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Spacetime foam,CPT anomaly, and photon propagation
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The CPT anomaly of certain chiral gauge theories has been established previously for flat multiply con-
nected spacetime manifoldi4 of the typeR3Xx S, where the noncontractible loops have a minimal length. In
this article, we show that thEPT anomaly also occurs for manifolds where the noncontractible loops can be
arbitrarily small. Our basic calculation is performed for a flat noncompact manifold with a single “puncture,”
namelyM =R2x (RA{0}). A hypothetical spacetime foam might have many such punciaresther struc-
tures with similar effects Assuming the multiply connected structure of the foam to be time independent, we
present a simple model for photon propagation, which generalizes the single-puncture result. This model leads
to a modified dispersion law of the photon. Observations of high-energy ph@amsna-raysfrom explosive
extragalactic events can then be used to place an upper bound on the typical length scale of these punctures.
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[. INTRODUCTION spacetime really has a foam-like structure and, if so, with
which characteristics. Let us just consider one possibility.
Chiral gauge theories may display an anomalous breakin§uppose that the spacetime manifold is Lorentzian, M
of Lorentz andCPT invariance if these theories are defined =RX M3, and that the topology ofM5 is multiply con-
on a spacetime manifol¥ with nontrivial topology[1,2].  nected and time-independefitere, time corresponds to the
One example of an appropriate manifold\is=RR3x S!, as  coordinatex’e R). The idea is that the multiply connected-
long as the chiral fermions have the correct boundary condiness ofMs is “hard-wired.” The advantage of this restric-
tions (spin structurgover the compact space dimension. Thistion is that, for the moment, we do not have to deal with the
so-calledCPT anomaly has been established also for two-contentious issue of topology change; cf. R¢12,14.
dimensional “chiral”U(1) gauge theories over the tortié, _Physically, we are then interested in the long-range effects
where the Euclidean effective action is known exag8y].  (Via the CPT anomaly of this foam-like structure of space
The main points of th€PT anomaly have been reviewed in on the propagation of light. The exact calculation of these

Ref.[5] and some background material can be found in Refanomalous effects is, however, not feasible for a spacetime
6] ' manifold M with many puncturegor similar structures

The crucial ingredient of th€€PT anomaly is the exis- We.’ thgrefore, introduce a model for the photon field dver
which incorporates the basic features found for the case of a

tence of a compact, separable space dimension with apprgingle puncture. The model is relatively simple and we can

priate spin structure. For the case that this dimension i tudy the issue of photon propagation in the large-
closed, there are corresponding noncontractible loops OV%aveIength limit

the spacetime manifold, which must therefore be multiply 1o gutiine of this article is as follows. In Sec. I, we

conne(?ted. Up.tl|| now, attention has been focused on flafsiaplish theCPT anomaly for a flat spacetime manifold,
spacetime manifold® with topology R*X S" or RXT® and  \yhere the spatial hypersurfaces have a single puncture cor-
with Minkowski metric g,,,(x) =7, and trivial vierbeins  responding to a static linear “defect(A similar result is
e’ (x)= &%, . Here, the noncontractible loops occur at theobtained for a space manifold with a single wormhole, which
very largest scale. But there could also be noncontractibleorresponds to a static point-like defect. The details of this
loops from nontrivial topology at the very smallest scale,calculation are relegated to Appendix A 1.
possibly related to the so-called spacetime fg@m14]. The In Sec. lll, we present a model for the photon field which
main question is then whether or not a foam-like structure ofjeneralizes the result of a single punct(@ewormholg. We
spacetime could give rise to some kind of CPT anomaly. also give a corresponding model for a real scalar field. Both
In the present article we give a positive answer to thismodels involve a “random” background field ové&*, de-
question. That is, we establish t&PT anomaly for one of noted bygy(x) for the scalar model and by, (x) for the
the simplest possible manifolds of this type, namBly=R  photon model. For the photon model in particular, the ran-
X Mgz, where the three-dimensional space manifbld is  dom background field),(x) is believed to represent the ef-
flat Euclidean spac&2 with one straight lineR removed. fects of a static spacetime foafa more or less realistic
This particular manifoldM; has a single “puncture” and example for the case of permanent wormholes is given in
arbitrarily small noncontractible loops. Appendix A2. In Sec. IV, we discuss some assumed proper-
But it is, of course, an open question whether or notties of these random background fields.
In Sec. V, we calculate the dispersion laws for the scalar

and photon models of Sec. lll. In Sec. VI, we use observa-
*Electronic address: frans.klinkhamer@physik.uni-karlsruhe.de tions of gamma-rays from explosive extragalactic events to
"Electronic address: cr@particle.uni-karlsruhe.de place an upper bound on the typical length scale of the ran-
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dom background fieldy;(x) and, thereby, on the typical ~ Next, introduce cylindrical coordinatesp (¢, z=x"t
length scale of the postulated foam-like structure. In Sec=x°), with
VII, we present some concluding remarks. )
x'=cos¢, x’=psindg,
Il. CPTANOMALY FROM A SINGLE DEFECT OF SPACE
3,=C0S¢pd, +siNpd,, dy=—pSsingd;+pCcos¢d,,
(2.9

A. Chiral gauge theory and punctured manifold

In this section, three-space is taken to be the punctured
manifold M3=R><_(R2\{O}):]R?\R. The considered three-  o_cosgoltsingo?, o= —sinpot+cosdo?.
space may be said to have a linear “defect,” just as a type-lI
superconductor can have a single vortex ljmeagnetic flux _ _ _ o
tube. The corresponding four-dimensional spacetime maniThe two spin matrices of Eq2.4) ando* are explicitly

fold M=RXMj is orientable and has Minkowski metric »

(74,)=diag(1-1,—-1,—1) and trivial vierbeins €% (x) (—p,'m)_ 0 —e?

