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Compact dimensions and their radiative mixing
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For one and two dimensional field theory compactifications we compute in the DR scheme the full depen-
dence on the momentum scale~q! of the one-loop radiative corrections to the 4D gauge coupling. Imposing the
discrete shift symmetry of summing the infinite towers of associated Kaluza-Klein~KK ! modes, it is shown
that higher~dimension! derivative operators are radiatively generated as one-loop counterterms for the case of
two ~but not for one! compact dimension~s!. They emerge as a ‘‘radiative mixing’’ of effects~Kaluza-Klein
infinite sums! associated with both compact dimensions. Particular attention is paid to the link of the one-loop
corrections with their counterparts computed in infrared regularized 4D N51 heterotic string orbifolds with
N52 sectors. The correction from these sectors usually ignores higher order terms in the IR string regulator
(ls→0) of typels ln a8 (a85” 0), but these become relevant in the field theory limit. Such terms ultimately
re-emerge in pure field theory calculations ofP(q2) as higher dimension one-loop counterterms. We stress the
importance of such terms for the unification of gauge couplings and for the predicted value of the string scale.
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I. RADIATIVE CORRECTIONS TO GAUGE COUPLINGS

One-loop radiative corrections to the 4D gauge couplin
induced by compact dimensions were extensively studie
the past. In general in a 4D renormalizable model such as
Standard Model~SM! or the Minimal Supersymmetric Stan
dard Model~MSSM!, the one-loop ‘‘running’’ of the gauge
couplings is logarithmic. If these models are considered
low energy limits of higher dimensional models, addition
corrections to this ‘‘running’’ exist. These are associated w
compact dimensions and induced by the correspond
Kaluza-Klein~KK ! states which are charged under the gau
group of the model. Such corrections were analyzed in ef
tive field theory~see, for example, Refs.@1–4#! and in string
theory models@5–7#.

In an effective field theory model with one or two add
tional compact dimensions one can compute the one-l
correction to the 4D gauge coupling by summing up in
vidual contributions of the Kaluza-Klein states in the lo
~Fig. 1!. The correction is usually evaluated on-shell (q2

50) and this is particularly true for the string calculation
which in a more general setup also include the additio
effect of the winding modes~if present!. The coupling cor-
rected by this one-loop threshold correction depends on
UV regulator/cutoff which provides an indication of the U
behavior of the theory. Effective field theory calculations
the one-loop correctionP(q250) @8–10# show remarkable

FIG. 1. One-loop diagram contributing to the gauge couplin
with a fermion of massMn and its associated Kaluza-Klein tower
the loop. Its expressionPmn(q2)5P(q2)(qmqn2gmnq2) for q2

Þ0 can be read from Eq.~1! for one or two compact dimensions
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quantitative agreement with heterotic string results
‘‘large’’ compactification radii. See however Ref.@11# for a
further discussion on the link between these approaches

The 4D gauge coupling obtained as above@hereafter de-
noted a(0)] is usually regarded as the coupling at som
‘‘high’’ ~compactification! scale@1#. Below the compactifica-
tion scale it is usually assumed that a 4D theory and co
sponding logarithmic ‘‘running’’~in q2) apply. This is indeed
the case under the assumption that the massive Kaluza-K
states decouple at a momentum scaleq above or of the order
of the compactification scale~s!. In general such decoupling
is true for a finite number of states. However, in the case
evaluating the contribution of manyinfinite-level towers of
Kaluza-Klein states such situation may turn out to be sligh
different.1 To illustrate this we use an effective field theo
model to analyze the more general case ofP(q2Þ0) for the
one-loop correction~Fig. 1!. This will reveal a new effect,
present when summing over infinite towers of KK modes.
such case it turns out that higher dimensional operators
radiatively generated asone-loop countertermsfor the case
of two ~but not for one! compact dimension~s!. This is a
result of a~one-loop! ‘‘mixing’’ of the two contributions as-
sociated each with one compact dimension. Such coun
terms are not present if the KK towers are truncated to
large number of modes. We discuss in detail the link of su
higher dimension operators in our field theory approach w
one-loop heterotic string calculations and their~dis!agree-
ment. Special attention is paid below to the regularization
the divergent series of integrals involved, performed in
gauge invariant way.

