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Regularization techniques for the radiative corrections of Wilson lines and Kaluza-Klein states

D. M. Ghilencea
D.A.M.T.P., C.M.S., University of Cambridge, Wilberforce Road, Cambridge CB3 OWA, United Kingdom

~Received 23 March 2004; published 20 August 2004!

Within an effective field theory framework we compute the most general structure of the one-loop correc-
tions to the 4D gauge couplings in one- and two-dimensional orbifold compactifications with nonvanishing
constant gauge background~Wilson lines!. Although such models are nonrenormalizable, we keep the analysis
general by considering the one-loop corrections in three regularization schemes: dimensional regularization
~DR!, zeta-function regularization~ZR!, and proper-time cutoff regularization~PT!. The relations among the
results obtained in these schemes are carefully addressed. With minimal redefinitions of the parameters in-
volved, the results obtained for the radiative corrections can be applied to most orbifold compactifications with
one or two compact dimensions. The link with string theory is discussed. We mention a possible implication for
the gauge coupling unification in such models.
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I. INTRODUCTION

There currently exists great interest in the physics of co
pact dimensions in the context of experimental and theor
cal efforts to understand the physics beyond the stand
model~SM!. Model building beyond the standard model is
general based on additional assumptions such as a h
amount of symmetry~supersymmetry, gauge symmetry!, ad-
ditional compact dimensions, and string theory, etc., wh
attempt to explain the physics at high energy scales
which must ‘‘recover’’ in the low energy limit the standar
model physics. One way to ‘‘relate’’ these two very differe
energy scales and thus provide an insight into physics
yond the SM is to study the behavior of the gauge coupli
of the model by considering their one-loop radiative corr
tions.

In this paper we use an effective field theory~EFT! ap-
proach to compute radiative corrections to the 4D gauge c
plings induced by orbifold compactifications with Wilso
line background. Such corrections are related to the ‘‘thre
old effects’’ of Kaluza-Klein~KK ! states associated with th
compact dimensions. In general higher dimensional mod
also have a larger gauge symmetry than that in supersym
ric versions of SM-like models. Examples of breaking t
higher-dimensional gauge symmetries are the Hosotani@1# or
Wilson line @2,3# mechanism, which is natural for manifold
not simply connected. This symmetry breaking mechan
affects the 4D Kaluza-Klein masses and thus the one-l
corrections to the gauge couplings. We discuss the cor
tions to the couplings due to Kaluza-Klein modes in the pr
ence of such symmetry breaking mechanisms.

Radiative corrections from compact dimensions w
studied in the past in effective field theory approach
~see, for example, Refs.@4–7#! or in string theory~see, for
example, Refs.@8–13#!. On the field theory level the effec
of Wilson lines on the 4D gauge couplings has been li
explored even for the simplest field theory orbifolds, due
technical difficulties, and this motivated the prese
work. Further, field theory calculations are usually perform
1550-7998/2004/70~4!/045011~19!/$22.50 70 0450
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for a particular choice of the regularization scheme, a
the link with other schemes is not always clear. Such a lin
important because models with compact dimensions
nonrenormalizable, and comparing the results for radia
corrections in various regularizations provid
additional valuable information on the UV behavior of th
models.

Previous studies of the link between field and stri
theory results@14–16# for Kaluza-Klein radiative corrections
suggest that in some cases the string ‘‘prefers’’ on the fi
theory side a proper-time cutoff regularization for the U
region. However, such a regularization is not gauge invar
in field theory. In this context our purpose is to provide f
one- and two-dimensional field theory orbifolds, the mo
general structure of the one-loop corrections to gauge c
plings in the presence of a Wilson lines background, in
mensional regularization~DR!, and zeta-function regulariza
tion ~ZR!. Their link with results in the proper-time cutof
regularization~PT! and with string theory is also provided
Our results for the radiative corrections are very general
can be easily applied to specific models.

The analysis starts from the observation that while
field content, which contributes to the one-loop correctio
is strongly model dependent, the general structure of
mass spectrum of Kaluza-Klein modes is determined by
~eigenvalues of the LaplacianD in a constant gauge back
ground for the! manifold/orbifold of compactification. For
the particular but often considered cases of an orbicircle
two-dimensional orbifoldT2/ZN , the integrals over compac
dimensions and sums over associated nonzero Kaluza-K
modes can be performed in a model-independent way. O
this is done, this leaves the much simpler task of determin
the exact values of the beta functions to a model-by-mo
analysis.

More explicitly, note that the general structure of one-lo
corrections to the inverse of the tree level~‘‘bare’’ ! gauge
couplingsa i , induced by Kaluza-Klein modes, may be wri
ten formally as
©2004 The American Physical Society11-1
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V i* 5tr
b~s!

4p
ln detD~s!, ~1!

where D(s) is the ~spectrum of the! Laplacian on the
manifold/orbifold considered.b(s) is the one-loop beta
function of a ‘‘component’’ state of charges under some
symmetries of compactification~boundary conditions! or a
constant gauge background, belonging to a particu
multiplet/representation. The trace tr acts over all sta
representations of the theory that have associated Kal
Klein modes. In the string contextV i* can be related to the
free energy of compactification@10# ~see also Ref.@17#! and
torsion @18,19#.

In general, the dependence of the spectrum of the Lap
ian D on the charge (s) prevents one from factorizing thes
dependence~full beta function! in front of the logarithm~1!.
However, we regards as afixed parameterand compute
ln detD(s) in general, for one- and two-dimensional orb
folds. Effectively this means to replaceD by its eigenvalues
expressed in some mass units. In an effective field theory
natural mass unit is that associated with its ultraviolet cu
L. With this argument Eq.~1! gives the usual sum of loga
rithms(nln L/Mn(s) known in field theory@21#, with Mn(s)
the mass of a Kaluza-Klein state of leveln ~for two dimen-
sionsn is replaced by a set of two integers$n1 ,n2% associ-
ated each with one compact dimension!. One then multiplies
this sum by b(s) and performs the remaining mode
dependent sum~tr! over s.

In the presence of a constant gauge background/t
~Wilson lines! the eigenvalues of the Laplacian are chang
by an amount function ofs, related to the Wilson line
vacuum expectation value~VEV’s!. The correction of the
Wilson lines to the gauge couplings may be regarded in so
cases as an additional effect~‘‘perturbation’’! to that due to
Kaluza-Klein modes alone, for vanishing Wilson VEV’
This idea may in principle be used for much more comp
manifolds ~for example, Calabi Yau,G2 manifolds! with
Wilson line background, to relate their associated one-lo
corrections to those for vanishing background and the co
sponding topological quantities~torsion! @19#.

There remains the question of the regularization of~1!.
This equation only makes sense in the presence of a reg
ization both in the UV and IR regions. Indeed, detD van-
ishes for massless modes and an IR regulator~mass shift! x
is in general required to ensure ln detD is well definedbefore
proceeding further. Thus one should in fact comp
ln det(D2x2). This is ‘‘avoided’’ in the sense that one usu
ally evaluates only the~IR finite! contribution of themassive
~Fourier! modes alone, denoted ln det(D8). This means that
one implicitly takes the limitx→0 in the massive mode
sector. This leaves only the IR regulator to be present,
which acts only in the sector of the massless modes. Fur
the correction ln det(D8) itself requires a regularization, thi
time in the UV region@14,15# since the contribution of the
KK tower is in general UV divergent and a regulator deno
j (j→0) is introduced. The important point is that the limi
x→0 andj→0 of the above UV and IR regularization o
ln det(D82x2) do not necessarily commute in themassive
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mode sector. The two regularizations and the UV and
regions may not be ‘‘decoupled’’ from each other and
UV-IR ‘‘mixing’’ ~UV divergent, IR finite! is present. See
Refs. @15,20# for an example with two compact dimension
and subsequent string theory interpretation. Such a situa
can arise in nonrenormalizable theories due to summing o
two infinite-level Kaluza-Klein towers, and is not present
the two sums are truncated to a finite number of modes.
will encounter this issue in Sec. III B.

