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Improved results for NÄ„2,2… super Yang-Mills theory using supersymmetric
discrete light-cone quantization
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We consider the~111!-dimensionalN5(2,2) super Yang-Mills theory which is obtained by dimensionally
reducingN51 super Yang-Mills theory in four dimensions to two dimensions. We do our calculations in the
large-Nc approximation using supersymmetric discrete light cone quantization. The objective is to calculate
quantities that might be investigated by researchers using other numerical methods. We present a precision
study of the low-mass spectrum and the stress-energy correlator^T11(r )T11(0)&. We find that the mass gap
of this theory closes as the numerical resolution goes to infinity and that the correlator in the intermediater
region behaves liker 24.75.
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I. INTRODUCTION

There is a pressing need to solve quantum field theorie
the nonperturbative regime. Over the past thirty years a
nificant amount of progress has been made in this area u
lattice gauge theory. Many of the most interesting quanti
in QCD and electroweak physics are being calculated to e
increasing accuracy. There remains, however, a numbe
nonperturbative quantities in supersymmetric quantum fi
theories that are interesting in a variety of formal phys
contexts but have not been calculated. Some of these ca
lations are now just beginning to be considered. With
creased interest in the physics of extra dimensions, it is m
important than ever to solve supersymmetric theories in
nonperturbative regime.

The progress in putting supersymmetry on a lattice
been rather slow due to some critical problems: the lack
translational invariance on a lattice, the notorious doubl
of fermion states@1#, and the breakdown of the Leibniz rul
@2#. Recently, however, some interesting new approac
have shed some light on this issue@3–6#. These approache
make possible the restoration of supersymmetry in a c
tinuum limit without fine-tuning of parameters and ev
without introducing some ‘‘sophisticated’’ fermions such
domain-wall @7# or overlap fermions@8,9#. However, these
techniques seem to be applicable to only some subset o
supersymmetric theories.

Given this increasing interest and promising new ideas
the realization of supersymmetry on a lattice, it is wor
while to provide some specific, detailed numerical resu
using supersymmetric discretized light cone quantizat
~SDLCQ! @10,11# for the simplest theory for which the new
lattice techniques are applicable. SDLCQ is a well est
lished tool for calculations of physical quantities in sup
symmetric gauge theory and has been exploited for m
supersymmetric Yang-Mills~SYM! theories. TheN5(2,2)
theory in 111 dimensions in the large-Nc limit is discussed
in Ref. @12#; however, the published results are primitiv
compared to what can be obtained today because of
greatly improved hardware and software. In this paper we
1550-7998/2004/70~4!/045015~11!/$22.50 70 0450
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now able to reach a resolution ofK512, while in Ref.@12#
we could reach onlyK55. Here we will present new and
more detailed results on this theory against which the lat
community can compare the results of their new techniqu

Briefly, the SDLCQ method rests on the ability to produ
an exact representation of the superalgebra but is other
very similar to discrete light cone quantization~DLCQ!
@13,14#. In DLCQ we compactify thex2 direction by putting
the system on a circle with a period of 2L, which discretizes
the longitudinal momentum asp15np/L, where n is an
integer. The total longitudinal momentumP1 becomes
Kp/L, whereK is an integer called the harmonic resolutio
@13#. The positivity of the light-cone longitudinal moment
then limits the number of possible Fock states for a givenK,
and, thus, the dimension of Fock space becomes finite,
abling us to do some numerical computations. It is assum
that asK approaches infinity, the solutions to this large fin
problem approach the solutions of the field theory. The d
ference between DLCQ and SDLCQ lies in the choice
discretizing eitherP2 or Q2 to construct the matrix approxi
mation to the eigenvalue problemM2uC&52P1P2uC&
52P1(Q2)2/A2uC&, with P15Kp/L. For more details
and additional discussion of SDLCQ, we refer the reade
Ref. @11#.

An interesting new result of the calculation we prese
here is that finite-dimensional representations of the SDL
with odd and even values ofK result in very distinct solu-
tions of theN5(2,2) SYM theory, which only become iden
tical asK approaches infinity. One might initially think tha
this is a shortcoming of the SDLCQ approach, but it tur
out to be an advantage because it provides an internal m
sure of convergence.

We will give some numerical results of the low-energ
spectrum. There we will see that as we go to higher a
higher resolutions, we find bound states with lower a
lower mass. We have seen this behavior in theN5(1,1)
theory where the lowest mass state converges linearly to
as a function of 1/K. This closing of the mass gap asK
→` was predicted by Witten@15# for the N5(1,1) andN
5(2,2) theories. We find that in the latter case the conv
©2004 The American Physical Society15-1
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gence is not linear in 1/K, and, while our results are consi
tent with the mass gap going to zero, they are not conclus

We have also been able to solve analytically for the wa
functions of some of the pure bosonic massless states,
we will present the exact form of the wave function for som
cases. We will show that the states must have certain p
erties to be massless, which then enable us to count the n
ber of the states for a given resolutionK. In addition, we will
present the formulas to count a minimum total number
massless states.