=5‘Z. This particular spacetime manifold is, of course, 7 C—ef? o /)

geodesically incomplete, but the affected geodesics consti-

tute a set of measure zero. At the end of Sec. Il B, we briefly — _ . 0 je ¢ . -1 0

discuss another manifold\, which is both multiply con- (o¢““)=( _ieit 0 ) (UZ““):< 0 +1)°

nected and geodesically complete. ' 2.5
The main interest here is in quantized fermion fields '

which propagate over the predetermined spacetime manifold g the spinorial wave functions in terms of cylindrical

M and which are coupled to a given classical gauge field. We o rdinates, we take the antiperiodic boundary condition

will use cylindrical coordinates around the removed line in

three-space and will rewrite the four-dimensional field theory Y(p,b+2m,2,0)=—h(p,b,z2,1). (2.6)

as a three-dimensional one with infinitely many fermionic

fields, at least for an appropriate choice of gauge field. Thisn appropriateAnsatzfor the fermion fields is then

procedure is analogous to the one used for the origdal

anomaly from the multiply connected manifolf x St. o _

The gauge field is written a8,,(x)=gB%(x) T°, with an Valp zt)= 2 {e71(V2(D(p 7,t) YD)
implicit sum overb, whereg is the gauge coupling constant =
and theT® are the antl;’H(cerm|t|aln gcenerators of the Lie alge- +et 1128 () 7 1) ylN (279
bra, normalized by tM°T¢) = — 3 6°°. For the matter fields,
we take a single complex multiplet of left-handed Wey! fer- o
mions ¢,(x). As a concrete case, we consider He(10) v p,bz)= > {e‘i(“‘m”’?”(p,Z,t)E(ﬂ
gauge theory with left-handed Weyl fermions in thé rep- n=—o A “

resentation. This particular chiral gauge theory includes, of iy _ _
course, the standard model with one family of quarks and +e '(n“/z)‘ﬁ;ﬁ )(P’Z't)%g )}’ (2.7H
leptons. Incidentally, the anomalous effects of this section do _
not occur for vectorlike theories such as quantum electrodyWith constant spinors
namics.
In short, the theory considered has (+) — 1 (=) — 0
W=l ,] =[]

[G.R .M, (x)]=[SO(10),16 R\R?, 5], (2.1

where G denotes the gauge grouR, the representation of (Z(_H): ( 1) (E(f)): ( O) 2.8
the left-handed Weyl fermionsyl the spacetime manifold, @ 0/’ @ 1)’ '
andei(x) the vierbeins at spacetime poi& M. The action .
for the fermionic fields reads and anticommuting fields(ﬁ;) which depend only on the
coordinatesp, z andt. The unrestricted fields(gi)(p,z,t)
| termion= f d4xﬁ5gi;aaa(%+ B,) Y, (2.2) andx$”)(p,zt) of Egs.(2.7 a,b will play an important role
M in the next subsection.
with B. CPT anomaly
(Eﬁd“) =(1,— o), (2.3 In order to demonstrate the existence of the CPT anomaly,
it suffices to consider a special class of gauge fiéignoted
in terms of the Pauli spin matrices', o2, o°. Natural units by a primé which are ¢-independent and have vanishing
with z=c=1 are used throughout, except when stated otheomponents in the direction; cf. Ref[1]. Specifically, we
erwise. consider in this subsection the following gauge fields:
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B;,,= B;S(p,z,t)=0, B, =B/ (p,zt), m=p,zt.

(2.9

Using the Ansatz(2.7) and integrating over the azimuthal

angle ¢, the action(2.2) can be written as

+ o
Ifermion:Zﬂ-in;m j dppjwdzfmdt[;g+)((9t+ Bt,))(g”
+ x50+ BOXT =X P(9,+B)x T =X,
+BIOXS =X (9,4 Bx )+ X (9,4 By xS
1 _ _
+;<<n—1/2>¥‘n =+ 12 x5 ’)],

(2.10

with e a positive infinitesimal.
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The n=0 sector of the theory2.14) has therefore the
same “parity anomaly” as the standaif theory[15-17.
The anomaly manifests itself in a contribution to the effec-

tive actionI'[B’] of the form
jm dPysyrocdBg,B1 B, (2.19
3

where wcg is the Chern—Simons density

1 o 2
wciBo,Bl,Bz]E 26 Htr BK)\B __BKB)\BM y

167 k3
(2.16

in terms of the Yang—Mills field strengtB,,=d,B\
—d,B,+[B,,B,], with indices running over 0,1,2, and the
Levi-Civita symbole*** normalized bye®*?= +1. The fac-
tor sy in the anomalous terrf2.15 is an odd integer which

This action can be interpreted as a three-dimensional fieldepends on the ultraviolet regularization used and we take

theory with infinitely many Dirac fermions, labeled by

so=+1. Note that the Chern—Simons integf2.15 is a

€ Z. These three-dimensional Dirac fields are defined as foliopological term, i.e., a term which is independent of the

lows:

V2mpxH
M=

Nrm (_)), 7a=(2mpx 2mpx )0
2mTpxp

(2.11
with y-matrices
7/0502, 71§i03, 7ZE—|01, (2.12
which obey
Yytyi=i, vt yt=29, (2.13

for w,»=0,1,2, and @*”)=diag(1—-1,—1). The action
(2.10 is then given by

+
I fermion= J'IT/I d3y 2
3

n=—ow

— -, n—
{ Ml ¥*(9,+B,) 7at annn} ;
(2.14
wheret, p, zhave been renamed, y?, y?, respectively, and
B/, has been defined &)=B, , Bj=B/, B)=B,. The rel-

evant three-dimensional spacetime manifdli=R X R-
X R has no boundary and is topologically equivaleniifb

metric onM . The total contribution of th@#0 sectors to
the effective action cannot be evaluated easily but is ex-
pected to lead to no further anomalies; cf. Réis2].

The anomalous ternf2.15 gives a contribution to the
four-dimensional effective actioh[B’] of the form

T (xt x2
f d4x—[—w dB},B!,Bs]+— wcd By,BY,B4]
M 27Tp p C 0:~1:~3 p 0:22:23 1
(2.17

in terms of the usual Cartesian coordinatésand the corre-
sponding four-dimensional gauge fielB%(x), n=0,1,23,
and with the definitionp?=(x*)2+ (x?)2. In the form writ-
ten, EQ.(2.17) has the same structure as tG&T anomaly
term (4.1) of Ref. [1] for the R®x S' manifold. The main
properties of the anomalous term will be recalled in the next
subsection.

For completeness, we mention that tBEBT anomaly also
occurs for another type of orientable manifold= RXx N3,
which is both multiply connected and geodesically complete.
This particular space manifoltl; has a single wormhole,
constructed from Euclidean three-spateby removing the
interior of two identical balls and properly identifying their
surfaces(in this case, without time shjft cf. Refs.[11,14].
The space “defect” is point-like if the removed balls are

Then=0 sector of the theory2.14) describes a massless . ... " : .
. S : infinitesimally small. For an appropriate class of gauge fields
Dirac fermion in a background gauge field, whereasrthe _, . . . .
B" (x), the parity anomaly gives directly an action term

#0 sectors have additional position-dependent mass terms# . .