In the following we compute the one-loop corrections d
to massivemodes to the 4D gauge couplings for one- a
two-dimensional orbifolds in the DR, ZR, and PT regulariz
tion schemes of the UV region. As we shall see in our ana
sis, the former two are very closely related. In the la
scheme~PT!, the UV scale dependence appears naturally
a form that—for the case of the two compact dimensions
agrees with the~heterotic! string. This is supported by find
ings in Refs.@14,16# where such a regularization recovere
in a field theory approach the~limit of ‘‘large’’ radii of the !
one-loop string thresholds to the gauge couplings in 4DN
51 toroidal orbifolds withN52 subsectors in the absenc
@14# or presence@16# of Wilson lines.

The plan of the paper is the following. In the next secti
we review for one- and two-dimensional orbifolds the stru
ture of the 4D KK mass spectrum in the presence of nonz
Wilson line VEV’s that ‘‘commute’’ with the orbifold projec-
tion of the model. The structure of the 4D KK mass spectr
is the starting point for the main analysis of this work~Sec.
III ! where we compute the radiative corrections and th
dependence on the UV regulator/scale. The Appendix p
vides extensive and self-contained technical details for
general series of Kaluza-Klein integrals that we encounte
in one-loop calculations in dimensional, zeta-function, a
proper-time cutoff regularizations. The exact mathemati
relation among these schemes is also provided. Such re
can be useful for other applications involving one-loop
diative corrections from compact dimensions.

II. ORBIFOLDS, WILSON LINES, AND THE 4D
KALUZA-KLEIN MASS SPECTRUM

As an introduction we review the effect of Wilson lines o
the general form of the 4D Kaluza-Klein masses for one- a
two-dimensional field theory orbifolds. Although some d
tails of the analysis may be different in specific models,
structure of the 4D Kaluza-Klein masses that we find
Eqs.~9! and ~13! is general@22,23# and this is employed in
Sec. III.

Consider a one- and a two-dimensional orbifold
discrete groupZN . For the one-dimensional case, its acti
is z→z85u lz and z denotes the extra dimension. For tw
compact dimensionsz,z̄ one hasz→z85u lz, z̄→z85 ū l z̄,
with u l5exp(2ipl/N), l 50,1, . . . ,N21. We denote m̃

5$m,z% and m̃5$m,z,z̄% for one and two compac
dimensions, respectively, withm50, . . . ,3. Then the
gauge fieldAm̃ and a scalar multipletF in the fundamental
1-2
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representation transform as1

Am̃~x,u lz!5guPuAm̃~x,z!Pu
† ~xPM4!,

F~x,u lz!5PuF~x,z!, ~2!

where gu51 for m̃5m, and gu5u l
21 for the compact di-

mension~s! index. Conditions~2! ensure that terms in th
action asuD m̃FD m̃Fu2 are invariant under the orbifold ac
tion. Suppose the action has a symmetryG* before the or-
bifold action ~2! and is invariant under a gauge transform
tion U(x,z):

Am̃
8 ~x,z!5U~x,z!Am̃~x,z!U†~x,z!2 iU ~x,z!]m̃U†~x,z!,

F8~x,z!5U~x,z!F~x,z!. ~3!

Equation ~2! is invariant under a gauge transformatio
U(x,z) provided that

U~x,u lz!Pu5PuU~x,z!. ~4!

Equation~4! gives the remaining gauge symmetry after im
posing the orbifold condition~2!. At fixed pointszf5u lzf ,
this is generated byG5$Ta , with Ta5PuTaPu

†%. For bro-
ken generators (Ta* ) with PuTa* Pu

†5vkaTa* (v[ei2p/N) and
with vka5u l , the corresponding componentsAz

a of the field
Az respect the relationAz

a(x,uz)5Az
a(x,z), and their non-

zero VEV’s will break the groupG further.

A. One compact dimension: General structure of 4D
Kaluza-Klein masses

The initial fields satisfy periodicity conditions with re
spect to the compact dimensionz,

Am̃~x,z12pR!5QAm̃~x,z!Q21,

F~x,z12pR!5QF~x,z!, ~5!

whereQ is a global transformation. Equations~5! are invari-
ant under a gauge transformationU(x,z) if

U~x,z12pR!Q5QU~x,z!. ~6!

We now assume thatAz of ~2! has some nonzero componen
in the Cartan-Weyl basis ofG* @see discussion after Eq.~4!#.
It is then easier to do calculations in a new gauge, with
background field, i.e.,Az850, which is achieved by a
z-dependent, nonperiodic gauge transformation. Then Eq~6!
is not respected and Eq.~5! will change for the gauge
transformed~‘‘primed’’ ! fields. We considerAz constant and,
for simplicity, that it lies in the Cartan subalgebra ofG* ,
Az5Az

I TI* . The generators of the groupG satisfy @TI ,TJ#

1There is an inconsistency in the notation in Eqs.~2!–~4! in that
for two compact dimensions the fieldsAm̃ andF and operatorU are

actually functions of (x,z,z̄) or (x,u lz,ū l z̄) rather than (x,z) or
(x,u lz).
04501
-

o

50; @TI ,Ea#5a IEa ; I ,J51, . . . ,rkG, with a
51, . . . ,dimG2rkG. The nonperiodic gauge transforma
tion is

V~z!5e2 izAzQ21 ~Az5Az
I TI* !. ~7!

We useAm5Am
I TI1Am

aEa , TIFl5l IFl with Fl the com-
ponentl of the multipletF. With ~3! for U5V, conditions
~5! for the fields transformed underV become

Am8
I~x,z12pR!5Am8

I~x,z!, Az850,

Am8
a~x,z12pR!5ei2praAm8

a~x,z!,

ra[2RAz
I a I ,

Fl8~x,z12pR!5ei2prlFl8~x,z!,

rl[2RAz
I l I , ~8!

whereAz originates from Eq.~2! ands5a (l) for the ad-
joint ~fundamental! representation. In the following we refe
to rs as the Wilson line or ‘‘twist’’ of higher-dimensiona
fields with respect to the compact dimension. From
Klein-Gordon equation with no gauge background~since
Az850) but with constraint~8!, we find that component fields
with twist rs (s5a,l) have 4D modes with mass

Mn
2~s!5x21~n1rs!2

1

R2
. ~9!

This provides the structure of the 4D Kaluza-Klein ma
spectrum, which takes account of nonzero background fie
Az

I or more generally ofrs twists in the ‘‘new’’ boundary
conditions~8!. The contributionx2 is only present if higher-
dimensional fields such asF are massive.2 For the gauge
fields x50 and M0(a)5” 0 if there is a nonzerora . As a
result the corresponding generatorEa is ‘‘broken’’ and the
symmetryG is reduced. See Refs.@24,26# for specific ex-
amples and related discussions. Equation~9! will be used in
Sec. III A.

Although our derivation of the mass formula~9! is not
necessarily general, the important point is that its structur
generic and appears in many orbifold compactificatio
S1 /Z2 , S1 /Z23Z2 @22,24# even in theabsenceof Wilson
line VEV’s rs . In many casesrs is just replaced by a con
stant ~twist!, while its value given in~8! is specific to the
case of Wilson line symmetry breaking only.

For generality the one-loop corrections from the K
modes are computed in Sec. III A withrs an arbitrary pa-
rameter. Any model dependence will only involve minim
redefinitions of the parametersrs , R, andx of the model.

2In such a casex will play the role of infrared regulator in the
radiative corrections to gauge couplings.
1-3
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B. Two compact dimensions: General structure of 4D Kaluza-
Klein masses

We repeat the above analysis for two compact dim
sions. For compactifications on a two-torusT2, the higher-
dimensional fields now satisfy periodicity conditions wi
respect to shifts along both dimensions. Under the follow
shifts of (z,z̄) on the torus lattice, (z8,z̄8)[(z12pR2eiu,z̄
12pR2e2 iu), and (z9,z̄9)[(z12pR1 ,z̄12pR1), one has

Am̃~x;z8,z̄8!5QAm̃~x;z,z̄!Q†,

F~x;z8,z̄8!5QF~x;z,z̄!,

Am̃~x;z9,z̄9!5QAm̃~x;z,z̄!Q†,

F~x;z9,z̄9!5QF~x;z,z̄!. ~10!

