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One starts from a planar Maxwell-Chern-Simons model endowed with a Lorentz-violating term. The Dirac
sector is introduced exhibiting a Yukawa and a minimal coupling with the scalar and the gauge fields, respec-
tively. One then evaluates the electron-electron interaction as the Fourier transform of Itee Sdattering
amplitude carried out in the nonrelativistic limit. In the case of a purely timelike background, the interaction
potential can be exactly solved, exhibiting a typical massless behavior far from the origin. The scalar interac-
tion potential is always attractive whereas the gauge intermediation may also present attraction even when
considered in the presence of the centrifugal barrier and\therm. Such a result is a strong indication that
electron-electron bound states may appear in this theoretical framework.
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I. INTRODUCTION massless behavidin the electric sectorfor the case of a
timelike background and anisotropic behavior for the case of
In the beginning of the 1990s, the Mer scattering was a spacelike background. It was also reported the possibility
adopted as a theoretical tool to investigate the possible folf obtaining an attractive electron-electron interaction as a
mation of electron-electron bound states in the context of @onsequence of the existence of well region in the behavior
Maxwell-Chern-Simons electrodynami¢&]. According to  of the scalar potentialAp).
this procedure, one starts from the scattering amplitade Once Lorentz symmetry is broken, the equivalence be-
ried out at tree levelto obtain the electron-electron interac- tween all inertial frames is lost, and each inertial frame starts
tion potential (Born approximation It was then observed to notice a different physics. It is a well known fact that
that the potential may come out negative whenever the topazondensed matter systeif@MS) are not endowed with Lor-
logical mass exceeds the electron mass ifig), condition  entz covariance, but with Galileo one, which holds as a
which is particularly discouraging in relation to the possibil- genuine symmetry in the domain of isotropic low-energy
ity of applying this kind of model to some condensed mattersystems. Having in mind that a CMS may be addressed as
systems, where one usually deals with low-energy excitathe low-energy limit of a relativistic model, there follows a
tions. The introduction of the Higgs sector, arising from thestraightforward correspondence between the breakdown of
spontaneous symmetry breakif@,3], has shown to be a Lorentz and Galileo symmetries, in the sense that a CMS
theoretical factor able to provide a scalar attractive interacwith violation of Galileo symmetry may have as counterpart
tion. The overall potential, consisting in the sum of the gaugea relativistic system endowed with breaking of Lorentz co-
and scalar contributions, may then be negative independentlyariance.
of the conditions>m,, a necessary premise for the forma-  Theoretical planar models able to provide attracéve
tion of Cooper pairs in the context of low-energy systems. interaction potentials are relevant in the sense they may con-
In recent years, Lorentz-violating theories have been irstitute a suitable framework to address the condensation of
focus of intensive investigatiopd,5]. In a recent work, a Cooper pairs, a fundamental characteristic of superconduct-
planar Lorentz-violating electrodynamid$] was derived ing systems. Another well defined feature of a planar High-
from the dimensional reduction of a Maxwell electrodynam-superconductor concerns the symmetry of the order param-
ics supplemented with the Carroll-Field-Jacki®FJ) term  eter (standing for the Cooper pajrwhich is described in
[7]. The consistency of this model has already been anaerms of a spatially anisotropic d-waJ®]. A theoretical
lyzed, revealing a model globally stable, causal and unitaryramework able to provide an anisotrogice ™ interaction is
for both time- and spacelike backgrourdg. The fact that the first step to the achievement of anisotropy for the order
the unitarity is assured makes feasible, at principle, the corparameter. This is exactly the expected result to be obtained
sistent quantization of this model, which sets it up as a canin the case a purely spacelike background, whereethes™
didate to be applied to situations where the quantization o$cattering potential may be identified with the one evaluated
the modes is a real conditigguch as some condensed mat-in the context of a CMS endowed with a privileged direction
ter phenomena In a posterior investigatiof8], the equa- in space. Therefore, once an anisotropic CMS constitutes an
tions of motion(for the field strengths and potentiptsorre-  example where the breakdown of the Galileo symmetry takes
sponding to this planar model were determined and solved iplace, such a system may be properly approached as the
the static regime. The results obtained differ from the soluiow-energy limit of a Lorentz-violating electrodynamics in
tions of a pure MCS electrodynamics by background-the presence of a pure spacelike background.
depending corrections, which amount to relevant qualitative Having as main motivation the results achieved in Ref.
modifications. Indeed, the solutions have exhibited a typical8], which show that a fixed background induces sensitive
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effects at classical solutions, in this work one investigates thesed to evaluate the scattering amplitude associated with the
tree-level behavior of two interacting fermions in the contextYukawa and the minimal couplings. In Sec. IV, the interac-
of a Lorentz-violating electrodynamics. By determining thetion potentials stemming from the scalar and gauge sectors
e~ e~ interaction potential, one can verify to what extent theare carried out, and the results are discussed. In Sec. V, one
properties reported in the classical static analf@jsare pre- presents the concluding remarks.