At this moment, there is no need to specify the gauge_analogous to_Eq.2.17), now over the spacetlm_e mamfolkﬂ

invariant regularization of the theory, one possibility beingand with a dlpo_le structure f_or thecs terms in t_he Inte-

the use of a spacetime lattice; cf. Refs,2). grand. The _detalled form of this gnomalous term is, however,
The perturbative quantum field theory based on the actio qmewt:_at mvolve(t:{seetAE)hpend.lx. A)i and,_;‘g‘zﬁ%(%szt of

(2.14) contains only tree and one-loop diagrams because th IS section, we return fo the original maniiaidi=k :

gauge field does not propagate and because there are no fer-

mion self-interactions present. The effective gauge field ac-
tion from then=0 sector of the field theor{2.14) over the The gauge field,,(x) will now be restricted to the Abe-

spacetimd\7I3 is directly related to the effective action from lian Lie subalgebrau(1)Cso(10) which corresponds to
charged massless Dirac fermions oVer electromagnetism and the resulting real gauge field will be

C. Abelian anomalous term

045020-3



F. R. KLINKHAMER AND C. RUPP

denoted byA (x). In this case, the trilinear term of the
Chern-Simons  density (2.16 vanishes. For the
¢-independent gauge field.9) restricted to thau(1) sub-
algebra, the anomalous contributié®2.17) to the effective
gauge field actiod’[A’] is simply

1

- 4y, VKN N! ’ ’
8 Md Xe€ qMaVAK(X)A)\(X),

(2.18

with the Levi-Civita symbol e*** normalized by €13

_+]’
L ’ gz X2 Xl
q_é)f—_ O’__21_27

O), (2.19
p

and p?=(x)2+ (x?)2.

Four remarks on the resul®.18 are in order. First, the
action term(2.18), with q;EaMf’, is invariant under a four-
dimensional Abelian gauge transformatioh, (x) — A, (x)
+4d,&(x). Second, the Lorentz and time-rever€gl invari-
ances are broke(as is theCPT invariance, because the L
components in the effective action tefgh18) are fixed once
and for all to the value&2.19); cf. Ref.[5]. Third, we expect

PHYSICAL REVIEW D70, 045020 (2004

Ill. MODELS
A. Motivation

The exact calculation of thePTanomaly is prohibitively
difficult for two or more punctures or wormholes. However,
we expect the Abelian anomalies from the individual defects
(considered in Sec. Il and Appendix Afo add up incoher-
ently, at least over large enough scales. We, therefore, as-
sume that the total anomalous effect of the defects can be
described by a contribution to the effective gauge field action
I'TA] of the form (2.20 but with fy(x;A] replaced by a
background fieldy,(x). This background field;(x) carries
the imprint of the topologically nontrivial structure of space-
time as probed by the chiral fermior{§he original space-
time manifold may, of course, have additional structure
which does not contribute to tHePT anomaly and does not
show up ing;(x).]

As discussed in the Introduction, we consider in this paper
a particular type of spacetime foam for which the defects of
three-space are static and have randomly-distributed posi-
tions and orientations. The average distance between the de-
fects can be assumed to be small compared to the relevant
scales(set by the photon wavelength, for exampénd the

no problems with unitarity and causality for the photon field, detailed form ofg,(x) is not important for macroscopic con-

because the componerg) vanishes exactly; cf. Refs.
[18,19. Fourth, the overall sign of expressi¢é2.18 can be
changed by reversing the direction of theaxis; cf. Eq.

(2.15.

siderations. We, therefore, considgi(x) to be a “random”
field and only assume some simple “statistical” properties.
These statistical properties will be specified in Sec. IV.

It should, however, be clear that the background field

After a partial integration, the anomalous contributiond1(X) is notcompletelyrandom. It contains, for example, the
(2.18 can be generalized to the following term in the effec-small-scale structure of the individual anomaly terms. The

tive actionI'[A]:
_1 4 KNpv
397 R4d Xfu(XATEME G (XF (%), (2.20

with the field strengttF,,(x)=4d,A,(x) —d,A,(X) and the
integration domain extended t8*, which is possible for
smooth gauge fielda ,(x). (See Refs[20-22 for a related
discussion in the context of axion electrodynamid$e fac-
tor fy(x;A] in the anomalous terr2.20 is both a function
of the spacetime coordinat&4 (on which the partial deriva-

tive 9, acts to giveq,) and a gauge-invariant functional of

the gauge fieldA ,(x). This functional dependence df,

involves, most likely, the gauge field holonomies, defined as

hc[Al=exp(fcdx*A ,(x)) for an oriented closed cune;
cf. Sec. IV of Ref[1].

Note that the functional,(x;A] in Eq. (2.20 is defined
over R* but carries the memory of the originénultiply
connectegimanifold M, as indicated by the suffi{The same

randomness of;(x) traces back solely to the distribution of
the static defects whose physical origin is unknown. In fact,
the aim of the present paper is to establish and constrain
some general characteristics of these hypothetical defects.

In the rest of this section, we present two concrete models
with random background fields. The first model describes the
propagation of a single real scalar field and the second the
behavior of the photon field. Both models are defined over
Minkowski spacetimeM = R* and 9ur(X) =714,

B. Real scalar field

The scalar model is defined by the action
| scalar™ J']R“d[lx eXFiGo(X)](ﬁ,Ltﬁ(X)&“(ﬁ(X) - mzd’(x)z):
(3.1

whereq is a real scalar background field of mass dimension
zero. The background fielg, is assumed to be random and

structure(2.20 has also been found for a manifold with a ¢, ther properties will be discussed in Sec. IV.

single static wormhole; see Appendix AlMoreover, the
absolute value offy, is of the order of the fine-structure
constant,

[fu(xAl=0(a), a=e’l(4m), (2.21
with the electromagnetic coupling constawtg. The gen-
eral expression foff ;(x;A] is not known, butf,, can be
calculated on a case by case ba#ist is, the functiorf’(x)

for the gauge field configuratioA’, f”(x) for A”, etc].