We assume thatAz andAz̄ of ~2! have nonzero componen
in the Cartan-Weyl basis. For simplicity we takeAz

5Az
I TI* , Az̄5Az̄

I
TI* andAz , Az̄ constant. A (z,z̄)-dependent

gauge transformationV(z,z̄)5exp(2izAz2iz̄Az̄)Q
21 re-

moves the constant gauge ‘‘background,’’ soAz850 andAz̄
8

50. After the transformationV the components in the Weyl
Cartan basis of the gauge-transformed fields satisfy

Am8
a~x;z8,z̄8!5ei2pr2,aAm8

a~x;z,z̄!,

Fl8~x;z8,z̄8!5ei2pr2,lFl8~x;z,z̄!,

Am8
a~x;z9,z̄9!5ei2pr1,aAm8

a~x;z,z̄!,

Fl8~x;z9,z̄9!5ei2pr1,lFl8~x;z,z̄!, ~11!

r1,s[2R1~Az
I 1Az̄

I
!s I ,

r2,s[2R2~Az
I eiu1Az̄

I
e2 iu!s I , s5a,l

~12!

while Am8
I do not acquire any twist. Heres5a (s5l) for

adjoint ~fundamental! representations,Fl denotes a compo
nentl of the multipletF, and we usedTIFl5l IFl .

From the Klein-Gordon equation with no gaug
background3 but with ‘‘twisted’’ boundary conditions~11! it
can be shown that the 4D modes of component fieldsAm8

a ,
Fl8 acquire a mass@16#

Mn1 ,n2

2 ~s!5
1

sinu2 U 1

R2
~n21r2,s!2

eiu

R1
~n11r1,s!U2

,

s5a or s5l ~13!

or, in a different notation,

3This was removed byV gauge transformation.
04501
-

g

Mn1 ,n2

2 ~s!5
m2

T2U2
un21r2,s2U~n11r1,s!u2,

s5a,l, ~14!

with

U[U11 iU 25R2 /R1eiu ~U2.0!,

T2~m![m2R1R2sinu. ~15!

We introduced a finite nonzero mass scalem to ensure a
dimensionless definition forT2; the dependence onm can-
cels out inMn1 ,n2

. Equations~11!–~14! show that the sym-
metry G present after orbifolding is further broken by th
Wilson lines ~12! or ‘‘twist’’ r i ,a5” 0 since thenM0,0(a)
50, and the correspondingAm8

a becomes massive and th
generatorEa is ‘‘broken.’’

Equation ~13! gives the general structure of 4D KK
masses forT2 with Wilson lines or forT2/ZN. For example
for T2/Z2 one hasr1,250, 1

2 from orbifold parity conditions.
Additional constraints may apply toAz ,Az̄ and thus tor i ,s ,
i 51,2, which may take continuous/discrete values. Ho
ever, for our analysis below we simply regardr i ,s as arbi-
trary, fixedparameters. This allows our results to be appl
to specific models~see examples in Ref.@23#! with twisted
boundary conditions, even in the absence of Wilson lin
(r i ,a50). Model-dependent constraints can be implemen
in the final results by using appropriate redefinitions of t
parametersr i , U, T.

III. GENERAL FORM OF ONE-LOOP CORRECTIONS

A. Case 1: One compact dimension

Using the general structure of the KK mass spectrum
one- and two-dimensional orbifolds with Wilson lines, Eq
~9! and ~14!, we can address the implications for the rad
tive corrections to the 4D gauge couplings. The one-lo
correction to the gauge couplings induced by the Kalu
Klein states is given by the Coleman-Weinberg formula@see,
for example, Ref.@27# for a general derivation ofV i(s)]

1

a i
U

1 loop

5
1

a i
U

tree

1V i* , V i* 5(
r

(
s5l,a

V i~s!,

V i~s![
b i~s!

4p (
mPZ

8 E
0

`dt

t
e2ptMm

2 (s)/m2

reg,

~16!

wherem is a finite, nonzero mass parameter that enforce
dimensionless equation forV i . We would like to mention
that the right-hand-side~rhs! formula for V i is obtained by
evaluating one-loop diagrams for vanishing momentumq2

50), such as that ofP(q2) shown in Fig. 1, with a tower of
KK states, each of massMm(s) (m integer! present in the
loop. For more technical details on how to obtain this expr
sion for V i , see, for example, Appendix A in Ref.@25#, or
Ref. @21#. Note the distinction between the dependen
1-4
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~‘‘running’’ ! of the couplings on the momentum scaleq ~see
Fig. 1! for large q, given by 1/a i(q

2)21/a i(0)5@P i(q
2)

2P i(0)#/a i(0), and their dependence on the UV cuto
~regulator! of the theory that we compute in this work fo
q250, given byV i . We will only briefly discuss the depen
dence onq25” 0 of the couplings; for a detailed analysis s
Refs.@7,20#.

V i(s) is thus the contribution of an infinite tower o
Kaluza-Klein modes associated with a state of charges in
the Weyl-Cartan basis and of mass ‘‘shifted’’ by realr(s),
with s5l,a the weights or roots belonging to the represe
tation r. The ‘‘primed’’ sum overm runs over all nonzero
positive and negative integers~levels!. The case when this
sum is restricted to positive~negative! levels only will also
be addressed. The effect of zero modes is not included inV i
since their presence is in general model dependent. T
their contribution should be added separately to 1/a i . The
important point to note is that while the sums overr ands
5a,l in Eq. ~16! depend on the field content and are th
model dependent, the integral and the sum inV i over
Kaluza-Klein modes of nonzero level depend only on
geometry of compactification. It is this integral and sum ov
KK levels that are difficult to perform exactly, and they a
evaluated below.

Supersymmetry is not a necessary ingredient in form
~16!. Supersymmetry is however present in many mod
with compact dimensions that consider minimal supersy
metric standard model~MSSM!–like models as the viable
‘‘low-energy’’ limit. Regarding the beta functionsb i we have
~we suppress the subscripti ) b(s)5kr(s Is

I)/rkG for s
belonging to representationr; kr5$211/3,2/3,1/3% for ad-
joint representations, Weyl fermion, and scalar.kr essentially
counts the degrees of freedom in the corresponding repre
tations. The Dynkin indexT(r )5((ss Is

I) r /(rkG), where
the sum is over all weights or rootss belonging to represen
tation r, each occurring the number of times equal to
multiplicity @31#. With the definitionbi(r )[(sb i(s) for the
weights s belonging to r, one has bi5211/3Ti(A)
12/3Ti(R)11/3Ti(S), to account for the adjoint Weyl fer
mion in representationR and scalar in representationS. In
the supersymmetric case massiveN51 Kaluza-Klein states
are organized asN52 hypermultiplets@vector supermultip-
lets# with bi52Ti(R)@bi522Ti(A)#.

The subscript ‘‘reg’’ shows that formula~16! is not well
defined in the UV regiont→0, and a UV regularization is
required. We assumeMm(s)5” 0 so no IR regularization~i.e.,

FIG. 1. Generic one-loop diagram contributing toV i , with KK
modes in the loop. Its value forq250 can be read from Eqs.~16!
and~26! for one and two compact dimensions. See also Append
in Ref. @25#.
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for t→`) is needed.4 The use of a particular regularization
in general dictated by the symmetries of the initial, high
dimensional theory. If a string embedding exists for th
theory, a PT regularization is in some cases the appropr
choice@14,16#. In the absence of such a fully specified theo
and to keep the analysis general, we analyzeV i in three
regularization schemes: DR, ZR, and PT regularization.