To begin with, let us consider the general structure of
one-loop correction in two simple 4D toy models which ha
one and two additional compact dimensions, respectiv

1At the technical level and from a 4D point of view this is relate
to whether all the series which sum Kaluza-Klein radiative effe
from compact dimensions are~uniformly! convergent and can be
integrated term by term.

,
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D. M. GHILENCEA PHYSICAL REVIEW D 70, 045018 ~2004!
We assume each model has a gauge groupG with 4D tree
level gauge couplinga, and that they are compactified on
one- and two-dimensional orbifolds, respectively. For o
discussion the exact details of compactification are so
what unimportant and one can work in the setup presente
Ref. @1#. 4D N51 supersymmetry is a necessary ingredi
to ensure only wave-function-induced corrections to the
gauge coupling. To illustrate the main point one can use
QED action in 5D and 6D, respectively, to perform a on
loop calculation of the vacuum polarization diagram in Fig
with a fermion in the loop and its associated tower of K
states. The result obtained is more general and applies to
non-Abelian case too. We use the dimensional regulariza
scheme~DR! for the UV divergences. Following standar
calculations~see Appendix A in Ref.@1#!, after performing
the traces over the Diracg-matrices and with the notatio
Pmn(q2)5P(q2)(qmqn2gmnq2) one has2

P~q2!5a~2p!e
b

4p ( 8
n

E
0

1

dx 6x~12x!G~e/2!

3S m2

p@Mn
21x~12x!q2#

D e/2

. ~1!

Hereb is the one-loop beta-function coefficient of a state
the loop associated with a KK tower,a is the gauge cou-
pling; m is the usual finite, nonzero mass scale introduced
the dimensional regularization scheme. Equation~1! is just
the familiar 4D result@12# for a state of massMn in the loop,
with an additional sum over the KK levelsn. The ‘‘primed’’
sum overn runs over all integersn5nPZ with n5” 0 for one
compact dimension andn5(n1 ,n2) with n1,2 integers and
(n1 ,n2)5” (0,0) for two compact dimensions. We thus e
clude this ‘‘zero-mode’’ contribution since we are only inte
ested in the effect of themassiveKaluza-Klein modes on the
gauge coupling and their decoupling atq2 smaller than the
compactification scales.2 We also assumed that a discre
‘‘shift’’ symmetry of the Kaluza-Klein modes/levelsn→n
11 holds true, and this imposes the summation over
whole, infinite KK tower~s!. One has from Eq.~1!,

P~q2!5a~2p!e
b

4pE0

1

dx 6x~12x!

3( 8
n

E
0

` dt

t12e/2
e2pt[ Mn

2
1x(12x)q2]/m2

~2!

which simplifies ifq250,

P~0!5a~2p!e
b

4p ( 8
n

E
0

` dt

t12e/2
e2ptMn

2/m2
. ~3!

Equation~2! gives the general structure ofP(q2) in models
with compact dimensions. The UV regiont→0 is DR regu-
larized. If Mn50 for some leveln, the exponent in~2! van-

2In the ’t Hooft gauge@1#.
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ishes atx50,1 and then an IR regulator att→` is also
needed. This is introduced by an ‘‘infrared’’ mass shiftl2

→0 of massesMn
2 , ensuring the integral overt is exponen-

tially suppressed att→` for any xP@0,1#.
P(0) was evaluated in many effective field theory mod

using UV cutoff regularization, see for example, Refs.@1,4#,
but such regularizations are not gauge invariant. For gen
models with two compact dimensions with/without Wilso
lines, P(0) was computed in Refs.@9–11# where the quan-
titative agreement with its heterotic string counterpart@6,7#
was discussed in detail.3 For one compact dimensionP(q2)
was computed in the DR scheme in Ref.@3#. At this point we
discuss separately the cases of one and two compact dim
sions forP(q2) to reveal an important difference.

II. ONE COMPACT DIMENSION

Our calculation ofP(q2) for one compact dimension i
different from that in Ref.@3#, and is performed here in a
manner suitable to a later comparison with the case of
compact dimensions. To evaluateP(q2) we need to know
the 4D Kaluza-Klein mass spectrum. This depends on co
pactification details, but for our purpose we use its m
general structure,

Mn5
1

R2
~n1r!21l2, ~4!