Finally, we will look at the two-point correlation function
of the stress-energy tensor^T11(r )T11(0)&. We see the
expected 1/r 4-behavior in the UV and IR regions, and, inte
estingly, we find that the correlator behaves as 1/r 4.75 in the
intermediate region. We know of no predictions for this b
havior; however, forN5(8,8) SYM theory there is a predic
tion that this correlator should behave like 1/r 5 in the inter-
mediate region.

The structure of this paper is the following. In Sec. II w
focus our attention on the low-energy states. After giving
quick review of N5(2,2) SYM theory with SDLCQ, we
give some numerical results for the low-energy states,
cuss analytically some properties of pure bosonic mass
states, and present the formulas to count a minimum t
number of massless states. We discuss the numerical re
for the two-point correlation function of the stress-ener
tensor in Sec. III. A summary and some additional discuss
are given in Sec. IV.

II. REVIEW OF NÄ„2,2… SYM THEORY

A. NÄ„2,2… SYM theory and SDLCQ

Before giving the numerical results, let us quickly revie
some analytical work onN5(2,2) SYM theory for the sake
of completeness. For more details see Ref.@12#. This theory
is obtained by dimensionally reducingN51 SYM theory
from four dimensions to two dimensions. In light con
gauge, whereA250, we find for the action

S111
LC 5E dx1dx2trF]1XI]2XI1 iuR

T]1uR1 iuL
T]2uL

1
1

2
~]2A1!21gA1J11A2guL

Te2b I@XI ,uR#

1
g2

4
@XI ,XJ#

2G , ~1!

wherex6 are the light-cone coordinates in two dimension
the trace is taken over the color indices,XI with I 51,2 are
the scalar fields and the remnants of the transverse com
nents of the four-dimensional gauge fieldAm , two-
component spinor fieldsuR anduL are remnants of the right
moving and left-moving projections of the four-compone
spinor in the four-dimensional theory, andg is the coupling
constant. We also define the currentJ15 i @XI ,]2XI #
12uR

TuR , and use the Pauli matricesb1[s1 , b2[s3, and
e2[2 is2.
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After eliminating all the non-dynamical fields using th
equations of motion, we find forPa5*dx2T1a

P15E dx2tr~]2XI]2XI1 iuR
T]2uR!, ~2!

and

P25g2E dx2trS 2
1

2
J1

1

]2
2

J12
1

4
@XI ,XJ#

2

1
i

2
~e2b I@XI ,uR# !T

1

]2
e2bJ@XJ ,uR# D . ~3!

The supercharges are found by dimensionally reducing
supercurrent in the four-dimensional theory. They are

Qa
1525/4E dx2tr~]2XIb Iahuh!, ~4!

Qa
25gE dx2trS 223/4J1

1

]2
e2ahuh

1221/4i @XI ,XJ#~b IbJe2!ahuhD , ~5!

wherea,h51,2 andua are the components ofuR .
We expand the dynamical fieldsXI and ua in Fourier

modes as

XIpq~x2!5
1

A2p
E

0

` dk1

A2k1
@AIpq~k1!e2 ik1x2

1AIqp
† ~k1!eik1x2

#, ~6!

uapq~x2!5
1

A2p
E

0

`dk1

A2
@Bapq~k1!e2 ik1x2

1Baqp
† ~k1!eik1x2

#, ~7!

wherep,q51,2, . . . ,Nc stand for the color indices, andA,B
satisfy the usual commutation relations

@AIpq~k1!,AJrs
† ~k81!#5d IJdprdqsd~k12k81!, ~8!

$Bapq~k1!,Bbrs
† ~k81!%5dabdprdqsd~k12k81!. ~9!

We work in a compactifiedx2 direction of length 2L and
ignore zero modes. With periodic boundary conditions
restrict to a discrete set of momenta@10#
5-2
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k15
p

L
k, k51,2,3, . . . ,

E dk1→ p

L (
k51

`

, d~k12k81!→ L

p
dkk8 . ~10!

Relabeling the operator modesAL/pa(k)5A(k15pk/L)
andAL/pb(k)5B(k15pk/L), so that

@aIpq~k!,aJrs
† ~k8!#5d IJdprdqsdkk8 ,

$bapq~k!,bbrs
† ~k8!%5dabdprdqsdkk8 ~11!

the expansion is
u

04501
XIpq~x2!5
1

A2p
(
k51

`
1

A2k
@aIpq~k!e2 i (p/L)kx2

1aIqp
† ~k1!ei (p/L)kx2

#, ~12!

uapq~x2!5
1

A2L
(
k51

`
1

A2
@bapq~k!e2 i (p/L)kx

1baqp
† ~k!ei (p/L)kx2

#. ~13!

In terms ofa andb, the supercharges are given by

Qa
1521/4iAp

L (
k51

`

Akb Iah@aIi j
† ~k!bh i j ~k!