served in the context a dynamic evaluation. One can also

study the possibility of achieving ae@™e™ interaction en- Il. PLANAR LORENTZ-VIOLATING MODEL
dowed with attractiveness and anisotropy, two relevant prop-

erties in superconducting systems. Hence, the purpose is to The starting point is the planar Lagrangiatained from

carry out thee~e™ interaction potential, exhibiting and the dimensional reduction of the CFJ-Maxwell electrody-

stressing the corrections induced by the fixed background of@@mics[6], which consists in a Maxwell-Chern-Simons elec-

the pure Maxwell-Chern-Simons result. For that, one firstrodynamics coupled to a massless scalar fiell §nd to a

introduces the Dirac sector to the planar Lorentz-violatingfixed background «*) through a Lorentz-violating term.

gauge model derived in Ref6]. Taking into account the ©One then considers the additional presence of a fermion field

guidelines set up in Reffl,2], one then proceeds to evaluate () minimally coupled to the gauge fieldA() at the same

the Mdler scattering amplitude from which one derives thetime that exhibits a typical Yukawa coupling to the scalar

e e~ interaction(according to the Born approximatiphe  field (¢):

potential here attained is composed by two contributions, a

scalar and a gauge one, since #hee™ interaction is medi-

ated by the massless scalar and the massive gauge fields. The

scalar potential, absent in the context of a pure MCS model, 1

is always negative, and may lead to a global attractive inter- wavpk N2 T —

action regardless the sign of the gauge contribution. In the T eeunvtdA Zaw“A HHUID—me)y

case of the gauge potential, it presents background- —

depending terms that imply qualitative modifications, such as —Yo(4ih). 1)

the possibility of being attractive for some parameters range, ) o _

even when considered in the presence of the centrifugal bafere, the covariant derivativ® y=(4+iesA) , states the

rier and the low-energ?- Pauli term. Both the scalar and minimal coupling, whereas the termp(¢y) reflects the

gauge potential possess a logarithm dependence, which ¥sikawa coupling. The fermion field) is a two-component

compatible with a massless behavior far from the origin.  spinor with up spin-polarization, which represents the posi-
This paper is outlined as follows. In Sec. Il, one briefly tive energy solution of the Dirac equation,y4p,

exhibits the reduced model derived in R], supplemented —m)u,(p)=0, here written in momentum space. In Ref.

by the fermion field. In Sec. lll, one presents the spinorg6], the propagators of the scalap) and gaugeA ) fields

which fulfill the two-dimensional Dirac equation and that are were properly evaluated as it appears below:

1 v S vpak 1
£1+2:_ZFMVF’U' +EEMV|(AM(9 A _Eaﬂ(paﬂ(,D

AEOAT K =i — 1 o a(k?— )R (k) +s?(v - k)2 o S Gy s? N
(A OATD=T) — a2 KRRk K- (kR—s)R(K)
_ 1 TETV4 S [Q’“’—Q"M]—l- isz(v-k) [E”V—I—EV“]
(K2—s?)R(k) (K2—s?)R(k) K2(K2—s)R(K)
I CEL R o
k2(k2—s?)X (k) ’
i
(¢ @)ZW[kz—Sz], 3
|
where X(k) =[k*—(s?—v-v)k?—(v-k)?], and the 2-rank T,=S,,0% A,,=v,0,, 3,,=0,0,,

tensors are defined as follows:

