the potential,
the spatial curvature leads to decelerated expansion. A
result ȧ51/z reaches zero at some finite value ofa ~and t!.
Hence beyond this point, they begin collapsing. In the ph
plane, this transition is realized by mapping the asympto
flow with ~x,y! to (2x,2y) and following the flow back-
wards with respect to the arrows indicated in the figures
the present context, the solutions of interest in the pres
context are those which run off to infinity withx.0, i.e., ȧ,
ḟ.0. In this case, for any value ofa, they flow towards a
big crunch at the fixed point~e!. However, as commented i
the main text, we expect other terms, e.g., matter and pe

FIG. 4. Fixed points and some typical trajectories fork521 in
the regimes~i! a,1, ~ii ! 1,a,), and~iii ! a.). ~The specific
plots above were made fora51/), 5/2), and 2.!
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bations, to become important in the final stage of this crun
Note that during the collapse stage above, we haveȧ, x

,0 and henceḟ.0. That is, the internal space continues
expand for these solutions. From a higher-dimensional p
spective, however, we would still regard this as a collaps
phase, as given the full metric~4.7!, one can easily show tha
the proper volume element is contracting both in the n
compact four dimensions and in the full (d14)-dimensional
solution.

We have focused on the end point of the decompactifi
tion trajectories, but it is interesting to consider the full tr
jectories and follow the flows backwards to an initial fixe
point. Generically, for the entire range of parameters,
flows originate at one of the repulsive fixed points~d! or ~e!.
Hence these solutions emerge from a singular big bang
with the crunch above, the analysis provided here is expe
to be incomplete as many other terms will be important n
this initial singularity. The generic appearance of these s

FIG. 5. Fixed points and some typical trajectories fork511 in
the regimes:~i! a,1, ~ii ! 1,a,), and~iii ! a.). ~The specific
plots above were made fora5

1
2 , 5/2), and 2.!
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gularities was, of course, observed by Refs.@20,21,30# and
used as part of their criticism of string theory landscape p
ture. However, for tunneling from a metastable dS vacuu
these singularities do not appear as part of the evolution
the system. Another possible viewpoint on this may be
consider an ‘‘extended’’ landscape, in which the 4D rad
~or even more general metric degrees of freedom! is in-
cluded; in this space the singular regions may be well se
rated from the solutions of interest, e.g., by being in differ
basins of attraction, though this question deserves fur
exploration.
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We might also comment that, in any range of paramet
considered above, there are many trajectories which be
with negativex and cross over to positivex. These would fall
into the class of M-theory solutions, which were recen
discussed@40–49# because they exhibit an acceleratin
phase. As first noted in Ref.@42#, nearx50, the scalar po-
tential momentarily dominates the energy density and so c
mic acceleration is seen by four-dimensional observe
However, this is only a momentary phase since, as note
the main text, generically the M-theory potentials are t
steep to generate an~continuously! accelerating solution.
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