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For one and two dimensional field theory compactifications we compute in the DR scheme the full depen-
dence on the momentum scétp of the one-loop radiative corrections to the 4D gauge coupling. Imposing the
discrete shift symmetry of summing the infinite towers of associated Kaluza-Kd&n modes, it is shown
that higher(dimension derivative operators are radiatively generated as one-loop counterterms for the case of
two (but not for oné compact dimensidis). They emerge as a “radiative mixing” of effect&aluza-Klein
infinite sumg associated with both compact dimensions. Particular attention is paid to the link of the one-loop
corrections with their counterparts computed in infrared regularized 41 Reterotic string orbifolds with
N=2 sectors. The correction from these sectors usually ignores higher order terms in the IR string regulator
(Ns—0) of typersln o’ (a’#0), but these become relevant in the field theory limit. Such terms ultimately
re-emerge in pure field theory calculationsIbfg?) as higher dimension one-loop counterterms. We stress the
importance of such terms for the unification of gauge couplings and for the predicted value of the string scale.
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I. RADIATIVE CORRECTIONS TO GAUGE COUPLINGS quantitative agreement with heterotic string results at
“large” compactification radii. See however Rdfl1] for a
One-loop radiative corrections to the 4D gauge couplinggurther discussion on the link between these approaches.
induced by compact dimensions were extensively studied in The 4D gauge coupling obtained as abdkereafter de-
the past. In general in a 4D renormalizable model such as thgoted «(0)] is usually regarded as the coupling at some
Standard Mode{SM) or the Minimal Supersymmetric Stan- “high” (compactification scale[1]. Below the compactifica-
dard Model(MSSM), the one-loop “running” of the gauge tion scale it is usually assumed that a 4D theory and corre-
couplings is logarithmic. If these models are considered agponding logarithmic “runningin g2) apply. This is indeed
low energy limits of higher dimensional models, additional the case under the assumption that the massive Kaluza-Klein
corrections to this “running” exist. These are associated withsiates decouple at a momentum sapibove or of the order
compact dimensions and induced by the correspondings the compactification scal®. In general such decoupling
Kaluza-Klein(KK) states which are charged under the gauggs true for a finite number of states. However, in the case of
group of the model. Such corrections were analyzed in effecayaluating the contribution of maripfinite-level towers of
tive field theory(see, for example, Refgl-4]) and in string  Kaluza-Klein states such situation may turn out to be slightly
theory modelg5-7]. different® To illustrate this we use an effective field theory
In an effective field theory model with one or two addi- model to analyze the more general casélgtj2+ 0) for the
tional compact dimensions one can compute the one-l00Bne-joop correctior(Fig. 1). This will reveal a new effect,
correction to the 4D gauge coupling by summing up indi-present when summing over infinite towers of KK modes. In
vidual contributions of the Kaluza-Klein states in the l00p sych case it turns out that higher dimensional operators are
(Fig. 1. The correction is usually evaluated on-shef (  radiatively generated asne-loop countertermfor the case
=0) and this is particularly true for the string calculations, gf o (but not for ong compact dimensia@). This is a
which in a more general setup also include the additionajesylt of a(one-loop “mixing” of the two contributions as-
effect of the winding modesif presenj. The coupling cor-  spciated each with one compact dimension. Such counter-
rected by this one-loop threshold correction depends on thgyyms are not present if the KK towers are truncated to any
UV regulator/cutoff which provides an indication of the UV |arge number of modes. We discuss in detail the link of such
behavior of the theory. Effective field theory calculations thigher dimension operators in our field theory approach with
the one-loop correctiol (q°=0) [8-10 show remarkable one-loop heterotic string calculations and thédis)agree-
ment. Special attention is paid below to the regularization of

p+q the divergent series of integrals involved, performed in a
gauge invariant way.
a q To begin with, let us consider the general structure of the

one-loop correction in two simple 4D toy models which have
one and two additional compact dimensions, respectively.