0= M= 0y, 0,,=3,9,/00, S, ,=&,,,0",

We adopt a(1+2)-dimensional metric for space-timey,,,,
Q/.LV:v/.LTV' (4) :(+1_1_)-
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®,,=T,d,. (5  which in the case of a purely timelike backgroung;
=(v,,0), takes on the following form:

lll. THE MO LLER SCATTERING AMPLITUDE
, [K2+87]

K2[k2+w?]’ 10

The two-particle interaction potential is given by the Fou- Mscalar=—Y
rier transform of the two-particle scattering amplitude in the
low-energy limit (Born approximation In the case of the
nonrelativistic Mdler scattering, one should consider only wherew?=(s2—v3), and it was used the general expression
the t-channeldirect scattering[13] even for indistinguish- for the transfer momentunk*=(0k).
able electrons, since in this limit they recover the classical In connection with the gauge sector, only six terms of the
notion of trajectory. From EqJl), there follow the Feynman gauge propagator contribute to the scattering amplitude
rules for the interaction vertice¥.,,,=iy;V a,=iezy*, so  (0*", 3", A" THT,Q*",Q"*), as a consequence of the
that thee” e~ scattering amplitude are written as current-conservation lawk(,J*=0). The first two terms
provide, in the nonrelativistic limit, the Maxwell-Chern-
—iM¢=U(p1)(iy)u(p1)[(<p @) u(py) (iy)u(p,), (6) Eir?or[\i](MCS) scattering amplitude, already carried out in
efs.[1]:

—iMa=u(pp)(iesy“)u(py)[(A,A,)u(ps)

5 1 2s ikxp
X(iezy”)u(p,), (7 Mycs=e€ 1—a I R (12)

m k2(k?+s?) )

with (¢ ¢) and(A,A,) being the scalar and photon propa- , , )
gators. Expression) and (7) represent the scattering am- The total current-current amplitude mediated by the massive

plitudes for electrons of equal polarization mediated by thedauge particle corresponds to the sum of four contributions,

scalar and gauge particles, respectively. The spingm

stand for the positive-energy solution of the Dirac equation Mgauge™ Mucst My + Myt Moq,
(p—m)u(p)=0. The y- matrices satisfy theso(1,2) alge-

bra, [y*,y"]=2i€*""y,, and correspond to th¢l+2)-  where the termsM,,Mr,Mqq lead to background-
dimensional representation of the Dirac matrices, that is, theepending corrections to the MCS-amplitude. To evaluate
Pauli ones:y*=(0,,—ioy,io,). Regarding these defini- these three last terms, one first writes the following current-

tions, one obtains the spinors, current amplitudes:
(p) 1[ . } Wp)= —=[E+m —ip,+py) H(py) (T, T.)i*(pa) = — 2Pv3e 1~ cos+ sir?o)
up)=—| . , u(p)=—= m —i , D17 =—-2—vge — oSO+ si ,
p INL—ipx—py p N Px+ Py J17P) 1)) (P2 m Vo
8

_ PP (A )] "(P2) =5,

which satisfy the normalization conditiom, (p)u,.(p)=1
whenever the constait=2m(E+m) is adopted. The Me i“(p1)(Q,,—Q,.)i"(p2)
ler scattering should be easily analyzed in the center of mass Vixuy ou 2
frame, where the momenta of the incoming and outgoing
electrons are read at the fornP{=(E,p,0),P5=(E,
—p,0),Pi#=(E,p cos,psin),Py*=(E,—pcoss,—psin 6).?
The transfer 4-momentum, carried by the gauge or scalar
mediators, is k*=P{—P;#=(0,p(1—cosf),—psind), The first term does not contribute to the interaction potential
whereasd is the scattering anglén the c.m. framg as long as one works in the nonrelativistic approximation

Considering the normalization condition satisfied by the(p?<m?). The other two terms lead to relevant contributions
spinors written in Eq(8), the scattering amplitude associatedto the total amplitude scattering, namely:
with the scalar sector can be readily evaluated,

p2
= vaé[l— cosf—i sind].

