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Low-energy Möller scattering in a Maxwell-Chern-Simons Lorentz-violating model
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Universidade Federal do Maranha˜o (UFMA),
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One starts from a planar Maxwell-Chern-Simons model endowed with a Lorentz-violating term. The Dirac
sector is introduced exhibiting a Yukawa and a minimal coupling with the scalar and the gauge fields, respec-
tively. One then evaluates the electron-electron interaction as the Fourier transform of the Mo¨ller scattering
amplitude carried out in the nonrelativistic limit. In the case of a purely timelike background, the interaction
potential can be exactly solved, exhibiting a typical massless behavior far from the origin. The scalar interac-
tion potential is always attractive whereas the gauge intermediation may also present attraction even when
considered in the presence of the centrifugal barrier and theA2 term. Such a result is a strong indication that
electron-electron bound states may appear in this theoretical framework.
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I. INTRODUCTION

In the beginning of the 1990s, the Mo¨ller scattering was
adopted as a theoretical tool to investigate the possible
mation of electron-electron bound states in the context o
Maxwell-Chern-Simons electrodynamics@1#. According to
this procedure, one starts from the scattering amplitude~car-
ried out at tree level! to obtain the electron-electron intera
tion potential ~Born approximation!. It was then observed
that the potential may come out negative whenever the to
logical mass exceeds the electron mass (s.me), condition
which is particularly discouraging in relation to the possib
ity of applying this kind of model to some condensed mat
systems, where one usually deals with low-energy exc
tions. The introduction of the Higgs sector, arising from t
spontaneous symmetry breaking@2,3#, has shown to be a
theoretical factor able to provide a scalar attractive inter
tion. The overall potential, consisting in the sum of the gau
and scalar contributions, may then be negative independe
of the conditions.me , a necessary premise for the form
tion of Cooper pairs in the context of low-energy system

In recent years, Lorentz-violating theories have been
focus of intensive investigation@4,5#. In a recent work, a
planar Lorentz-violating electrodynamics@6# was derived
from the dimensional reduction of a Maxwell electrodyna
ics supplemented with the Carroll-Field-Jackiw~CFJ! term
@7#. The consistency of this model has already been a
lyzed, revealing a model globally stable, causal and unit
for both time- and spacelike backgrounds@6#. The fact that
the unitarity is assured makes feasible, at principle, the c
sistent quantization of this model, which sets it up as a c
didate to be applied to situations where the quantization
the modes is a real condition~such as some condensed m
ter phenomena!. In a posterior investigation@8#, the equa-
tions of motion~for the field strengths and potentials! corre-
sponding to this planar model were determined and solve
the static regime. The results obtained differ from the so
tions of a pure MCS electrodynamics by backgroun
depending corrections, which amount to relevant qualita
modifications. Indeed, the solutions have exhibited a typ
1550-7998/2004/70~4!/045013~6!/$22.50 70 0450
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massless behavior~in the electric sector! for the case of a
timelike background and anisotropic behavior for the case
a spacelike background. It was also reported the possib
of obtaining an attractive electron-electron interaction a
consequence of the existence of well region in the beha
of the scalar potential (A0).

Once Lorentz symmetry is broken, the equivalence
tween all inertial frames is lost, and each inertial frame sta
to notice a different physics. It is a well known fact th
condensed matter systems~CMS! are not endowed with Lor-
entz covariance, but with Galileo one, which holds as
genuine symmetry in the domain of isotropic low-ener
systems. Having in mind that a CMS may be addressed
the low-energy limit of a relativistic model, there follows
straightforward correspondence between the breakdown
Lorentz and Galileo symmetries, in the sense that a C
with violation of Galileo symmetry may have as counterp
a relativistic system endowed with breaking of Lorentz c
variance.