P

FIG. 1. One-loop diagram contributing to the gauge couplings, At the technical level and from a 4D point of view this is related
with a fermion of mas#/, and its associated Kaluza-Klein tower in to whether all the series which sum Kaluza-Klein radiative effects
the loop. Its expressio‘rﬂw(qz)=H(q2)(q”qy—gwq2) for g2 from compact dimensions ar@niformly) convergent and can be
#+0 can be read from Ed1) for one or two compact dimensions. integrated term by term.
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We assume each model has a gauge gi@upith 4D tree  ishes atx=0,1 and then an IR regulator &t-> is also
level gauge couplingr, and that they are compactified on a needed. This is introduced by an “infrared” mass shift
one- and two-dimensional orbifolds, respectively. For our—0Q of masseMﬁ, ensuring the integral overis exponen-
discussion the exact details of compactification are someially suppressed at— for anyxe[0,1].

what unimportant and one can work in the setup presented in 17(0) was evaluated in many effective field theory models
Ref.[1]. 4D N=1 supersymmetry is a necessary ingredientysing UV cutoff regularization, see for example, Réfis4],

to ensure only wave-function-induced corrections to the 4Dyt such regularizations are not gauge invariant. For generic
gauge coupling. To illustrate the main point one can use thenodels with two compact dimensions with/without Wilson
QED action in 5D and 6D, respectively, to perform a one-jines, [1(0) was computed in Ref§9—11] where the quan-
loop calculation of the vacuum polarization diagram in Fig. ltitative agreement with its heterotic string counter&:f]
with a fermion in the loop and its associated tower of KK yas discussed in detdilFor one compact dimensidi (q?)
states. The result obtained is more general and applies to thgys computed in the DR scheme in Ré&]. At this point we

non-Abelian case too. We use the dimensional regularizatiogjscuss separately the cases of one and two compact dimen-

calculations(see Appendix A in Ref[1]), after performing
the traces over the Dirag-matrices and with the notation

Hﬂv(qz)IH(QZ)(quV—quz) one had II. ONE COMPACT DIMENSION
. Our calculation oflI(g?) for one compact dimension is
H(qz)za(Zﬂ')fﬁ Zf f dx6x(1—x)T'(l2) different from that in Ref[3], and is performed here in a
4o T Jo manner suitable to a later comparison with the case of two
) o2 compact dimensions. To evaluafEg?) we need to know
M the 4D Kaluza-Klein mass spectrum. This depends on com-
W[MﬁJrX(l_X)qz]) @) pactification details, but for our purpose we use its most

general structure,

Here B is the one-loop beta-function coefficient of a state in
the loop associated with a KK toweds; is the gauge cou-
pling; w is the usual finite, nonzero mass scale introduced by
the dimensional regularization scheme. Equatibnis just

the familiar 4D resulf12] for a state of masb!,, inthe Ioop, R is the radius of compactification and depends on the
with an additional sum over the KK levets The “primed” orbifold twist or on some additional effects such as Wilson
sum ovem runs over all integera=ne Z with n#0 forone  lines vacuum expectation valué¢gev’s). \ may be due to
compact dimension and=(n;,n,) with n,, integers and massive initial 5D matter fields. This formula applies, for
(ny,ny)#(0,0) for two compact dimensions. We thus ex- example, to models with compactification 08Y/Z,,
clude this “zero-mode” contribution since we are only inter- St/(Z,X Z,). In some model. may actually vanish and if
ested in the effect of thmassiveKaluza-Klein modes on the M, also vanishes for some value ofif p is an integey, the
gauge coupling and their decoupling gft smaller than the  whole exponent in Eq2) vanishes fox=0,1. Mathematical
compactification scale$.We also assumed that a discrete consistency of Eq2) then requires a mass shift of teole
“shift” symmetry of the Kaluza-Klein modes/levels—n  tower(zero mode includedoy an infrared mass regulator, so
+1 holds true, and this imposes the summation over theve would need to introduck+#0 and then take.—0. For

1 2,32
anﬁ(n"'l)) +A%, (4)

whole, infinite KK towefs). One has from Eq(1), appropriate redefinitions of the parametgrs\, andR, most
8 (1 cases of models with one extra dimension can be recovered.
M(a?) = a(2 e_f dx 6x(1—x Here we keefR,p,\ as arbitrary parameters.
(@%)=a(2m) 47 Jo ( ) We use Eq(4) in Eq. (2) and the following resuftin DR

(see Appendix A of Ref8]):
dt

XZ' foc e—m[M§+x(1—x)q2]/M2 2)
™ Jo time? - = dt rzr e mlr(m+p)?+ 4]
0 tl+€ =y

1

w 1 |2 sin{ p+i(6/7)2]|?
B , dt 2, 2 _ >

H(0)=a(2ﬂ')e4ﬂ_ Jo '[1*6/2e Tk, ) € In WeyT(PZ"‘é/T) , =0, 7=0.