1. Dimensional regularization

In this schemeV i of Eq. ~16! has under the integral 1/t
replaced by 1/t11e with e→0 the UV regulator. In such cas
m is the arbitrary~finite, nonzero! mass scale introduced i
the DR scheme ind542e dimensions. The evaluation ofV i
is rather long and is presented in detail in the Appendix, E
~A1!–~A16!. The calculation ofV i uses expansions in Hur
witz or Riemann zeta functions that do not necessarily
volve a Poisson resummation of the ‘‘original’’ KK levels
This has the advantage that one may be able to iden
which of theoriginal KK levels brings the leading contribu
tion to V i . Using Eqs.~9!, ~A1!, ~A2!, and~A16! one finds
for V i in the DR scheme

V i uDR5
b i~s!

4p (
mPZ

8 E
0

` dt

t11e
e2ptMm

2 (s)/m2

5
b i~s!

4p H 1

e
2 ln

~Rm!2

peg
2 lnU2 sinp~rs1 ixR!

rs1 ixR U2J .

~17!

The presence of the pole ine accounts for an UV divergence
To find thescaledependence of this divergence in DR o
may in general introduce a small/infrared mass shiftx of the
momentum of the KK state. One would then expect t
emergence in the final result of a termx/e to account for a
linear divergence~in scale!, given the extra dimension
present. However, this procedure does not apply to the c
with one compact dimension only.5 Therefore, unlike the
case of two compact dimensions to be discussed later,
presence of the pole alone does not tell us the nature of
scale dependence of the UV divergence. Note also th
single state~such as the zero mode, for example! gives a
leading one-loop contribution proportional to21/e, which is

4See, however, the discussion in Ref.@15# for the case of two
compact dimensions.

5This is somewhat similar to computing*d4p/p2, which in cutoff
regularization is quadratically divergent while in DR is vanishin
However, a small mass shiftx of the momentum leads to
*d4p/(p21x2), which has a pole in DR, which signals the usu
quadratic divergence. In our case, even adding a small (mass)2 shift
~accounted for byx2) does not introduce a scale dependence of
divergence in~17!, such asx/e. For two~even number of! compact
dimensions, this procedure in DR does lead to the scale depend
of the leading divergence, as opposed to the case of one~odd num-
ber of! extra dimension~s!. See also Eq.~A21!, which shows the
emergence of a linear divergence in DR when summing overposi-
tive (negative) modes only.

A

1-5



ro

on
in
of

.

is

a

th

ix

n

a
a

za
m

iv

th
-

ith
ent.
the

f
ro

tal

ue

.

-

n

an
ge
rms
bu-

R

d

e-

D. M. GHILENCEA PHYSICAL REVIEW D 70, 045011 ~2004!
of the same form but ofopposite signto that found in Eq.
~17! for the whole Kaluza-Klein tower, excluding the ze
mode@compareRe vs finite R e

T in Eq. ~A16!#. Further, this
21/e pole due to a single state is also known to corresp
in four dimensions to a UV divergence only logarithmic
scale~rather than linear!. Note, however, that the change
the couplings with momentumq in Fig. 1 is indeed linear in
the momentum scaleq and dominates if (qR)2>O(1)
@7,20#.

If rs is a nonzero integer, there exists a leveln0 such as
Mn0

5x and thenx plays the role of an IR regulator in Eqs

~16! and ~17!, and ensures that the term ln@sinp(rs1ixR)#
remains finite. Ifrs , x vanish, the last term in~17! vanishes
and one is left with the correction in the absence of the tw
or Wilson line backgroundrs .

In deriving V i we summed over both positive and neg
tive Kaluza-Klein levels, as shown in Eq.~16!. However, it is
interesting to analyze the effect of summing separately
contributions of the positive~negative! levels. In such a case
the corresponding value ofV i , denotedV i

1 (V i
2), is com-

puted in a similar way. The result, derived in the Append
Eqs.~A18! and ~A21! is

V i
6uDR5

b i~s!

4p H 1

2e
6

rs

e
1 lnuG~16rs1 ixR!u22 ln~2p!

2F1

2
6rsG ln ~Rm!2

peg J . ~18!

The divergent terms ofV i
6 are then

V i
6uDR;1/~2e!6rs /e. ~19!

The presence of the additional divergencers /e is triggered
by a nonzero background/twistrs , and is cancelled in the
sum V i

11V i
2 of both positive and negative Kaluza-Klei

levels, giving the overall resultV i in ~17!. If rs has the
value given in~8! and is thus proportional to the VEV ofAz
and toR, thenrs /e may be regarded as a divergence line
in scale. It is also possible that in some models one m
actually havers a constant, for example rs511/2 ~or
21/2), thenV i

2(V i
1) arefinite, respectively, and theoverall

divergence inV i5V i
11V i

2 comes entirely fromV i
1(V i

2)
respectively. To conclude, the positive and negative Kalu
Klein levels propagating in opposite directions in the co
pact dimension, with a nonzero background/twistrs , con-
tribute by different amounts to the overall divergence ofV i ;
in special cases the positive or negative levels alone g
~one-loop! finite contributions.

2. z-function regularization

Alternatively, one can employ az-function regularization
of V i . In this case the correction is given@up to a factor
b i(s)/(4p)] by the derivative of thez function associated
with the Laplacian, evaluated at the origin. As detailed in
Appendix this means thatV i in this scheme is just the de
rivative with respect toe of the value obtained in the DR
04501
d

t

-

e

,

r
y

-
-

e

e

scheme~divided byG@2e#), and evaluated fore50. From
Eqs.~9!, ~16!, ~A27!, and~A28! one obtains the value ofV i
in the ZR scheme,

V iU
ZR

5
b i~s!

4p

d

de

3H 2p2e

G@2e# (
mPZ

8 E
0

` dt

t11e
e2ptMm

2 (s)/m2J U
e→0

5
b i~s!

4p H 2 ln~Rm!22 lnU2 sinp~rs1 ixR!

rs1 ixR U2J .

~20!

This result is similar to that found in the DR scheme, w
the notable difference that there is no pole structure pres
The above result is only logarithmically dependent on
mass scalem. As discussed in Appendix A2,m plays, in the
case ofz-function regularization, the role of the UV cutoff o
the model. Finally, note that the contribution of a ze
mode—if included—would bring a similar dependence onm
but of oppositesign to cancel this dependence in the to
sum ~see alsoRz andR z

T in Appendix A2!.
One can show that the separate contributions toV i of

positive and negative Kaluza-Klein modes are different d
to the asymmetry introduced by the Wilson lines or twistrs .
The results denotedV i

1(V i
2), respectively, are given by Eq

~A31!,

V i
6uZR5

b i~s!

4p H lnuG@16rs1 ixR#u22 ln~2p!

2F1

2
6rsG ln ~Rm!2J , ~21!

so the positive~negative! modes again bring a different UV
behavior (m dependence!

V i
6uZR;2~1/26rs!ln~Rm!2. ~22!

For rs just aconstant, the rs-dependent term is just an ad
ditional logarithmic correction~in m or R) to the couplings.
However, in the casers is indeed due to a nonzero Wilso
line VEV ~from initial Az gauge fields!, a linear dependence
of the couplings on this VEV/scale emerges. This term c
then have significant implications for the value of the gau
couplings. As it was the case in the DR scheme, such te
cancel in the sum of positive and negative mode contri
tions. A special case isrs571/2 when the coefficient of the
logarithmic UV divergence~in m) of V i

6 is vanishing, and
V i

1(V i
2) has nom dependence, with similarities to the D

case.

3. Proper-time regularization

The above results forV i can be compared to that obtaine
in the proper-time regularization. In this regularizationV i of
Eq. ~16! has the lower limit of its integral set equal toj
.0, wherej→0 is a dimensionless UV regulator. For d
1-6
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tails of the calculation ofV i in this scheme see Appendix A
and Ref.@16# ~Appendix A1!. From Eqs.~9!, ~A32!, ~A33!,
and ~A36! and with the notationL2[m2/j, one obtains for
V i in the PT scheme

V i uPT5
b i~s!

4p (
mPZ

8 E
j

`dt

t
e2ptMm

2 (s)/m2

5
b i~s!

4p H 2RL2 ln
~RL!2

peg

2 lnU2 sinp~rs1 ixR!

rs1 ixR U2J . ~23!