The corresponding equation of motion reads

(O+m?) $(x) = = 3,90(X) * H(X), (3.2
with the following conventions:
O=%""d,d,,
(p*")=diag1,—1,—1,—-1). (3.3
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There is no equation of motion fay,, becausey, is a fixed The equations of motion corresponding to the acti@)
background fieldthe random coupling constangg(x) are  are given by
quenched variablgésThe scalar field equatio(8.2) will be

seen to have the same basic structure as the one of the photon OA"(x)=— aMgl(x)T:’”(x), (3.9
model in the next subsection.
For the free real scalar field(®), we define provided the Lorentz gauge is used,

d*A ,(x)=0. 3.1
d)(O)(X): %f d4k'é)(0)(k)efik-x, M( ) ( @
(2m) The random coupling constangs(x) in the action(3.7) are
~ (0) ) 0(0) considered to be quenched variables and there is no equation
(k) =27 6(k, k= m7)[O(K") (k) of motion forg,. As mentioned above, the basic structure of
Eq. (3.9 equals that of Eq(3.2) for the scalar model.

— k9 (0)( —
+O(—k) (k). (3.4 The general solution of the free field equatiddA,
The causal Green functiak(x) of the Klein—Gordon opera- =0.1is
tor,
1 :
(0)( ) — 4, 7(0) —ik-
(O+m?)A(x) = 8%(x), (3.5 A (X>—(27)4fd KAD (ke ™,
is given by ~(0 =0
A (k) =278 (k, kM) 0(K°)AD (k)
A(x)= fd“ke—ik*z k), +6(—k)AD(—K)*], 3.1
()(277)4 (k) (=KHAL(=K)*] (3.1)
with
~ -1
A(k)= ———, 3.6 =
O e e 9 kAL (k) =0, (3.12

with the Feynman prescription for thé integration contour due to the gauge conditio3.10. The Feynman propagator
[23]. [23] for the free field is simplyA ,,(x)=i»,,A(X), with
A(x) given by Eq.(3.6) for m=0.
C. Photon field

The photon model is defined by the action IV. RANDOM BACKGROUND FIELDS

The two models of the previous section have random
! 4 v B back d field dg;. For simplicit th
|phomn:_z 4d X(F (X FA7(X) + g1 (X)F o O F N (X)), ackground fieldg, andg,. For simplicity, we assume the
R same basic properties for these two random background
3.7 fields and denotg, andg; collectively byg in this section.

where the Maxwell field strength tensiy,, and its duaF** _
are given by A. General properties

B The assumed properties of the background figlxl) are
F/u/: (?/,LAV_ &VA,M ) the fOIIOWing:

~ 1 (1) gis time-independeng=g(x),
F“EEG"“‘VF,W (3.8 (2 gis weak,|g(x)|<1,
(3) the average of(x) vanishes in the large volume limit,
with e*#* the Levi-Civita symbol normalized by®23  (4) g(x) varies over length scales which are small compared

=41 to the considered wavelengths of the scalar figldnd
The random(time-independentbackground fieldg, in photon fieldA,,

the action(3.7) is supposed to mimic the anomalous effects(5) the autocorrelation function af(x) is finite and isotro-

of a multiply connectedstatio spacetime foam, generalizing pic, and drops off “fast enough” at large separatigase

the result(2.20 for a single puncture or wormhole. Follow- Secs. IV C and V beloy

ing Eq.(2.21), the amplitude of the random background field  The random background fielg} (x) for the photon case is

0, is assumed to be of order. The typical length scale over considered to incorporate the effects of a multiply connected,
which g, varies will be denoted b¥,,,» and further proper- static spacetime foaitef. Sec. Il A) and assumption 5 about
ties will be discussed in Sec. IV. Note that models of the typethe lack of long-range correlations can perhaps be relaxed.
(3.7 have been considered before, but, to our knowledgelndeed, long-range correlations could arise from permanent
only for coupling constants varying smoothly over cosmo-or transient wormholes in spacetime; cf. Réfs3,14. But,
logical scales; cf. Ref§18,24]. for simplicity, we keep the five assumptions as listed above.
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B. Example
o
A specific class of random background fielyi) can be _
generated by superimposing copies of a localized, square |Gwl
integrable shapé&(x) with random displacements. The dis- 1

placements,, are uniformly distributed over a ball of radius

PHYSICAL REVIEW D70, 045020 (2004

R embedded ik® and have average separat@rThe num-

ber of elementary shapes is then given b
=(47/3)R%as.
Concretely, we take
N
(0= 2, eh(x—xy), (4.9

where the numberg,,=*1 are chosen randomly, so that

gn(X) vanishes on average. The background fig(ct) is
defined as the infinite volume limit,

9(x)= lim gn(x), (4.2

N—oo

wherea is held constant.
The mean value and autocorrelation functiorgare de-
fined by

(g)=lim (4.3

|
EE——— d3X X),
R_«=(4mI3)R3J|x<R 90

CXEHmiJ d® +x). (4.4
(X) ipyryry=c) W ya(y)g(y+x). (4.9
In the limit R—o, we have perfect statisticdN(-) and
find

(9)=0, (4.9
C(x):aza"?’f Ldyh(yh(y+x). (4.6)
R
The Fourier transforms di andgy are given by
ﬁ(k):f d3xe ™" *h(x), (4.7a
R
N
ankK=a e | dxe " h(x—x,)
n=1 R
= aNh(K)Gy(k), (4.7
with
1 N
Gp(k)=—= D, e, ik, (4.9

0 K 0.5
™ J u
arg (Gn)
N
-7 T T T T
0 K 0.5
2_
gn/a
ot
_2_

T T T T T T T T T T T
—500 500
FIG. 1. The top and middle panels show the momentum-space

function Gy(k), defined by the one-dimensional version of Eq.
(4.8), for N=100 andR=500. The bottom panel shows the corre-
sponding position-space functiogy(x), defined by the one-
dimensional version of Eq(4.1), for the profile functionh(x)

=(20/9)(sinx/2—sinx/20)/x. The Fourier transfornh(k) of this
particular profile function is nonzero and constant fk]
(S [k|0W!khigh]v W|th khigh: l(](|0W>0, and zero OtherWise.

~ 1 _
Gr(k)[2=1+ 5 n;m eneme K0T (4.9

where the double sum on the right-hand side scatters around
0. The fluctuation scale ¢ (k)| is of order 27/R and the
same holds for the phase 6f(k); see Fig. 1.

