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Spacetime foam,CPT anomaly, and photon propagation

Frans R. Klinkhamer* and Christian Rupp†
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~Received 8 December 2003; published 26 August 2004!

The CPT anomaly of certain chiral gauge theories has been established previously for flat multiply con-
nected spacetime manifoldsM of the typeR33S1, where the noncontractible loops have a minimal length. In
this article, we show that theCPT anomaly also occurs for manifolds where the noncontractible loops can be
arbitrarily small. Our basic calculation is performed for a flat noncompact manifold with a single ‘‘puncture,’’
namelyM5R23(R2\$0%). A hypothetical spacetime foam might have many such punctures~or other struc-
tures with similar effects!. Assuming the multiply connected structure of the foam to be time independent, we
present a simple model for photon propagation, which generalizes the single-puncture result. This model leads
to a modified dispersion law of the photon. Observations of high-energy photons~gamma-rays! from explosive
extragalactic events can then be used to place an upper bound on the typical length scale of these punctures.
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I. INTRODUCTION

Chiral gauge theories may display an anomalous brea
of Lorentz andCPT invariance if these theories are defin
on a spacetime manifoldM with nontrivial topology@1,2#.
One example of an appropriate manifold isM5R33S1, as
long as the chiral fermions have the correct boundary co
tions~spin structure! over the compact space dimension. Th
so-calledCPT anomaly has been established also for tw
dimensional ‘‘chiral’’U(1) gauge theories over the torusT2,
where the Euclidean effective action is known exactly@3,4#.
The main points of theCPTanomaly have been reviewed
Ref. @5# and some background material can be found in R
@6#.

The crucial ingredient of theCPT anomaly is the exis-
tence of a compact, separable space dimension with ap
priate spin structure. For the case that this dimension
closed, there are corresponding noncontractible loops o
the spacetime manifold, which must therefore be multi
connected. Up till now, attention has been focused on
spacetime manifoldsM with topologyR33S1 or R3T3 and
with Minkowski metric gmn(x)5hmn and trivial vierbeins
em

a (x)5dm
a . Here, the noncontractible loops occur at t

very largest scale. But there could also be noncontract
loops from nontrivial topology at the very smallest sca
possibly related to the so-called spacetime foam@7–14#. The
main question is then whether or not a foam-like structure
spacetime could give rise to some kind of CPT anomaly.

In the present article we give a positive answer to t
question. That is, we establish theCPT anomaly for one of
the simplest possible manifolds of this type, namelyM5R
3M3, where the three-dimensional space manifoldM3 is
flat Euclidean spaceR3 with one straight lineR removed.
This particular manifoldM3 has a single ‘‘puncture’’ and
arbitrarily small noncontractible loops.

But it is, of course, an open question whether or n
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spacetime really has a foam-like structure and, if so, w
which characteristics. Let us just consider one possibil
Suppose that the spacetime manifoldM is Lorentzian,M
5R3M3, and that the topology ofM3 is multiply con-
nected and time-independent~here, time corresponds to th
coordinatex0PR). The idea is that the multiply connected
ness ofM3 is ‘‘hard-wired.’’ The advantage of this restric
tion is that, for the moment, we do not have to deal with t
contentious issue of topology change; cf. Refs.@12,14#.

Physically, we are then interested in the long-range effe
~via the CPT anomaly! of this foam-like structure of spac
on the propagation of light. The exact calculation of the
anomalous effects is, however, not feasible for a spacet
manifold M with many punctures~or similar structures!.
We, therefore, introduce a model for the photon field overR4

which incorporates the basic features found for the case
single puncture. The model is relatively simple and we c
study the issue of photon propagation in the larg
wavelength limit.

The outline of this article is as follows. In Sec. II, w
establish theCPT anomaly for a flat spacetime manifold
where the spatial hypersurfaces have a single puncture
responding to a static linear ‘‘defect.’’~A similar result is
obtained for a space manifold with a single wormhole, wh
corresponds to a static point-like defect. The details of t
calculation are relegated to Appendix A 1.!

In Sec. III, we present a model for the photon field whi
generalizes the result of a single puncture~or wormhole!. We
also give a corresponding model for a real scalar field. B
models involve a ‘‘random’’ background field overR4, de-
noted byg0(x) for the scalar model and byg1(x) for the
photon model. For the photon model in particular, the ra
dom background fieldg1(x) is believed to represent the e
fects of a static spacetime foam~a more or less realistic
example for the case of permanent wormholes is given
Appendix A2!. In Sec. IV, we discuss some assumed prop
ties of these random background fields.

In Sec. V, we calculate the dispersion laws for the sca
and photon models of Sec. III. In Sec. VI, we use obser
tions of gamma-rays from explosive extragalactic events
place an upper bound on the typical length scale of the r
©2004 The American Physical Society20-1
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dom background fieldg1(x) and, thereby, on the typica
length scale of the postulated foam-like structure. In S
VII, we present some concluding remarks.

II. CPT ANOMALY FROM A SINGLE DEFECT OF SPACE

A. Chiral gauge theory and punctured manifold

In this section, three-space is taken to be the punctu
manifold M35R3(R2\$0%)5R3\R. The considered three
space may be said to have a linear ‘‘defect,’’ just as a typ
superconductor can have a single vortex line~magnetic flux
tube!. The corresponding four-dimensional spacetime ma
fold M5R3M3 is orientable and has Minkowski metri
(hmn)[diag(1,21,21,21) and trivial vierbeins em

a (x)
5dm

a . This particular spacetime manifoldM is, of course,
geodesically incomplete, but the affected geodesics con
tute a set of measure zero. At the end of Sec. II B, we brie
discuss another manifold,N, which is both multiply con-
nected and geodesically complete.

The main interest here is in quantized fermion fie
which propagate over the predetermined spacetime man
M and which are coupled to a given classical gauge field.
will use cylindrical coordinates around the removed line
three-space and will rewrite the four-dimensional field the
as a three-dimensional one with infinitely many fermion
fields, at least for an appropriate choice of gauge field. T
procedure is analogous to the one used for the originalCPT
anomaly from the multiply connected manifoldR33S1.

The gauge field is written asBm(x)5gBm
b (x)Tb, with an

implicit sum overb, whereg is the gauge coupling constan
and theTb are the anti-Hermitian generators of the Lie alg
bra, normalized by tr(TbTc)52 1

2 dbc. For the matter fields
we take a single complex multiplet of left-handed Weyl fe
mions ca(x). As a concrete case, we consider theSO(10)
gauge theory with left-handed Weyl fermions in the16 rep-
resentation. This particular chiral gauge theory includes
course, the standard model with one family of quarks a
leptons. Incidentally, the anomalous effects of this section
not occur for vectorlike theories such as quantum electro
namics.