2
[kZ_ 52] ,/\/lA _ GZSZVO
Mscalar=y [k4—(32—v-v)k2—(v~k)2], 9 kz[k2+82][k2+W2]
e?svg 1 2ikx p
. . I AT Manan= — (12
2Using this prescription and the 3-current definitioft*(p) QR™ m [K2+s2][K2+w?] k2 |’

=U(p’)y"u(p), the current components can be then explicitly
written asj(?(p) =] (p,) =[1/2m(E+m) ][ (E+m)®+p?e'’], R o
iO(py)=—D(p,) = (pl2m)(1+€),jP(py) = —D(p,) = (ip/ vﬁvheﬁre p=3(p1—pP,) is defined in terms of the momenta

2m)(1—e'?). p1.,p, of the incoming electrons.
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IV. THE ELECTRON-ELECTRON INTERACTION e S 25 | v2
3 0
POTENTIAL Van(r) = ——{ ZTKa(wr —Ka(sr)]— — —
oolr) (277)[m[ o(wr) o(sn)] m 12| w2
A. The scalar potential
) o _ 1 1
According to the Born approximation, the scalar interac- - V—VrKl(sr)Jr ngl(Wl’) . (16

tion potential is given by the Fourier transform of the scat-
tering amplitude ~ (10), that is,  Vscaladr)
=[1/(27)?]f M scaia€™ "d?k. This integral can be exactly
solved, resulting in the following expression:

The total gauge interaction potentidly,,qd)=Vucs
+V,+Vqo, takes on the final form:

€3
2 2 2 Y ry=-——1{—2(s/mKg(sr
Vcalad ) =— (gﬂ_)[ 1+v? KO(SI’)—EMI’]. gauge( ) (277)[ ( ) ol )
(13 +[s/m+s?wW?]K o(wr) + (V3/w?)Inr
2 1 2102 2

This potential reveals to be attractive near the origin and " ms,2 (1+vo/w) = (sTwW)rKy(sn] .
repulsive whenever the logarithmic term overcomes the
Bessel-like one. Near the origin, the potential exhibits a 17

genuine logarithmic behavior, ond€y(x)— —Inx (for x

—0). Far from the origin, the Bessel function decays expo-. It isfinstruct!vE.to ntc))ticlf that 3”‘9 h%/@\ Voo—0in thﬁ
nentially whereas the second term increases logarithmicall .m't cl)\/l é\svanlsltlng' acbgr(I)Eunl 4)6V(_)>b)', relcon(:]r'mg the
In (1+2) dimensions, the logarithmic behavior is an outcomeP""® result, given by Ed14). Obviously, this is an

consistent with an unscreened interaction. Hence, the poter‘?—x pected outcome, since b, Vg are potential contri-

tial here obtained, at the level of a dynamic configuration butions induced merely by the presence of the background.

- -
confirms the amnifiaton of the screening derived in 81 i % Ut 0 R R EERE T e LA e
at the level of a static evaluation. The result exhibited in Eq.
(193) reflects the pole structure of the scalar amplitude, which e
possesses a masslesskf)l/and a massive pole (k? Vgaugd )= —3{C—(1—s/m—ls/m)ln ry, (18
+w?]). The existence of the massless pole is ascribed to the (2m)

fact the Chern-Simons polé=s? to be deprived from dy- _ L _
whereC is a constant. Far from the origin, just the logarith-

namics|6]. . . .
[6] mic term remains as dominant, so that
B. The gauge potential 3 V(Z)
Vgauge(r)— (2—77_) ﬁ Inr. (19)

Carrying out the Fourier transform on thefy,cs ampli-

tude, the corresponding Maxwell-Chern-Simons potential ) ,
appears: Equations(18), (19) show that the gauge potential behaves

logarithmically near and away from the origin, which puts
again in evidence the annihilation of the screeri@y now
manifest at the level of a dynamical evaluation. In the limit
r—0, this potential may be attractiyéor s>m/(1+1)] or
repulsive[for s<m/(1+1)]. In this paper one assumes
>v§, so that in the limitr — the potential behaves repul-
(14 sively. In the cases>m/(1+1), there exists a region in
which the potential is negative, a necessary premise for the
formation of electron-electron bound states. For the case

wherel =r X p is the angular momenturta scalar in a two- <M/ (1+1), in which the potential is repulsive near and far
dimensional spage the origin, just a graphical analysis can efficiently reveal the

The interaction potential associated with the amplitude€Xistence of a welinegative intermediary region.