2bh i j
† ~k!aIi j ~k!#, ~14!

and
Qa
25

i221/4g

p
AL

p (
k1 ,k2 ,k351

`

d (k11k2),k3H ~e2!ahF 1

2Ak1k2
S k22k1

k3
D @bh i j

† ~k3!aIim~k1!aIm j~k2!2aIim
† ~k1!aIm j

† ~k2!bh i j ~k3!#

1
1

2Ak1k3
S k11k3

k2
D @aIim

† ~k1!bhm j
† ~k2!aIi j ~k3!2aIi j

† ~k3!aIim~k1!bhm j~k2!#

1
1

2Ak2k3
S k21k3

k1
D @aIi j

† ~k3!bh im~k1!aIm j~k2!2bh im
† ~k1!aIm j

† ~k2!aIi j ~k3!#2
1

k1
@bh i j

† ~k3!bh im~k1!bhm j~k2!

1bh im
† ~k1!bhm j

† ~k2!bh i j ~k3!#2
1

k2
@bh i j

† ~k3!bh im~k1!bhm j~k2!1bh im
† ~k1!bhm j

† ~k2!bh i j ~k3!#

1
1

k3
@bh i j

† ~k3!bh im~k1!bhm j~k2!1bh im
† ~k1!bhm j

† ~k2!bh i j ~k3!#G12~e2! IJS 1

4Ak1k2

@ba i j
† ~k3!aIim~k1!aJm j~k2!

1aJim
† ~k1!aIm j

† ~k2!ba i j ~k3!#1
1

4Ak2k3

@aJi j
† ~k3!ba im~k1!aIm j~k2!1ba im

† ~k1!aJm j
† ~k2!aIi j ~k3!#

1
1

4Ak3k1

@aIi j
† ~k3!aJim~k1!bam j~k2!1aIim

† ~k1!bam j
† ~k2!aJi j~k3!# D J ~15!
using the relation (@b I ,bJ#e2)ah5dah(e2) IJ .
They satisfy the superalgebra conditions for anticomm

tators involvingQa
1 ,

$Qa
1 ,Qb

1%5dab2A2P1, $Qa
1 ,Qb

2%50. ~16!

but do not satisfy the condition$Qa
2 ,Qb

2%5dab2A2P2. In-
stead, in SDLCQ we find

$Qa
2 ,Qb

2%Þ0 if aÞb, ~Q1
2!25A2P1

2ÞA2P2
25~Q2

2!2.

~17!
-
Although we have differentPa

2 for different Qa
2 , we can

define a unitary, self-adjoint transformationC, such that

Ca1i j C5a2i j , Cb1i j C52b2i j ~18!

and find thatCP1
2C5P2

2 . Thus the eigenvalues ofPa
2 are

the same. We may choose either one of the twoQa
2’s, at least

for our purposes, and in what follows we will useQ1
2 and

will suppress the subscript unless it is needed for clarity.
The momentum,P1, is given by

P15
1

A2
~Q1

1!25
p

L (
k

k~aIi j
† aIi j 1bn i j

† bn i j !. ~19!
5-3



188
790
312
97
72

HARADA et al. PHYSICAL REVIEW D 70, 045015 ~2004!
TABLE I. The mass squaredM2 of the first few lowest massive states in theS-even sector in units of
g2Nc /p for a series of resolutionsK.

K53 4 5 6 7 8 9 10 11 12

1.308 4.009 0.0067 2.144 0.0040 1.415 0.0026 1.040 0.0018 0.8
12.62 12.24 0.6304 2.514 0.0060 1.5999 0.0038 1.138 0.0026 0.8
22.06 15.04 1.0813 2.645 0.4366 1.712 0.0048 1.212 0.0026 0.9

15.28 1.1099 2.773 0.6016 1.729 0.3515 1.256 0.0039 0.93
22.53 1.5732 2.807 0.6308 1.811 0.4372 1.347 0.3062 1.00
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We work with a fixed value of momentum

P15
p

L
K, K51,2, . . . . ~20!

We call K the resolution because larger values ofK allow
larger values ofL while leaving the momentumP1 fixed.

The next thing to note is that there are threeZ2 symme-
tries ofQ1

2 . The first one isR1-symmetry, whereRa acts as
follows:

a1i j ↔a2i j , ba→2ba . ~21!

The second isS-symmetry

aIi j →2aI ji , ba i j →2ba j i . ~22!

The third is what we callT-symmetry

aIi j →2aIi j , ba unchanged. ~23!

It is easy to see that under these symmetriesQ1
2 is invariant.

Using the relations

R1Q1
1R152Q2

1 , TQa
1T52Qa

1 ,

we find

R1~Q1
16Q2

1!R157~Q1
16Q2

1!,

T~Q1
16Q2

1!T52~Q1
16Q2

1!. ~24!

Also note that

$Q1
16Q2

1 ,Q1
16Q2

1%

5$Q1
1 ,Q1

1%1$Q2
1 ,Q2

1%62$Q1
1 ,Q2

1%54A2P1.
~25!
04501
We work in a subspace of definite momentum so (Q1
1

6Q2
1) must have nonzero eigenvectors. SinceQa

1 and Qa
2

are fermionic operators we see that a bosonic energy ei
stateuCB&11 which is even underR andT-symmetry can be
transformed into

uCB&725Q1
2~Q1

16Q2
1!uCB&11 ,

uCB&215~Q1
11Q2

1!~Q1
12Q2

1!uC&11

~26!

which are all degenerate withuCB&11 . One should notice
here that we cannot useQ1

2 andQ2
2 at the same time since

they do not commute with each other. Thus, including
supersymmetry, we have an 8-fold degeneracy. Utilizing
remainingS-symmetry, which does not give us a mass d
generacy, we can divide the mass spectrum into 16 indep
dent sectors. This significantly reduces the size of the co
putational problem. It will be convenient to refer to boun
states of this theory as havingS, T, or R even or odd parity
and to refer to a state as having even or odd resolutionsK
is an even or odd integer.