In short, the theory considered has

@G,RL ,M ,em
a ~x!#5@SO~10!,16,R4\R2,dm

a #, ~2.1!

whereG denotes the gauge group,RL the representation o
the left-handed Weyl fermions,M the spacetime manifold
andem

a (x) the vierbeins at spacetime pointxPM . The action
for the fermionic fields reads

I fermion5E
M

d4xc̄ ȧda
mis̄aȧa~]m1Bm!ca , ~2.2!

with

~ s̄aȧa!5~1,2s!, ~2.3!

in terms of the Pauli spin matricess1, s2, s3. Natural units
with \5c51 are used throughout, except when stated o
erwise.
04502
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Next, introduce cylindrical coordinates (r,f,z[x3,t
[x0), with

x1[ cosf, x2[r sinf,

]r[cosf]11sinf]2 , ]f[2r sinf]11r cosf]2 ,

~2.4!

s̄r[cosfs̄11sinfs̄2, s̄f[2sinfs̄11cosfs̄2.

The two spin matrices of Eq.~2.4! and s̄z are explicitly

~ s̄rȧa!5S 0 2e2 if

2eif 0 D ,

~ s̄fȧa!5S 0 ie2 if

2 ieif 0 D , ~ s̄zȧa!5S 21 0

0 11D .

~2.5!

For the spinorial wave functions in terms of cylindric
coordinates, we take the antiperiodic boundary condition

c~r,f12p,z,t !52c~r,f,z,t !. ~2.6!

An appropriateAnsatzfor the fermion fields is then

ca~r,f,z,t !5 (
n52`

`

$e1 i (n21/2)fxn
(1)~r,z,t !ca

(1)

1e1 i (n11/2)fxn
(2)~r,z,t !ca

(2)%, ~2.7a!

c̄ ȧ~r,f,z,t !5 (
n52`

`

$e2 i (n21/2)fx̄n
(1)~r,z,t !c̄ ȧ

(1)

1e2 i (n11/2)fx̄n
(2)~r,z,t !c̄ ȧ

(2)
%, ~2.7b!

with constant spinors

~ca
(1)!5S 1

0D , ~ca
(2)!5S 0

1D ,

~ c̄ ȧ
(1)

!5S 1

0D , ~ c̄ ȧ
(2)

!5S 0

1D , ~2.8!

and anticommuting fieldsxn
(6) which depend only on the

coordinatesr, z, and t. The unrestricted fieldsx0
(6)(r,z,t)

andx̄0
(6)(r,z,t) of Eqs.~2.7 a,b! will play an important role

in the next subsection.

B. CPT anomaly

In order to demonstrate the existence of the CPT anom
it suffices to consider a special class of gauge fields~denoted
by a prime! which aref-independent and have vanishin
components in thef direction; cf. Ref.@1#. Specifically, we
consider in this subsection the following gauge fields:
0-2
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Bf8 5Bf8 ~r,z,t !50, Bm8 5Bm8 ~r,z,t !, m5r,z,t.
~2.9!

Using theAnsatz~2.7! and integrating over the azimutha
anglef, the action~2.2! can be written as

I fermion52p i (
n52`

1` E
e

`

drrE
2`

`

dzE
2`

`

dtH x̄n
(1)~] t1Bt8!xn

(1)

1x̄n
(2)~] t1Bt8!xn

(2)2x̄n
(1)~]r1Br8!xn

(2)2x̄n
(2)~]r

1Br8!xn
(1)2x̄n

(1)~]z1Bz8!xn
(1)1x̄n

(2)~]z1Bz8!xn
(2)

1
1

r
~~n21/2!x̄n

(2)xn
(1)2~n11/2!x̄n

(1)xn
(2)!J ,

~2.10!

with e a positive infinitesimal.
This action can be interpreted as a three-dimensional fi

theory with infinitely many Dirac fermions, labeled byn
PZ. These three-dimensional Dirac fields are defined as
lows:

hn[S A2prxn
(1)

A2prxn
(2)D , h̄n[~A2prx̄n

(1) , A2prx̄n
(2)!g0,

~2.11!

with g-matrices

g0[s2, g1[ is3, g2[2 is1, ~2.12!

which obey

g0g1g25 i, $gm,gn%52hmn, ~2.13!

for m,n50,1,2, and (hmn)5diag(1,21,21). The action
~2.10! is then given by

I fermion5E
M̃3

d3y (
n52`

1` H h̄nigm~]m1B̃m8 !hn1
n

y1
h̄nhnJ ,

~2.14!

wheret, r, z have been renamedy0, y1, y2, respectively, and
B̃m8 has been defined asB̃08[Bt8 , B̃18[Br8 , B̃28[Bz8 . The rel-

evant three-dimensional spacetime manifoldM̃35R3R.0
3R has no boundary and is topologically equivalent toR3.

Then50 sector of the theory~2.14! describes a massles
Dirac fermion in a background gauge field, whereas then
Þ0 sectors have additional position-dependent mass te
At this moment, there is no need to specify the gau
invariant regularization of the theory, one possibility bei
the use of a spacetime lattice; cf. Refs.@1,2#.

The perturbative quantum field theory based on the ac
~2.14! contains only tree and one-loop diagrams because
gauge field does not propagate and because there are n
mion self-interactions present. The effective gauge field
tion from then50 sector of the field theory~2.14! over the
spacetimeM̃3 is directly related to the effective action from
charged massless Dirac fermions overR3.
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The n50 sector of the theory~2.14! has therefore the
same ‘‘parity anomaly’’ as the standardR3 theory @15–17#.
The anomaly manifests itself in a contribution to the effe
tive actionG@B̃8# of the form

E
M̃3

d3ys0pvCS@B̃08 ,B̃18 ,B̃28#, ~2.15!

wherevCS is the Chern–Simons density

vCS@B0 ,B1 ,B2#[
1

16p2
eklmtrS BklBm2

2

3
BkBlBmD ,

~2.16!

in terms of the Yang–Mills field strengthBkl[]kBl

2]lBk1@Bk ,Bl#, with indices running over 0,1,2, and th
Levi-Civita symboleklm normalized bye012511. The fac-
tor s0 in the anomalous term~2.15! is an odd integer which
depends on the ultraviolet regularization used and we t
s0511. Note that the Chern–Simons integral~2.15! is a
topological term, i.e., a term which is independent of t
metric onM̃3. The total contribution of thenÞ0 sectors to
the effective action cannot be evaluated easily but is
pected to lead to no further anomalies; cf. Refs.@1,2#.

The anomalous term~2.15! gives a contribution to the
four-dimensional effective actionG@B8# of the form

E
M

d4x
p

2pr H x1

r
vCS@B08 ,B18 ,B38#1

x2

r
vCS@B08 ,B28 ,B38#J ,

~2.17!

in terms of the usual Cartesian coordinatesxm and the corre-
sponding four-dimensional gauge fieldsBm8 (x), m50,1,2,3,
and with the definitionr2[(x1)21(x2)2. In the form writ-
ten, Eq.~2.17! has the same structure as theCPT anomaly
term ~4.1! of Ref. @1# for the R33S1 manifold. The main
properties of the anomalous term will be recalled in the n
subsection.

