PHYSICAL REVIEW D 70, 045015 (2004

Improved results for N=(2,2) super Yang-Mills theory using supersymmetric
discrete light-cone quantization

Motomichi Haradd, John R. Hille? Stephen Pinsky,and Nathan Salwén
lDepartment of Physics, Ohio State University, Columbus, Ohio 43210, USA
2Department of Physics, University of Minnesota Duluth, Duluth, Minnesota 55812, USA

(Received 21 April 2004; published 23 August 2004

We consider thé1+1)-dimensionalNV=(2,2) super Yang-Mills theory which is obtained by dimensionally
reducing/ =1 super Yang-Mills theory in four dimensions to two dimensions. We do our calculations in the
largeN. approximation using supersymmetric discrete light cone quantization. The objective is to calculate
quantities that might be investigated by researchers using other numerical methods. We present a precision
study of the low-mass spectrum and the stress-energy corrélaidi(r)T* *(0)). We find that the mass gap
of this theory closes as the numerical resolution goes to infinity and that the correlator in the intermediate
region behaves like %7,
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[. INTRODUCTION now able to reach a resolution Ef=12, while in Ref.[12]
we could reach onhK=5. Here we will present new and
There is a pressing need to solve quantum field theories imore detailed results on this theory against which the lattice
the nonperturbative regime. Over the past thirty years a sigeommunity can compare the results of their new techniques.
nificant amount of progress has been made in this area using Briefly, the SDLCQ method rests on the ability to produce
lattice gauge theory. Many of the most interesting quantitiesan exact representation of the superalgebra but is otherwise
in QCD and electroweak physics are being calculated to everery similar to discrete light cone quantizatidbLCQ)
increasing accuracy. There remains, however, a number ¢13,14. In DLCQ we compactify thex™ direction by putting
nonperturbative quantities in supersymmetric quantum fieldhe system on a circle with a period of 2which discretizes
theories that are interesting in a variety of formal physicsthe longitudinal momentum as®=n=/L, wheren is an
contexts but have not been calculated. Some of these calcinteger. The total longitudinal momenturR* becomes
lations are now just beginning to be considered. With in-K 7/L, whereK is an integer called the harmonic resolution
creased interest in the physics of extra dimensions, it is morgL3]. The positivity of the light-cone longitudinal momenta
important than ever to solve supersymmetric theories in théhen limits the number of possible Fock states for a gien
nonperturbative regime. and, thus, the dimension of Fock space becomes finite, en-
The progress in putting supersymmetry on a lattice hagibling us to do some numerical computations. It is assumed
been rather slow due to some critical problems: the lack ofhat asK approaches infinity, the solutions to this large finite
translational invariance on a lattice, the notorious doublingoroblem approach the solutions of the field theory. The dif-
of fermion state$1], and the breakdown of the Leibniz rule ference between DLCQ and SDLCQ lies in the choice of
[2]. Recently, however, some interesting new approachediscretizing eitheP~ or Q™ to construct the matrix approxi-
have shed some light on this issi&-6]. These approaches mation to the eigenvalue problerv?|W)=2P"P~|¥)
make possible the restoration of supersymmetry in a con=2P*(Q7)?/ ﬁ|\1f>, with P*=Kmx/L. For more details
tinuum limit without fine-tuning of parameters and evenand additional discussion of SDLCQ, we refer the reader to
without introducing some “sophisticated” fermions such asRef.[11].
domain-wall[7] or overlap fermiong8,9]. However, these An interesting new result of the calculation we present
techniques seem to be applicable to only some subset of dilere is that finite-dimensional representations of the SDLCQ
supersymmetric theories. with odd and even values &f result in very distinct solu-
Given this increasing interest and promising new ideas fotions of theN'=(2,2) SYM theory, which only become iden-
the realization of supersymmetry on a lattice, it is worth-tical asK approaches infinity. One might initially think that
while to provide some specific, detailed numerical resultghis is a shortcoming of the SDLCQ approach, but it turns
using supersymmetric discretized light cone quantizatiorout to be an advantage because it provides an internal mea-
(SDLCQ) [10,1] for the simplest theory for which the new sure of convergence.
lattice techniques are applicable. SDLCQ is a well estab- We will give some numerical results of the low-energy
lished tool for calculations of physical quantities in super-spectrum. There we will see that as we go to higher and
symmetric gauge theory and has been exploited for mankigher resolutions, we find bound states with lower and
supersymmetric Yang-Mill$SYM) theories. TheNV'=(2,2)  lower mass. We have seen this behavior in e (1,1)
theory in 1+1 dimensions in the largh limit is discussed theory where the lowest mass state converges linearly to zero
in Ref. [12]; however, the published results are primitive as a function of K. This closing of the mass gap &5
compared to what can be obtained today because of ourcc was predicted by Wittehl5] for the N=(1,1) andN
greatly improved hardware and software. In this paper we are=(2,2) theories. We find that in the latter case the conver-
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gence is not linear in K/, and, while our results are consis-  After eliminating all the non-dynamical fields using the
tent with the mass gap going to zero, they are not conclusiveequations of motion, we find fdP“= fdx T+