Theoretical planar models able to provide attractivee2e2

interaction potentials are relevant in the sense they may c
stitute a suitable framework to address the condensatio
Cooper pairs, a fundamental characteristic of supercond
ing systems. Another well defined feature of a planar highTc
superconductor concerns the symmetry of the order par
eter ~standing for the Cooper pair!, which is described in
terms of a spatially anisotropic d-wave@9#. A theoretical
framework able to provide an anisotropice2e2 interaction is
the first step to the achievement of anisotropy for the or
parameter. This is exactly the expected result to be obta
in the case a purely spacelike background, where thee2e2

scattering potential may be identified with the one evalua
in the context of a CMS endowed with a privileged directi
in space. Therefore, once an anisotropic CMS constitute
example where the breakdown of the Galileo symmetry ta
place, such a system may be properly approached as
low-energy limit of a Lorentz-violating electrodynamics
the presence of a pure spacelike background.

Having as main motivation the results achieved in R
@8#, which show that a fixed background induces sensit
©2004 The American Physical Society13-1
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effects at classical solutions, in this work one investigates
tree-level behavior of two interacting fermions in the conte
of a Lorentz-violating electrodynamics. By determining t
e2e2 interaction potential, one can verify to what extent t
properties reported in the classical static analysis@8# are pre-
served in the context a dynamic evaluation. One can a
study the possibility of achieving ane2e2 interaction en-
dowed with attractiveness and anisotropy, two relevant pr
erties in superconducting systems. Hence, the purpose
carry out the e2e2 interaction potential, exhibiting and
stressing the corrections induced by the fixed background
the pure Maxwell-Chern-Simons result. For that, one fi
introduces the Dirac sector to the planar Lorentz-violat
gauge model derived in Ref.@6#. Taking into account the
guidelines set up in Refs.@1,2#, one then proceeds to evalua
the Möller scattering amplitude from which one derives t
e2e2 interaction~according to the Born approximation!. The
potential here attained is composed by two contribution
scalar and a gauge one, since thee2e2 interaction is medi-
ated by the massless scalar and the massive gauge fields
scalar potential, absent in the context of a pure MCS mo
is always negative, and may lead to a global attractive in
action regardless the sign of the gauge contribution. In
case of the gauge potential, it presents backgrou
depending terms that imply qualitative modifications, such
the possibility of being attractive for some parameters ran
even when considered in the presence of the centrifugal
rier and the low-energyA2- Pauli term. Both the scalar an
gauge potential possess a logarithm dependence, whic
compatible with a massless behavior far from the origin.

This paper is outlined as follows. In Sec. II, one brie
exhibits the reduced model derived in Ref.@6#, supplemented
by the fermion field. In Sec. III, one presents the spin
which fulfill the two-dimensional Dirac equation and that a
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used to evaluate the scattering amplitude associated with
Yukawa and the minimal couplings. In Sec. IV, the intera
tion potentials stemming from the scalar and gauge sec
are carried out, and the results are discussed. In Sec. V,
presents the concluding remarks.

II. PLANAR LORENTZ-VIOLATING MODEL

The starting point is the planar Lagrangian1 obtained from
the dimensional reduction of the CFJ-Maxwell electrod
namics@6#, which consists in a Maxwell-Chern-Simons ele
trodynamics coupled to a massless scalar field (w) and to a
fixed background (vm) through a Lorentz-violating term
One then considers the additional presence of a fermion fi
(c) minimally coupled to the gauge field (Am) at the same
time that exhibits a typical Yukawa coupling to the sca
field (w):

L11252
1

4
FmnFmn1

s

2
emnkA

m]nAk2
1

2
]mw]mw

1wemnkv
m]nAk2

1

2a
~]mAm!21c̄~ iD” 2me!c

2yw~c̄c!. ~1!

Here, the covariant derivative,D” c[(]”1 ie3A” )c, states the
minimal coupling, whereas the termw(c̄c) reflects the
Yukawa coupling. The fermion field (c) is a two-component
spinor with up spin-polarization, which represents the po
tive energy solution of the Dirac equation, (gmpm
2m)u1(p)50, here written in momentum space. In Re
@6#, the propagators of the scalar (w) and gauge (Am) fields
were properly evaluated as it appears below:
^Am~k!An~k!&5 i H 2
1

k22s2
umn2

a~k22s2!�~k!1s2~v•k!2

k2~k22s2!�~k!
vmn2

s

k2~k22s2!
Smn1

s2

~k22s2!�~k!
Lmn

2
1

~k22s2!�~k!
TmTn1

s

~k22s2!�~k!
@Qmn2Qnm#1

is2~v•k!

k2~k22s2!�~k!
@Smn1Snm#

2
is~v•k!

k2~k22s2!�~k!
@Fmn2Fnm#J , ~2!