For completeness, we mention that theCPTanomaly also
occurs for another type of orientable manifold,N5R3N3,
which is both multiply connected and geodesically comple
This particular space manifoldN3 has a single wormhole
constructed from Euclidean three-spaceR3 by removing the
interior of two identical balls and properly identifying the
surfaces~in this case, without time shift!; cf. Refs.@11,14#.
The space ‘‘defect’’ is point-like if the removed balls a
infinitesimally small. For an appropriate class of gauge fie
Bm9 (x), the parity anomaly gives directly an action ter
analogous to Eq.~2.17!, now over the spacetime manifoldN
and with a dipole structure for thevCS terms in the inte-
grand. The detailed form of this anomalous term is, howev
somewhat involved~see Appendix A1! and, for the rest of
this section, we return to the original manifoldM5R4\R2.

C. Abelian anomalous term

The gauge fieldBm(x) will now be restricted to the Abe-
lian Lie subalgebrau(1),so(10) which corresponds to
electromagnetism and the resulting real gauge field will
0-3
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denoted byAm(x). In this case, the trilinear term of th
Chern–Simons density ~2.16! vanishes. For the
f-independent gauge fields~2.9! restricted to theu(1) sub-
algebra, the anomalous contribution~2.17! to the effective
gauge field actionG@A8# is simply

2
1

8pEM
d4xemnklqm8 ]nAk8~x!Al8~x!, ~2.18!

with the Levi-Civita symbol emnkl normalized by e0123

511,

qm8 []m f 85
g2

4p S 0, 2
x2

r2
,

x1

r2
, 0D , ~2.19!

andr2[(x1)21(x2)2.
Four remarks on the result~2.18! are in order. First, the

action term~2.18!, with qm8 []m f 8, is invariant under a four-
dimensional Abelian gauge transformation,Am8 (x)→Am8 (x)
1]mj(x). Second, the Lorentz and time-reversal~T! invari-
ances are broken~as is theCPT invariance!, because theqm8
components in the effective action term~2.18! are fixed once
and for all to the values~2.19!; cf. Ref. @5#. Third, we expect
no problems with unitarity and causality for the photon fie
because the componentq08 vanishes exactly; cf. Refs
@18,19#. Fourth, the overall sign of expression~2.18! can be
changed by reversing the direction of thez-axis; cf. Eq.
~2.15!.

After a partial integration, the anomalous contributi
~2.18! can be generalized to the following term in the effe
tive actionG@A#:

1

32pER4
d4x fM~x;A#eklmnFkl~x!Fmn~x!, ~2.20!

with the field strengthFmn(x)[]mAn(x)2]nAm(x) and the
integration domain extended toR4, which is possible for
smooth gauge fieldsAm(x). ~See Refs.@20–22# for a related
discussion in the context of axion electrodynamics.! The fac-
tor f M(x;A# in the anomalous term~2.20! is both a function
of the spacetime coordinatesxm ~on which the partial deriva-
tive ]m acts to giveqm) and a gauge-invariant functional o
the gauge fieldAm(x). This functional dependence off M
involves, most likely, the gauge field holonomies, defined
hC@A#[exp(irCdxmAm(x)) for an oriented closed curveC;
cf. Sec. IV of Ref.@1#.

Note that the functionalf M(x;A# in Eq. ~2.20! is defined
over R4 but carries the memory of the original~multiply
connected! manifoldM, as indicated by the suffix.@The same
structure~2.20! has also been found for a manifold with
single static wormhole; see Appendix A1.# Moreover, the
absolute value off M is of the order of the fine-structur
constant,

u f M~x;A#u5O~a!, a[e2/~4p!, ~2.21!

with the electromagnetic coupling constante}g. The gen-
eral expression forf M(x;A# is not known, butf M can be
calculated on a case by case basis@that is, the functionf 8(x)
for the gauge field configurationA8, f 9(x) for A9, etc.#.
04502
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III. MODELS

A. Motivation

The exact calculation of theCPTanomaly is prohibitively
difficult for two or more punctures or wormholes. Howeve
we expect the Abelian anomalies from the individual defe
~considered in Sec. II and Appendix A1! to add up incoher-
ently, at least over large enough scales. We, therefore,
sume that the total anomalous effect of the defects can
described by a contribution to the effective gauge field act
G@A# of the form ~2.20! but with f M(x;A# replaced by a
background fieldg1(x). This background fieldg1(x) carries
the imprint of the topologically nontrivial structure of spac
time as probed by the chiral fermions.@The original space-
time manifold may, of course, have additional structu
which does not contribute to theCPT anomaly and does no
show up ing1(x).#

As discussed in the Introduction, we consider in this pa
a particular type of spacetime foam for which the defects
three-space are static and have randomly-distributed p
tions and orientations. The average distance between the
fects can be assumed to be small compared to the rele
scales~set by the photon wavelength, for example! and the
detailed form ofg1(x) is not important for macroscopic con
siderations. We, therefore, considerg1(x) to be a ‘‘random’’
field and only assume some simple ‘‘statistical’’ propertie
These statistical properties will be specified in Sec. IV.

It should, however, be clear that the background fi
g1(x) is notcompletelyrandom. It contains, for example, th
small-scale structure of the individual anomaly terms. T
randomness ofg1(x) traces back solely to the distribution o
the static defects whose physical origin is unknown. In fa
the aim of the present paper is to establish and const
some general characteristics of these hypothetical defec

In the rest of this section, we present two concrete mod
with random background fields. The first model describes
propagation of a single real scalar field and the second
behavior of the photon field. Both models are defined o
Minkowski spacetime,M5R4 andgmn(x)5hmn .

B. Real scalar field

The scalar model is defined by the action

I scalar5E
R4

d4x exp@g0~x!#~]mf~x!]mf~x!2m2f~x!2!,

~3.1!

whereg0 is a real scalar background field of mass dimens
zero. The background fieldg0 is assumed to be random an
further properties will be discussed in Sec. IV.

The corresponding equation of motion reads

~h1m2!f~x!52]mg0~x!]mf~x!, ~3.2!

with the following conventions:

h[hmn]m]n ,

~hmn![diag~1,21,21,21!. ~3.3!
0-4
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There is no equation of motion forg0, becauseg0 is a fixed
background field@the random coupling constantsg0(x) are
quenched variables#. The scalar field equation~3.2! will be
seen to have the same basic structure as the one of the p
model in the next subsection.

For the free real scalar fieldf (0), we define

f (0)~x!5
1

~2p!4E d4kf̃ (0)~k!e2 ik•x,

f̃ (0)~k!52pd~kmkm2m2!@u~k0!f̃ (0)~k!

1u~2k0!f̃ (0)~2k!* #. ~3.4!

The causal Green functionD(x) of the Klein–Gordon opera
tor,

~h1m2!D~x!5d4~x!, ~3.5!

is given by

D~x!5
1

~2p!4E d4ke2 ik•xD̃~k!,

D̃~k!5
21

k22m21 ie
, ~3.6!

with the Feynman prescription for thek0 integration contour
@23#.