R is the radius of compactification andr depends on the
orbifold twist or on some additional effects such as Wils
lines vacuum expectation values~vev’s!. l may be due to
massive initial 5D matter fields. This formula applies, f
example, to models with compactification onS1/Z2 ,
S1/(Z23Z2). In some modelsl may actually vanish and if
Mn also vanishes for some value ofn ~if r is an integer!, the
whole exponent in Eq.~2! vanishes forx50,1. Mathematical
consistency of Eq.~2! then requires a mass shift of thewhole
tower ~zero mode included! by an infrared mass regulator, s
we would need to introducel5” 0 and then takel→0. For
appropriate redefinitions of the parametersr, l, andR, most
cases of models with one extra dimension can be recove
Here we keepR,r,l as arbitrary parameters.

We use Eq.~4! in Eq. ~2! and the following result4 in DR
~see Appendix A of Ref.@8#!:

E
0

` dt

t11e ( 8
mPZ

e2pt[ t(m1r)21d]

5
1

e
2 ln

u2 sinp@r1 i ~d/t!
1
2#u2

pegt~r21d/t!
, d>0, t.0.

~5!

3See Ref.@8# for a general field theory computation ofP(0) in
DR, proper-time and zeta-function regularizations.

4Adding a zero-mode contribution to Eq.~5! would cancel the
pole 1/e and the ln@pegt(r21d/t)# term.
8-2
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COMPACT DIMENSIONS AND THEIR RADIATIVE MIXING PHYSICAL REVIEW D 70, 045018 ~2004!
With the notationh(x)5x(12x), s2[q2R2, and n[lR
we find from Eq.~2! to orderO(e),

P~q2!5a
b

4p F2
2

e
2 ln~4pe2g!16E

0

`

dx h~x!

3S ln
r21n21h~x!s2

~Rm!2
22p@n21h~x!s2#1/2

2 lnu12e2ipre22p[n21h(x)s2] 1/2u2D G . ~6!

The dependence of the couplings onq2 is then

a21~q2!2a21~0!5@P~q2!2P~0!#a21~0!. ~7!

The first two integrals in~6! give logarithmic and linear
terms inqR, depending on the relative size of the paramet
involved. The first integral may be regarded as the contri
tion from a single state of mass equal to that of the z
mode (M0).

For our later comparison with the two compact dime
sions case it is important to notice that the divergencee
cancels out in the differenceP(q2)2P(0), to leave a de-
pendence of the one-loop correction on the parametersq, R,
and l only. There are no terms inP(q2) proportional to
q2/e, which means that higher dimensional~derivative! op-
erators are not generated as one-loop counterterms.5 The re-
sult for the change of the couplings withq2 is then

a21~q2!2a21~0!

5
b

4p
~J11J21J3!,

J1[
4

w
2

5

3
12~w22!~w14!1/2w23/2

3 ln $@~41w!1/22w1/2#/2%,

J2[2
3ps

2 H S n

s D 3

2
7

12S n

s D
1

1

8 F318S n

s D 2

216S n

s D 4Garctan
s

2nJ ,

J3[26E
0

1

dx h~x!lnU12e2ipr22p[n21h(x)s2]
1
2

12e2ipr22pn
U2

,

~8!

where we used the notationw[q2/M0
25s2/(r21n2). For

w!1, one hasJ15w/51O(w2); for w@1, J1525/3
1 ln w1O(1/w). Also for s!1, and n, fixed, J2
52(p/5)s2/n1O(s4). If s is fixed and n!1, J2
529sp2/3212pn1O(n2) with the first term giving a

5They can however be generated beyond one-loop level.
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‘‘powerlike’’ ~linear! correction in the momentum scale (s2

;q2) which is important ifq2>1/R2. J3 gives only a mild
dependence on the momentumq suppressed forq2>1/R2.
One may setl50 if the spectrum~4! of the model consid-
ered requires it and ifr is noninteger/nonzero. In such cas
only the term powerlike in momentum survives inJ2. Equa-
tions ~8! give the dependence of the couplings on the sc
q2, which is different from that on the UVcutoff scalecon-
sidered in Ref.@1#. The distinctive behavior inq2 as com-
pared to the 4D case may be used for phenomenolo
searches for effects of an extra dimension or unification
gauge couplings in models with a compact dimension. T
only parameter in this correction is the scale 1/R; there is no
dependence on the UV regulator/cutoff at one-loop level.