B. Mass gap

Tables I and II show the first few low-mass states. We fi
anomalously light states in the sectors with oppositeK andS
parity for K larger than 4. Furthermore, the number of e
tremely light states increases by one as we increaseK by
two. We believe that these anomalously light states should
exactly massless states, but for some reason there is an
pediment preventing SDLCQ from achieving this resu
Some of the evidence for this comes from a study of
average number of partons^n& in the bound states. For ex
ample, in the sector withSandK even, for each even intege
r less thanK, there is exactly one bosonic massless state w
^n&5r . ForK odd we do not see massless states of this ty
but we do find̂ n&5r for the anomalously light bound state
0217
0218
0219
0356
2053
TABLE II. Same as Table I but for theS-odd sector.

K54 5 6 7 8 9 10 11 12

1.2009 3.1876 0.00674 1.8427 0.00440 1.2687 0.00302 0.95786 0.0
1.2009 3.1887 0.6402 1.9305 0.00538 1.3266 0.00317 0.99795 0.0
12.296 3.3239 0.6747 2.0413 0.45529 1.4087 0.00431 1.0302 0.0
12.296 11.489 0.9900 2.1415 0.48010 1.5107 0.36858 1.1036 0.0
19.502 11.492 1.0313 2.3603 0.55873 1.5219 0.38647 1.1345 0.3
5-4
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in this sector. This is also the first sign of the distincti
between representations of the supersymmetry algebra in
ferent symmetry sectors, namely those with anomalou
light states~with oppositeS andK parity! and those without
anomalously light states~with matchingS andK parity!.

In our discussion of the mass gap we will not include t
anomalously light states as part of the massive spectrum
the reason given above. To study the mass gap we will l
at the lowest massive state in each sector as a function ofK
as shown in Fig. 1. There we also show polynomial fits in
four sectors separately. The fits are constrained to go thro
the origin. The quadratic fits look very good in Fig. 1~a!. but
Fig. 1~b! required a cubic. The two fits with oppositeSandK
parity look very similar as do the two fits with sameSandK
parity. In each case we could have fit all the points with o
curve if we were to include a small oscillatory function in th
fit. We should note here that oscillatory behavior has b
observed before in different theories@16,17#. The explana-
tion given there is that those states which show the osc
tory behavior comprise non-interacting two-body stat

FIG. 1. Plots of the mass squared in units ofg2Nc /p for the
lowest massive states, excluding the anomalously light states,
a polynomial fit constrained to go through the origin. The plot in~a!
corresponds to the sector whereS andK have the same parity, an
the plot in ~b! to the sector whereS andK have opposite parity.
04501
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This, however, does not seem applicable in our case since
states in Fig. 1 are the lowest energy states; thus there ar
lower energy states available to form two-body states.

The distinct character of the mass gap serves as ano
piece of evidence that we have two different classes of r
resentations. The data is consistent with the mass gap clo
to 0 asK→`, especially for the case whereSandK have the
same parity. The odd and even representations approach
other asK increases and we hypothesize that they beco
identical in the continuum limit ofK→`. When we present
the correlation function in Sec. III, we will see further ev
dence for this claim.

C. Massless states

1. Pure bosonic massless states

Let us investigate the properties of pure bosonic mass
states in full detail in theNc→` limit. This is done by gen-
eralizing the discussion of the bound states in SDLCQ
N5(1,1) SYM theory, as given in Refs.@11,18#, to N
5(2,2) SYM theory.

For simplicity, let us consider the states consisting o
fixed n number of partons only. A pure bosonic massle
state is given by

uC,0&5N (
q1 , . . . ,qn

(
A

d (q11•••1qn),K f̄ [A1 . . . An]
(0) ~q1 . . . qn!

3tr@aA1

† ~q1! . . . aAn

† ~qn!#u0&,

whereN is the normalization factor,qi51,2, . . . is theunit
of the light-cone momentumpi5qip/L carried by thei-th
parton,Ai51,2 indicates the flavor index for each parton, t
sum (A is the summation over all possible permutations
the flavor indicesAi ’s, f̄ is the wave function, and the trace
taken over the color indices. Note that we do not have
symmetry factor coming from the cyclic property of the tra
in the above notation; one has to put in the symmetry fac
by hand if one would like it to be in there as we will do s
for an example given later in this subsection. In other wor
Fock states with non-zero symmetry factor are not norm
ized.

Due to the cyclic property of the trace, we have

f̄ [A1 . . . An]~q1 , . . . ,qn!5 f̄ [A2 . . . AnA1]~q2 , . . . ,qn ,q1!5•••

5 f̄ [AnA1 . . . An21]~qn , . . . ,qn21!.