C. Random phase assumption

For a given random background fietf{x) over R3, we
define the truncated Fourier transfogr(k) by

Sr= |

[X|<R

d3xe—ik~xg(x)’

(4.10

with an implicit dependence on the origin of the sphere cho-
sen. This functiorgg can be parametrized as follows:

gr(k)=V(47/3)R3H(K)GRr(k), (4.1

The function(4.8) can be decomposed into an absolute value _
and a phase factor. The absolute value fluctuates around 1, ahere the real functioid (k) is obtained from the finite au-

follows from the expression

tocorrelation function4.4),
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Since there is already a delta-function present in the inte-

1 o ~ ~
C(x)= 5 3f d3ke'* *H(k)?, (412 grand of(4.17), the productGg(k)Gg(p) can simply be re-
(2m) placed byNé‘,i(k+ p), which gives the correct behavior for
k~ —p. With

with the sign ofH (k) chosen to make the function as smooth
as possible(i.e., without cusps Because the background

~ ~ 3
field g~(x) is real, we have alsoH(—k)Ggr(—k) b‘g(k+p)b‘§(k+p)HR—353(k+p), (4.19
=H(K)Ggr(Kk)*. m
Motivated by the results of the preceding subsection, we
assumeGg(k) to vary over momentum intervals of the order for R—, Egs.(4.12 and(4.17) are consistent if
of 27/R and |Gg| to have unit mean value. Furthermore,
H(k)? is taken to be smooth on scales of the order ofR,

provided R is large enough. For the isotropic cabik) This fixes the normalization factok” of Eq. (4.16), which

=H(Kk), with k=|K|, and large enougR, we explicitly as-  will be used extensively in the next section.
sume the inequality

N=(7IR)S. 4.19

% _ © V. DISPERSION LAWS
j dkcogkR)H (k)2 <f dkH(k)?, (4.13
0 0 A. Scalar model
with a finite positive number on the right-hand side. We first turn to the scalar mod€.1), as a preliminary for
Now suppose that we have to evaluate a double integral dhe calculation of the photon model in the next subsection. In
the form order to have a well-defined Fourier transform gy, the

system is put inside a sphere of radRisvith free boundary

3 3 ~ ~ conditions for the real scalar fiel@d. In momentum space,
f d kf d°pf(p,k)Gr(K)Gr(P), (414 the scalar field equatiof8.2 becomes

wheref is a function which is approximately constant over ~ 1 ~ ~
momentum intervals of the order ofi2ZR. Due to the rapid (K —m?) (k) =— (ZW)4Jd“ngR(q)qM(k"—q“)qS(k—q).
phase oscillations dBg, a significant contribution can arise (5.1
only for k= —p andGg(k)Gg(p) can effectively be replaced

by a smeared delta-function. _ According to Eq.(4.11), the momentum-space functi@pg
The specific form of this smeared delta-function does nofzs the form

matter in the limitR— o and we simply choose

® sinkR) dor(K)=2m (k%) J(4m/3)R*Ho(|k|)Gor(k), (5.2
syk=[1 W—k’ (4.15
= ! where G is assumed to have the statistics properties dis-
We then have the result cussed in Sec. IV C. Furthermore, we have assumed isotropy
of Hy; see Sec. IVA.
3 3 ~ ~ We will now show that the main effect of the random
f d kf dpf(p.k)GrKIGR(P) background fieldgg(x) can be expressed in the form of a

modified dispersion law for the scalar modes, at least for
%/\/f d3|<f d3pf(p,k) 85(k+p), (4.1 large enough wavelengths. The basic idea is to expand the

solution of Eq.(5.1) perturbatively to second order igy
(there is no contribution at first ordesind to compare it with

with a normalization factosV' to be determined shortly. On the first-order solution of a modified field equation,

the right-hand side of Eq4.16), the absolute values @x

have been replaced by their average value 1, sifpg) is ~ ~

assumed to be slowly varying. (K*=m?) (k) =A([K]) (k). (5.3
In order to determine the normalization factdf recon- . . ) .

sider the autocorrelation functio@.4). Using Egs.(4.1)  The dispersion law will then be given by

and (4.15), the autocorrelation function can be written as

follows: w?=m2+|k|>+A(|K)), (5.4

with A expressed in terms of the random background field
go(X).

In the limit R—oo, the perturbative second-order contri-
X ePXH(k)H(p)Gr(k)Ggr(p). (4.17  bution to ¢ (k) reads

C(x)= lim

Rﬂw(z’ﬂ'

E f d3kd3psy(k+p)

045020-7
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~ . 4~ ~ o , 2T
$@(k)= lim A(k)J’ d*q0or(9)a,.(k—q)*A(k—q) Ak == 75Co(0)[K*~ 35

R—x 77)8

f:dxxco<x>) K

.~ . +O(|k|%/q,). (5.10
Xf d*pgor(k—p—q)(k—p—a),p" ¢ (p) _ _ _ o

in terms of the autocorrelation functiqd.12, which is iso-
tropic becausé, is,

i Z(k)—mm)Rsf | @pFig(lal
R 277)° a PPl 3 2 (= osinglxL
Co—Co(|X|)—W . dqq WHO(q) . (6.1)
X Ho(|k—p—a|)Gor(a) Gor(k—p— A (K k—q)
~ In order to make the identification of thikl* prefactor in Eq.
X (G- (a-K)((k—p~)-pFOK%p), (5.5 el” p d

(5.10, it has been assumed that the behavioHg{q)? is

. sufficiently smooth; cf. Eq(4.13.
where Eq.(5.2) has been used. According to E¢4.16 and From Eqgs.(5.4) and(5.10), the dispersion law of the sca-

(4.19, we can replace the produBprGor by (7/R)3s3 and |5/ is
take the limitR— oo,

w?=m?+(1—ag)|K|>—bo|k|*+ - - -, (5.12
P (k)= 2Z(k)j d3qHo(|d))2A (K% k—q) where the dots stand for higher order contributions and the
12(2m) positive coefficienta, andb, are given by
X (g-(a=k))(a-k) (k). (5.6

2 ©
ag= %CO(O), bo= 1—757 dxxCy(x).  (5.13
At the given perturbative ordek, k*— m? can be put to 0

zero in the integrand of Eq(5.6), because of the delta-
function contained in the free fielgho(k) of Eq. (3.4). By

comparison with the first order solution of E¢6.3), the
operatorA is identified as

The isotropic autocorrelation functioBy(x) is defined by
Eq. (4.4) with g replaced by the random background figigd
from the action(3.1).

The main purpose of the scalar calculation is to prepare
the way for the photon calculation in the next subsection, but

1 J dafig(| |)2(01' (9—k))(q-k) let us comment briefly on the result found. Setting the scalar
12(27r)2 qHo(lq 2k-q—|q2+ie ' massm to zero in the actior{3.1), our calculation gives no

(5.7 additional mass term in the dispersion l&v12). It is, how-

ever, not clear what the random background figfdof the

Following the discussion of Sec. IV A, we now assume model (3.1) really has to do with dstatio spacetime foam.
= : : The propagation of an initially massless scalar could very
thatH vanishes for momentay| < cf. Fig. D) and A . .
that ||2|(|<q(|1)|owl2- Performing thedainggm (integ?als) in Eq. well be strongly modified in a genuine spacetime foam; cf.