III. TWO COMPACT DIMENSIONS

The previous analysis can be repeated for two comp
dimensions. For the 4D toy-model with two additional com
pact dimensions the Kaluza-Klein mass spectrum has
general form

Mm1 ,m2

2 5
um22Um1u2

~R2 sinu!2
, ~9!

where we introduced the notationU[U11 iU 2 with U
5R2 /R1 exp(iu). Ri are the radii of the two compact dimen
sions. This mass formula can be generalized toT2/ZN orbi-
folds without changing the conclusions below.

An important remark is in place here. Thetotal correction
P(q2) includes the contribution of the zero mode~0,0!, in
addition to that of nonzero modes given by Eq.~2!. Accord-
ing to ~9! M0,050 and forx reaching its limits of integration
x50,1 the contribution of the zero mode6 to P(q2) would
have vanishing exponent under the integral overt. This inte-
gral would then be divergent in the infrared (t→`). A mass
shift Mn1 ,n2

2 →Mn1 ,n2

2 1l2 is necessary so that thetotal ex-

pressionP(q2) includingmasslessmodes is well-definedbe-
fore splitting the contributions toP(q2) into those due to
massless and massive modes, respectively. In~2! one sums
over massive modes only and the integral overt is indeed
well defined for t→` becauseMm1 ,m2

5” 0 if (m1 ,m2)

Þ(0,0). However, the above discussion requires us to k
the IR regulator in the massive sector as well. In the follo
ing the exponential in~2! will therefore be changed to in
clude the~dimensionless! IR regulatorl0 required by the
massless modes,

e2pt„Mm1 ,m2

2
1x(12x)q2

…/m2

→e2pt[ „Mm1 ,m2

2
1x(12x)q2

…/m21l0
2] , l0→0, l[ml0

~10!

with l the infrared mass scale associated with the regul
l0. This observation is important because the UV and

6This is of the form given in Eq.~2! without the sum over the KK
levels.
8-3
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D. M. GHILENCEA PHYSICAL REVIEW D 70, 045018 ~2004!
regularization limits,e→0 andl0→0, respectively, may no
‘‘commute’’ in Eq. ~2!, even though this equation only sum
nonzero modes which have IR-finite contribution.

To evaluate Eq.~2! we use the following result in DR:

E
0

` dt

t11e ( 8
m1 ,m2

e2pt[ tuUm12m2u21d]

5
1

e
1

pd

e

1

tU2
2 ln(4pe2g

1

t
uh~U !u4)1ES d

t D ,

d>0, t.0 ~11!

with U5U11 iU 2. Equation ~11! is valid for 0
<duUu2/(U2

2t)<1, 0<d/(tU2
2)<1 which are sufficient

conditions only. The ‘‘primed’’ sum runs over all intege
(m1 ,m2) except the level~0,0! andh(U), E(d/t) are func-
tions defined in the Appendix. The functionE(y) is vanish-
ing in the limit y→0. The result has divergences ine from
t→0 but there are no divergences ind whend→0 because
the integrand is always exponentially suppressed att→` for
(m1 ,m2)5” (0,0). Note the emergence of the term prop
tional to d/(te) in addition to7 1/e and which will play an
important role in the following. This is to be compared to t
integral in Eq.~5! where no such term is present. The diffe
ence is due to the presence of two sums under the integr
Eq. ~11! rather than only one as in the one compact dim
sion case, Eq.~5!.

To computeP(q2) we apply the substitution~10! in ~2!
and then use Eq.~11!. With the notationR 2[R1R2 sinu and
retaining terms toO(e) one finds from~2!,

P~q2!5a
2b

4p F2

e
12p

~lR!2

e

1
2p

5 S ~qR!2

e
1~qR!2 ln 2p D

1 ln@4pe2guh~U !u4U2~mR!2#1G~q!G ~12!

with the constraint

l21
1

4
q2<minH 1

R1
2

,
1

R2
2J . ~13!