We have also been able to solve analytically for the wave
functions of some of the pure bosonic massless states, and
we will present the exact form of the wave function for some Pt= f dx tr(d_X,0_X,+i ega_ 0Rr), (2
cases. We will show that the states must have certain prop-
erties to be massless, which then enable us to count the num-
ber of the states for a given resolutignIn addition, we will  and
present the formulas to count a minimum total number of
massless states.

Finally, we will look at the two-point correlation function p- zgzj dx—tr
of the stress-energy tens¢f ™ *(r)T**(0)). We see the
expected ¥/*-behavior in the UV and IR regioiE%nd, inter- _
estingly, we find that the correlator behaves as T7in the I
interr%gdiate region. We know of no predictions for this be- +5(eBIX 'QRDTI B[X;,0r]|. (3
havior; however, fo''=(8,8) SYM theory there is a predic-

tion that this correlator should behave like 3Lin the inter- ] ) ]
mediate region. The supercharges are found by dimensionally reducing the

The structure of this paper is the following. In Sec. Il we Supercurrent in the four-dimensional theory. They are
focus our attention on the low-energy states. After giving a
quick review of N=(2,2) SYM theory with SDLCQ, we
give some numerical results for the low-energy states, dis- QZZZSMJ dxtr(d-X Biayus,), (4)
cuss analytically some properties of pure bosonic massless
states, and present the formulas to count a minimum total
number of massless states. We discuss the numerical results _ _ 34+
for the two-point correlation function of the stress-energy Qa_gJ’ dx"tr| =27 Iezwuv
tensor in Sec. Ill. A summary and some additional discussion
are given in Sec. IV.

1 1 1
- §J+§—ZJ+—Z[X| X2

+271/4i[X| !XJ](ﬁlngGZ)a'I/un ' (5)

Il. REVIEW OF N=(2,2) SYM THEORY

wherea,»=1,2 andu, are the components dfy.
A. N'=(2,2) SYM theory and SDLCQ

We expand the dynamical fields, and u, in Fourier
Before giving the numerical results, let us quickly review modes as

some analytical work o= (2,2) SYM theory for the sake

of completeness. For more details see REZ]. This theory 1 e dkt

is obtained by dimensionally reducing=1 SYM theory Xipg(X )= —= | —=[Aq(k

from four dimensions to two dimensions. In light cone Pl \/ﬁ 0 \/T pa

gauge, wheréd_ =0, we find for the action

+)e—ik+x’

+ AL (ke X, (6)
Sﬁl:f dxTdxtr 9, X,0_X,+i0%d" Og+i6l o™ 6,
BapgX) = e fxdlﬁ[B (ke k"
1 apq = 5 LBPapq
+5(9-AL)P+ AT + V29628 [X) . br] J2mlo 2
o2 +Bl (ke %], 7
+Z[X| X2, (1)

wherep,q=1,2, ... N, stand for the color indices, arilB
satisfy the usual commutation relations

wherex™ are the light-cone coordinates in two dimensions,

the trace is taken over the color indice§, with 1=1,2 are At s

the scalar fields and the remnants of the transverse compo- [Aipg(k™), Ages(k 1= 8136pr Ogsd(K™ —K' ™), ®)
nents of the four-dimensional gauge field,, two-
component spinor field8g and 6, are remnants of the right-
moving and left-moving projections of the four-component
spinor in the four-dimensional theory, agds the coupling
constant. We also define the curredt’ =i[X,,d_X|] We work in a compactifieck™ direction of length 2 and
+20E0R, and use the Pauli matricgg=o0,, Bo=03, and ignore zero modes. With periodic boundary conditions we
ex=—li0,. restrict to a discrete set of momerjtt0]

{Bupg(K™),Bls(K = 8,580 3qs0(k™ =K' ™). 9)
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o

K="k k=123.... 1

L Xipg(X7)= E gl ﬁ[alpq(k)eﬂ(wu)kx*
T - L +al’fqp(k+)ei(7r/L)kx*], (12)
J dk+*>t 2 y 5(k+_k/-‘)*>;5kk,_ (10) ;
Ugpg(X )= \/_ 2 \/_[ apq(k)e—l(w/L)kx

Relabeling the operator moded./ma(k)=A(k* = mwk/L)
and JL/7b(k) =B(k* = mk/L), so that +bl (k)b (13

In terms ofa andb, the supercharges are given by
. ﬂ- -
Qf =2 \[Ek; VkBiaLal (k)b (k)