C. Photon field

The photon model is defined by the action

I photon52
1

4ER4
d4x~Fmn~x!Fmn~x!1g1~x!Fkl~x!F̃kl~x!!,

~3.7!

where the Maxwell field strength tensorFmn and its dualF̃kl

are given by

Fmn[]mAn2]nAm ,

F̃kl[
1

2
eklmnFmn , ~3.8!

with eklmn the Levi-Civita symbol normalized bye0123

511.
The random~time-independent! background fieldg1 in

the action~3.7! is supposed to mimic the anomalous effe
of a multiply connected~static! spacetime foam, generalizin
the result~2.20! for a single puncture or wormhole. Follow
ing Eq.~2.21!, the amplitude of the random background fie
g1 is assumed to be of ordera. The typical length scale ove
which g1 varies will be denoted byl foam and further proper-
ties will be discussed in Sec. IV. Note that models of the ty
~3.7! have been considered before, but, to our knowled
only for coupling constants varying smoothly over cosm
logical scales; cf. Refs.@18,24#.
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The equations of motion corresponding to the action~3.7!
are given by

hAn~x!52]mg1~x!F̃mn~x!, ~3.9!

provided the Lorentz gauge is used,

]mAm~x!50. ~3.10!

The random coupling constantsg1(x) in the action~3.7! are
considered to be quenched variables and there is no equ
of motion forg1. As mentioned above, the basic structure
Eq. ~3.9! equals that of Eq.~3.2! for the scalar model.

The general solution of the free field equation,hAm
50, is

Am
(0)~x!5

1

~2p!4E d4kÃm
(0)~k!e2 ik•x,

Ãm
(0)~k!52pd~kmkm!@u~k0!Ãm

(0)~k!

1u~2k0!Ãm
(0)~2k!* #, ~3.11!

with

kmÃm
(0)~k!50, ~3.12!

due to the gauge condition~3.10!. The Feynman propagato
@23# for the free field is simplyDmn(x)[ ihmnD(x), with
D(x) given by Eq.~3.6! for m50.

IV. RANDOM BACKGROUND FIELDS

The two models of the previous section have rand
background fieldsg0 andg1. For simplicity, we assume the
same basic properties for these two random backgro
fields and denoteg0 andg1 collectively byg in this section.

A. General properties

The assumed properties of the background fieldg(x) are
the following:

~1! g is time-independent,g5g(x),
~2! g is weak,ug(x)u!1,
~3! the average ofg(x) vanishes in the large volume limit,
~4! g(x) varies over length scales which are small compa

to the considered wavelengths of the scalar fieldf and
photon fieldAm ,

~5! the autocorrelation function ofg(x) is finite and isotro-
pic, and drops off ‘‘fast enough’’ at large separations~see
Secs. IV C and V below!.

The random background fieldg1(x) for the photon case is
considered to incorporate the effects of a multiply connect
static spacetime foam~cf. Sec. III A! and assumption 5 abou
the lack of long-range correlations can perhaps be relax
Indeed, long-range correlations could arise from perman
or transient wormholes in spacetime; cf. Refs.@13,14#. But,
for simplicity, we keep the five assumptions as listed abo
0-5
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B. Example

A specific class of random background fieldsg(x) can be
generated by superimposing copies of a localized, squ
integrable shapeh(x) with random displacements. The di
placementsxn are uniformly distributed over a ball of radiu
R embedded inR3 and have average separationa. The num-
ber of elementary shapes is then given byN
5(4p/3)R3/a3.

Concretely, we take

gN~x!5a (
n51

N

enh~x2xn!, ~4.1!

where the numbersen561 are chosen randomly, so th
gN(x) vanishes on average. The background fieldg(x) is
defined as the infinite volume limit,

g~x!5 lim
N→`

gN~x!, ~4.2!

wherea is held constant.
The mean value and autocorrelation function ofg are de-

fined by

^g&[ lim
R→`

1

~4p/3!R3Euxu,R
d3xg~x!, ~4.3!

C~x![ lim
R→`

1

~4p/3!R3Euyu,R
d3yg~y!g~y1x!. ~4.4!

In the limit R→`, we have perfect statistics (N→`) and
find

^g&50, ~4.5!

C~x!5a2a23E
R3

d3yh~y!h~y1x!. ~4.6!

The Fourier transforms ofh andgN are given by

h̃~k!5E
R3

d3xe2 ik•xh~x!, ~4.7a!

g̃N~k!5a (
n51

N

enE
R3

d3xe2 ik•xh~x2xn!

5aANh̃~k!G̃N~k!, ~4.7b!

with

G̃N~k![
1

AN
(
n51

N

ene2 ik•xn. ~4.8!

The function~4.8! can be decomposed into an absolute va
and a phase factor. The absolute value fluctuates around
follows from the expression
04502
e-

e
, as

uG̃N~k!u2511
1

N (
nÞm

eneme2 ik•(xn2xm), ~4.9!

where the double sum on the right-hand side scatters aro
0. The fluctuation scale ofuG̃N(k)u is of order 2p/R and the
same holds for the phase ofG̃N(k); see Fig. 1.

C. Random phase assumption

For a given random background fieldg(x) over R3, we
define the truncated Fourier transformg̃R(k) by

g̃R~k![E
uxu,R

d3xe2 ik•xg~x!, ~4.10!

with an implicit dependence on the origin of the sphere c
sen. This functiong̃R can be parametrized as follows:

g̃R~k!5A~4p/3!R3H̃~k!G̃R~k!, ~4.11!

where the real functionH̃(k) is obtained from the finite au
tocorrelation function~4.4!,

FIG. 1. The top and middle panels show the momentum-sp

function G̃N(k), defined by the one-dimensional version of E
~4.8!, for N5100 andR5500. The bottom panel shows the corr
sponding position-space functiongN(x), defined by the one-
dimensional version of Eq.~4.1!, for the profile functionh(x)

5(20/9)(sinx/22sinx/20)/x. The Fourier transformh̃(k) of this
particular profile function is nonzero and constant foruku
P@klow ,khigh#, with khigh510klow.0, and zero otherwise.
0-6
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C~x!5
1

~2p!3E d3keik•xH̃~k!2, ~4.12!

with the sign ofH̃(k) chosen to make the function as smoo
as possible~i.e., without cusps!. Because the backgroun
field g(x) is real, we have also H̃(2k)G̃R(2k)
5H̃(k)G̃R(k)* .

Motivated by the results of the preceding subsection,
assumeG̃R(k) to vary over momentum intervals of the ord
of 2p/R and uG̃Ru to have unit mean value. Furthermor
H̃(k)2 is taken to be smooth on scales of the order of 2p/R,
provided R is large enough. For the isotropic caseH̃(k)
5H̃(k), with k[uku, and large enoughR, we explicitly as-
sume the inequality

U E
0

`

dk cos~kR!H̃~k!2U!E
0

`

dkH̃~k!2, ~4.13!

with a finite positive number on the right-hand side.
Now suppose that we have to evaluate a double integra

the form

E d3kE d3pf ~p,k!G̃R~k!G̃R~p!, ~4.14!

where f is a function which is approximately constant ov
momentum intervals of the order of 2p/R. Due to the rapid
phase oscillations ofG̃R , a significant contribution can aris
only for k'2p andG̃R(k)G̃R(p) can effectively be replaced
by a smeared delta-function.

The specific form of this smeared delta-function does
matter in the limitR→` and we simply choose

dR
3~k![)

j 51

3
sin~kjR!

pkj
. ~4.15!

We then have the result

E d3kE d3pf ~p,k!G̃R~k!G̃R~p!