SinceP25(Q2)2/A2, all the massless states should va
ish upon the action ofQ2. Thus, we must haveQ2uC,0&
50. This identity, however, can be simplified somewhat
pure bosonic massless states. That is, the terms to consid
Q2 are those which annihilate one boson and create
boson and one fermion, and those which annihilate t
bosons and create one fermion. Both the former and la
class of terms inQ2 separately annihilatesuC,0&. In the
large-Nc limit the former class gives, writingf (q1 , . . . ,qn)
[Aq1 . . . qnf̄ (q1 , . . . ,qn),

ith
5-5
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05~e2!abH 2qn211t

~qn211t !t
f [A1 . . . An]

(0) ~q1 , . . . ,qn211t,qn!

2
2qn1t

~qn1t !t
f [A1 . . . An]

(0) ~q1 , . . . ,qn21 ,qn1t !J
1

MIAn

ab

2~qn1t !
f [A1 . . . An21 ,I ]

(0) ~q1 , . . . ,qn21 ,qn1t !

2
MIAn21

ab

2~qn211t !
f [A1 . . . An22 ,I ,An]

(0) ~q1 , . . . ,qn211t,qn!,

~27!

and the latter yields

05 (
An21 ,An

(
k

S ~e2!ab

t22k

tk~ t2k!
dAn21 ,An

1
MAn21An

ab

k~ t2k!
D f [A1 . . . An]

(0) ~q1 , . . . ,qn22 ,k,t2k!, ~28!

where MIJ
ab[@(b IbJ2bJb I)e2#ab , t is the momentum of

the created fermion, and the momentum conserving K
necker’s deltad (q11 . . . 1qn),K is understood implicitly. These
are the necessary and sufficient conditions for a pure bos
state to be massless. One should notice that the above e
tions reduce to the corresponding equations found in R
@11,18# with (e2)ab51, Ai51 for all i ’s, and MIJ

ab50, as
expected.

In principle, we could find the properties of all kinds o
pure bosonic massless states using Eqs.~27! and~28!. How-
ever, we limit ourselves here to the investigation of only tw
special types. To simplify the notation, we omit the sup
script ~0! from the wave functionf hereafter.

The simplest case is wheren5K, that is to say, all the
partons have one unit of momentump/L and, thus,f 5 f̄ . In
this case Eq.~27! is trivially satisfied since we cannot hav
states with (K11) partons. From Eq.~28! we get

05 f [A1 . . . An22,1,2]2 f [A1 . . . An22,2,1] , ~29!

where we have omitted (q1 , . . . ,qn)5(1, . . . ,1). Eq.~29!
means, with the help of the cyclic property off, that the wave
function is unchanged after movingany flavor index toany
location in the list of indices. For instance, we find, writin
f [A1 . . . An][@A1 . . . An#,

@1212#5@1221#5@2121#5@2211#5@2112#5@1122#.

It is clear that the state with the above six wave functio
being the same and all others zero satisfies Eq.~29!, or
equivalently Eqs.~27! and ~28!, the necessary and sufficien
conditions to be massless. Therefore, writi
tr@aA1

† (1) . . .aAn

† (1)#u0&[A1 . . . An , we find the state

N@1212#~12121122112121122111211211122!

5N@1212#~2~1212!14~1122!!
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is massless, where we used the cyclic property off. In terms
of the normalized Fock state
tr@aA1

† (1) . . .aAn

† (1)#u0&/(AsNc
n/2)[A1 . . . An5A1 . . . An /

(AsNc
n/2), wheres is the symmetry factor, we find, after no

malizing properly, that

1

A3
~1212!1A2

3
~1122!

is massless sinces for 1212 and 1122 equals two and on
respectively. Indeed we have found the very same mass
state in our numerical results.

As we have seen above, there is a one-to-one corres
dence between a massless state and a given set of fl
indices, which has afixednumber of 1’s and 2’s. This mean
that every time we change the number of 1’s~or 2’s! in the
flavor indices, we find a new massless state. Since we
haveK11 such different sets of flavor indices, we haveK
11 massless states of this kind. As verification of our arg
ment, we enumerated all the massless states forK up to six
and found all of them with the correct coefficients in o
numerical results.

The next case to consider is wheren5K21. In this case
only one of the partons has two units of momentum, so t
f 5A2 f̄ . However, since all thef ’s have the same factor o
A2, we can absorbA2 into the normalization factorN and
practically can setf [ f̄ . We havet51 and qi51 with i
51, . . . ,n in Eq. ~27! and find, writing (q1 , . . . ,qn)
5(1, . . .,1,1,2)[(1,2) and so on,

05@A1 . . . An#~2,1!2@A1 . . . An#~1,2!, ~30!

05@A1 . . . An22 ,An21 ,An#~1,2!

2@A1 . . . An22 ,An ,An21#~2,1!, ~31!

05@A1 . . . An22 ,An21 ,An21#~1,2!