This ~sufficient! condition is derived from the validity of Eq
~11!. In the limit of ‘‘removing’’ the infrared regulator one
takesl→0 or l2!1/R1,2

2 which leaves a condition for the
upper value of the momentum scale at which the above re
still applies. In ~12! the functionG(q) ~analytic! also de-
pends onR1 , R2 , l, but does not depend on the UV reg
lator e. Its exact expression is not relevant in the followin

7Adding a zero mode~0,0! to Eq. ~11! would cancel 1/e, but
would not cancel the term proportional tod/e.
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and is given in the Appendix, Eq.~A2!. In G we can safely
remove8 the dependence on the IR regulatorl (l→0) to
find the result of Eq.~A3!.

Note the presence inP(q2) of the term (qR)2/e which
does not have a counterpart in the case of one compac
mension. Obviously such term is missed when evaluat
only P(0). A somewhat similar term inP(q2) is (lR)2/e,
sincel2 andq2 are on equal footing inP(q2) in the expo-
nent under the integral overt, see Eq.~2! with the replace-
ment~10!. Again, if one hadl50 in the~IR finite! massive
modes sector, this term would have been missed too.

Following the one compact dimension example, one co
in principle write from Eqs.~7! and ~12!,

a21~q2!2a21~0!5
2b

4p

2p

5 S ~qR!2

e
1~qR!2

3 ln~2p!1
5

2p
@G~q!2G~0!# D .

~14!

Equation~14! shows that the pole 1/e present in bothP(q2)
andP(0) cancels out in their difference, similar to the ca
of one compact dimension. The same applies to
q-independent terms, in particular to the term (lR)2/e in-
volving the IR scalel. One is thus left with theq2 depen-
dent terms, and of these the most important is that prop
tional to (qR)2/e. This term has no equivalent in the case
one compact dimension, see Eqs.~6! and~8!. For q2 close to
the compactification~scales! 2, 1/R1

2 or 1/R2
2 the coupling has

a pole. Even ifq2!1/R1
2 and q2!1/R2

2, since e→0, one
cannot set this term to 0, and a ‘‘nondecoupling’’ effect of t
KK modes is manifest. Therefore the limit of scalesq well
below the compactification scales~hereafter referred to a
‘‘infrared’’ ! and the UV regularization limite→0 do not
commute. As a result a UV-IR ‘‘mixing’’ effect~IR-finite,
UV-divergent! exists due to the first term in9 Eq. ~14!. The
KK level ~0,0!—if included—cannot change this picture, b
cause its contribution does not bring in ad/(te) term to Eq.
~11! responsible for (qR)2/e in Eq. ~12!.

One concludes that in this regularization setup
Kaluza-Klein nonzero modes give an effect even at mom
tum scales well below the compactification scale, where
would expect them to be decoupled. The presence of
UV-IR mixing term is a result of considering the effect of a
infinite ~rather than a ‘‘truncated’’! tower of Kaluza-Klein
modes, and as a consequence such ‘‘nondecoupling’’ eff
induced by infinitely many modes, may not be unexpected
the end. It is then puzzling why the term (qR)2/e has no
counterpart in the one compact dimension case, where
also summed over the whole KK tower. How can we expla
this difference? As we discuss later, such term correspond

8This means that the limitl→0 in G does not interfere with thee
dependence, already isolated in~12!.

9The term (lR)2/e present inP(q2) or P(0) but not in their
difference is itself a similar UV-IR contribution@11#.
8-4
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COMPACT DIMENSIONS AND THEIR RADIATIVE MIXING PHYSICAL REVIEW D 70, 045018 ~2004!
a counterterm in the actionR 2DMFMNDKFKN which cannot
be generated in 5D at one-loop@2# due to Lorentz invariance
At the technical level one can show thatq2R 2/e emerges as
a one-loop ‘‘mixing’’ of the effects of two compact dimen
sions: it arises as a mixed contribution between a sum o
‘‘original’’ Kaluza-Klein modes associated with one compa
dimension and a ‘‘Poisson resummed’’~or winding! zero
mode10 of a sum corresponding to the second compact
mension. It is then clear why such term cannot appear in
case of a single compact dimension. This shows explicitl
different behavior of the radiative corrections with respec
the character even/odd of the number of compact dimens
@14# and brings additional effects to those discussed in p
vious works@1,4#.