'NE d3kE d3pf ~p,k!dR
3~k1p!, ~4.16!

with a normalization factorN to be determined shortly. On
the right-hand side of Eq.~4.16!, the absolute values ofG̃R
have been replaced by their average value 1, sincef (p,k) is
assumed to be slowly varying.

In order to determine the normalization factorN, recon-
sider the autocorrelation function~4.4!. Using Eqs.~4.11!
and ~4.15!, the autocorrelation function can be written
follows:

C~x!5 lim
R→`

1

~2p!3E d3kd3pdR
3~k1p!

3eip•xH̃~k!H̃~p!G̃R~k!G̃R~p!. ~4.17!
04502
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Since there is already a delta-function present in the in
grand of~4.17!, the productG̃R(k)G̃R(p) can simply be re-
placed byNdR

3(k1p), which gives the correct behavior fo
k'2p. With

dR
3~k1p!dR

3~k1p!→ R3

p3
d3~k1p!, ~4.18!

for R→`, Eqs.~4.12! and ~4.17! are consistent if

N5~p/R!3. ~4.19!

This fixes the normalization factorN of Eq. ~4.16!, which
will be used extensively in the next section.

V. DISPERSION LAWS

A. Scalar model

We first turn to the scalar model~3.1!, as a preliminary for
the calculation of the photon model in the next subsection
order to have a well-defined Fourier transform ofg0, the
system is put inside a sphere of radiusR with free boundary
conditions for the real scalar fieldf. In momentum space
the scalar field equation~3.2! becomes

~k22m2!f̃~k!52
1

~2p!4Ed4qg̃0R~q!qm~km2qm!f̃~k2q!.

~5.1!

According to Eq.~4.11!, the momentum-space functiong̃0R
has the form

g̃0R~k![2pd~k0!A~4p/3!R3H̃0~ uku!G̃0R~k!, ~5.2!

whereG̃0R is assumed to have the statistics properties d
cussed in Sec. IV C. Furthermore, we have assumed isot
of H̃0; see Sec. IV A.

We will now show that the main effect of the rando
background fieldg0(x) can be expressed in the form of
modified dispersion law for the scalar modes, at least
large enough wavelengths. The basic idea is to expand
solution of Eq. ~5.1! perturbatively to second order ing0
~there is no contribution at first order! and to compare it with
the first-order solution of a modified field equation,

~k22m2!f̃~k!5A~ uku!f̃~k!. ~5.3!

The dispersion law will then be given by

v25m21uku21A~ uku!, ~5.4!

with A expressed in terms of the random background fi
g0(x).

In the limit R→`, the perturbative second-order contr
bution to f̃(k) reads
0-7
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f̃ (2)~k!5 lim
R→`

1

~2p!8
D̃~k!E d4qg̃0R~q!qm~k2q!mD̃~k2q!

3E d4pg̃0R~k2p2q!~k2p2q!npnf̃ (0)~p!

52 lim
R→`

D̃~k!
~4p/3!R3

~2p!6 E d3qE d3pH̃0~ uqu!

3H̃0~ uk2p2qu!G̃0R~q!G̃0R~k2p2q!D̃~k0,k2q!

3~q•~q2k!!~~k2p2q!•p!f̃ (0)~k0,p!, ~5.5!

where Eq.~5.2! has been used. According to Eqs.~4.16! and
~4.19!, we can replace the productG̃0RG̃0R by (p/R)3dR

3 and
take the limitR→`,

f̃ (2)~k!5
1

12~2p!2
D̃~k!E d3qH̃0~ uqu!2D̃~k0,k2q!

3~q•~q2k!!~q•k!f̃ (0)~k!. ~5.6!

At the given perturbative order,kmkm2m2 can be put to
zero in the integrand of Eq.~5.6!, because of the delta
function contained in the free fieldf̃0(k) of Eq. ~3.4!. By
comparison with the first order solution of Eq.~5.3!, the
operatorA is identified as

A~ uku!5
1

12~2p!2E d3qH̃0~ uqu!2
~q•~q2k!!~q•k!

2k•q2uqu21 ie
.

~5.7!

Following the discussion of Sec. IV A, we now assum
that H̃0(uqu) vanishes for momentauqu,qlow ~cf. Fig. 1! and
that uku,qlow/2. Performing the angular integrals in E
~5.7!, one finds

A~ uku!5
1

24pE0

`

dqq2H̃0~q!2S 1

2
q21

q3

8uku
lnUq22uku

q12ukuU D ,

~5.8!

where the lower limit of the integral is effectivelyqlow . Be-
cause of the large-wavelength assumptionuku,qlow/2, the
same result is obtained if the causal Green functionD̃ in the
first integral of Eq.~5.5! is replaced by, for example, th
retarded or the advanced Green function.

Next, the logarithm of Eq.~5.8! is expanded in terms o
uku/q, which gives

A~ uku!5
1

24pE0

`

dqH̃0~q!2S 2
2

3
q2uku22

8

5
uku4D

1O~ uku6/qlow
4 !. ~5.9!

This result can also be written as
04502
A~ uku!52
p

18
C0~0!uku22

2p

15 S E
0

`

dxxC0~x! D uku4

1O~ uku6/qlow
4 !, ~5.10!

in terms of the autocorrelation function~4.12!, which is iso-
tropic becauseH̃0 is,

C05C0~ uxu!5
2

~2p!2E0

`

dqq2
sinquxu

quxu
H̃0~q!2. ~5.11!

In order to make the identification of theuku4 prefactor in Eq.
~5.10!, it has been assumed that the behavior ofH̃0(q)2 is
sufficiently smooth; cf. Eq.~4.13!.

From Eqs.~5.4! and~5.10!, the dispersion law of the sca
lar is

v25m21~12a0!uku22b0uku41•••, ~5.12!

where the dots stand for higher order contributions and
positive coefficientsa0 andb0 are given by

a0[
p

18
C0~0!, b0[

2p

15E0

`

dxxC0~x!. ~5.13!

The isotropic autocorrelation functionC0(x) is defined by
Eq. ~4.4! with g replaced by the random background fieldg0
from the action~3.1!.

The main purpose of the scalar calculation is to prep
the way for the photon calculation in the next subsection,
let us comment briefly on the result found. Setting the sca
massm to zero in the action~3.1!, our calculation gives no
additional mass term in the dispersion law~5.12!. It is, how-
ever, not clear what the random background fieldg0 of the
model ~3.1! really has to do with a~static! spacetime foam.
The propagation of an initially massless scalar could v
well be strongly modified in a genuine spacetime foam;
Ref. @10#.

B. Photon model

To obtain the dispersion law for the photon model~3.7!,
we proceed along the same lines as for the scalar c
Again, the system is put inside a sphere of radiusR, so that
the truncated Fourier transformg̃1R occurs in the
momentum-space field equation,

k2Ãn~k!52
1

~2p!4E d4qg̃1R~q!emnklqm~k2q!kÃl~k2q!.

~5.14!