Thej-dependent terms combine naturally with the scalem to
define the UV cutoffL of the model and one obtains a d
pendence onLR only. Unlike the DR and ZR cases, a zer
mode contribution to the above result—if included—wou
not cancel the leading linear divergence@~in L;1/Aj), but
only the logarithmic one~for more details compareRj and
R j

T in Appendix A3, Eq.~A36!#.
What is the meaning of the individual contributions

V i? Technical details show that the term lnurs1ixRu is simi-
lar to a contribution corresponding to a massive Kalu
Klein state of level zero. It may be interpreted as a one-lo
effect of this state between the compactification scaleR
and the scale set by the Wilson lines VEV’s,s I^Az

I & with s
accounting for a root/weight. The term ln@sin(•••)# in ~23! is
an effect due to ‘‘Poisson re-summed’’~PR! Kaluza-Klein
states@see Eq.~A65!#, with the dominant contribution from
the lower PR levels. Further, the logarithm ln(LR) can be
thought of as a one-loop effect from the compactificat
scale to the UV cutoff scaleL. Finally, the termLR is due
to the presence of alarge enoughnumber of Kaluza-Klein
modes that enable the Poisson resummation. This term is
to the Poisson resummed mode of zero level. Thus
should expectLR@1 becauseLR approximates the numbe
of Kaluza-Klein modes. In fact the PT result~23! is valid
provided that

max$1/R2,x2,~^Az
I &s I !

21x2%!L2 ~24!

derived from Eq.~A35! of Appendix A3. Here we replaced
rs in terms of the VEV’s ofAz

I as in Eq.~8!. More generally,
for arbitraryrs this condition is

max$1/R2,x2,rs
2/R21x2%!L2. ~25!

Therefore the result in the PT scheme is valid ifR is large~in
UV cutoff units! and if the gauge symmetry breaking VEV
or (rs /R)2 and the mass scalex2 have a sum much smalle
than the UV cutoff. Note that these constraints are not sha
by the DR or ZR counterparts computed above. This is
portant for in general to avoid a large UV sensitivity of th
couplings one would like to haveLR'1 which is a region
for which the PT result does not hold accurately. From co
paring it with its DR counterpart, the presence of the polee
04501
-
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of the latter may indicate that even ifLR is made smaller, of
order unity, a UV divergence is still manifest. Finally, if on
considered a string embedding of these models, the st
counterpart ofLR'1 would beMsR'1 with Ms the string
scale. In this case string effects due to additional~winding!
states not present in field theory may become important.

Comparing the three results forV i obtained in these dif-
ferent regularization schemes one observes that the fi
~regulator independent! part is the same in all regulariza
tions. This is a strong consistency check of the calculati
Regarding the~i.e., regulator dependent! part, note that the
1/e term of DR is replaced in the PT cutoff regularization b
the j (L) dependent divergent term, accounting for a line
divergence. Note that the ZR counterpart has only~rather
‘‘mild’’ ! a logarithmic UV divergence. Equations~17! to ~23!
generalize the results@25# for one compact dimension, in th
presence of Wilson lines/twistsrs .

B. Case 2: Two compact dimensions

We now consider the case of a two-dimensional comp
tification. With the structure of the mass spectrum of Eq.~14!
we again compute the general form of the correction to
4D gauge couplings due to nonzero level Kaluza-Kle
modes in the presence of Wilson lines. This correction can
applied to a large class of models@23#. Formally, the correc-
tion is

V i* 5(
r

(
s5l,a

V i~s!,

V i~s![
b i~s!

4p (
n1 ,n2PZ

8 E
0

`dt

t
e2ptMn1 ,n2

2 (s)/m2U
reg

.

~26!

Similarly to the case of one extra dimension,V i is obtained
by computing one loop diagrams evaluated forq250 ~Fig.
1! with Kaluza-Klein states of massMn1 ,n2

(s) in the loop.

In the following we perform—fors fixed—the integral
and the sums over (n1 ,n2)5” (0,0) in Eq. ~26!. Any model
dependence@beta functionsb i(s), sums over weightss,
representationsr ] can then easily be implemented on th
final result for V i* . The presence of the state (n1 ,n2)
5(0,0) is model dependent and its contribution should
considered separately. We again discuss the value ofV i in
DR, ZR and PT regularization schemes for the UV div
gence (t→0) of Eq. ~26!. We assumeMn1 ,n2

5” 0 for all in-

tegers, so no IR divergence~at t→`) exists. However, if
there exists a pair (n1 ,n2) for which Mn1 ,n2

50, see the
results in the PT scheme of Ref.@15# and the discussion in
the DR scheme to follow.

1. Dimensional regularization

In the DR schemeV i is defined with 1/t under its integral
replaced by 1/t11e where e→0 is the UV regulator. The
calculation is rather technical and is presented in Appen
A 4, Eqs.~A37! to ~A41!, where the sums overn1,2 and in-
1-7



ow

l

ib
R
re

f t
of

th

is
of

la

or
is

il
ro

-
A
o

m

d

on
-
cal
ld

toff
uld
os-

V

i-
yli

D. M. GHILENCEA PHYSICAL REVIEW D 70, 045011 ~2004!
tegral in ~26! are evaluated. Using Eqs.~14!, ~26!, ~A38!,
~A41!, and~A64!, one obtainsV i in the DR scheme

V i uDR5
b i~s!

4p (
n1 ,n2PZ

8 E
0

` dt

t11e
e2ptMn1 ,n2

2 (s)/m2

5
b i~s!

4p H 1

e
2 ln

T2U2

peg

2 lnUq1~r2,s2Ur1,suU !

~r2,s2Ur1,s!h~U !
eipUr1,s

2 U2J . ~27!

The special functionsh,q1 are defined in Appendix A7. The
pole 1/e accounts for divergences up to quadratic level. H
can we see this? By introducing a small (mass)2 shift m2d to
Mn1 ,n2

2 (d dimensionless,d!1), i.e., Mn1 ,n2

2 →Mn1 ,n2

2

1m2d under the integral in~26! and computing the integra
in this more general case one obtains forV i , in addition to
the divergence 1/e, a contributionpdT2 /e. This is a qua-
dratic divergence in scale (T2 ‘‘contains’’ a m2) that 1/e term
effectively signals in Eqs.~27! and ~A41!. For additional
technical details see Appendix A4, Eqs.~A43! and ~A44!.6

The emergence of the additional scale-dependent contr
tion pdT2 /e is to be contrasted with what happened in D
in the one extra dimension case already discussed, whe
small mass shift did not introduce a scale dependence o
UV divergence. This is due to the different UV behavior
models with one~or odd number of! and two~or even num-
ber of! compact dimensions, respectively. Note that in
special case when there exists a pair (n1 ,n2) such as
Mn1 ,n2

50, an IR regulator—in addition to the UV one—
required in Eqs.~26! and ~27! to ensure the convergence
the integral att→`. The aforementioned shiftm2d of the
KK masses would in such special case act as an IR regu
in ~26! and one would obtain in~27! a termpdT2 /e, which
represents an IR-UV ‘‘mixing’’ term between the IR sect
(d) and UV sector (e) of the theory. For a discussion on th
UV-IR mixing see Refs.@15,20# where its string theory in-
terpretation is also presented. Finally, considerations sim
to those for one extra dimension apply for the separate
of negative or positive Kaluza-Klein levels, respectively.

2. z-function regularization

In this schemeV i is related to the derivative of the zeta
function associated with the Laplacian, as discussed in
pendix A 5. In factV i in ZR is the derivative with respect t
e of V i in DR divided byG@2e#, and evaluated fore50.
Using Eqs.~14!, ~A53!, ~A54!, ~A64! one findsV i in the ZR
scheme

6This also has consequences for the change of the gauge coup
with momentumq in Fig. 1 as discussed in Ref.@20#.
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V i uZR5
b i~s!

4p

d

de

3H 2p2e

G@2e# (
n1 ,n2PZ

8 E
0

` dt

t11e
e2ptMn1 ,n2

2 (s)/m2J U
e→0

5
b i~s!