(5.7), one finds Ref.[10].

A(lk])=

1 - 21 2 1 2 q3
A(Ikl)=mf0 daaHo(@)* 39°+ g

q-+2/K| To obtain the dispersion law for the photon modl7),

we proceed along the same lines as for the scalar case.
(5.8 Again, the system is put inside a sphere of radiso that
where the lower limit of the integral is effectivety,,, . Be-  the truncated Fourier transformg;r occurs in the
cause of the large-wavelength assumptjkp<q,/2, the =~ momentum-space field equation,

same result is obtained if the causal Green funcioin the

q—2|k| ) B. Photon model

L . 1

first integral of Eq.(5.5) is replaced by, for example, the |2z = — fd4 = NG (k—a) A (K—

retarded or the advanced Green function. () (2m)* 0:R(Q) 0, (k=) Artk=a).
Next, the logarithm of Eq(5.8) is expanded in terms of (5.19

|k|/g, which gives
For this truncated background fiefflz, we assume a form
1 (> - 2 8 analogous to Eq5.2),
AK)= g | daP(a?| - Zatle—£ ! aous to Eas2
0 ~ ~ ~
91r(K)=278(k%) (4m/B)R?H 1(|k|)G1r(k), (5.19
+O(| K|/ o). (5.9 )
whereGR is a random function of the type discussed in Sec.
This result can also be written as IV C.
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The second-order contribution to the perturbative solution The modified field equations in momentum space are thus

of Eq. (5.149 is given by

A(k) f d*q0ir(q) € q,(k—0)

A@r(k)= lim

R— o0

(2m)®

XZ(k—q)fd4p§1R(k— P—d)€appn(kK—p—q)*
X pPAY(p). (5.16

Using Eq. (5.15 and replacing the produc,zG;r by
(wIR)36%, one finds in the limitR—o:

A@r(k)=—A(k)B",(k)AOY(k), (5.17
with

1 - 1
3 2
oy | @aftyal e

X 5flga5;%5;]qu(k_ Q)ankﬁ,

B”,(k)=

(5.18

where q°=0 and the square brackets around the indice

a By denote antisymmetrization with unit weight.

Since A®7(k) in Eq. (5.17 contains a factod(k k")
and furthermore obeys the Lorentz gauge conditi®i2),
we have

B°,A®r=p, B"AOk=B" AOM (519
with
n
B0 12(277)2( o k|k'|‘) [ a2
(a-k)?
2k-gq—|q?+ie
K|
=| omt |I(|2)B(|k|), (5.20
and
@ 3 —
B(Ikl)E% . dqqzﬁl(q)z(;q2+ %In’;—;m )
(5.21)

where the indicesnandn run over 1,2,3. In order to perform
the angular integrals in Eq5.20, we have again assumed

thatH,(|q|) vanishes for momentay| < gy, (cf. Fig. 1) and
that |k| <qj,w/2. Making an expansion ifk|/q for the loga-
rithm in Eq. (5.21), we obtain

« 1 (> 2 8
Bk = g | daFh(@?] - 2qtKE- gIK“+ .
(5.22

which is equivalent to the scalar res(t9).

K?A%(k)=0, k?A™(k)=B™,(k)A"(k). (5.23

It follows that the dispersion law for the scalar and longitu-
dinal modes remains unchanged,

w2=|k|2, (5.29
whereas the one for the transverse modes is modified,
w?=k|?+B(|K|). (5.25

Of course, only the transverse modes are physical; see, e.g.,
Sec. 3.2 of Ref[23]. From Egs.(5.22 and (5.25), the dis-
persion law for thetransversgphotons is

w?=(1—a;)c?|k|?—b,c?|K*+ - - -, (5.26
where the bare light velocitg has been restored and the
positive coefficienta; andb, are given by

T 2m [
a;= 1_8C1(O), bl = dXXQ(X). (527)

~ 15/,

%’he isotropic autocorrelation functio@,(x) is defined by
Eq. (4.4) with g replaced by the random coupling constgnt
from the action(3.7).

According to the discussion in Secs. Il C and Il C, the
random background field;(x) has a typical amplitude of
the order of the fine-structure constanand a typical length
scale of the order df,,,. The coefficient$5.27) may there-
fore be written as

(5.28

with a positive constanty;. This last equation defines, in
fact, the length scalg,,,. For the example background field
of Sec. IV B with isotropic profile functiot=h(|x|), one
hasl a1 h(1n /@) %2, wherel,, is the typical length scale of
the profile functionh; cf. Eq. (4.6). For this type of back-
ground field, the ratid;,,,/a can be large if ,>a. In Ap-
pendix A2, another example background field is discussed,
which is especially tailored to the case of permanent worm-
holes(average distanca between the different wormholes,
effective transverse widthlg for the individual wormholes,
and long distanced between the individual wormhole
mouths. The result foll 1., is @again found to be proportional
to I,,(I,/a)%? and only weakly dependent on the individual
scaled.

The dispersion law5.26) violates Lorentz invariance but
not CPT invariance. There is no birefringence, as the back-
ground fieldg,(x) is assumed to have no preferred direction.
Note also that motion of the detector relative to the preferred
frame defined implicitly by the static backgrourgi(x)
would bring in some anisotropy but, at the order considered,
no birefringencethe two modes propagate identically in the
instantaneous rest frame of the detector

The modifications of the photon dispersion law found in
Eqg. (5.26 are rather mild(see Ref[25] for some general
remarks on the absence of odd powers|kfin modified