For this truncated background fieldg̃1R , we assume a form
analogous to Eq.~5.2!,

g̃1R~k![2pd~k0!A~4p/3!R3H̃1~ uku!G̃1R~k!, ~5.15!

whereG̃1R is a random function of the type discussed in S
IV C.
0-8
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The second-order contribution to the perturbative solut
of Eq. ~5.14! is given by

Ã(2)n~k!5 lim
R→`

1

~2p!8
D̃~k!E d4qg̃1R~q!emnklqm~k2q!k

3D̃~k2q!Ed4pg̃1R~k2p2q!eabgl~k2p2q!a

3pbÃ(0)g~p!. ~5.16!

Using Eq. ~5.15! and replacing the productG̃1RG̃1R by
(p/R)3dR

3 , one finds in the limitR→`:

Ã(2)n~k!52D̃~k!Bn
g~k!Ã(0)g~k!, ~5.17!

with

Bn
g~k![

1

12~2p!2E d3qH̃1~ uqu!2
1

~k2q!21 ie

3d [a
m db

n dg]
k qm~k2q!kqakb, ~5.18!

where q0[0 and the square brackets around the indi
abg denote antisymmetrization with unit weight.

Since Ã(0)g(k) in Eq. ~5.17! contains a factord(kmkm)
and furthermore obeys the Lorentz gauge condition~3.12!,
we have

B0
nÃ(0)n50, Bn

mÃ(0)m5B̂n
mÃ(0)m, ~5.19!

with

B̂n
m~k!5

1

12~2p!2 S dm
n 1

knkm

uku2 D E d3qH̃1~ uqu!2

3
~q•k!2

2k•q2uqu21 ie

5S dm
n 1

knkm

uku2
D B̂~ uku!, ~5.20!

and

B̂~ uku![
1

24pE0

`

dqq2H̃1~q!2S 1

2
q21

q3

8uku
lnUq22uku

q12ukuU D ,

~5.21!

where the indicesm andn run over 1,2,3. In order to perform
the angular integrals in Eq.~5.20!, we have again assume
that H̃1(uqu) vanishes for momentauqu,qlow ~cf. Fig. 1! and
that uku,qlow/2. Making an expansion inuku/q for the loga-
rithm in Eq. ~5.21!, we obtain

B̂~ uku!5
1

24pE0

`

dqH̃1~q!2S 2
2

3
q2uku22

8

5
uku41••• D ,

~5.22!

which is equivalent to the scalar result~5.9!.
04502
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The modified field equations in momentum space are t

k2Ã0~k!50, k2Ãm~k!5B̂m
n~k!Ãn~k!. ~5.23!

It follows that the dispersion law for the scalar and longit
dinal modes remains unchanged,

v25uku2, ~5.24!

whereas the one for the transverse modes is modified,

v25uku21B̂~ uku!. ~5.25!

Of course, only the transverse modes are physical; see,
Sec. 3.2 of Ref.@23#. From Eqs.~5.22! and ~5.25!, the dis-
persion law for the~transverse! photons is

v25~12a1!c2uku22b1c2uku41•••, ~5.26!

where the bare light velocityc has been restored and th
positive coefficientsa1 andb1 are given by

a1[
p

18
C1~0!, b1[

2p

15E0

`

dxxC1~x!. ~5.27!

The isotropic autocorrelation functionC1(x) is defined by
Eq. ~4.4! with g replaced by the random coupling constantg1
from the action~3.7!.

According to the discussion in Secs. II C and III C, th
random background fieldg1(x) has a typical amplitude o
the order of the fine-structure constanta and a typical length
scale of the order ofl foam. The coefficients~5.27! may there-
fore be written as

a1[a2g1 , b1[a2l foam
2 , ~5.28!

with a positive constantg1. This last equation defines, i
fact, the length scalel foam. For the example background fiel
of Sec. IV B with isotropic profile functionh5h(uxu), one
hasl foam} l h( l h /a)3/2, wherel h is the typical length scale o
the profile functionh; cf. Eq. ~4.6!. For this type of back-
ground field, the ratiol foam/a can be large ifl h@a. In Ap-
pendix A2, another example background field is discuss
which is especially tailored to the case of permanent wo
holes~average distancea between the different wormholes
effective transverse width 2l h for the individual wormholes,
and long distanced between the individual wormhole
mouths!. The result forl foam is again found to be proportiona
to l h( l h /a)3/2 and only weakly dependent on the individu
scaled.

The dispersion law~5.26! violates Lorentz invariance bu
not CPT invariance. There is no birefringence, as the ba
ground fieldg1(x) is assumed to have no preferred directio
Note also that motion of the detector relative to the prefer
frame defined implicitly by the static backgroundg1(x)
would bring in some anisotropy but, at the order consider
no birefringence~the two modes propagate identically in th
instantaneous rest frame of the detector!.

The modifications of the photon dispersion law found
Eq. ~5.26! are rather mild~see Ref.@25# for some general
remarks on the absence of odd powers ofuku in modified
0-9
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dispersion laws!. These modifications are not unlike those
Ref. @10# for a simply connected, nonstatic spacetim
made-up of manyS23S2 ‘‘gravitational bubbles.’’ More
drastic changes in the photon dispersion law have, for
ample, been found in certain loop quantum gravity calcu
tions @26,27#. Compared to these calculations~which have
the Planck length as the fundamental scale!, ours is relatively
straightforward, the only prerequisite being a multiply co
nected topology which is then probed by the chiral fermio
of the standard model; see Sec. VII for further discussio

VI. EXPERIMENTAL LIMIT

In the previous section, we have derived the photon d
persion law for the simple model~3.7!. Using the definitions
~5.28! and consideringa to be parametrically small, we hav
the following expression for the quadratic and quartic ter
in the dispersion law~5.26!:

v2'cren
2 k22cren

2 a2l foam
2 k4, ~6.1!

with the renormalized light velocity

cren[cA12a2g1 ~6.2!

and the simplified notationk[uku.
The group velocityvg(k)[dv/dk is readily calculated

from Eq. ~6.1!. The relative change ofvg(k) between wave
numbersk1 andk2 is then found to be

Dc

c U
k1 ,k2

[Uvg~k1!2vg~k2!

vg~k1!
U

'2uk1
22k2

2ua2l foam
2 , ~6.3!

where Dc/c is a convenient short-hand notation anda
'1/137 the fine-structure constant.

As realized by Amelino-Cameliaet al. @28#, one can use
the lack of time dispersion in gamma-ray bursts to get
upper bound onDc/c. But for our purpose, it may be bette
to use a particular TeV gamma-ray flare of the active gal
Markarian 421, as discussed by Billeret al. @29#. Schaefer
@30# obtains from this event

Dc

c U k152.531016 cm21

k251.031017 cm21

Mkn 421

,2.5310214. ~6.4!

The reader is invited to look at Fig. 2 of Ref.@29#, which
provides the key input for the bound~6.4!, together with the
galaxy distanceD. In fact, the right-hand side of Eq.~6.4! is
simply the ratio of the binning interval for the gamma-r
events (Dt'280 s) over the inferred travel time (D/c'1.1
31016 s).