1@A1 . . . An22 ,An ,An#~2,1!, ~32!

whereAn21ÞAn in Eqs.~31! and~32!. For Eq.~28! we have
t52, k51,2 andqi51 with i 51, . . . ,n22, and we get

05@A1 . . . An22 ,A,A#~1,2!2@A1 . . . An22 ,A,A#~2,1!,

~33!

05@A1 . . . An22,1,2#~1,2!1@A1 . . . An22,1,2#~2,1!

2@A1 . . . An22,2,1#~1,2!2@A1 . . . An22,2,1#~2,1!.

~34!

Apparently, we have five equations for the massless state
satisfy, but it is easy to see that Eq.~33! is incorporated into
Eq. ~30! and that if Eqs.~30! and~31! are true, so is Eq.~34!
automatically. Hence, the three equations Eqs.~30!, ~31!, and
~32! are in fact the equations for massless states to satisfy
n5K21.

In order to see what the three equations allow us to do
us first write
5-6
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@A1 , . . . ,An#~1,2![@A1 , . . . ,An8#.

That is, let us put a prime on top of an index whose cor
sponding parton has two units of momentum. Then, Eq.~30!
allows us to move the ‘‘prime’’ to any index. Equation~31!,
along with this fact, then also allows us to move the ind
with a prime to any location in the index list. For examp
we have

@1128#5@1182#5@1812#5@1281#5@1821#5@1218#

5@2811#5@2181#5@2118#.

Furthermore, Eq.~32! allows us to replace 118 by 282 @or
228 using Eq.~30!# as long as a minus sign is inserted. Thu
for the above example we get

@1128#5@1182#5@1812#52@2282#,

where we have omitted the wave functions related by cy
permutations. This means that the state

~1128111821181222282!/2

is massless. Note that the symmetry factor in this cas
equal to one for all the Fock states above.

Since Eqs.~30!, ~31!, and~32! relate all the sets of flavo
indices with an even or odd number of 1’s to one another,
have only two independent sets of flavor indices: the o
with even numbers of 1’s and the other with odd numbe
This means that there aretwo massless states of this typ
Again we have confirmed this statement numerically forK
up to six.

To summarize, we have found in the large-Nc limit the
necessary and sufficient conditions, Eqs.~27! and ~28!, that
pure bosonic massless states are to satisfy. As an applic
we considered two special cases and found that there
K11 massless states of the type tr@aA1

† (1) . . .aAK

† (1)#

and two of the type tr@aA1

† (1) . . .aAK22

† (1)aAK21

† (2)#. Also,

we gave a way to enumerate all such massless states
given K.

2. Count of massless states

It is possible to predict a minimum number of massle
states by comparing the number of states in the differ
symmetry sectors. Since (Q2)2 takes a state from one sym
metry sector to another and then back it must have 0 eig
values if the dimensionality of the intermediate sector is l
than that of the original sector. It is possible to create
simple recursive formula for the number of states in ea
sector@19#. For the case whenK is prime and odd, the for-
mula is particularly simple. We present the results here
refer to the other publication for justification. We defin
Abes1(K,n) as the number of states in the bosonic sec
with an even number of partons and evenSsymmetry, where
n indicates how many types of particles we have in a SY
theory, i.e.,n54 for N5(2,2) SYM. Then
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Abes1~K,n!5Af es1~K,n!5
Af~K,n!1Af~K,2n!1W

2

Abes2~K,n!5Af es2~K,n!5
Af~K,n!1Af~K,2n!2W

2

Abos1~K,n!5Af os1~K,n!5Abos2~K,n!5Af os2~K,n!

5
Af~K,n!2Af~K,2n!

2
~35!

where

Af~K,n!prime5
1

2K
~~11n!K2~11n!! ~36!

W5S n

2D 2

~K21!. ~37!

Q2 goes from bosonic to fermionic and from even to odd

Af os1~K,n!2Abes1~K,n!5Abos1~K,n!2Af es1~K,n!

52Af~K,2n!2
W

2
~38!

Af os2~K,n!2Abes2~K,n!5Abos2~K,n!2Af es2~K,n!

52Af~K,2n!1
W

2
. ~39!

The minimum total number of massless states must there
be

24Af~K,2n!52
2

K
~~12n!K2~12n!!5

2

K
~3K23!.

~40!

For K55, this comes to 96 states which is way more th
the 8 purely bosonic states with 4 or 5 partons that we h
found in this section.

III. CORRELATION FUNCTIONS

One of the physical quantities we can calculate nonper
batively is the two-point function of the stress-energy tens
Previous calculations of this correlator in this and other th
ries can be found in@20–22#. Reference@20# gives results for
the theory considered here but only for resolutionsK up to 6.
We can now reachK512.

We will show that there is a distinct behavior for even a
odd K in the correlation function, just as in the energy spe
trum. Then we will argue, by taking a closer look at the da
that we have two different classes of representations at fi
K, which become identical asK→`.