_b;ij(k)alij(k)]a (14

[Q1pq(K) b s(K") 1= 81385 SqsPi »
{bapq(k),bgrs(k’)}z SapOpr OqsOkir (12)

the expansion is and

) i21’4g\F - 1 (k= : ) )
Qu="1 ;kl’k§(3:15(kl+k2),k3 (fz)anm k3 | [b 7ii (K3)&im (K1) @imj(ka) — ayim (K)aymj(K2) b (Ka) ]

1 ki+kg +
+ AN [afim(Ky )br;m](kz)alij(kS)_alij(kS)alim(kl)br;mj(kZ)]

1 kotks|
+2m K, [alij(ks)bnim(kl)almj(kz)_b Im(kl)almj(kz)a|lj(k3)] ky [bn”(kS)bnim(kl)bnmj(kZ)
+b;.m(kl)bnmj(kz)bnij(ka)] [by,l,(ks b im(K1) B mi(k2) +bli(k)bT (ko) b, (Ks) ]

1
[bnlj(k3)b7]lm(kl)b7]mj(k2)+bnlm(kl)brlmj(kZ)br]ij(kS)] +2(€2)|J( \/W[balj(kB)allm(kl)aij(kZ)

1
+ ajim(kl)armj(kz)baij(k3)] + m[a}ij(ks)baim(kl)almj(kz) + lem(kl)aJmJ(kZ)allj (ka)]

1
\/—[ah] (kS)aJlm( l)bamj(kZ) + al|m(kl)bam1(k2)a,]ij(k3)]) } (15)

using the relation[(8, ,83]€2) o= S, (€2)15 - Although we have differenP, for different Q,, we can
They satisfy the superalgebra conditions for anticommudefine a unitary, self-adjoint transformatldh such that
tators involvingQ,,
CalijC:azij, CblijC:_bZij (18)

{Qs.Qp}=8.52V2P", {Q).Qz}=0.  (16)  and find thalCP; C=P; . Thus the eigenvalues &, are

the same. We may choose either one of the @ygs, at least

but do not satisfy the conditiofQ,, ,Qz}= 6,42 V2P, In-  for our purposes, and in what follows we will u€® and

stead, in SDLCQ we find will suppress the subscript unless it is needed for clarity.

The momentumP™, is given by

{Q,.Qz1#0if a#B, (Q1)2=2P; #2P;=(Q;)?

1 L,
17 P+:E(Q1)2:f2k k(al;au; +bjijbyij). (19
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TABLE I. The mass squarel? of the first few lowest massive states in tBeven sector in units of

g°N./ for a series of resolutionk.

K=3 4 5 6 7 8 9 10 11 12

1.308 4.009 0.0067 2.144 0.0040 1.415 0.0026 1.040 0.0018 0.8188

12.62 12.24 0.6304 2.514 0.0060 1.5999 0.0038 1.138 0.0026 0.8790

22.06 15.04 1.0813 2.645 0.4366 1.712 0.0048 1.212 0.0026 0.9312
15.28 1.1099 2.773 0.6016 1.729 0.3515 1.256 0.0039 0.9397
22.53 1.5732 2.807 0.6308 1.811 0.4372 1.347 0.3062 1.0072

We work with a fixed value of momentum
(20)

We call K the resolution because larger valueskofallow
larger values ot. while leaving the momentur®@ ™" fixed.

The next thing to note is that there are thiesymme-
tries of Q; . The first one iR;-symmetry, wherdR, acts as
follows:

aqjj<r i, be——Db,. (21
The second iSsymmetry
Qij— —Qjji,  Dbaij——Dbyji- (22
The third is what we call-symmetry
aj——ay;, b, unchanged. (23

It is easy to see that under these symmet@gsis invariant.
Using the relations

RiQ/Ri=—-Q;, TQ,T=-Q,,
we find
R1(Q1 £Q;)R1=F(Q1 £Q;),
T(Qy +Q;)T=—(Q; Q7). (24)
Also note that

{Q7+Q;.Q1*Q;}

={Q7.Q{1+{Q7 .Q;}=2{Q] ,Q§}=4ﬁp+.(25)

We work in a subspace of definite momentum €Q; (
+Q,) must have nonzero eigenvectors. Sig¢ andQ,,

are fermionic operators we see that a bosonic energy eigen-
state|W'g), . which is even undeR and T-symmetry can be
transformed into

|Pg)=-=Q1 (Q1 =Qz)[ W)+,

|\PB>7+:(QI+Q;)(QI_Q;)|\I’>++
(26)

which are all degenerate withP'g) . . . One should notice
here that we cannot usg; andQ, at the same time since
they do not commute with each other. Thus, including the
supersymmetry, we have an 8-fold degeneracy. Utilizing the
remaining Sssymmetry, which does not give us a mass de-
generacy, we can divide the mass spectrum into 16 indepen-
dent sectors. This significantly reduces the size of the com-
putational problem. It will be convenient to refer to bound
states of this theory as havir® T, or R even or odd parity
and to refer to a state as having even or odd resolutiol{s if
is an even or odd integer.