Combining our theoretical expression~6.3! and the astro-
physical bound~6.4!, we have the following ‘‘experimental’
limit:
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l foam,1.6310222 cm, ~6.5!

where l foam is defined by~5.27! and ~5.28!, in terms of the
autocorrelation function~4.4! for the static random variable
g1(x) from the action~3.7!. In the next section, we commen
briefly on the possible interpretation of this result.

Since the spacetime foam considered in this paper ha
preferred spatial direction, experimental limits obtained fro
bounds on the birefringence of electromagnetic wa
@18,31,32# do not apply.@See also the remarks in the penu
timate paragraph of Sec. VB.# Note that the background field
g1(x) vanishes on average and that the modification of
dispersion law in Eq.~5.26! is a second-order effect, gov
erned by the autocorrelation of the background field.
shown by Eq.~6.1!, the fundamental length scalel foam ap-
pears only at quartic order in the photon wave number, wh
makesl foam difficult to constrain~or determine! experimen-
tally.

VII. CONCLUSION

The present article contains two main theoretical resu
First, it has been shown in Sec. II and Appendix A 1 that t
particular types of ‘‘defects’’ of a noncompact spacetim
manifold generate an anomalous breaking of Lorentz
CPT invariance. The anomalous term of the effective gau
field action can be written in a simple form, Eqs.~2.20! and
~2.21!. The spacetime defect is thus found to affect the p
ton field far away, the agent being the second-quanti
vacuum of the chiral fermions. Inversely, theCPT anomaly
can be used as a probe of certain spacetime structures a
very smallest scales.

Second, a modified photon dispersion law, Eq.~5.26!, has
been found in a model which generalizes the single-de
result. The random background fieldg1(x) of this model
~3.7! traces back to a postulated time-independent foam-
structure of spacetime consisting of many randomly orien
and randomly distributed defects. The static random ba
ground fieldg1(x) of the photon model breaks Lorentz an
CPT invariance and selects a class of preferred iner
frames. Incidentally, the calculated photon dispersion l
shows the Lorentz noninvariance present at the microsc
scale but not theCPT violation.

This article also gives an ‘‘experimental’’ result. Follow
ing up on the suggestion of Refs.@28,29#, it is possible to use
observations of gamma-ray bursts and TeV flares in ac
galactic nuclei to obtain an upper bound~6.5! on the length
scale l foam of the random background fieldg1(x) of the
model considered. As such, this upper bound constitute
nontrivial result for a particular characteristic of a multip
connected space manifold at the very smallest scale, gran
the relevance of the model~3.7! for the effects of theCPT
anomaly~see, in particular, the discussion in Sec. III A!.

The upper bound~6.5! on l foam is, of course, eleven order
of magnitude above the Planck length,l Planck[AG\/c3

'1.6310233 cm. But it should be realized that we have n
real understanding of the possible topologies of spaceti
be it at the very smallest scale or the very largest. It is e
possible thatl foam and l Planck are unrelated; for example, i
0-10
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l foam is not a quantum effect, but has some other, unkno
origin.

APPENDIX A: CALCULATIONS FOR STATIC
WORMHOLES

1. CPT anomaly from a single wormhole

The orientable three-spaceN3 considered in this subsec
tion has a single permanent wormhole~traversable or not!.
The wormhole is constructed by removing two identic
open balls fromR3 and properly identifying their surfaces
see, e.g., Sec. II A of Ref.@11# and Sec. 15.1 of Ref.@14# for
further details. The removed balls have diameterb and are
separated by a distanced in R3. The length of the wormhole
‘‘throat’’ is then zero, whereas the long distance between
wormhole ‘‘mouths’’ isd. As a particularly simple case, th
width b of the wormhole mouths is put to zero, so that t
three-spaceN3 is essentiallyR3 with two points identified.
The coordinates of these identified points are taken to bx
56(d/2)r̂ , for an arbitrary unit vectorr̂ .

Like the punctured three-manifoldM3 of Sec. II, this
three-spaceN3 is multiply connected and theCPT anomaly
@1# may be expected to occur. In order to show this,
proceed along the same lines as in Sec. II. That is, we in
duce a suitable coordinate system over the spacetime m
fold N5R3N3 and restrict our attention to a class of bac
ground gauge fields which allows us to trace theCPT
anomaly back to the three-dimensional parity anomaly@15–
17#.

Let F(x) be a scalar function onR3, so that the integra
curves of¹F are noncontractible loops onN3. As a concrete
example, take

F~x![arctanS d

ux2~d/2! r̂ u
2

d

ux1~d/2! r̂ u
D , ~A1!

which resembles the potential of an electric dipole. T
manifold N3 is now parametrized by the coordinatesh, r,
f, where fP@0,2p) is the azimuthal angle around ther̂
axis, hP@2p/2,p/2) is defined by h[F(x), and r
P@0,̀ ) is a coordinate perpendicular tof andh. The pair
(r,f) parametrizes the ‘‘equipotential’’ surfaces ofF. The
equipotential surface has the topology of a two-sphere
hÞ0 and that of a plane forh50 (r andf now correspond
to the usual polar coordinates!; see Fig. 2.

For our purpose, it suffices to establish theCPT anomaly
for one particular class of gauge fields. We, therefore, t
the gauge fields to be independent ofh and to have no com
ponent in the direction ofh. These gauge fields will be in
dicated by a double prime. With appropriate vierbeins,
fermions are taken periodic inh.

The anomaly can be calculated for the planeh50 by
making use of the three-dimensional parity anomaly. Cho
ing r̂[(0,0,1), the relevant Chern–Simons term reads

vCS@B09 ,B19 ,B29#5
1

16p2
ql9emnkltrS Bmn9 Bk92

2

3
Bm9 Bn9Bk9 D ,

~A2!
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with

~q9m![~0, ehuh50!5~0,0,0,21!, ~A3!

where eh denotes the unit vector in theh-direction, eh
[¹F/u¹Fu. The three-dimensional anomaly term is then

E
R3

dx0dx1dx2ps0vCS@B09 , B19 , B29#, ~A4!

with an odd integers0 from the ultraviolet regularization~in
the following, we takes051). With the vector

v j@B9#[
1

16p
emnk j trS Bmn9 Bk92

2

3
Bm9 Bn9Bk9 D , ~A5!

the anomaly term~A4! may be written as

2E dx0E
S0

v@B9#•dS, ~A6!

whereSh denotes the surface of constanth.
Since the fields considered are independent ofh, the re-

sult ~A6! is independent of the particular equipotential su
face chosen. Hence,

2E dx0E
Sh

v@B9#•dS ~A7!

is independent ofh and can be averaged overh. The
anomaly term can then be written as a four-dimensional
tegral over the spacetime manifoldN5R3N3,

FIG. 2. Parametrization of the three-spaceN3 with a permanent
wormhole atx561 andy5z50 (x and y coordinates shown,z
coordinate suppressed!. The thin lines indicate ‘‘equipotential’’ sur-
faces on whichr runs from 0 tò andf from 0 to 2p ~shown here
are f50 andf5p). The thick lines show noncontractible loop
on whichh runs from2p/2 to 1p/2. The minimal length of these
noncontractible loops is given byd in Eq. ~A1!, which has the value
2 here.
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2E dx0E
S0

v@B9#•dS

52
1

pE2p/2

p/2

dhE dx0E
Sh

v@B9#•dS

52
1

R@F#
E

N
d4xu¹F~x!u~v@B9#•eh!