A. Correlation functions in supergravity

Let us first recall that there is a duality that relates t
results for the two-point function inN5(8,8) SYM theory to
5-7



o

en

up

es
e
e

ss

o
or
tio

o

io

ld

q.

rm

re

v

e

-

s,

x-
at

m

like
ve

re
ed

r

HARADA et al. PHYSICAL REVIEW D 70, 045015 ~2004!
the results in string theory@21#. The correlation function on
the string-theory side, which can be calculated with use
the supergravity approximation, was presented in@20#, and
we will only quote the result here. The computation is ess
tially a generalization of that given in@23,24#. The main
conclusion on the supergravity side was reported in@25#. Up
to a numerical coefficient of order one, which we have s
pressed, it was found that

^O~x!O~0!&5
Nc

3/2

gY Mx5
. ~41!

This result passes the following important consistency t
The SYM theory in two dimensions with 16 supercharg
has conformal fixed points in both the UV and the IR r
gions, with central charges of orderNc

2 andNc , respectively.
Therefore, we expect the two-point function of the stre
energy tensor to scale likeNc

2/x4 andNc /x4 in the deep UV
and IR regions, respectively. According to the analysis
@26#, we expect to deviate from these conformal behavi
and cross over to a regime where the supergravity calcula
can be trusted. The crossover occurs atx51/gY MANc and
x5ANc/gY M . At these points, theNc scaling of Eq.~41! and
the conformal result match in the sense of the corresp
dence principle@27#.

We should note here that this property for the correlat
functions is expectedonly for N5(8,8) SYM theory, not for
the theory in consideration in this paper. However, it wou
be natural to expect some similarity betweenN5(8,8) and
N5(2,2) theories. Indeed, we will find numerically that E
~41! is almosttrue in N5(2,2) SYM theory.

B. Correlation functions in SUSY with 4 supercharges

We wish to compute a general expression of the fo
F(x2,x1)5^O(x2,x1)O(0,0)& whereO is T11. In DLCQ,
where we fix the total momentum in thex2 direction, it is
more natural to compute the Fourier transform and exp
the transform in a spectral decomposed form@20,21#

F̃~P2 ,x1!5
1

2L
^T11~P2 ,x1!T11~2P2,0!&

5(
i

1

2L
^0uT11~P2,0!u i &e2 iP1

i x1

3^ i uT11~2P2,0!u0&. ~42!

The position-space form of the correlation function is reco
ered by Fourier transforming with respect toP25P1

5Kp/L. We can continue to Euclidean space by takingr
5A2x1x2 to be real. The result for the correlator of th
stress-energy tensor was presented in@20#, and we only
quote the result here:

F~x2,x1![^T11~x!T11~0!&

5(
i

u
L

p
^0uT11~K !u i &u2

3S x1

x2D 2
Mi

4

8p2K3
K4~MiA2x1x2!, ~43!
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where x has light cone coordinatesx2,x1, Mi is a mass
eigenvalue andK4(x) is the modified Bessel function of or
der 4. In@12# we found that the momentum operatorT11(x)
is given by

T311~x!5trF ~]2XI !21
1

2
~ iua]2ua2 i ~]2ua!ua!G ,

I ,a51,2, ~44!

whereX andu are the physical adjoint scalars and fermion
respectively, following the notation of@12#. When written in
terms of the discretized operators,a and b @Eqs. ~12!,~13!#,
we find

T11~K !u0&5
p

2L (
k51

K21 F2Ak~K2k!aIi j
† ~K2k!aI ji

† ~k!

1S K

2
2kDba i j

† ~K2k!ba j i
† ~k!G u0&. ~45!

The matrix element (L/p)^0uT11(K)u i & is independent
of L and can be substituted directly to give an explicit e
pression for the two-point function. We see immediately th
the correlator behaves like 1/r 4 at smallr, for in that limit, it
asymptotes to

S x2

x1D 2

F~x2,x1!5
Nc

2~2nb1nf !

4p2r 4 S 12
1

K D . ~46!

On the other hand, the contribution to the correlator fro
strictly massless states is given by

S x2

x1D 2

F~x2,x1!5(
i

u
L

p
^0uT11~K !u i &uMi50

2 6

K3p2r 4
.

~47!

That is to say, we would expect the correlator to behave
1/r 4 at both small and larger, assuming massless states ha
non-zero matrix elements.

C. Numerical results

To compute the correlator using Eq.~43!, we approximate
the sum over eigenstates by a Lanczos@28# iteration tech-
nique, as described in@21,22#. Only states with positiveRa ,
T and S parity contribute to the correlator. The results a
shown in Fig. 2, which includes a log-log plot of the scal
correlation function

f [^T11~x!T11~0!&S x2

x1D 2
4p2r 4

Nc
2~2nb1nf !

~48!

and a plot ofd log10( f )/d log10(r ) versus log10(r ), with r
measured in units ofAp/g2Nc. Let us discuss the behavio
of the correlator at small, large, and intermediater, sepa-
rately in the following.