^w w&5
i

�~k!
@k22s2#, ~3!
where�(k)5@k42(s22v•v)k22(v•k)2#, and the 2-rank
tensors are defined as follows:

umn5hmn2vmn , vmn5]m]n /h, Smn5«mkn]k,

Qmn5vmTn , ~4!
Tn5Smnvm, Lmn5vmvn , Smn5vm]n ,

1We adopt a ~112!-dimensional metric for space-time:hmn

5(1,2,2).
3-2
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Fmn5Tm]n . ~5!

III. THE MO¨ LLER SCATTERING AMPLITUDE

The two-particle interaction potential is given by the Fo
rier transform of the two-particle scattering amplitude in t
low-energy limit ~Born approximation!. In the case of the
nonrelativistic Möller scattering, one should consider on
the t-channel~direct scattering! @13# even for indistinguish-
able electrons, since in this limit they recover the class
notion of trajectory. From Eq.~1!, there follow the Feynman
rules for the interaction vertices:Vcwc5 iy ;VcAc5 ie3gm, so
that thee2e2 scattering amplitude are written as

2 iMw5ū~p18!~ iy !u~p1!@^w w&#ū~p28!~ iy !u~p2!, ~6!

2 iMA5ū~p18!~ ie3gm!u~p1!@^AmAn&#ū~p28!

3~ ie3gn!u~p2!, ~7!

with ^w w& and ^AmAn& being the scalar and photon prop
gators. Expressions~6! and ~7! represent the scattering am
plitudes for electrons of equal polarization mediated by
scalar and gauge particles, respectively. The spinorsu(p)
stand for the positive-energy solution of the Dirac equat
(p”2m)u(p)50. The g- matrices satisfy theso(1,2) alge-
bra, @gm,gn#52i emnaga , and correspond to the~112!-
dimensional representation of the Dirac matrices, that is,
Pauli ones:gm5(sz ,2 isx ,isy). Regarding these defini
tions, one obtains the spinors,

u~p!5
1

AN
F E1m

2 ipx2py
G , ū~p!5

1

AN
@E1m 2 ipx1py#,

~8!

which satisfy the normalization conditionū1(p)u1(p)51
whenever the constantN52m(E1m) is adopted. The Mo¨l-
ler scattering should be easily analyzed in the center of m
frame, where the momenta of the incoming and outgo
electrons are read at the form:P1

m5(E,p,0),P2
m5(E,

2p,0),P18
m5(E,p cosu,psinu),P28

m5(E,2pcosu,2psinu).2

The transfer 4-momentum, carried by the gauge or sc
mediators, is km5P1

m2P18
m5(0,p(12cosu),2psinu),

whereasu is the scattering angle~in the c.m. frame!.
Considering the normalization condition satisfied by t

spinors written in Eq.~8!, the scattering amplitude associat
with the scalar sector can be readily evaluated,

Mscalar5y2
@k22s2#

@k42~s22v•v !k22~v•k!2#
, ~9!

2Using this prescription and the 3-current definition,j m(p)

5ū(p8)gmu(p), the current components can be then explici
written as j (0)(p1)5 j (0)(p2)5@1/2m(E1m)#@(E1m)21p2e2 iu#,
j (1)(p1)52 j (1)(p2)5(p/2m)(11eiu), j (2)(p1)52 j (2)(p2)5( ip/
2m)(12eiu).
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which in the case of a purely timelike background,vm

5(v0 ,0W ), takes on the following form:

Mscalar52y2
@k21s2#

k2@k21w2#
, ~10!

wherew25(s22v0
2), and it was used the general expressi

for the transfer momentum,km5(0,k).
In connection with the gauge sector, only six terms of t

gauge propagator contribute to the scattering amplit
(umn,Smn,Lmn,TmTn,Qmn,Qnm), as a consequence of th
current-conservation law (kmJm50). The first two terms
provide, in the nonrelativistic limit, the Maxwell-Chern
Simons~MCS! scattering amplitude, already carried out
Refs.@1#:

MMCS5e2H S 12
s

mD 1

k21s2
2

2s

m

ikW3pW

k2~k21s2!
J . ~11!