5
1

R@F#
E

N
d4xF~x!¹•v@B9#, ~A8!

whereR@F# is the range of values of the functionF(x), i.e.,
the length of the coordinate interval ofh. For the particular
function F given in Eq.~A1!, one hasR@F#5p.

If Bm9 contains only an electromagnetic componentAm9 ,
the anomalous contribution to the effective action is

E
N
d4x

aF~x!

R@F#
eklmnFkl9 ~x!Fmn9 ~x!, ~A9!

up to an overall constant of order 1, which depends on
details of the theory considered. Here, the field stren
Fmn9 (x) is defined by]mAn9(x)2]nAm9 (x) and F(x) is the
scalar function~A1!, possibly with a different normalization
The general structure of the term~A9! is of the form as given
by Eq. ~2.20!, now with a functionalf N(x;A# in the inte-
grand.

2. Random background field andl foam

In this subsection, we present a simple background fi
g1(x) to mimic the anomalous effects from a random dis
bution of wormholes. The photon model~3.7! incorporates,
in this way, the basic features of theCPT anomaly for a
single wormhole as found in the previous subsection of
appendix. For purely technical reasons, we use, instea

the function~A1!, a functionF̂ which is the direct difference
of two ‘‘monopole’’ contributions,

F̂~x!5KFhS x2
d

2
r̂ D2hS x1

d

2
r̂ D G , ~A10!

with a displacement parameterd.0 and a normalization fac
tor K.0 ~see below!. In addition, the profile functionh(x) is
assumed to be isotropic, monotonic, finite, and integra
The random background field is a superposition of these ‘
pole’’ potentials, with random locations (xn) and directions
( r̂ n). The random background field also includes a factora;
cf. Eq. ~A9!.

For N[(4/3)pR3/a3 dipoles in a ball of radiusR ~with an
average separationa between the different wormholes!, we
have

gN~x!5aK (
n51

N FhS x2xn2
d

2
r̂ nD2hS x2xn1

d

2
r̂ nD G ,

~A11!
04502
e
h

ld
-
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e.
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wherexn are random vectors withuxnu,R and r̂ n randomly
chosen unit vectors. The final background field for the ph
ton model~3.7! is given by the infinite volume limit,g1(x)
5 limN→`gN(x). The relevant autocorrelation function is

C1~y![ lim
N→`

1

~4/3!pR3Euxu,R
d3xgN~x!gN~x1y!

5a2
K2

a3
avr̂E d3xFhS x2

d

2
r̂ D2hS x1

d

2
r̂ D G

3FhS x1y2
d

2
r̂ D2hS x1y1

d

2
r̂ D G , ~A12!

where avr̂ denotes the average over the orientationsr̂ .
The typical length scale which enters the photon disp

sion law ~5.26! is defined by Eqs.~5.27! and ~5.28!,

l foam
2 [

1

30a2E d3y
C1~ uyu!

uyu
. ~A13!

After a suitable shift of integration variables, one finds

l foam
2 5

1

15
~A2B!, ~A14!

in terms of two integrals,

A[K2E d3yd3x
1

uyu
1

a3
h~x!h~x1y!, ~A15a!

B[K2E d3yd3x
1

uy2 r̂du

1

a3
h~x!h~x1y!. ~A15b!

The integralB is, in fact, independent of the directionr̂ and
there is no need to average over it. By using spherical co
dinates (y,uy ,fy) with respect to ther̂ -axis for y and
(x,ux ,fx) around they-axis forx, one finds after performing
three angular integrals:

B5A1K2
2~2p!2

a3 E
0

d
dyE

0

`

dxE
0

p

duxsinuxx
2y2

3S 1

d
2

1

yDh~x!h~x1y!. ~A16!

With Eq. ~A14!, this gives

l foam
2 5

K2

15pa3Euyu<d
d3yS 1

uyu
2

1

d D E d3xh~x!h~x1y!.

~A17!

In order to get a concrete result forl foam, we choose the
following profile function:
0-12
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h~x!5S l h
2

uxu21 l h
2D 2

, ~A18!

with a scale parameterl h.0. It is important to note that the

peaks ofF̂(x) from Eq. ~A10! are not located at6(d/2)r̂ ,
but rather at6(d/2)r̂ for an effective distanced5d(d,l h);
see Fig. 3. The normalization factorK5K(d,l h) in Eq.

~A10! is chosen such thatF̂(x) has values61 at these
peaks. The expressions ford and K are somewhat involved
and need not be given explicitly.

For the profile function~A18!, we finally obtain

l foam
2 5

p2

15

l h
5

a3
K~d,l h!2S 12

2l h

d
arctan

d

2l h
D , ~A19!

with average separationa between the different wormhole
and parametersd and l h for the individual wormholes; cf.

FIG. 3. Long distanced between the wormhole mouths vs p
rameterd entering the profile functionsh of Eqs.~A10! and~A18!,
both in units of the widthl h .
al
t

04502
Eqs. ~A10! and ~A18!. As mentioned above, precisely th
quantityl foam

2 enters the quartic term of the photon dispersi
law ~6.1!. For d/ l h→`, one finds

l foam
2 ud/ l h5`5

p2

15

l h
5

a3
, ~A20!

which is essentially the same result as for a random distr
tion of ‘‘monopoles’’ with profile functionh(x). Ford/ l h↓0,
on the other hand, the effective distanced approaches the
valueA4/5l h and l foam

2 becomes

l foam
2 ud/ l h50'

p2

15

l h
5

a3
3~0.279!2. ~A21!

Figure 4 shows the rather weak dependence ofl foam on the
individual wormhole scaled.

FIG. 4. Length scalel foam entering the photon dispersion law
~6.1! vs individual wormhole scaled, with the further definition
V2[(p2/15)l h

3/a3.
.
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@24# V.A. Kostelecký, R. Lehnert, and M.J. Perry, Phys. Rev. D68,
123511~2003! @astro-ph/0212003#.

@25# R. Lehnert, Phys. Rev. D68, 085003~2003! @gr-qc/0304013#.
@26# R. Gambini and J. Pullin, Phys. Rev. D59, 124021~1999!

@gr-qc/9809038#.
@27# J. Alfaro, H.A. Morales-Tecotl, and L.F. Urrutia, Phys. Rev.

65, 103509~2002! @hep-th/0108061#.
@28# G. Amelino-Camelia, J.R. Ellis, N.E. Mavromatos, D.
04502
Nanopoulos, and S. Sarkar, Nature~London! 393, 763 ~1998!
@astro-ph/9712103#.

@29# S.D. Biller et al., Phys. Rev. Lett. 83, 2108 ~1999!
@gr-qc/9810044##.

@30# B. Schaefer, Phys. Rev. Lett.82, 4964 ~1999!
@astro-ph/9810479#.

@31# D. Colladay and V.A. Kostelecky´, Phys. Rev. D58, 116002
~1998! @hep-ph/9809521#; V.A. Kostelecký and M. Mewes,
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