B. Mass gap

Tables | and Il show the first few low-mass states. We find
anomalously light states in the sectors with oppokitend S
parity for K larger than 4. Furthermore, the number of ex-
tremely light states increases by one as we incréads
two. We believe that these anomalously light states should be
exactly massless states, but for some reason there is an im-
pediment preventing SDLCQ from achieving this result.
Some of the evidence for this comes from a study of the
average number of partors) in the bound states. For ex-
ample, in the sector witB andK even, for each even integer
r less tharK, there is exactly one bosonic massless state with
(n)y=r. ForK odd we do not see massless states of this type,
but we do find(n)=r for the anomalously light bound states

TABLE Il. Same as Table | but for th&-odd sector.

K=4 5 6 7 8 9 10 11 12

1.2009 3.1876 0.00674 1.8427 0.00440 1.2687 0.00302 0.95786 0.00217
1.2009 3.1887 0.6402 1.9305 0.00538 1.3266 0.00317 0.99795 0.00218
12.296 3.3239 0.6747 2.0413 0.45529 1.4087 0.00431 1.0302 0.00219
12.296 11.489 0.9900 2.1415 0.48010 1.5107 0.36858 1.1036 0.00356
19.502 11.492 1.0313 2.3603 0.55873 1.5219 0.38647 1.1345 0.32053

045015-4



IMPROVED RESULTS FORN=(2,2) SUPER YANG-. .. PHYSICAL REVIEW Y0, 045015 (2004

5 - - T - T - This, however, does not seem applicable in our case since the
. states in Fig. 1 are the lowest energy states; thus there are no
lower energy states available to form two-body states.

The distinct character of the mass gap serves as another
1 piece of evidence that we have two different classes of rep-

NE _ resentations. The data is consistent with the mass gap closing
. to 0 asK — o, especially for the case wheBandK have the
) | same parity. The odd and even representations approach each
2 . other asK increases and we hypothesize that they become

identical in the continuum limit oK—o. When we present
the correlation function in Sec. lll, we will see further evi-
dence for this claim.

0 . | . I . I . C. Massless states
0 0.1 02 03 0.4
/K

(@)

1. Pure bosonic massless states

Let us investigate the properties of pure bosonic massless
states in full detail in theN.—cc limit. This is done by gen-
eralizing the discussion of the bound states in SDLCQ for
N=(1,1) SYM theory, as given in Refd11,1§, to N/
=(2,2) SYM theory.

For simplicity, let us consider the states consisting of a
fixed n number of partons only. A pure bosonic massless
gL5— . state is given by

25 -

|¥,0)=N
T
05+ .

xti{aj (q1) .. .ah (dn)][0),

0 s | . I . I s
0 0.1 oe 03 04 whereN is the normalization factoig;=1,2, ... is theunit

(b) of the light-cone momenturp;=q;w/L carried by thei-th
parton,A;=1,2 indicates the flavor index for each parton, the
FIG. 1. Plots of the mass squared in unitsg3N./m for the ~ sumX, is the summation over all possible permutations of

lowest massive states, excluding the anomalously light states, wit{he flavor indicesA; ’s,f_is the wave function, and the trace is
a polynomial fit constrained to go through the origin. The pld@n  aken over the color indices. Note that we do not have the
correqunds to the sector whedandK have the same parity, and symmetry factor coming from the cyclic property of the trace
the plot in(b) to the sector wher§andK have opposite parity. in the above notation; one has to put in the symmetry factor
) ) o ) ) by hand if one would like it to be in there as we will do so
in this sector. This is also the first sign of the distinctionfg, gn example given later in this subsection. In other words,
between representations of the supersymmetry algebra in difqck states with non-zero symmetry factor are not normal-
ferent symmetry sectors, namely those with anomalously,eq.

light states(with oppositeS andK parity) and those without Due to the cyclic property of the trace, we have
anomalously light state@vith matchingS andK parity).