My, Mgo, can be also obtained from exact Fourier trans- The real interaction corresponding to the total interaction
form, resulting in the following expressions: potential comprises the gauge and the scalar contributions:

V(r)=Vscaiart Vgauge- This total potential turns out attrac-
tive at the regions in which the negative scalar potential
V2 5 overcomes the repulsive gauge contribution, and at the re-
__ % _‘;| I‘+S—2K0(WI‘)—KO(SI‘) , (15  gions for which the gauge potential is also negative. One
(2m) | w then verifies that the total potential can always be negative at

€3 S 2 I
Vmes(r)= % (1_ m) Ko(sr) — m_s[l_erl(sr)]r_Z )

Va(r)
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some region, which is a relevant result concerning the pos-
sibility of obtaininge™ e~ bound states in the framework of

this particular model. -
An important comparison to be made is allusive to the 4 _///

attractiveness of the gauge potential. In the case of the purq e

MCS potential, given by Eq(14), one must be careful in 39

order to avoid a misleading interpretation of its low-energy

behavior[1]. In such a regime, one must consider not only 21 )
the centrifugal barrier terml¥/mr?), but also the gauge in- 1 1 /
variantA?-term coming from the Pauli equation, | /
i
0 ‘\\ 0.1 /0/2 r 03 0.4 05
(p—eA)? o-B R y
———te¢(r)— W(r,¢)=EW¥(r,¢), N
me me T

which rules the nonrelativistic behavior of a system in the _ _ _
presence of an electromagnetic field. The Laplacian operator, FIG. 1. Effective potential for the following parameter values:
[%ar?+ (1) (aldr) + (1) (%1 3¢?)], corresponding to S=10m=2000, and y=8/=1.

the p? term, acts on the total wave functioW(r,¢) Such graphical behavior shows that the numerical solu-
=Ry (r)e'?, generating the repulsive centrifugal barrier tion of the Schidinger equation, supplemented by the effec-
term,1%/(mr?). On the other hand, th&’-term is essential to  tjve potential(20), should yield to the attainment & e~
ensure the gauge invariance of a gauge mode in the nonreinding energies.
ativistic domain. This term does not appear in the context of
a nonperturbative low-energy evaluation, for the same is as- V. CONCLUDING REMARKS
sociated with two-photon exchange proceste=e Hagen
and Dobroliubo\1]). However, such a term must be suitably h
added up in order to assure the gauge invariance as well as
circumvent spurious behavior concerning the low-energy pogyq,nq. The interaction potential was calculated as the Fou-
tential. _rier transform of the scattering amplitude(Born

In the presence of these two terms, the MCS potential,n oximation carried out in the nonrelativistic limit. It ex-
reveals to be really repulsive instead of attractive. Hence, t@jpits two distinct contributions: the attractive scalar poten-
correctly analyze the low-energy behavior of the gauge potja| (stemming form the Yukawa exchangand the gauge
tential, it is necessary to add up the centrifugal barrier anéne (mediated by the MCS-Proca gauge fleldhe scalar
the A% terms’ to the gauge potential previously obtained, Yukawa interaction, as expected, turns out to be always

In this work, one has considered the Mo scattering in
e context of a planar Lorentz-violating Maxwell-Chern-
mons electrodynamics defined in a pure timelike back-

leading to the following low-energy effective potential: negative. This makes feasible a global attractive potential,
regardless the charact@epulsive or attractiveof the gauge
2 potential. In practice, such an interaction may be identified
Veit() =Vgaugd ) + — Wlth phonon exchange processes, which represent physical
mr excitations in several systems of interest. As for the gauge