®

which simplifies ifq®=0,

Equation(2) gives the general structure bf(g?) in models
with compact dimensions. The UV region-0 is DR regu-
larized. IfM,=0 for some leveh, the exponent irf2) van- 3See Ref[8] for a general field theory computation BF(0) in
DR, proper-time and zeta-function regularizations.
4Adding a zero-mode contribution to E¢5) would cancel the
2In the ’t Hooft gaugd1]. pole 1k and the Ifime?#p?+ &7)] term.
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With the notationh(x)=x(1—x), o°=q°R?, and v=\R
we find from Eq.(2) to orderO(e),

B
41

o

_ |n| 1— e2i ﬂ'pe*27T[V2+ h(x) o

(g®)=a In(47re*7)+6fmdx h(x)
0

€

p?+v2+h(x)o?

(Ra)? —27T[V2+h(X)0'2]1/2
m

2] 1/2‘2

. (6)

The dependence of the couplings @his then
a Y(g®)—a"H0)=[I1(g*) - T1(0)]a"*(0). (7

The first two integrals in(6) give logarithmic and linear
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“powerlike” (linean correction in the momentum scale{
~@?) which is important ifq>=1/R?. 7, gives only a mild
dependence on the momentugrsuppressed fog?= 1/R?.
One may seh =0 if the spectrum(4) of the model consid-
ered requires it and ip is noninteger/nonzero. In such case
only the term powerlike in momentum survivesjih. Equa-
tions (8) give the dependence of the couplings on the scale
g?, which is different from that on the U\¢utoff scalecon-
sidered in Ref[1]. The distinctive behavior im? as com-
pared to the 4D case may be used for phenomenology,
searches for effects of an extra dimension or unification of
gauge couplings in models with a compact dimension. The
only parameter in this correction is the scalR;lthere is no
dependence on the UV regulator/cutoff at one-loop level.

IIl. TWO COMPACT DIMENSIONS

The previous analysis can be repeated for two compact

terms inqR, depending on the relative size of the parametergjimensions. For the 4D toy-model with two additional com-

il.']VOlved. Thelﬁl’st integral may be regarded as the ContribUpact dimensions the Kaluza-Klein mass spectrum has the
tion from a single state of mass equal to that of the zerqyeneral form

mode My).

For our later comparison with the two compact dimen-
sions case it is important to notice that the divergence 1/

cancels out in the differencH(q?) —11(0), to leave a de-
pendence of the one-loop correction on the parameters

and \ only. There are no terms ifl(q?) proportional to
g°/e, which means that higher dimensior{derivative op-

erators are not generated as one-loop counterteifhs. re-
sult for the change of the couplings witf? is then

a Yg®)—a 1(0)

B
= E(jﬁ' T+ T3),

4 5
-_ _ > _ 1/2,,,—312
Jh= w3 +2(w—2)(w+4)~"“w

XIn {[(4+w)Y2—w'2]/2},

B 3aa([v\® 7 (v
2=\ Tl
1 v)z (v

2 —16l =

o o

+ —
8

1

1— eZi mp—2m[ 2+ Nh(x) 042

4
3+8

g
arctanz—V] )

1
J= —6f dx h(x)In
0

1— e2i Tp—2mV
tS)

where we used the notation=q%/Mj=o?/(p>+ v?). For
w<1, one hasJ,=w/5+0O(w?); for w>1, J,=-5/3
+Inw+O(1Mw). Also for o<1, and v, fixed, J»
= —(wl5) v+ O(c%). If o is fixed and v<1, 7,
=—907?/324+ 27v+ O(v?) with the first term giving a

5They can however be generated beyond one-loop level.

2 _ |m2—Um1|2
™M (R,sing)?

(€)

where we introduced the notatiod=U;+iU, with U
=R,/R; exp(h). R; are the radii of the two compact dimen-
sions. This mass formula can be generalized 4z, orbi-
folds without changing the conclusions below.