In our discussion of the mass gap we will not include thef—
anomalously light states as part of the massive spectrum forlA1-
the reason given above. To study the mass gap we will look
at the lowest massive state in each sector as a functioriKof 1/
as shown in Fig. 1. There we also show polynomial fits in all _ B o
four sectors separately. The fits are constrained to go through SinceP =(Q") /\/2, all the massless states should van-
the origin. The quadratic fits look very good in Figal but  Ish upon the action oQ@". Thus, we must hav@"|¥,0)
parity look very similar as do the two fits with sarBandK ~ Pure bosonic massless states. That is, the terms to consider in

parity. In each case we could have fit all the points with onéQ ~ are those which annihilate one boson and create one
curve if we were to include a small oscillatory function in the Poson and one fermion, and those which annihilate two
fit. We should note here that oscillatory behavior has bee®0sons and create one fermion. Both the former and latter
observed before in different theori€$6,17. The explana- Cclass of terms inQ~ separately annihilategV’,0). In the

tion given there is that those states which show the oscillalargeN limit the former class gives, writing(qy, . . . .gp)

tory behavior comprise non-interacting two-body states=q;...q,f(q:,....dn),

g, =qn):f_[A2...AnA1](q21 e On, Oy =

:f_[AnAl...An_l](Qn: - On-1)
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2q,_1tt is massless, where we used the cyclic property bf terms
0=(€2up) 7o e f1A;...A1(A1s - - - On-1F1,0n) of the normalized Fock states

(Gn-2 0t tr[a}l(l) . .aLn(l)]|O)/(J§NQ’2)EA1 A=A LA
_ 2q,+t (0) (\/EN’C"Z), wheres is the symmetry factor, we find, after nor-
(ga )t [y .. A (1 - G100 D) malizing properly, that
+2(qn+t) [Al...Anfl,I](qu o On-1,0n 1) —3(&124— 5(%
_ MlAﬁn—l £(0) ( g is massless sincefor 1212 and 1122 equals two and one,
2(Qn_1+t) A An2. b A Q1 - On-175L,0n) respectively. Indeed we have found the very same massless
state in our numerical results.
(27) As we have seen above, there is a one-to-one correspon-
and the latter yields dence between a massless state and a given set of flavor
indices, which has &xednumber of 1's and 2’s. This means
t— 2k that every time we change the number of (ds 2's) in the
0= > D | (€api—r0a . A flavor indices, we find a new massless state. Since we can
An-1An K tk(t—k) =1 haveK +1 such different sets of flavor indices, we ha¢e
X’B A +1 massless states of this kind. As verification of our argu-
n-1%n | £(0) _ ment, we enumerated all the massless state& fop to six
i k(t—k) )f[Al”'A“](ql' An-2:k,t=k), (28) and found all of them with the correct coefficients in our

ap . numerical results.
where M{’=[(B1B,— BiBi) €2]ap, t is the momentum of The next case to consider is where K —1. In this case

the created fermion, and the momentum conserving Kropnly one of the partons has two units of momentum, so that

necker's deltédq, + .. .+q, « is understood implicitly. These ¢_ 5t powever, since all thé's have the same factor of

are the necessary and sufficient conditions for a pure bosoni@ we can absork/2 into the normalization factoN and
state to be massless. One should notice that the above equa-

tions reduce to the corresponding equations found in Refspractlcally can sef=f. We havet=1 andg;=1 with i

: - =1,...nh in Eg. (27 and find, writing @1, ....dn)
= = aB _ 1 n
[11,18 with (€;),5=1, Aj=1 for all i’s, andM =0, as =(1,...,1,1,2=(1,2) and so on,

expected.
In principle, we could find the properties of all kinds of 0=[A;...A](2,D)—[A;...A](1,2), (30)
pure bosonic massless states using E2j8. and (28). How-
ever, we limit ourselves here to the investigation of only two 0=[A;...Ar_2.A _1,A](1,2)
special types. To simplify the notation, we omit the super-
script (0) from the wave functiorf hereafter. —[A1. . A2, A A 1](2)D), (31

The simplest case is where=K, that is to say, all the
partons have one unit of momentumL and, thusf=f. In 0=[Ar...An—2,An-1,An-11(1,2
this case Eq(27) is trivially satisfied since we cannot have AL A ALALLR,D), (32)
states with K+ 1) partons. From Eq.28) we get
whereA,_,# A, in Egs.(31) and(32). For Eq.(28) we have
0=Fa,...a 21 flay .o, p200 29 (=2, k=12 andg=1 withi=1, ... n—2, and we get

where we have omittedqg, ....q,)=(1,...,1). Eq.(29 0=[A;...A_2,AAl(1,2—[A;...A_2,AA](2,]),
means, with the help of the cyclic propertyfothat the wave

function is unchanged after movirany flavor index toany (33

location in the list of indices. For instance, we find, writing

f[Al_,_An]E[Al . 'An]’ O:[Al . .An,2,1,2](1,2)+[A1 .. .An,2,l,2](2,l)
—[A1. .. An=22,1](1,2 —[A1 .. . An—2,2,1](2,2).