An immediate question is the regularization depende
of the existence of the term (qR)2/e. Our comparative
analysis shows that the effect exists for two compact dim
sions but there is no counterpart for one compact dimen
where the same UV regularization was used. This gives s
indication that the existence of the term (qR)2/e is not the
result of a particular UV regularization choice. Further, o
previous discussion on the IR regularization does not af
the existence of this term, and finally, the DR scheme use
supposed to provide a UV well-defined and manifestly ga
invariant framework@15#. One may argue that the UV regu
larization must not affect the IR regime of the theory and t
the DR scheme used in this calculation might not respect
condition. However, calculations closely related@11# using
an UV regularization with a proper-time cutoff (t>1/L2) in
Eqs.~2!, ~11! instead of DR, yield a similar UV-IR ‘‘mixing’’
term11 (qR)2 ln L, with the 1/e factor simply replaced by the
logarithm of the UV cutoffL.

Equations~12! and~14! simply tell us that higher dimen
sion ~derivative! operators need to be included for a ful
consistent one-loop calculation. This is a significant diff
ence from the previous case of one compact dimension o
Indeed, the presence of the termq2/e in the effective field
theory result shows that for two compact dimensions the
regularization with minimal subtraction is not sufficient a
that higher dimensional operators are radiatively genera
required asone-loop counterterms. One such counterterm i
R 2DMFMNDKFKN ~for related discussions on this issue s
Sec. IV B in Ref.@2#!. This is important for it establishes
direct link between the effects of two compact dimensions
their associated infinite KK sums, and the role of high
dimensional operators. In the absence of additional c
straints to fix the~otherwise arbitrary! coefficient of such
counterterms, the corrections they induce will depend o
with implications for the predictive power of the models.
the case of KK towers ‘‘truncated’’ to a large but finite num

10Poisson resummation in one dimension giv
(nPZ exp(2ptn2/R2)5R/At(pPZ exp(2pp2R2/t); here n labels
original KK modes whilep denotes their ‘‘Poisson resummed’’ o
dual ~winding! modes referred to in the text.

11Equation~11! with UV cutoff regularization instead of DR ha
pd/(etU2) replaced by a term proportional tod ln L @11#.
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ber of KK modes, such counterterms are not radiativ
generated.12

We do not address in the following the detailed implic
tions for field theory of such higher dimensional operato
but discuss instead the origin of (qR)2/e or equivalently
(qR)2 ln L in P(q2), from a heterotic string perspective.
This is important because it will show the link between t
higher dimensional operators as one-loop counterterms in
field theory approach toP(q2) and the one-loop radiative
effects in string.13 In doing so we consider that the strin
provides a ‘‘UV completion’’ of the field theory case, wit
the latter recovered in the limita8→0 of the string, as
shown in Refs.@9–11# ~also Ref.@8#!. A string counterpart of
the one-loop correction to gauge couplings considered ab
is that induced by theN52 sectors of 4DN51 toroidal
orbifolds. SuchN52 sectors associated with the unrotat
two-dimensional torus being one-loop corrections to
gauge couplings due to massive Kaluza-Klein and wind
states@5–7#. The ~field theory limit of such! string calcula-
tion for P(0) does agree with the pure field theory result f
P(0) @9# which sums Kaluza-Klein effects only, althoug
the relation between these different approaches is ra
subtle@11#. This is particularly true when analyzing the mo
general case ofP(q2). Let us explain this in detail.

The one-loop string calculation forP(0) @5,6# which
sums only massive modes’ effects needs itself a regular
tion, this time in the IR region only. In string theory on
ultimately computes a one-loop diagram associated w
P(0) rather thanP(q2) which we would need for compari
son with Eq.~12!. However, sinceq2 and l2 are on equal
footing14 in P(q2) of Eq. ~12! and also in the exponential in
~2! with replacement~10!, it is enough to investigate the rol
of the string counterpart of ourl. This is just the IR regula-
tor in string~hereafter denotedls) which, unlikeq2, is also
present inP(0) computed by string, and can still conve
some information aboutP(q2Þ0)!