An important remark is in place here. Ttegal correction
I1(g?) includes the contribution of the zero mod&0), in
addition to that of nonzero modes given by E2). Accord-
ing to (9) Mg o=0 and forx reaching its limits of integration
x=0,1 the contribution of the zero mdte I1(g?) would
have vanishing exponent under the integral dvéihis inte-
gral would then be divergent in the infrared€ ). A mass
shift Mz, —M:  +\? is necessary so that thetal ex-

pressiorl1(g?) includingmasslessodes is well-definetie-
fore splitting the contributions td1(g?) into those due to
massless and massive modes, respectively2)rone sums
over massive modes only and the integral ovvés indeed
well defined fort—o becauseMml,mzaéO if (my,m,)

#(0,0). However, the above discussion requires us to keep
the IR regulator in the massive sector as well. In the follow-
ing the exponential if2) will therefore be changed to in-
clude the(dimensionlessIR regulator\, required by the
massless modes,

e wt(Mrznl’szrX(l*X)qz)/,uz

2 2
e ™M mlym2+x(l—x)q2)/p,2+ Nl

7\0*>0, )\E,U,)\O

(10

with A the infrared mass scale associated with the regulator
No- This observation is important because the UV and IR

5This is of the form given in Eq(2) without the sum over the KK
levels.
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regularization limitse—0 and\,—0, respectively, may not and is given in the Appendix, EGA2). In G we can safely
“commute” in Eg. (2), even though this equation only sums remové the dependence on the IR regulator(\—0) to

nonzero modes which have IR-finite contribution. find the result of Eq(A3).
To evaluate Eq(2) we use the following result in DR: Note the presence ifl(g?) of the term R)?%/ e which
does not have a counterpart in the case of one compact di-
© dt L (U o 3 mension. Obviously such term is m_issed2 when e\galuating
fo (€ it e 12 only IT(0). A somewhat similar term ibI(q<) is (\R)“/e,

sincex? andqg? are on equal footing idl(g?) in the expo-
1 @75 1 1 S nent under the integral ovér see Eq(2) with the replace-
—+———In(4me  "=|n(U)|H+E —), ment(10). Again, if one hac\ =0 in the (IR finite) massive
e € 17U, T T . .

modes sector, this term would have been missed too.
5=0, >0 (1) Following the one compact dimension example, one could
in principle write from Eqs(7) and (12),

with  U=U;+iU,. Equation (11) is valid for 0
<6|UJ2/(Usr)<1, 0<6/(7U5)<1 which are sufficient
conditions only. The “primed” sum runs over all integers
(my,m,) except the level{0,0) and »(U), E(5/7) are func-
tions defined in the Appendix. The functi@{(y) is vanish- X In(27) + i[g(q)—g(O)] _
ing in the limity—0. The result has divergences dénfrom 2@

t—0 but there are no divergences dnwhen §—0 because
the integrand is always exponentially suppressed-at for
(mq,m,)#(0,0). Note the emergence of the term propor-
tional to &/(7€) in addition td 1/e and which will play an
important role in the following. This is to be compared to the
integral in Eq.(5) where no such term is present. The differ- _ . ; ; 27
ence is due to the presence of two sums under the integral v independent terms, in particular to the terig)®e in

. . lving the IR scalex. One is thus left with the;> depen-
sEigh(ila\)s;atgzg)han only one as in the one compact dlmen'dent terms, and of these the most important is that propor-

. . tional to (QR)?/ e. This term has no equivalent in the case of
To computell(q?) we apply the substitutio10) in (2) one com(gacg dimension, see E@® an?:j(S) Forq? close to
and then use Ed11). With the notatiorR 2=R;R, sin# and h ificati I’ 2 > > .h lina h
retaining terms ta(€) one finds from(2) the compactificatioriscaleg”, 1/R7 or 1/R5 the coupling has
’ a pole. Even ifg?<1/R? and q°<1/R3, since e—0, one
cannot set this term to 0, and a “nondecoupling” effect of the

—B2m((qR)?
47 5| €

a Yg?) —a Y0)= +(qR)?

(14)

Equation(14) shows that the pole &/present in botHI(g?)
andII(0) cancels out in their difference, similar to the case
of one compact dimension. The same applies to the

2
H(qz):a__ EJFZT,()‘R) KK modes is manifest. Therefore the limit of scalgsvell
Am | € € below the compactification scalébereafter referred to as
27 [ (qR)?2 “infrared” ) and the UV regularization limitt—0 do not
+ _( +(qR)?In 277) commute. As a result a UV-IR “mixing” effec{IR-finite,
S UV-divergen} exists due to the first term 9rEq. (14). The

KK level (0,0—if included—cannot change this picture, be-
+In[4me™ | n(U)|4U2(,uR)2]+g(q)} (120 cause its contribution does not bring iS4 7€) term to Eq.
(11) responsible for §R)% € in Eq. (12).