_ 2 — 2|2
a1 =ay;, bi=alin
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dispersion laws These modifications are not unlike those of | foam<1.6X 10722 cm, (6.5
Ref. [10] for a simply connected, nonstatic spacetime
made-up of manyS*xS? “gravitational bubbles.” More  wherely,, is defined by(5.27 and (5.29, in terms of the
drastic changes in the photon dispersion law have, for exautocorrelation functiori4.4) for the static random variable
ample, been found in certain loop quantum gravity calculag,(x) from the action(3.7). In the next section, we comment
tions [26,27. Compared to these calculatioshich have  priefly on the possible interpretation of this result.
the Planck length as the fundamental sgaders is relatively Since the spacetime foam considered in this paper has no
straightforward, the only prerequisite being a multiply con-preferred spatial direction, experimental limits obtained from
nected topology which is then probed by the chiral fermionshounds on the birefringence of electromagnetic waves
of the standard model; see Sec. VII for further discussion. [18,31,32 do not apply[See also the remarks in the penul-
timate paragraph of Sec. VBNote that the background field
VI. EXPERIMENTAL LIMIT g:(x) vanishes on average and that the modification of the
dispersion law in Eq(5.26 is a second-order effect, gov-
In the previous section, we have derived the photon diserned by the autocorrelation of the background field. As
persion law for the simple modéB.7). Using the definitions  shown by Eq.(6.1), the fundamental length scalg,, ap-
(5.28 and considering to be parametrically small, we have pears only at quartic order in the photon wave number, which
the following expression for the quadratic and quartic termsmakesl;,, difficult to constrain(or determing experimen-

in the dispersion law5.26): tally.
2 2 2
©®~ Crerk® ~ Cren®lfgank”, 6.0 VIl. CONCLUSION
with the renormalized light velocity The present article contains two main theoretical results.
First, it has been shown in Sec. Il and Appendix A 1 that two
Crer=CV1— %y, (6.2  particular types of “defects” of a noncompact spacetime

manifold generate an anomalous breaking of Lorentz and
CPT invariance. The anomalous term of the effective gauge
field action can be written in a simple form, Eq8.20 and
(2.27). The spacetime defect is thus found to affect the pho-
ton field far away, the agent being the second-quantized
vacuum of the chiral fermions. Inversely, tiIPT anomaly

can be used as a probe of certain spacetime structures at the

and the simplified notatiok=k|.

The group velocityv,(k)=dw/dk is readily calculated
from Eq. (6.1). The relative change afy(k) between wave
numbersk; andk, is then found to be

Ac _|valke) ~vg(ka) very smallest scales.
€1k vg(ky) Second, a modified photon dispersion law, Ex26), has
been found in a model which generalizes the single-defect
2 2| 212 result. The random background fietfi(x) of this model
%2|k1_k2|a Ifoamv (6.3

(3.7) traces back to a postulated time-independent foam-like
, ) ) structure of spacetime consisting of many randomly oriented
where Ac/c is a convenient short-hand notation amd 554 randomly distributed defects. The static random back-
~1/137 the fine-structure constant. ground fieldg,(x) of the photon model breaks Lorentz and
As realized by Amelino-Cameliat al.[28], one can use  cpT jnvariance and selects a class of preferred inertial
the lack of time dispersion in gamma-ray bursts to get aames. Incidentally, the calculated photon dispersion law

upper bound om\c/c. But for our purpose, it may be better gpays the Lorentz noninvariance present at the microscopic
to use a particular TeV gamma-ray flare of the active galax¥c51e put not thePT violation.

Markarian 421, as discussed by Billet al. [29]. Schaefer This article also gives an “experimental” result. Follow-

[30] obtains from this event ing up on the suggestion of Ref&8,29, it is possible to use
observations of gamma-ray bursts and TeV flares in active
Aac —2E5x 10" 4 6.4) galactic nuclei to obtain an upper bou(®i5) on the length
Cc | k=25x101%0 cm™t ~7 ' ' scale l,am of the random background field,(x) of the
ko=1.0x10"7 cm™ 1 model considered. As such, this upper bound constitutes a
nontrivial result for a particular characteristic of a multiply
The reader is invited to look at Fig. 2 of RgR9], which  connected space manifold at the very smallest scale, granting
provides the key input for the bour{@.4), together with the the relevance of the modéB.7) for the effects of theCPT
galaxy distanc®. In fact, the right-hand side of E¢6.4) is  anomaly(see, in particular, the discussion in Sec. I)l A
simply the ratio of the binning interval for the gamma-ray  The upper bound6.5) onl¢,,,is, of course, eleven orders
events (\t~280 s) over the inferred travel tim®(c~1.1  of magnitude above the Planck lengthy,=VGh/c3
X 10 s). ~1.6x10 33 cm. But it should be realized that we have no
Combining our theoretical expressi¢h.3 and the astro- real understanding of the possible topologies of spacetime,
physical bound6.4), we have the following “experimental” be it at the very smallest scale or the very largest. It is even
limit: possible that ;oo and I panek are unrelated; for example, if

Ac | Mkna421
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l10am IS NOt @ quantum effect, but has some other, unknown, y
origin.

APPENDIX A: CALCULATIONS FOR STATIC
WORMHOLES

-1 1 X
1. CPT anomaly from a single wormhole \—/ w

The orientable three-spad®; considered in this subsec-
tion has a single permanent wormhdteaversable or ngt
The wormhole is constructed by removing two identical
open balls fromR® and properly identifying their surfaces; FIG. 2. Parametrization of the three-spatewith a permanent

see, e.g., Sec. Il Aof Refll] and Sec. 15.1 of Ref14] for  wormhole atx=*1 andy=z=0 (x andy coordinates showrg
further details. The removed balls have diaméieand are  coordinate suppressedhe thin lines indicate “equipotential” sur-
separated by a distanddn R®3. The length of the wormhole faces on whictp runs from 0 to andé from 0 to 2r (shown here
“throat” is then zero, whereas the long distance between thare ¢=0 and ¢= ). The thick lines show noncontractible loops
wormhole “mouths” isd. As a particularly simple case, the on which# runs from— 7/2 to + /2. The minimal length of these
width b of the wormhole mouths is put to zero, so that thenoncontractible loops is given lain Eq. (A1), which has the value
three-space\; is essentiallyR® with two points identified. 2 here.

The coordinates of these identified points are taken ta be

==+ (d/2)r, for an arbitrary unit vector. with

Like the punctured three-manifol¥; of Sec. I, this
three-spacéN; is multiply connected and th€PT anomaly "
[1] may be expected to occur. In order to show this, we (a#)=(0, &],-0)=(0,0,0-1), (A3)
proceed along the same lines as in Sec. Il. That is, we intro-
duce a suitable coordinate system over the spacetime marWhere e, denotes the unit vector in the-direction, e
fold N=R X N3 and restrict our attention to a class of back- EV<I>/|V7]<I>|. The three-dimensional anomaly term is, then
ground gauge fields which allows us to trace tG®T
anomaly back to the three-dimensional parity anonhab—
17].