4p H 2 ln@T2U2#

2 lnUq1~r2,s2Ur1,suU !

~r2,s2Ur1,s!h~U !
eipUr1,s

2 U2J . ~28!

This result has a form similar to that in the DR scheme fro
which the pole structure has been subtracted. Them scale
dependence ‘‘hidden’’ inT2 should in this case be regarde
as the UV cutoff as discussed in Appendix A 5, Eq.~A50!. In
this scheme there is thus only a logarithmic dependence
the UV cutoff. Finally, the finite part is similar to that ob
tained in the DR scheme. It would be of phenomenologi
interest to know which higher dimensional theories wou
require such a regularization, since in this case the UV cu
dependence of the couplings is milder and the models wo
then have less amount of sensitivity to this cutoff scale, p
sibly similar to that of MSSM-like models.

3. Proper-time regularization

Finally, for a comparison we include here the value ofV i
in the proper-time cutoff regularization scheme@16#. In this
schemeV i of ~26! is defined with a~dimensionless! cutoff
j→0 in the lower limit of its integral, which acts as an U
regulator. After a long calculation one obtains the result@for
details see Eqs.~26!, ~A56!, ~A59!, ~A64!, and also Eq.~52!
in Ref. @16# #

V i uPT5
b i~s!

4p (
n1 ,n2PZ

8 E
j

`dt

t
e2ptMn1 ,n2

2 (s)/m2

5
b i~s!

4p H T2

j
2 ln

@~T2 /j!U2#

peg

2 lnUq1~r2,s2Ur1,suU !

~r2,s2Ur1,s!h~U !
eipUr1,s

2 U2J . ~29!

Equation~29! is valid if @see Eq.~A60! and definition~12!#

maxH 1

R1
,

1

R2sinu
,^Az

I &s I ,^Az̄
I
&s I J !L, L2[

m2

j
.

~30!

This condition requires ‘‘large’’ compactification radii~in
UV cutoff units! and symmetry breaking VEV’s much
smaller thanL. Here we replacedr i ,s in terms of the VEV’s
of Az

I , Eq. ~12! but for arbitrary r i ,s this condition is
max$1/R1,1/R2sinu,ur1,su/R1 ,ur2,s2Ur1,su/(R2sinu)%!L.

Equation~29! shows the presence of a UV quadratic d
vergent term also known as ‘‘powerlike’’ threshold, given b
T2 /j5L2R1R2sinu whereL2;1/j is the UV cutoff scale.

ngs
1-8
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REGULARIZATION TECHNIQUES FOR THE RADIATIVE . . . PHYSICAL REVIEW D 70, 045011 ~2004!
A logarithmic correction is also present, ln(T2 /j)
5ln(LR1R2sinu), as well as a lnU25ln(R2sinu/R1) part. The
remaining term inV i includes effects due to nonzerors

which bring in a finite, regulator independent correction.
The field theory result~29! has a great advantage over

DR and ZR counterparts in that it allows a straightforwa
comparison with results of 4DN51 heterotic string orbi-
folds with N52 sectors and Wilson lines@12#, when this
string result is considered in the limit of large compactific
tion radii/area~in string units! @16#, as required by Eq.~30!.
The UV regulatorj;1/L2 has a natural counterpart in th
~heterotic! string in a8;1/Ms

2 (Ms is the string scale!.
Therefore,T2 /j of ~29! has a counterpart at the string lev
in T2 /a8, whereT2 /a8 is the~imaginary part of the! Kähler
structure moduli. With the correspondence of the fundam
tal lengths in field and string theory respectively,j↔a8, the
result~29! is indeed similar@16# to the limit of large radii of
the heterotic string result@12#. Such agreement provides su
port for this regularization scheme in the field theory a
proach, although it is not gauge invariant. String theory a
brings additional corrections, nonperturbative on the fi
theory side~world-sheet instantons! but their effect is expo-
nentially suppressed,O(e2T2 /a8) @12#. For more details on
the exact link with the corrections to the gauge couplings
to the heterotic string with Wilson lines present, see R
@16#.

The effective field theory result~29! has an interesting
limit, that of vanishing Wilson lines VEV’s or twistsr i ,s .
For r i ,s→0 (s fixed! after using the relations in Eqs.~A61!
and ~A62! one finds

V i uPT~r i ,s→0!52
b i~s!

4p
ln@4pe2ge2T2 /j

3~T2 /j!U2uh~U !u4#,

T2 /j5L2R1R2sinu. ~31!

For two compact dimensions this result generalizes
‘‘power-law’’ corrections~in the UV cutoff! of Ref. @25#, by
including the dependence onU5R2 /R1eiu.

The field theory result~31! is itself the exact limit@14,15#
of ‘‘large R1,2’’ ~in string units! of the result in 4DN51
heterotic string orbifolds withN52 sectors and without Wil-
son lines@9#. The only difference7 betweenV i of ~31! and
the above limit of the string result@9# is that the leading term
T2 /j in V i has a coefficient that depends on the regula
choice (j) while in string case at ‘‘largeR1,2’’ the leading
term is8 (p/3)T2 /a8. With the correspondencej↔a8 men-
tioned before, the exact matching of these two terms t
requires a redefinition of the PT regulatorj→(3/p)j or
equivalentlyL2→p/3L2. Such specific normalization ofj
~or L) cannot be motivated on field theory grounds only.

7See however Ref.@15# and the discussion in the DR scheme.
8The presence ofp/3 is a ‘‘remnant’’ of the modular invariance

symmetry of the string.
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It is interesting to mention that imposing on the fie
theory result~31! one of the string symmetriesT↔U or
T↔1/T enables one to recover thefull heterotic string result
@9# from that derived using only field theory methods. Th
one may obtain full string results by using only field theo
methods supplemented by some of the symmetries of
string, not respected by the field theory approach, but
posed on the final field theory result. For more details on
exact link with the heterotic string without Wilson lines, se
Refs.@14,15#. This ends our discussion on the corrections
the PT regularization scheme and their relation to str
theory.

Comparing the results forV i in the three regularization
schemes, Eqs.~27! to ~29!, one notices that the finite
~regulator-independent! part of V i is the same in all case
which is a consistency check of the calculation. An importa
point to mention is that the result in the PT scheme has
constraint that the compactification radii be large~in UV
cutoff units!. The results in the DR and ZR schemes sh
that the finite part of the one-loop correction has the va
found without such restrictions.

Regarding the divergent part of the one-loop correctio
this is effectively dictated by the regularization choice o
has to make, in agreement with the symmetries of the mo
Our discussion above shows that for two compact dim
sions the PT regularization is indeed appropriate in calcu
tions seeking the link with their string counterparts. Furth
the z-function regularization leads to an UV divergence th
is milder ~logarithmic! than in the PT scheme with possib
phenomenological implications. This is important becau
models with ‘‘powerlike’’ regime require in general a signifi
cant amount of fine-tuning@32#. It is difficult to justify, with-
out the knowledge of the full higher-dimensional theory,
which case thez-function regularization is the right choice
The results of Eqs.~27! to ~31! generalize, in the presence o
Wilson lines, early results@25# for the radiative corrections
from two compact dimensions.

The one-loop corrections obtained in the DR, ZR, or
schemes have strong similarities with their one-dimensio
counterparts, Eqs.~17! to ~23!, with T2U2 and r2,s2Ur1,s
of Eqs.~27! to ~29! replaced in the one-dimensional case
Rm andrs respectively, while ln(q1 /h) has as counterpart in
the one-dimensional case the term ln@sinp(r1ix)#. A similar
term appears in compactification onG2 manifolds@19# sug-
gesting that this latter correction is rather generic.