[1212)=[122]=[212]]=[221]1]=[2112]=[1122]. 34
34
It is clear that the state with the above six wave functions ] ]
being the same and all others zero satisfies @§), or  Apparently, we have five equations for the massless states to
conditons to be massless. Therefore, writing Ed-(30) and that if Eqs(30) and(31) are true, so is Eq34)

tr[aI\ 1) .. _az\ (1)]|0)=A, . ..A,, we find the state automatipally. Hence, thg three equations Eg6), (31), and
1 n (32) are in fact the equations for massless states to satisfy for
N[1212](1212+ 1221+ 2121+ 2211+ 2112+ 1122 n=K-1. )
In order to see what the three equations allow us to do, let
=N[1212)(2(1212+4(1122) us first write
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[A, .. A=A, ... Al Af(Kn)+A¢(K,—n)+W
’ ! Apest (K,n) =Ares-(K,n) = 5
That is, let us put a prime on top of an index whose corre-
sponding parton has two units of momentum. Then, (B As(K,n)+A{(K,—n)—W
allows us to move the “prime” to any index. Equati¢81), Apes (K,N)=Ates(K,n) = >

along with this fact, then also allows us to move the index
with a prime to any location in the index list. For example, A (K n)=A;os (K,N)=Apos (K,N)=Ass (K,N)
we have

Ai(K,n)—A¢(K,—n)

[112 ]=[11'2]=[1'12]=[12'1]=[1'21]=[121'] 2 (35
=[2'11]=[21"1]=[211]. where
Furthermore, Eq(32) allows us to replace 11lby 2’2 [or _ _i K_
22’ using Eq.(30)] as long as a minus sign is inserted. Thus, Af(K’n)p“me_ZK ((T+n)"=(1+n)) (36)
for the above example we get
n 2
[112]=[11'2]=[1'12]=—[22'2], WZ(E) (K=1). 37

where we have omitted the wave functions related by cyclid@ 90€s from bosonic to fermionic and from even to odd:
ermutations. This means that the state
P Avos (KuM) — Apest (K, = Aposr (K,1) — Areg (K, 1)

(112 +11'2+1'12—-22'2)/2 w
=—Af(K,—n)—§ (39
is massless. Note that the symmetry factor in this case is
equal to one for all the Fock states above. Atos— (K N) = Apes (K ,N) =Apos-(K,N) — Afes- (K, N)
Since Egs(30), (31), and(32) relate all the sets of flavor
indices with an even or odd number of 1's to one another, we =~ A(K,—n)+ V_V (39)
have onlytwo independent sets of flavor indices: the one AR 2°

with even numbers of 1's and the other with odd numbers. o
This means that there ate/o massless states of this type. The minimum total number of massless states must therefore

Again we have confirmed this statement numerically for be
up to six.

. . o 2 2
To summarize, we have found in the laiye-limit the ALK =M =— —((1=mK=(1=n)) = —(3K—3
necessary and sufficient conditions, E@a7) and (28), that (Ko=n) K(( ) = ) K( )-
pure bosonic massless states are to satisfy. As an application (40)

we considered two special cases and found that there a?or K—5. this comes to 96 states which is way more than
K+1 massless states of the typdaiff (1) ...aL (1 —9 . ,
ypd 3{1( ) AK( )] the 8 purely bosonic states with 4 or 5 partons that we have
and two of the type fa} (1) ...aL (1)ak (2)]. Also - :
ype ta,, A o\ t)8a, + found in this section.
we gave a way to enumerate all such massless states for a

givenK. Ill. CORRELATION FUNCTIONS

2. Count of massless states C_)ne qf the physica] quantit_ies we can calculate nonpertur-
. . . . batively is the two-point function of the stress-energy tensor.
It is possible to predict a minimum number of masslesspyeigys calculations of this correlator in this and other theo-

H 2
symmetry sectors. Sincé)")” takes a state from one Sym- e theory considered here but only for resoluti&nsp to 6.

metry sector to another and then back it must have O eigeRys can now reack = 12.

values if the dimensionality of the intermediate sector is less We will show that there is a distinct behavior for even and
than that of the original sector. It is possible to create g,qqk in the correlation function, just as in the energy spec-
simple recursive formula for the number of states in each, .\ Then we will argue, by taking a closer look at the data,

sector[19]. For the case wheK is prime and odd, the for- ot e have two different classes of representations at finite
mula is particularly simple. We present the results here buf '\ bi-h become identical a¢— oo

refer to the other publication for justification. We define
Apest(K,n) as the number of states in the bosonic sector
with an even number of partons and ex&symmetry, where

n indicates how many types of particles we have in a SYM Let us first recall that there is a duality that relates the
theory, i.e.,n=4 for N=(2,2) SYM. Then results for the two-point function iWV=(8,8) SYM theory to