Let d(x) be a scalar function oR®, so that the integral
curves ofV® are noncontractible loops dw. As a concrete
example, take

ﬁldeXdeldxzwsowcs[Bg, 7, BS], (A4)

with an odd integes, from the ultraviolet regularizatiofin

d d the following, we takes,=1). With the vector
d(x)=arcta — — —1|, (A1)
[x—(d/2)r | [x+(d/2)r |
. 1 . 2
which resembles the potential of an electric dipole. The wJ[B”]EFE'U'VKJU( B;’WB’;—§B;’LB’;BZ . (A5)
T

manifold N5 is now parametrized by the coordinates p,
¢, where ¢ <[0,27) is the azimuthal angle around the
axis, ne[—m/2,m/2) is defined by »=®(x), and p  the anomaly terniA4) may be written as
e[0,©) is a coordinate perpendicular t» and . The pair
(p, ) parametrizes the “equipotential” surfaces ®f The
equipotential surface has the topology of a two-sphere for _ 0 "
7+ 0 and that of a plane fop=0 (p and ¢ now correspond f dx Low[B 1-dS, (A6)
to the usual polar coordinatesee Fig. 2.

For our purpose, it suffices to establish tBBT anomaly
for one particular class of gauge fields. We, therefore, tak&vheres, denotes the surface of constapt
the gauge fields to be independent;pind to have no com-  Since the fields considered are independent othe re-
ponent in the direction of. These gauge fields will be in- sult (A6) is independent of the particular equipotential sur-
dicated by a double prime. With appropriate vierbeins, thdace chosen. Hence,
fermions are taken periodic in.

The anomaly can be calculated for the plane0 by
making use of the three-dimensional parity anomaly. Choos- _j dxof »[B"]-dS (A7)

877

ing FE(O,O,l), the relevant Chern—Simons term reads

q e My BZVBZ_EBZBZBZ , is independent ofp and can be averaged ovey. The _
3 anomaly term can then be written as a four-dimensional in-
(A2)  tegral over the spacetime manifalt= R X N,

wcd Bg,B1,B3]= To7?
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chosen unit vectors. The final background field for the pho-
ton model(3.7) is given by the infinite volume limitg;(x)
=limy_..gn(X). The relevant autocorrelation function is

J dXOJ (B"]-dS wherex,, are random vectors with,| <R andr, randomly
_ ol .
So

1 (=2
i dnf dxof w[B"]-dS
™) — w2 Sy

1 Cy(y)= lim ——— J d*xgn(X)gn(X+Y)
——_—— | g4 (M) TR ¥ <R
RID] Nd X|[VO(x)|(w[B"]-€,) N (43) TR J x| <
1 4 " _ 2K2 3 o. 0.
:@de x®(x)V- w[B"], (A8) =a ga\rrfdxh X= 5t —h x+§r
whereR[®] is the range of va_llues of the functi@n(x),_i.e., x| h| x+y— ff —h(x+y+ f} , (A12)
the length of the coordinate interval gf For the particular 2 2

function ® given in Eq.(Al), one haR[P |= 7.

If B), contains only an electromagnetic componéfft, ~ where ay denotes the average over the orientations

the anomalous contribution to the effective action is The typical length scale which enters the photon disper-
sion law(5.26) is defined by Eqs(5.27) and(5.28),
4 aCI)(X) KNpvp ! "
de “Ri@) < TR0 ) b= = f oy S2UvD (A13)
2 3042 v

up to an overall constant of order 1, which depends on the
details of the theory considered. Here, the field strengtifter a suitable shift of integration variables, one finds
F’..(X) is defined byd,Aj(x)—d,A(x) and ®(x) is the

scalar function(Al), possibly with a different normalization. 2 1 A—B Ald
The general structure of the tei@9) is of the form as given foam™ 15( ), (A14)
by Eqg. (2.20, now with a functionalf(x;A] in the inte-
grand. in terms of two integrals,
2. Random background field andl;yam ) 3 13 11
) ) ) i A=K* [ d*yd*x— —h(x)h(x+Yy), (Al153)
In this subsection, we present a simple background field IVl a

g:(x) to mimic the anomalous effects from a random distri-

bution of wormholes. The photon mod@.7) incorporates, 1 1

in this way, the basic features of tH@PT anomaly for a BEK2J d’yd®>x——— —h(x)h(x+y). (A15b)
single wormhole as found in the previous subsection of this ly—rdl a

appendix. For purely technical reasons, we use, instead of

the function(Al), a functiond which is the direct difference The ir!tegraIB is, in fact, independgnt of th? directimmnd
of two “monopole” contributions, there is no need to average over it. By using spherical coor-

dinates ¢,0,,¢,) with respect to ther-axis for y and

R R IR (X, 0y, &b,) around they-axis forx, one finds after performing
P(x)=K|h|x— Er) —h{x+ of } (A10)  three angular integrals:
with a displacement parametér-0 and a normalization fac- _ 22(277)2 6 °° G ) 2 2
tor K>0 (see below In addition, the profile functioh(x) is B=A+K 2 Jo dy o dx o do,sin 6,x%y
assumed to be isotropic, monotonic, finite, and integrable.
The random background field is a superposition of these “di- 1 1
pole” potentials, with random locations¢{) and directions 5y h(x)h(x+y). (A16)
(r,)). The random background field also includes a faetpr
cf. Eq. (A9). With Eq. (A14), this gives
ForN=(4/3)wR% a2 dipoles in a ball of radiu® (with an
average separatioa between the different wormholgsve ) K2 L1 1 5
have z—f (———)fdxhxhx+ .
foam 157T&3 yl<s Y |y| S ( ) ( Y)
(X) K% h( 5?) h( +5F } A
X) = X—=Xp—=Fn| —h| X=X+ =0 |,
ON e nan 2 In order to get a concrete result f,,, we choose the

(Al1)  following profile function:
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d/h

a5 -

FIG. 3. Long distancel between the wormhole mouths vs pa-

5/

rameters entering the profile functionk of Eqgs.(A10) and(A18),

both in units of the widtH,, .

12 \?
X2+13)

with a scale parametéf>0. It is important to note that the

(A18)

peaks ofd®(x) from Eq. (A10) are not located at- (5/2)r,
but rather at(d/Z)F for an effective distance=d(4,l});

see Fig. 3. The normalization fact&¢=K(4,l,) in Eq.

(A10) is chosen such thasi)(x) has values+1 at these
peaks. The expressions fdrandK are somewhat involved

and need not be given explicitly.

For the profile function(A18), we finally obtain

2 15
2 o I
foam™—

15 43

with average separatioa between the different wormholes
and parameter$ and |, for the individual wormholes; cf.
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