One concludes that in this regularization setup the
Kaluza-Klein nonzero modes give an effect even at momen-
tum scales well below the compactification scale, where one

, 1, o J11 would expect them to be decoupled. The presence of the
A+ 24 <min RR2| (13 UV-IR mixing term is a result of considering the effect of an
172 infinite (rather than a “truncated” tower of Kaluza-Klein
modes, and as a consequence such “nondecoupling” effect,
(11). In the limit of “removing” the infrared regulator one the end. It is then puzzling why the terng®R)% e has no
takes\—0 or A><1/R} , which leaves a condition for the counterpart in the one compact dimension case, where we
upper value of the momentum scale at which the above resuifiso summed over the whole KK tower. How can we explain

still applies. In(12) the functionG(q) (analytio also de- this difference? As we discuss later, such term corresponds to
pends onR;, Ry, \, but does not depend on the UV regu-

lator €. Its exact expression is not relevant in the following

8This means that the limit— 0 in G does not interfere with the
dependence, already isolated(i®).
’Adding a zero modeg0,0) to Eq. (11) would cancel 1, but ®The term QR)?/e present inlI(g?) or I1(0) but not in their
would not cancel the term proportional &e. difference is itself a similar UV-IR contributioffL1].

with the constraint
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a counterterm in the actioR Dy, FMNDXF .\ which cannot  ber of KK modes, such counterterms are not radiatively

be generated in 5D at one-lopp] due to Lorentz invariance. generated?
At the technical level one can show thgftR %/ e emerges as We do not address in the following the detailed implica-
a one-loop “mixing” of the effects of two compact dimen- tions for field theory of such higher dimensional operators,
sions: it arises as a mixed contribution between a sum oveput discuss instead the origin ofiR)?/e or equivalently
“original” Kaluza-Klein modes associated with one compact (qR)*In A in I1(g?), from a heterotic string perspective.
dimension and a “Poisson resummedr winding zero  This is important because it will show the link between the
modée?® of a sum corresponding to the second compact dihigher dimensional operators as one-loop counterterms in the
mension. It is then clear why such term cannot appear in théield theory approach téI(g?) and the one-loop radiative
case of a single compact dimension. This shows explicitly ffects in string?® In doing so we consider that the string
different behavior of the radiative corrections with respect toprovides a “UV completion” of the field theory case, with
the character even/odd of the number of compact dimensiori§e latter recovered in the limit’—0 of the string, as
[14] and brings additional effects to those discussed in preshown in Refs[9-11] (also Ref[8]). A string counterpart of
vious works[1,4]. the one-loop correction to gauge couplings considered above

An immediate question is the regularization dependencés that induced by theN=2 sectors of 4DN=1 toroidal
of the existence of the termqR)?/e. Our comparative orbifolds. SuchN=2 sectors associated with the unrotated
analysis shows that the effect exists for two compact dimentwo-dimensional torus being one-loop corrections to the
sions but there is no counterpart for one compact dimensiogauge couplings due to massive Kaluza-Klein and winding
where the same UV regularization was used. This gives somgtates|5—7]. The (field theory limit of such string calcula-
indication that the existence of the termR)?/ e is not the  tion for II(0) does agree with the pure field theory result for
result of a particular UV regularization choice. Further, ourII(0) [9] which sums Kaluza-Klein effects only, although
previous discussion on the IR regularization does not affecthe relation between these different approaches is rather
the existence of this term, and finally, the DR scheme used isubtle[11]. This is particularly true when analyzing the more
supposed to provide a UV well-defined and manifestly gauggeneral case dfl(g?). Let us explain this in detail.
invariant framework 15]. One may argue that the UV regu-  The one-loop string calculation fofl(0) [5,6] which
larization must not affect the IR regime of the theory and thassums only massive modes’ effects needs itself a regulariza-
the DR scheme used in this calculation might not respect thigon, this time in the IR region only. In string theory one
condition. However, calculations closely relatgd] using  ultimately computes a one-loop diagram associated with
an UV regularization with a proper-time cutoff£1/A?) in I1(0) rather thardI(g?) which we would need for compari-
Egs.(2), (11) instead of DR, yield a similar UV-IR “mixing”  son with Eq.(12). However, sinceg? and \? are on equal
termt (qR)2In A, with the 1k factor simply replaced by the footing'*in I1(g?) of Eq. (12) and also in the exponential in
logarithm of the UV cutoffA. (2) with replacement10), it is enough to investigate the role