The total current-current amplitude mediated by the mass
gauge particle corresponds to the sum of four contributio

Mgauge5MMCS1ML1MTT1MQQ ,

where the termsML ,MTT ,MQQ lead to background-
depending corrections to the MCS-amplitude. To evalu
these three last terms, one first writes the following curre
current amplitudes:

j m~p1!~TmTn! j n~p2!522
p4

m
v0

2eiu@12cosu1sin2u#,

j m~p1!~Lmv! j n~p2!5v0
2 ,

j m~p1!~Qmn2Qnm! j n~p2!

52
p2

m
v0

2@12cosu2 i sinu#.

The first term does not contribute to the interaction poten
as long as one works in the nonrelativistic approximat
(p2!m2). The other two terms lead to relevant contributio
to the total amplitude scattering, namely:

ML52
e2s2v0

2

k2@k21s2#@k21w2#
,

MQQ5
e2sv0

2

m

1

@k21s2#@k21w2#
H 12

2ikW3pW

k2 J , ~12!

where pW 5 1
2 (pW 12pW 2) is defined in terms of the moment

pW 1 ,pW 2 of the incoming electrons.
3-3
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IV. THE ELECTRON-ELECTRON INTERACTION
POTENTIAL

A. The scalar potential

According to the Born approximation, the scalar intera
tion potential is given by the Fourier transform of the sc
tering amplitude ~10!, that is, Vscalar(r )

5@1/(2p)2#*M scalare
ikW•rWd2kW . This integral can be exactly

solved, resulting in the following expression:

Vscalar~r !52
y2

~2p! H F11
s2

w2GK0~sr!2
s2

w2
ln r J .

~13!

This potential reveals to be attractive near the origin a
repulsive whenever the logarithmic term overcomes
Bessel-like one. Near the origin, the potential exhibits
genuine logarithmic behavior, onceK0(x)→2 ln x ~for x
→0). Far from the origin, the Bessel function decays ex
nentially whereas the second term increases logarithmic
In ~112! dimensions, the logarithmic behavior is an outcom
consistent with an unscreened interaction. Hence, the po
tial here obtained, at the level of a dynamic configurati
confirms the annihilation of the screening derived in Ref.@8#,
at the level of a static evaluation. The result exhibited in E
~13! reflects the pole structure of the scalar amplitude, wh
possesses a massless (1/k2) and a massive pole (1/@k2

1w2#). The existence of the massless pole is ascribed to
fact the Chern-Simons polek25s2 to be deprived from dy-
namics@6#.

B. The gauge potential

Carrying out the Fourier transform on theMMCS ampli-
tude, the corresponding Maxwell-Chern-Simons poten
appears:

VMCS~r !5
e3

~2p! F S 12
s

mDK0~sr!2
2

ms
@12srK1~sr!#

l

r 2G ,

~14!

wherel 5rW3pW is the angular momentum~a scalar in a two-
dimensional space!.

The interaction potential associated with the amplitud
ML ,MQQ , can be also obtained from exact Fourier tran
form, resulting in the following expressions:

VL~r !5
e3

~2p! H v0
2

w2
ln r 1

s2

w2
K0~wr !2K0~sr!J , ~15!
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VQQ~r !5
e3

~2p! H s

m
@K0~wr !2K0~sr!#2

2s

m

l

r 2 F v0
2

s2w2

2
1

w
rK 1~sr!1

1

s
rK 1~wr !G J . ~16!

The total gauge interaction potential,Vgauge(r )5VMCS
1VL1VQQ , takes on the final form:

Vgauge~r !5
e3

~2p! H 22~s/m!K0~sr!

1@s/m1s2/w2#K0~wr !1~v0
2/w2!ln r

2
2

ms

l

r 2
@~11v0

2/w2!2~s2/w!rK 1~sr!#J .

~17!