We end with a remark on possible phenomenological
plications. The result forV i has a divergence which
depends—as expected—on the regularization choice. S
this is a nonrenormalizable theory, a natural question
whether one can make a prediction without the knowledge
the fundamental, underlying theory that would otherwise d
tate the regularisation to use. If the gauge group G a
orbifolding is a grand unified group which is further broke
by Wilson lines to a SM-like group, the coefficient of th
~regularization-dependent! divergent terms found inV i* is
the same for all group factors into whichG is broken
(G-invariant!. If so, such UV divergent terms ofV i* can
then be absorbed into the redefinition of the initial 4D tr
1-9
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D. M. GHILENCEA PHYSICAL REVIEW D 70, 045011 ~2004!
level coupling of the group9 G. The newly defined coupling
can be regarded as the 4D ‘‘MSSM-like’’ unified couplin
Further, the remaining,finite part of V i* brings a splitting
term to this coupling, due to Wilson line VEVrs , but inde-
pendent on the UV cutoff~regularization!. Finally, the
‘‘MSSM-like’’ massless states not included so far wou
bring the usual logarithmic correction~UV scale dependent!.
This raises the possibility of allowing MSSM-like logarith
mic unification even for ‘‘large’’ compact dimensions, an
the aforementioned splitting of couplings would ‘‘mimic’’~at
a scale of the order of the compactification scale! what could
be seen from a 4D point of view as further running10 up to a
high unification scale, such as that of the MSSM ('2
31016 GeV) or higher.

IV. CONCLUSIONS

The general structure of radiative corrections to gau
couplings was investigated in generic 4D models with o
and two-dimensional compactifications in the presence
Wilson lines. The analysis was based on the following obs
vation. Although one-loop corrections are dependent on
exact field content of the model, for the compactificatio
considered one can still perform in a general case, the o
loop integral and the infinite sums over~nonzero! Kaluza-
Klein levels associated with a given state, component o
multiplet. This leaves the much simpler analysis of determ
ing which states have associated Kaluza-Klein towers, t
model-by-model analysis.

The evaluation of the one-loop radiative corrections fro
compact dimensions summed up the individual effects
nonzero-level Kaluza-Klein modes. Although the models
nonrenormalizable, the calculation was kept general by c
sidering the radiative effects in three regularization schem
dimensional, zeta-function, and proper-time cutoff regul
izations for the UV divergences and the exact link amo
these results was investigated. The results in DR
z-function regularization schemes are very similar with t
notable difference that the~UV! pole structure of the DR
scheme (1/e) is not present in thez-function regularization.
This applies to both one and two extra dimension cases
the ZR scheme forV i only a logarithmic divergence in th
UV cutoff scale is present. This is important, since it pr
vides an amount of sensitivity of the radiative corrections
this scale smaller than that of other regularizations, wh
may be relevant for phenomenology. In the DR and
schemes the finite part of the results is valid for either la
or small compactification radii, for both one and two com
pact dimension cases.

9The method of ‘‘absorbing’’ the divergences in the initial tre
level coupling also exists in heterotic string models@11# where
gauge universal, gravitational effects are included in the tree-l
coupling, in addition to the dilaton, with the remark that this
actually dictated by the symmetries of the~tree level coupling of!
the string.

10In a 4D renormalizable theory.
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In proper-time regularization the leading divergences
the radiative corrections are for one and two compact dim
sions linear and quadratic in scale, respectively. The fin
~regulator-independent! part is the same as in the DR an
zeta-function regularization, which is a strong consisten
check of the calculation. The result in the proper-time reg
larization is only valid for ‘‘large’’ compactification radii~in
UV cutoff units!, a constraint not shared by the results in t
DR and ZR schemes. The effect of zero modes~whose exis-
tence is model dependent! can easily be added to the resu
we obtained. In specific cases they may even cancel the
vergence from the entire KK tower ofnonzeromodes. Fi-
nally, we also discussed the cases when for special value
the background/twistsrs , one obtains one-loopfinite results
for the corrections due to positive or negative mod
alone.

There remains the question of which regularizati
scheme to use in~nonrenormalizable! models with compact
dimensions. Explicit calculations and comparison with t
~heterotic! string show that proper-time cutoff regularizatio
is in exact quantitative agreement with the limit of larg
compactification radii of the string results. This applies to t
case of two compact dimensions that contribute to the ra
tive corrections to the gauge couplings. Therefore this re
larization is an appropriate choice for computing radiat
correctionsfor the purpose of establishing the linkwith re-
sults from string theory. However, this regularization may
of limited use in field theory since is not gauge invariant. F
the case of one compact dimension the lack of string res
prevents one from making a similar statement, and
choice of regularization should follow the usual guidelin
such as its compatibility with the symmetries of the mode

We addressed the possibility of making phenomenolog
predictions that are independent of the UV divergence of
radiative corrections, which, in the case of a grand unifi
group G broken by Wilson line VEVs/twistrs , can be ab-
sorbed in the redefinition of the tree level coupling. Th
leaves a splitting of the couplings at the compactificat
scale possibly compatible with what can be regarded in a
~renormalizable! theory as further ‘‘running’’ up to a high,
MSSM-like unification scale.

The paper provides all the technical details necessar
models with one and two compact dimensions that exam
the one-loop corrections to the gauge couplings fr
Kaluza-Klein thresholds in the presence of Wilson lines. A
though we discussed only the dependence of the correct
on the UV cutoff/regulator, the paper provides the techni
results for investigating the change of the gauge coupli
with respect to the~momentum! scaleq as well. Extensive
mathematical details of regularizations of integrals and se
present in one-loop corrections due to compact dimens
were provided in the Appendix. Our results can be appl
with minimal changes to many one- and two-dimensio
orbifolds with Wilson lines, by making appropriate redefin
tions of the parameters of the models, such as the comp
fication radii (R), the twist of the initial fields with respect to
the compact dimensions or the Wilson line VEV’s (r).

el
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APPENDIX

We provide general results for series of integrals pres
in one-loop corrections to the gauge couplings, evaluate
DR, z-function, and proper-time cutoff regularizations, f
one and two compact dimensions~see also Appendix A4 in
Ref. @16#!. The notation used is as follows: a ‘‘primed’’ sum
(m8 f (m) is a sum overmPZ2$0%; (m,n8 f (m,n) is a sum
over all pairs of integers (m,n) excluding(m,n)5(0,0).
te
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1. One compact dimension in dimensional regularization

„1… We compute the following integral:

Re[E
0

` dt

t11e (
mPZ

8

e2pt[(m1r)2b1d] , d>0, b.0.

~A1!

V i of Eq. ~17! is then given by

V i uDR5b i~s!/~4p!Re~b→1/~Rm!2;

d→~x/m!2; r→rs) ~A2!

Proof. Consider first 0,d/b<1. With the notationr5@r#
1Dr , @r#PZ, 0<Dr,1 one has
Re5E
0

` dt

t11e F2e2ptbr2
1e2ptbDr

2
1 (

nPZ
8 e2pt(n1Dr)2bGe2ptd

5G@2e#peH ~d1bDr
2!e2~d1br2!e1F (

n.0
@b~n1Dr!21d#e1~Dr→2Dr!G J

5G@2e#pe@~d1bDr
2!e2~d1br2!e#1G@2e#~pb!e$z@22e,11Dr#1z@22e,12Dr#%

1~pb!e(
k>1

G@k2e#

k! F2d

b Gk

$z@2k22e,11Dr#1~Dr→2Dr!%, 0,d/b<1. ~A3!
-

which is convergent under conditions shown. In the last s
we used thebinomial expansion@29#

(
n>0

@a~n1c!21q#2s5a2s(
k>0

G@k1s#

k!G@s# F2q

a Gk

z@2k

12s,c#,

0,q/a<1, ~A4!
pHere z@q,a# with a5” 0,21,22, . . . is the Hurwitz zeta
function, with z@q,a#5(n>0(a1n)2q for Re(q).1. The
Hurwitz zeta-function has one singularity~simple pole! at
q51 andz@q,1#5z@q# with z@q# the Riemann zeta func
tion. Further, using Eq.~A3! and the identity

z@q,a#5a2q1z@q,a11#,

we obtain that
Re5peG@2e#@~d1bDr
2!e2~d1br2!e#1~pb!eG@2e#@z@22e,11Dr#1z@22e,12Dr##

1 (
k>1

F2d

b Gk 1

k
@z@2k,11Dr#1z@2k,22Dr#1~12Dr!22k#

5peG@2e#@~d1bDr
2!e2~d1br2!e#1~pb!eG@2e#@z@22e,11Dr#1z@22e,12Dr##

2 ln
usinp@Dr1 i ~d/b!~1/2!#u2

p2~Dr
21d/b!