5 interaction, it is composed by a pure MCS potential cor-
e;\? 5 rected by background-depending contributions, which im-
77 | w2 [1-wrKy(wn)]% (200 pose relevant physical modifications. The absence of screen-
ing, first observed in Ref8], becomes now manifest in the
context of a dynamic computatiofny means of an ubiqui-
The possibility for formation of electron-electron bound tous logarithmic term) confirming the conclusion thait?
states is associated with the existence of a region in which- s? is not a dynamic p0|¢6] The background-depending
the effective potential is negative. Figure 1 shows that thigorrections are such that they lead to an attractive gauge
requirement is perfectly satisfied for some parameters valuepotential for some values of the parameters, which consti-
tutes a promising result in connection with the possibility of
obtaining the formation of Cooper pairs. This possibility can
3The vector potentialA(r), was not determined in R€f8], but it be appropriately checked up by means of a quantum-
can be evaluated starting from the following coupled equationsmechanical numerical analysis of the interaction potential
V(V2—s2)A—VoV2V* o=5V*p, v,VXA—V2p=0, derived in here derived, which should be performed by means of the
the static limit. The solution of these equations provides the renumerical solution of the Schdinger equation. Such analy-
quired solution for the vector potentiéih the case of pure a time- sis must provide the correspondirey e~ binding energy
like backgroundt A(r)=(e/2m)(s/w?)[1—-wrK,(wr)]r*. In  once one takes suitable values for the paramdteraccor-
(1+2) dimensions, the dual of a 2-vector is defined &)1 dance with the scale of low-energy excitations typical in con-
= € El-E* =(E,,—E,), where one adopts the following convec- densed matter systems
tion: egy= €%%=€,,= €*?=1. In a planar system described by a QEDodel, two fami-

2
+
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lies of fermions should be properly considered, correspondwhich may lead to an attractive interaction as well as an
ing to the two allowed spin-polarization statégp and anisotropice” e~ order parameter. This investigation may be
down). This is so done in Ref[3]. The two-component relevant in connection with the description of the Cooper
spinor with down polarization is given as the positive energypairs formation in planar systems.

solution of the Dirac equation,f‘p,+m)u_(p)=0, with In (1+2) dimensions, the purely Coulombian interaction
opposite mass parameter, a consequence of the spinor pol@&-associated with a logarithmic dependerfabiquitous in
ization to be fixed up by the mass sign in two dimensionshe results of this papgrwhich implies a confining rather
(see Ref[10]). In this work, one has considered only one than a binding behavior. However, such behavior can be
fermion polarization whereas the general case must includeliminated if the gauge field exhibits an additional mass
two fermion families ¢/, ,#_). In the general case, hence, component, as the Proca term. Indeed, a recent \Wb2k
the planar Lagrangiand . ,) must exhibit both fermion po- accomplished the dimensional reduction of an Abelian-Higgs
larizations  terms, namely: ¢, (iD —my) i, + ¢_(iD Lorentz-violating model endowed with the CFJ term, result-
+my) ¢_ . The consideration of these terrfis a forthcom-  ing in a planar Maxwell-Chern-Simons-Proca electrodynam-
ing work) will lead toe~e™ interaction potentials depending €S coupled to a massive Klein-Gordon fielg)( A particu-

on the spin-polarization\( ,V, .V, ), as it was observed in lar feature of this kind of Higgs model is the presence of

Ref. [3]. Such procedure may reveal the spinor-polarizatior{[mally screened modes: all its physical excitations are mas-

configuration that better favors the formation of Coopers'\.’.e’ yielding _scre_ene(_d interactions. T_he con5|derat|on_of the
pairs Moller scattering in this framework will lead to an entirely

A natural extension of this work consists in studying theshlelded interaction potential, once the logarithmic term

e e interaction potential for the case of a purely spacelikeShOUId be suitably replaced by aHunction.

background11]. Such an evaluation should be done follow-
ing the same procedure here adoptémlv-energy Mdler
scattering. It will certainly reveal an anisotropic potential in The author is grateful to J. A. Helalydleto for reading
relation to the privileged direction fixed by the background,and discussing this manuscript.
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