It is instructive to notice that one hasVL ,VQQ→0 in the
limit of a vanishing background (v0→0), recovering the
pure MCS result, given by Eq.~14!. Obviously, this is an
expected outcome, since bothVL ,VQQ are potential contri-
butions induced merely by the presence of the backgrou
Taking the limit r→0 on the expression~17!, one then de-
termines the potential behavior near the origin, that is

Vgauge~r !.
e3

~2p!
$C2~12s/m2 ls/m!ln r %, ~18!

whereC is a constant. Far from the origin, just the logarit
mic term remains as dominant, so that

Vgauge~r !.
e3

~2p! F v0
2

w2G ln r . ~19!

Equations~18!, ~19! show that the gauge potential behav
logarithmically near and away from the origin, which pu
again in evidence the annihilation of the screening@8#, now
manifest at the level of a dynamical evaluation. In the lim
r→0, this potential may be attractive@for s.m/(11 l )] or
repulsive@for s,m/(11 l )]. In this paper one assumess2

.v0
2, so that in the limitr→` the potential behaves repu

sively. In the cases.m/(11 l ), there exists a region in
which the potential is negative, a necessary premise for
formation of electron-electron bound states. For the cass
,m/(11 l ), in which the potential is repulsive near and f
the origin, just a graphical analysis can efficiently reveal
existence of a well~negative! intermediary region.

The real interaction corresponding to the total interact
potential comprises the gauge and the scalar contributi
V(r )5Vscalar1Vgauge. This total potential turns out attrac
tive at the regions in which the negative scalar poten
overcomes the repulsive gauge contribution, and at the
gions for which the gauge potential is also negative. O
then verifies that the total potential can always be negativ
3-4
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some region, which is a relevant result concerning the p
sibility of obtaininge2e2 bound states in the framework o
this particular model.

An important comparison to be made is allusive to t
attractiveness of the gauge potential. In the case of the
MCS potential, given by Eq.~14!, one must be careful in
order to avoid a misleading interpretation of its low-ener
behavior@1#. In such a regime, one must consider not on
the centrifugal barrier term (l 2/mr2), but also the gauge in
variantA2-term coming from the Pauli equation,

F ~pW 2eAW !2

me
1ef~r !2

sW •BW

me
GC~r ,f!5EC~r ,f!,

which rules the nonrelativistic behavior of a system in t
presence of an electromagnetic field. The Laplacian oper
@]2/]r 21(1/r )(]/]r )1(1/r 2)(]2/]f2)#, corresponding to
the p2 term, acts on the total wave functionC(r ,f)
5Rnl(r )eif l , generating the repulsive centrifugal barri
term,l 2/(mr2). On the other hand, theA2-term is essential to
ensure the gauge invariance of a gauge mode in the no
ativistic domain. This term does not appear in the contex
a nonperturbative low-energy evaluation, for the same is
sociated with two-photon exchange processes~see Hagen
and Dobroliubov@1#!. However, such a term must be suitab
added up in order to assure the gauge invariance as well
circumvent spurious behavior concerning the low-energy
tential.

In the presence of these two terms, the MCS poten
reveals to be really repulsive instead of attractive. Hence
correctly analyze the low-energy behavior of the gauge
tential, it is necessary to add up the centrifugal barrier a
the A2 terms3 to the gauge potential previously obtaine
leading to the following low-energy effective potential:

Ve f f~r !5Vgauge~r !1
l 2

mr2

1S e3

2p D 2S s2

w2D 2

@12wrK1~wr !#2. ~20!

The possibility for formation of electron-electron boun
states is associated with the existence of a region in wh
the effective potential is negative. Figure 1 shows that t
requirement is perfectly satisfied for some parameters val

3The vector potential,A(r ), was not determined in Ref.@8#, but it
can be evaluated starting from the following coupled equatio

¹2(¹22s2)AW 2v0¹2¹* w5s¹* r, v0¹3A2¹2w50, derived in
the static limit. The solution of these equations provides the
quired solution for the vector potential~in the case of pure a time

like background!: AW (r )5(e/2p)(s2/w2)@12wrK1(wr)#r *̂ . In
~112! dimensions, the dual of a 2-vector is defined as (Ei)*
5e i j E

j→EW * 5(Ey ,2Ex), where one adopts the following conve
tion: e0125e0125e125e1251.
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Such graphical behavior shows that the numerical so
tion of the Schro¨dinger equation, supplemented by the effe
tive potential~20!, should yield to the attainment ofe2e2

binding energies.