A. Correlation functions in supergravity
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the results in string theorj21]. The correlation function on where x has light cone coordinates ,x*, M; is a mass
the string-theory side, which can be calculated with use ogigenvalue and,(x) is the modified Bessel function of or-
the supergravity approximation, was presented2@], and  der 4. In[12] we found that the momentum operafor ™ (x)
we will only quote the result here. The computation is essenis given by

tially a generalization of that given if23,24. The main
conclusion on the supergravity side was reportef®]. Up

to a numerical coefficient of order one, which we have sup-
pressed, it was found that

1
T3 " (x)=tr| (9_X")2+ E(iuaa,u“—i(a,ua)u“) ,

NEZ l,a=1,2, (44)

(O(x)0(0)y= ——. (4D

whereX andu are the physical adjoint scalars and fermions,

respectively, following the notation ¢f.2]. When written in

This result passes the following important consistency tes . ;
The SYM theory in two dimensions with 16 superchargest\tsg?i‘;(?f the discretized operatossandb [Egs. (12),(13)],

has conformal fixed points in both the UV and the IR re-
gions, with central charges of ordﬁﬁ andN., respectively. o K2

Therefore, we expect the two-point function of the stress- T7"(K)|0)= ETH [— \/k(K—k)aﬁj(K—k)afrji(k)
energy tensor to scale likg2/x* andN./x* in the deep UV k=1

and IR regions, respectively. According to the analysis of

[26], we expect to deviate from these conformal behaviors +
and cross over to a regime where the supergravity calculation

can be trusted. The crossover occurs<atl/gy /N, and
x=N/gyy. At these points, th&l, scaling of Eq(41) and

Oy mX

K ) :
5~k by (K=K)bg;(k) [|0).  (45)

The matrix elementl(/7)(0|T**(K)|i) is independent
h f I | hin th t th of L and can be substituted directly to give an explicit ex-
the conformal result match in the sense of the CorresloOrbression for the two-point function. We see immediately that

dence principld27]. . : L
We should note here that this property for the correlationthe correlator behaves likert/at smallr, for in that limit, it

functions is expectednly for A= (8,8) SYM theory, not for asymptotes to

the theory in consideration in this paper. However, it would _\2 N2(2n, 4+ ) 1
be natural to expect some similarity betwesf (8,8) and X F(x~,x*)= c\eb T 1— _). (46)
N=(2,2) theories. Indeed, we will find numerically that Eq. xT ’ 42t K

(41) is almosttrue in N/=(2,2) SYM theory.
On the other hand, the contribution to the correlator from
B. Correlation functions in SUSY with 4 supercharges strictly massless states is given by

We wish to compute a general expression of the form . 5
F(x~,x")=(O(x",x*)0O(0,0)) whereOis T**. In DLCQ, 2 B x=S 120l THH (K)iY2
where we fix the total momentum in the direction, it is xt X7 z.: |7-r< | (K >|'V'i=°K37T2r4'
more natural to compute the Fourier transform and express (47)
the transform in a spectral decomposed f¢£,21]

-\ 2

That is to say, we would expect the correlator to behave like
1/r# at both small and large assuming massless states have

- 1
F(P_ x")= Z(T**(P, XOTT(=P_,0) non-zero matrix elements.

:Z Z(O|T++(P,,O)|i>e_'Pl+x+ C. Numerical results
: To compute the correlator using Eg.3), we approximate
X(i|T**(=P_,00). (42) the sum over eigenstates by a Lanc®28] iteration tech-

nique, as described {i21,22. Only states with positiv®,,,
The position-space form of the correlation function is recov-T and S parity contribute to the correlator. The results are
ered by Fourier transforming with respect ®_=P" shown in Fig. 2, which includes a log-log plot of the scaled
=Kmx/L. We can continue to Euclidean space by taking correlation function
=/2x"x~ to be real. The result for the correlator of the

- 2.4
stress-energy tensor was presented[20], and we only fE<T++(X)T++(0)>(X_ 477—r (48)
quote the result here: X" ) N23(2n,+ny)
FOXT xH)=(TT ()T (0)) and a plot ofd logyo(f)/d log;o(r) versus logy(r), with r
L measured in units of/7/g°N.. Let us discuss the behavior
= > | =(0] T (K)|i)|? of the correlator at small, large, and intermediatesepa-
P rately in the following.
2 M4 First, at smalk, the graphs of for differentK approach 0
% X —iK4(M-W) (43 asK increases. This follows Eq46) which gives the form
-] 87’K3 ' ' f=log(1—1/K). Second, at large, obviously, the behavior
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FIG. 2. Plots of log of the scaled correlation functibas a function of logy(r) for (a) K=3,4, .. .,12, (c) K odd, and(e) K even, and
plots of d log,o(f)/d log,o(r) as a function of logy(r) for (b) K=3,4, .. .,12, (d) K odd, and(f) K even.