First, at smallr, the graphs off for differentK approach 0
as K increases. This follows Eq.~46! which gives the form
f 5 log(121/K). Second, at larger, obviously, the behavior
5-8
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FIG. 2. Plots of log of the scaled correlation functionf as a function of log10(r ) for ~a! K53,4, . . .,12, ~c! K odd, and~e! K even, and
plots of d log10( f )/d log10(r ) as a function of log10(r ) for ~b! K53,4, . . .,12, ~d! K odd, and~f! K even.
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odd
is different for oddK, in Figs. 2~c! and~d!, and evenK, in ~e!
and ~f!. However, the difference gets smaller asK gets big-
ger, as seen in Fig. 2~a!. The reason for this is as follows
Looking at the detailed information of the computation of t
correlator, we found that for evenK there is exactly one
massless state that contributes to the correlator, while the
04501
is

no massless state nor even an anomalously light state
makes any contribution for oddK. Instead, it is the lowes
massive state that contributes the most for oddK. This ob-
servation serves as another piece of evidence for the c
that we have two distinct classes of representations for
and evenK.
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In the intermediate-r region, for theN5(8,8) theory we
expected from Eq.~41! that the behavior is 1/r 5, and in@21#
we found that the correlator may be approaching this beh
ior. We indicated in@21# that conclusive evidence would be
flat region in the derivative of the scaled correlator at a va
of 21. Our resolution was not high enough to see this in
N5(8,8) case. Here we find such a flat region, indicat
that the correlator in fact behaves like 1/r 24.75 for N
5(2,2) SYM theory. Also, note that the region of flattenin
around20.75 extends farther out asK gets bigger, for both
odd and evenK, implying again that the representations a
pear to agree asK goes to infinity. For any fixed value ofr
the correlators for odd and evenK approach each other asK
increases and the flat region extends further. This indic
that it is only in the region ofr where the correlators for eve
and oddK agree that we have sufficient convergence for
results to be meaningful.

IV. DISCUSSION

To respond to the increasing interest in calculating sup
symmetric theories on a lattice@3–6#, we have presented
detailed numerical results for the low-energy spectrum
the two-point correlation function of the stress-energy ten
using SDLCQ forN5(2,2) SYM theory in 111 dimensions
in the large-Nc approximation. Our hope is that these resu
will serve as benchmarks for others to compare and ch
their results.

In addition, we found an important new aspect of t
SDLCQ approximation in this calculation. There seem to
two distinct classes of representations forN5(2,2) SYM
theory, one whereS and K have the same parity and on
where S and K have opposite parity; these representatio
become identical asK→`. We found evidence for this fea
ture ofN5(2,2) SYM theory in both the mass spectrum a
the correlator. We also found that there are some ano
lously light states that appear only in the sectors whereSand
K have opposite parity. We argued that the anomalously l
states should be exactly massless, but have acquired a
mass because of some impediment to having them exa
massless in the SDLCQ approximation. In the calculation
the correlator where only positive S parity contribute w
found that there is exactly one massless state that contrib
to the correlator whenK has positive parity and that no mas
less state or anomalously light state contributes whenK has
negative parity. The lightest massive state in the sector wh
K has negative parity does contribute to the correlator,
because the mass gap appears to close at infinite resol
this state appears to become massless, as expected@15#.

The two-point correlator of the stress-energy tensor w
found to show 1/r 4-behavior in the UV~small r ) and IR
h
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~large r, K even! regions as expected. The larger behavior
for K odd, on the other hand, has an exponential decay.
prisingly, the correlator behaves like 1/r 4.75 at intermediate
values ofr. In N5(8,8) SYM theory in 111 dimensions,
the correlator is expected to behave like 1/r 5 in the interme-
diate region, and it is interesting thatN5(2,2) behaves simi-
larly but with a different exponent. We were able to confir
this power law behavior with a flat region in the derivative
the scaled correlator. Previously, in our calculation of t
N5(8,8) correlator at lower resolutions, we were not able
find this flat region. We are hopeful that in the near future
may be able to conclusively confirm the 1/r 5 behavior in the
N5(8,8) theory. Interestingly, we also note that earlier
sults seem to indicate the same type of odd/even behavio
the N5(8,8) theory.

Analytically, we investigated the properties of pu
bosonic massless states and found the necessary and
cient conditions to determine their wave function. Then
explored some special cases to find that there areK11
massless states of type

tr@aA1

† ~1!aA2

† ~1! . . . aAK

† ~1!#u0&,

whereAi is a flavor index and the number in the parenthe
tells how many units of momentum each parton carries,
that there are two massless states of the type

tr@aA1

† ~1!aA2

† ~1! . . . aAK21

† ~2!#u0&.

We also gave the formulas to count a minimum total num
of massless states for a SYM theory which is dimensiona
reduced to one spatial and one time dimension.

What prevents us from reaching even higherK is obvi-
ously the fact that, as one can show@19#, the total number of
basis states grows like;(11n)K, wheren is the total num-
ber of particle types andn54 for N5(2,2) SYM theory.
Our numerical results were obtained using one single
with memory of 4 GB. The problem that we now face is th
we do not have enough memory to store all the states in
PC. However, as we make use of a cluster of PCs and
ways to split and share the information among them, we
able to reach even higherK. This is the direction of our
future work, with the ultimate goal being to achieve suf
cient numerical precision to detect the correspondence
tweenN5(8,8) SYM theory and supergravity conjecture
by Maldacena@29#.
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