Equations(12) and(14) simply tell us that higher dimen- of the string counterpart of ow. This is just the IR regula-
sion (derivativg operators need to be included for a fully tor in string(hereafter denoteily) which, unlikeg?, is also
consistent one-loop calculation. This is a significant differ-present inlI1(0) computed by string, and can still convey
ence from the previous case of one compact dimension onlgome information abouil (g% 0)!
Indeed, the presence of the teqi/ e in the effective field The IR regularized string result fdi(0) contains in ad-
theory result shows that for two compact dimensions the DRyition to the well-known one-loop resuf6], higher order
regularization with minimal subtraction is not sufficient and terms in the IR regulator which in a DR scheme of the IR
that higher dimensional operators are radiatively generatedfivergence have for example, the fdrimIn a’. For tech-
required asne-loop counterterm®One such counterterm is nical details on how such term can arise in string, from the
R*DyF"ND¥Fy (for related discussions on this issue seedegenerate orbits of the modular group SE(2, see, for
Sec. IVB in Ref.[2]). This is important for it establishes a example, Appendi® A of Ref.[13] and also the calculation
direct link between the effects of two compact dimensions ofin the Appendix of Ref[6]. Here the IR string regulatox
their associated infinite KK sums, and the role of higher_, g anda’ ~1/M?2 with M, the string scale. For' #0 the
dimensional operators. In the absence of additional con-
straints to fix the(otherwise arbitrary coefficient of such
counterterms, the corrections they induce will depend on it 12¢6 more details on the decoupling of infinitely many modes in
with implications for the predictive power of the r_n(_)dels. In a¢* theory see Ref16].
the case of KK towers “truncated” to a large but finite nUm- 1315 can be done even though the string only compiiié8)

rather tharfI(g?), see later.
1By this we mean that in equatioii2) there are bothXR)% e
Opoisson  resummation in  one  dimension  givesand (@R)% e terms.
S ez €Xp TR =RItE ;. exp(—mp’Relt); here n labels %N a modular invariant IR regularization of the string such
original KK modes whilep denotes their “Poisson resummed” or «’-dependent terms should be SLLP; invariant.
dual (winding) modes referred to in the text. 18see Egs.(Al), (A10), and (A12) in Ref. [13]. (A12) brings
HEquation(11) with UV cutoff regularization instead of DR has O(g) term & In(T,U,), (T,~R;R,/a’) discussed here with:

76l(eTU,) replaced by a term proportional ®In A [11]. —\g.
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term \¢In &' vanishes whei.—0 and this explains why it over theinfinite towers of Kaluza-Klein modes is performed.

is not kept in the final, infrared regularized string result. ~ The analysis showed a different behavior of the one-loop
What does this tell us for the pure field theory approach tg-orrection with respect to the character even/odd of the num-

I1(0) or I1(g?) which sums KK effects only? In the field ber of compact dimensions, with such operators g_enerated

theory limit of the string calculation, one takes—0 (infi- o the case of two but not for one compact dimenspn

nite string scalgto suppress string effectsvinding modes For one comgact Filmensmn the change of the couplmgs
but keep those due tmassiveKK states only, considered in @ (d%)—a~*(q ?) with respect to the momentum scale is
field theory. In such case, the value Xfln o’ depends on UV regulator independent ane-looplevel, unlike the case
the order of taking the limits of IR regularization—0 and of more common a_pproaghes using cutoff regularizafidn

of field theory a’—0. This situation applies to other IR For one compact dimension the results can be used for phe-