The IR regularized string result forP(0) contains in ad-
dition to the well-known one-loop result@6#, higher order
terms in the IR regulator which in a DR scheme of the
divergence have for example, the form15 ls ln a8. For tech-
nical details on how such term can arise in string, from
degenerate orbits of the modular group SL(2,Z), see, for
example, Appendix16 A of Ref. @13# and also the calculation
in the Appendix of Ref.@6#. Here the IR string regulatorls

→0 anda8;1/Ms
2 with Ms the string scale. Fora85” 0 the

12For more details on the decoupling of infinitely many modes
a lf4 theory see Ref.@16#.

13This can be done even though the string only computesP(0)
rather thanP(q2), see later.

14By this we mean that in equation~12! there are both (lR)2/e
and (qR)2/e terms.

15In a modular invariant IR regularization of the string su
a8-dependent terms should be SL(2,Z)T invariant.

16See Eqs.~A1!, ~A10!, and ~A12! in Ref. @13#. ~A12! brings
O(«) term « ln(T2U2), (T2;R1R2 /a8) discussed here with«
→ls .
8-5



t

e
k
e

-I

or

Eq
nc

a
lin
ld

in

of
fe
a
s

ws
si
e

ng

tic

on
lo

pe

oo
at

.
op

um-
ted

ngs
is

phe-
hes

ne-
ich
n

in
-

ling
nd
ct
re-

m
ter-

it,
gu-
s

p

such
n-
ur
di-
rba-
tely
-

r-
uch
ese
or
hat
not
e

edo
the
rk
ng
y a

D. M. GHILENCEA PHYSICAL REVIEW D 70, 045018 ~2004!
term ls ln a8 vanishes whenls→0 and this explains why it
is not kept in the final, infrared regularized string result.

What does this tell us for the pure field theory approach
P(0) or P(q2) which sums KK effects only? In the field
theory limit of the string calculation, one takesa8→0 ~infi-
nite string scale! to suppress string effects~winding modes!
but keep those due tomassiveKK states only, considered in
field theory. In such case, the value ofls ln a8 depends on
the order of taking the limits of IR regularizationls→0 and
of field theory a8→0. This situation applies to other IR
regularizations@6,7# of the string as well. We are not awar
of any string symmetry which imposes the order to ta
these limits. The termls ln a8 then becomes relevant in th
field theory limit. In this limit,ls (ls→0) is replaced by its
field theory counterpartl2 (l2→0) while a8 plays the role
that the UV proper-time cutoff regulator 1/L2 does in the
field theory approach. With these replacements, an UV
‘‘mixing’’ term ~IR finite, UV divergent! should emerge,
(lR)2 ln L, just as we found in the field theory approach f
P(0). But this also tells us something aboutP(q2) in field
theory. With the observation thatl andq are on equal foot-
ing in P(q2), this ‘‘mixing’’ terms implies that one should
expect in the field theory limit a term (qR)2 ln L in the
proper-time regularization of the UV or (qR)2/e in the DR
scheme. This is in agreement with our field theory result
~12! where such a term is found, and a strong consiste
check of the field theory calculation.

This discussion provides an insight into the role th
higher dimension operators play in understanding the
between theinfrared regularized string result and pure fie
theory approaches forP(q2). It implies in addition that cor-
rections to gauge couplings from infrared regularized str
calculations should retain the terms of structurels ln a8 in
the final correction toP(0), if anexactagreement with their
field theory counterpart is to be maintained.

This discussion has implications for the unification
gauge couplings in 4D supersymmetric models. We re
here to the attempts to match the MSSM unification sc
with the ~heterotic! string scale value. In MSSM-like model
gauge couplings unify at;231016 GeV @17# which is mar-
ginally below the predicted string scale;gGUT5.27
31017 GeV @5#. Our discussion on the heterotic string sho
that for the models addressed the effects of higher dimen
counterterms are not included in the one-loop string corr
tions. As a result the predicted value of the string scaleMs
doesnot include the effects from such operators. This findi
should be considered when attempting solutions for anexact
matching of the MSSM unification scale with the hetero
string scale.