V. CONCLUDING REMARKS

In this work, one has considered the Mo¨ller scattering in
the context of a planar Lorentz-violating Maxwell-Cher
Simons electrodynamics defined in a pure timelike ba
ground. The interaction potential was calculated as the F
rier transform of the scattering amplitude~Born
approximation! carried out in the nonrelativistic limit. It ex-
hibits two distinct contributions: the attractive scalar pote
tial ~stemming form the Yukawa exchange! and the gauge
one ~mediated by the MCS-Proca gauge field!. The scalar
Yukawa interaction, as expected, turns out to be alw
negative. This makes feasible a global attractive poten
regardless the character~repulsive or attractive! of the gauge
potential. In practice, such an interaction may be identifi
with phonon exchange processes, which represent phy
excitations in several systems of interest. As for the ga
interaction, it is composed by a pure MCS potential c
rected by background-depending contributions, which i
pose relevant physical modifications. The absence of scr
ing, first observed in Ref.@8#, becomes now manifest in th
context of a dynamic computation~by means of an ubiqui-
tous logarithmic term!, confirming the conclusion thatk2

5s2 is not a dynamic pole@6#. The background-dependin
corrections are such that they lead to an attractive ga
potential for some values of the parameters, which con
tutes a promising result in connection with the possibility
obtaining the formation of Cooper pairs. This possibility c
be appropriately checked up by means of a quantu
mechanical numerical analysis of the interaction poten
here derived, which should be performed by means of
numerical solution of the Schro¨dinger equation. Such analy
sis must provide the correspondinge2e2 binding energy
once one takes suitable values for the parameters~in accor-
dance with the scale of low-energy excitations typical in co
densed matter systems!.

In a planar system described by a QED3 model, two fami-

s:

-

FIG. 1. Effective potential for the following parameter value
s510,m52000, and v058,l 51.
3-5
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lies of fermions should be properly considered, correspo
ing to the two allowed spin-polarization states~up and
down!. This is so done in Ref.@3#. The two-component
spinor with down polarization is given as the positive ene
solution of the Dirac equation, (gmpm1m)u2(p)50, with
opposite mass parameter, a consequence of the spinor p
ization to be fixed up by the mass sign in two dimensio
~see Ref.@10#!. In this work, one has considered only on
fermion polarization whereas the general case must inc
two fermion families (c1 ,c2). In the general case, henc
the planar Lagrangian (L112) must exhibit both fermion po-
larizations terms, namely: c̄1( iD” 2me)c11c̄2( iD”
1me)c2 . The consideration of these terms~in a forthcom-
ing work! will lead to e2e2 interaction potentials dependin
on the spin-polarization (V↑↑,V↑↓,V↓↓), as it was observed in
Ref. @3#. Such procedure may reveal the spinor-polarizat
configuration that better favors the formation of Coop
pairs.

A natural extension of this work consists in studying t
e2e2 interaction potential for the case of a purely spacel
background@11#. Such an evaluation should be done follow
ing the same procedure here adopted~low-energy Möller
scattering!. It will certainly reveal an anisotropic potential i
relation to the privileged direction fixed by the backgroun
.
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which may lead to an attractive interaction as well as
anisotropice2e2 order parameter. This investigation may b
relevant in connection with the description of the Coop
pairs formation in planar systems.

In ~112! dimensions, the purely Coulombian interactio
is associated with a logarithmic dependence~ubiquitous in
the results of this paper!, which implies a confining rathe
than a binding behavior. However, such behavior can
eliminated if the gauge field exhibits an additional ma
component, as the Proca term. Indeed, a recent work@12#
accomplished the dimensional reduction of an Abelian-Hig
Lorentz-violating model endowed with the CFJ term, resu
ing in a planar Maxwell-Chern-Simons-Proca electrodyna
ics coupled to a massive Klein-Gordon field (w). A particu-
lar feature of this kind of Higgs model is the presence
totally screened modes: all its physical excitations are m
sive, yielding screened interactions. The consideration of
Möller scattering in this framework will lead to an entire
shielded interaction potential, once the logarithmic te
should be suitably replaced by a K0 function.
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