regularizationd6,7] of the string as well. We are not aware Nomenology, unification of the gauge couplings and searches
of any string symmetry which imposes the order to takefor effects from compact dimensions. .
these limits. The termi¢In o' then becomes relevant in the For two compact dimensions a similar analysis of the one-
. Lo ST . . loop effects suggests the existence of a correction which
field theory limit. In this I2|m|té)\s (As—0) S replaced by its 5 njes low(“infrared” ) scales below the compactification
field theory counterpat (A°—0) while o’ plays the role  gcajes; to UV divergent terms. This implies the existence in
that the UV proper-time cutoff regulator Af does in the this toy-model of some “nondecoupling” effects at low en-
field theory approach. With these replacements, an UV-IRergies, due to a “mixing” of the twoinfinite towers of
‘mixing” term (IR finite, UV divergent should emerge, Kaluza-Klein states. The emergence of such nondecoupling
(AR)?In A, just as we found in the field theory approach for term in the effective field theory can be reinterpreted and
I1(0). Butthis also tells us something abadil{g?) in field  explained simply by the presence—for two compact
theory. With the observation thatandq are on equal foot- dimensions—of higher dimensional operators which are re-
ing in I1(g?), this “mixing” terms implies that one should quired asone-loop counterterms
expect in the field theory limit a termgqR)?In A in the We investigated in detail the origin of such operators from
proper-time regularization of the UV ogR)% € in the DR  the heterotic string perspect_ive. The or_igin of these counter-
scheme. This is in agreement with our field theory result Eqterms can be related to string correctionsli¢0) of type
(12) where such a term is found, and a strong consistencs!n @’ (With As—0 the IR string regulatorwhich are usu-
check of the field theory calculation. ally discarded in the final one-loop string result, sinee
This discussion provides an insight into the role that? 0. However, they become relevant in the field theory limit,
higher dimension operators play in understanding the lin nd also in pure field theory calculations where the two regu-

between thenfrared regularized string result and pure field Saé‘;ﬁztl?nrlrillrgilﬁls (Iigsll?e’suz;/b)oSf tr?g;r;rzgmfggie-lr;hlﬁl rﬁuestt_as
theory approaches fdi(g?). It implies in addition that cor- . rguing 1ssue . ; d prob

. ; . : . _erotic string and its link with higher dimensional one-loop
rections to gauge couplings from infrared regularized St”ngcounterterms in field theory
calculations should retain the terms of structirdn o’ in X

X ; . . _ If the Kaluza-Klein towers are “truncated” to a finite
the final correction td1(0), if anexactagreement with their ., per of modes, such operators are not generated. In such

field theory counterpart is to be maintained. case the discrete “shift” symmetry of summing over an in-
This discussion has implications for the unification of finite tower of Kaluza-Klein modes is broken. Under our
gauge couplings in 4D supersymmetric models. We refefnitial assumption that such symmetry holds, the higher di-
here to the attempts to match the MSSM unification scalgnensional operators can be seen to account for nonperturba-
with the (heterotig string scale value. In MSSM-like models tive effects. This is because such operators are ultimately
gauge couplings unify at 2x 10'® GeV [17] which is mar-  related to effects of a zero “mode” of a “Poisson re-
ginally below the predicted string scale-ggytb.27 summed” Kaluza-Klein series, i.e., a winding mo@®nper-
X 10t GeV[5]. Our discussion on the heterotic string showsturbative effect.
that for the models addressed the effects of higher dimension It is possible that in fully specified models symmetry ar-
counterterms are not included in the one-loop string correcguments may be identified to avoid the presence of such
tions. As a result the predicted value of the string séale  higher dimension operators. Nevertheless we think these
doesnotinclude the effects from such operators. This findingfindings are important for phenomenology, in particular for
should be considered when attempting solutions foexarct the scale of unification of gauge couplings. We argued that

matching of the MSSM unification scale with the heterotic ©n€-100p effects from higher dimension counterterms are not
string scale. included in the(predicted value of the heterotic string scale

and this may be one reason for {@nal) mismatch with the

MSSM unification scale.
IV. FINAL REMARKS AND CONCLUSIONS
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COMPACT DIMENSIONS AND THEIR RADIATIVE MIXING

APPENDIX

The functionszn(U) and&(y) used in the text are
77(U ) — eﬂ'iU/lZH (1_ e2i7TnU),
n=1

sinhary/?

Ty B )
E(y)=U—2In(477e Y7U3)—21In 7

Ty
k+1
I(k+1/2)[ -y
/

—In mnl [|1—e 270+ ugmi)l’zeziwulml|4
1=

X|1_e2ifrrUm1|74] (Al)
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with E(y—0)—0. The functiong(q) used in Eq.(12) is
defined as

1
G(q)=2Inm+27(AR)?In 2w+2f dx X(1—x)
0

X E[(R, sinA)’[ A2+ x(1—x)q?]}. (A2)

The series of Riemang-functions present itk [uniformly
convergent under the conditions of Eq41), (13)] can be
integrated termwise. Removing the IR regulatag0 or
N<1/R?,) gives

G(q)=2 |nw+2fldx X(1—x)E[(R, sin0)?x(1—x)q?].
0
(A3)
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