IV. FINAL REMARKS AND CONCLUSIONS

For one- and two-dimensional orbifold compactificati
we considered the general case of evaluating at one-
level P(q2) in a manifestly gauge invariant scheme~DR!.
For these models we discussed comparatively the de
dence of the couplings on the momentum scaleq2 and 1/R2,
and the role of higher dimensional operators as one-l
counterterms. These can be generated when the summ
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over theinfinite towers of Kaluza-Klein modes is performed
The analysis showed a different behavior of the one-lo
correction with respect to the character even/odd of the n
ber of compact dimensions, with such operators genera
for the case of two but not for one compact dimension~s!.

For one compact dimension the change of the coupli
a21(q2)2a21(q82) with respect to the momentum scale
UV regulator independent atone-looplevel, unlike the case
of more common approaches using cutoff regularization@1#.
For one compact dimension the results can be used for
nomenology, unification of the gauge couplings and searc
for effects from compact dimensions.

For two compact dimensions a similar analysis of the o
loop effects suggests the existence of a correction wh
couples low~‘‘infrared’’ ! scales below the compactificatio
scales, to UV divergent terms. This implies the existence
this toy-model of some ‘‘nondecoupling’’ effects at low en
ergies, due to a ‘‘mixing’’ of the twoinfinite towers of
Kaluza-Klein states. The emergence of such nondecoup
term in the effective field theory can be reinterpreted a
explained simply by the presence—for two compa
dimensions—of higher dimensional operators which are
quired asone-loop counterterms.

We investigated in detail the origin of such operators fro
the heterotic string perspective. The origin of these coun
terms can be related to string corrections toP(0) of type
ls ln a8 ~with ls→0 the IR string regulator! which are usu-
ally discarded in the final one-loop string result, sincea8
Þ0. However, they become relevant in the field theory lim
and also in pure field theory calculations where the two re
larization limits ~in IR, UV! do not commute. This raise
some intriguing issues about theinfrared problem in het-
erotic string and its link with higher dimensional one-loo
counterterms in field theory.

If the Kaluza-Klein towers are ‘‘truncated’’ to a finite
number of modes, such operators are not generated. In
case the discrete ‘‘shift’’ symmetry of summing over an i
finite tower of Kaluza-Klein modes is broken. Under o
initial assumption that such symmetry holds, the higher
mensional operators can be seen to account for nonpertu
tive effects. This is because such operators are ultima
related to effects of a zero ‘‘mode’’ of a ‘‘Poisson re
summed’’ Kaluza-Klein series, i.e., a winding mode~nonper-
turbative! effect.

It is possible that in fully specified models symmetry a
guments may be identified to avoid the presence of s
higher dimension operators. Nevertheless we think th
findings are important for phenomenology, in particular f
the scale of unification of gauge couplings. We argued t
one-loop effects from higher dimension counterterms are
included in the~predicted! value of the heterotic string scal
and this may be one reason for its~small! mismatch with the
MSSM unification scale.
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APPENDIX

The functionsh(U) andE(y) used in the text are

h~U !5ep iU /12)
n>1

~12e2ipnU!,

E~y!5
py

U2
ln~4pe2gtU2

2!22 ln
sinhpy1/2

py1/2

12p1/2U2(
k>1

G~k11/2!

~k11!! F2y

U2
2 G k11

z~2k11!

2 ln )
m1>1

@ u12e22p(y1U2
2m1

2)1/2
e2ipU1m1u4

3u12e2ipUm1u24# ~A1!
v.

tt
.

.

04501
with E(y→0)→0. The functionG(q) used in Eq.~12! is
defined as

G~q![2 lnp12p~lR!2 ln 2p12E
0

1

dx x~12x!

3E$~R2 sinu!2@l21x~12x!q2#%. ~A2!

The series of Riemannz-functions present inE @uniformly
convergent under the conditions of Eqs.~11!, ~13!# can be
integrated termwise. Removing the IR regulator (l0→0 or
l!1/R1,2

2 ) gives

G~q![2 lnp12E
0

1

dx x~12x!E@~R2 sinu!2x~12x!q2#.

~A3!
J.

tt.
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