is different for oddK, in Figs. Zc) and(d), and everK, in (e) no massless state nor even an anomalously light state that
and (f). However, the difference gets smallerlagets big- makes any contribution for odd. Instead, it is the lowest
ger, as seen in Fig.(d. The reason for this is as follows. massive state that contributes the most for &ddrhis ob-
Looking at the detailed information of the computation of theservation serves as another piece of evidence for the claim
correlator, we found that for evel there is exactly one that we have two distinct classes of representations for odd
massless state that contributes to the correlator, while there &d everK.
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In the intermediate- region, for theN'=(8,8) theory we (larger, K even regions as expected. The largéehavior
expected from Eq(41) that the behavior is 17, and in[21]  for K odd, on the other hand, has an exponential decay. Sur-
we found that the correlator may be approaching this behawprisingly, the correlator behaves liker4/° at intermediate
ior. We indicated if21] that conclusive evidence would be a values ofr. In A’/=(8,8) SYM theory in H1 dimensions,
flat region in the derivative of the scaled correlator at a valuahe correlator is expected to behave like®lih the interme-
of —1. Our resolution was not high enough to see this in theliate region, and it is interesting th&f=(2,2) behaves simi-
N=(8,8) case. Here we find such a flat region, indicatinglarly but with a different exponent. We were able to confirm
that the correlator in fact behaves liker1#’® for A/ this power law behavior with a flat region in the derivative of
=(2,2) SYM theory. Also, note that the region of flattening the scaled correlator. Previously, in our calculation of the
around—0.75 extends farther out & gets bigger, for both N=(8,8) correlator at lower resolutions, we were not able to
odd and everK, implying again that the representations ap-find this flat region. We are hopeful that in the near future we
pear to agree ak goes to infinity. For any fixed value of  may be able to conclusively confirm ther 1behavior in the
the correlators for odd and evéhapproach each other #&  A/=(8,8) theory. Interestingly, we also note that earlier re-
increases and the flat region extends further. This indicatesults seem to indicate the same type of odd/even behavior for
that it is only in the region of where the correlators for even the A’'=(8,8) theory.
and oddK agree that we have sufficient convergence for the Analytically, we investigated the properties of pure

results to be meaningful. bosonic massless states and found the necessary and suffi-
cient conditions to determine their wave function. Then we
IV. DISCUSSION explored some special cases to find that there Karel

, o ) , massless states of type
To respond to the increasing interest in calculating super-

symmetric theories on a lattic8—6], we have presented tfaj (1)ah (1) ...a} (1)]/0),
detailed numerical results for the low-energy spectrum and ' z «
the two-point correlation function of the stress-energy tensokyhereA, is a flavor index and the number in the parentheses
using SDLCQ forN=(2,2) SYM theory in -1 dimensions  tells how many units of momentum each parton carries, and
in the largeN. approximation. Our hope is that these resultsthat there are two massless states of the type
will serve as benchmarks for others to compare and check
their results. tfaj (Dag (1) ...a5 _(2)][0).

In addition, we found an important new aspect of the
SDLCQ approximation in this calculation. There seem to bewe also gave the formulas to count a minimum total number
two distinct classes of representations foF=(2,2) SYM  of massless states for a SYM theory which is dimensionally
theory, one whereS and K have the same parity and one reduced to one spatial and one time dimension.
where S and K have opposite parity; these representations What prevents us from reaching even higleis obvi-
become identical aKk— <. We found evidence for this fea- ously the fact that, as one can shfl@], the total number of
ture of V=(2,2) SYM theory in both the mass spectrum andpasis states grows like (1+n)¥, wheren is the total num-
the correlator. We also found that there are some anomayer of particle types and=4 for N=(2,2) SYM theory.
lously light states that appear only in the sectors wisa@d  Our numerical results were obtained using one single PC
K have opposite parity. We argued that the anomalously lighfvith memory of 4 GB. The problem that we now face is that
states should be exactly massless, but have acquired a tigye do not have enough memory to store all the states in one
mass because of some impediment to having them exactiyC. However, as we make use of a cluster of PCs and find
massless in the SDLCQ approximation. In the calculation ofyays to split and share the information among them, we are
the correlator where only positive S parity contribute weaple to reach even highdt. This is the direction of our
found that there is exactly one massless state that contribut@sure work, with the ultimate goal being to achieve suffi-
to the correlator wheK has positive parity and that no mass- cient numerical precision to detect the correspondence be-

less state or anomalously light state contributes wRéras  tween A'=(8,8) SYM theory and supergravity conjectured
negative parity. The lightest massive state in the sector whengy Maldacend29].

K has negative parity does contribute to the correlator, but
because the mass gap appears to close at infinite resolution
this state appears to become massless, as exgdd&kd

The two-point correlator of the stress-energy tensor was This work was supported in part by the U.S. Department
found to show I7*-behavior in the UV(smallr) and IR  of Energy and the Minnesota Supercomputing Institute.
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