22 ln@G@12Dr#G@11Dr##, ~A5!
1-11
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provided that

0,
d

b
<1,

d

b
,~11Dr!2,

d

b
,~22Dr!2. ~A6!

SinceDr,1 we conclude that~A5! is valid if the first con-
dition ~the strongest! is respected:

0,
d

b
<1. ~A7!

In the last step of deriving Eq.~A5! for each of the series in
zeta functions we used@30#

(
k>1

t2k

k
z@2k,a#5 ln

G@a1t#G@a2t#

G@a#2
, utu,uau,

~A8!

with t5 i (d/b)1/2, a511Dr, 22Dr and from which the last
two conditions in~A6! emerged. Finally, in the last step i
~A5! we also used

)
6

G@16x6 iy #5
p2~x21y2!

usinp~x1 iy !u2
, x,y real, ~A9!

where the product runs over all 4 combinations of plus/min
signs in the argument ofG functions. Equation~A9! can be
easily proved using thatG@12z#G@11z#5pz/sinpz.

In Eq. ~A5! we now evaluate thee dependent part fore
→0 by using~see, for example, Ref.@28#!

z@22e,q#5
1

2
2q22e

d

dz
z@z,q#uz501O~e2!

d

dz
z@z,q#uz505 ln G@q#2

1

2
ln~2p!,

G@2e#52
1

e
2g1O~e!,

xe511e ln x1O~x!. ~A10!

We finally find from Eqs.~A5!, ~A7!, and ~A10! that ~if r
PZ* , d50 is excluded!

Re5E
0

` dt

t11e (
mPZ

8 e2pt[(m1r)2b1d]

5
1

e
2 ln

u2 sinp@Dr1 i ~d/b!1/2#u2

pegb~r21d/b!
, 0<d/b<1

~A11!

„2… We now evaluateRe for the cased/b.1 ~with nota-
tion r[@r#1Dr , @r#PZ, 0<Dr,1)
04501
s

Re5E
0

` dt

t11e (
mPZ

8 e2pt[(m1r)2b1d]

5E
0

` dt

t11e F (
nPZ

e2pt(n1Dr)2b2e2ptbr2Ge2ptd

5G@2e#peF (
nPZ

@b~n1Dr!21d#e2~d1br2!eG .
~A12!

We further use the well-known expansion given below@for
details see, for example,~4.13! in Ref. @29# #

(
nPZ

@a~n1c!21q#2s5ApFq

aG1/2G@s21/2#

G@s#
q2s

1
4ps

G@s# Fq

aG1/4

q2s/2a2s/2

3 (
n51

`

ns21/2cos~2pnc!

3Ks21/2~2pnAq/a! ~A13!

with a.0, c5” 0,21,22, . . . andwhich is rapidly conver-
gent forq/a.1. Kw is the modified Bessel function of inde
w. The first term proportional toq/a gives the leading con-
tribution; the remaining ones give ‘‘instantonlike’’ correc
tions. This result is then used to evaluate~A12!. Compare
~A13! rapidly convergent forq/a.1 with ~A4! valid for
q/a,1. Alternatively, instead of~A13! one can simply use a
Poisson resummation in~A12! and the definition of the
modified Bessel functions to reach the same result. Wits
52e in ~A13! and with

G@2e#52
1

e
2g1O~e!, K2

1
2
~z!5Ap

2z
e2z,

~A14!

one finds from~A12! and ~A13!

Re5E
0

` dt

t11e (
mPZ

8 e2pt[(m1r)2b1d]

5
1

e
2 ln

u2 sinp@Dr1 i ~d/b!1/2#u2

peg~d1br2!
, if d/b.1

~A15!

To see the complementarity of~A11! and~A15! note that the
latter is not valid ford50 since~A13! is not valid in that
case.

In conclusion from Eqs.~A11! and ~A15! we have
1-12
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Re[E
0

` dt

t11e (
mPZ

8

e2pt[(m1r)2b1d]

5
1

e
2 ln

u2 sinp@r1 i ~d/b!1/2#u2

peg~br21d!
, d>0,b.0.

R e
T[E

0

` dt

t11e (
mPZ

e2pt[(m1r)2b1d]

52 lnu2 sinp@r1 i ~d/b!1/2#u2, d>0,b.0.

~A16!

In Eq. ~A16! we used the properties of the sine function
replaceDr by r. The pole 1/e cancels between zero-mod
and nonzero mode contributions. Equation~A16! was used in
Eq. ~17!.

„3… We compute the integral

R e
1[E

0

` dt

t11e (
m.0

e2pt[(m1r)2b1d] , d>0,b.0

~A17!

which sums positive modes only.R e
2 , which sums negative

modes only, is thenR e
25R e

1(r→2r). V i
6 mentioned in

the text, Eq.~19!, and corresponding to summing only pos
tive ~negative! Kaluza-Klein modes is then given by

V i
6uDR[b i~s!/~4p!R e

6
„b→1/~Rm!2;d→~x/m!2;r→rs…

~A18!

The calculation proceeds almost identically to Appendix S
1 ~1!. The result is

R e
15

1

2e
1

r

e
1 lnuG@11r1 i ~d/b!1/2#u22 ln~2p!

1F1

2
1rG ln~pbeg!, ~A19!

which shows that a new divergencer/e is present. One can
easily verify that

R e
11R e

25Re ~A20!

with Re given in ~A16!. This shows that the divergencer/e
of separate contributions from the positive and nega
modes iscancelled in their sum, which equalsRe . While Re
corresponds to states propagating in both directions in
compact dimension in the ‘‘background’’r, R e

6 account for
effects propagating in one direction only.

Similar properties exist for the full one-loop radiative co
rections V i

6 given below, corresponding to positive an
negative modes, respectively. The radiative correction in
due to positive~negative! modes only is
04501
c.

e

e

R

V i
6uDR[

b i~s!

4p
R e

6
„b→1/~Rm!2;d→~x/m!2;r→rs…

5
b i~s!

4p H 1

2e
6

rs

e
1 lnuG~16rs1 ixR!u2

2 ln~2p!1F1

2
6rsG ln peg

~Rm!2J . ~A21!

One findsV i
11V i

25V i with V i as in ~17!. The ‘‘linear’’
divergencers /e cancels between positive and negati
modes’ contributions.

2. One compact dimension inz-function regularization

~a! Here we define/evaluateV i of Eq. ~20! in the ZR
scheme. The one-loop correction to the gauge coupling
zeta-function regularization is defined by~proportional to!
the derivative of the zeta function associated with the L
placian on the compact manifold and evaluated in 0. To
this note thatz function of the Laplacian~eigenvalueslm
.0) is defined as

zD@s#[(
m

8
1

lm
s

5
1

G@s# (
m

8 E
0

` dt

t12s
e2lmt, ~A22!

where we use

Q2s5
1

G@s#
E

0

` dt

t12s
e2Qt, Q.0. ~A23!

From ~A22! the formal derivative of the zeta functionzD8 @0#
is an infinite sum of individual logarithms oflm . With lm

expressed in some mass unitsm, (lm5Mm
2 /m2) one has the

formal result

dzD@s#

ds U
s50

52(
m

8 ln lm5(
m

8 ln~m/Mm!2 ~A24!

and the link ofV i with the one-loop corrections is obvious
m acts as the effective field theory UV cutoff.

From Eq.~A22! we have

Rz[
dzD@s#

ds U
s50

5
d

dsF 1

G@s# (
m

8 E
0

` dt

t12s
e2lmtG

s50

,

~A25!

which relates thez-function regularization of an operator t
its value in the DR scheme. One can also include the con
bution of the zero modem50 ~if l05” 0) in the definition of
zD@s#. AccordinglyRz changes and is relabelledR z

T .
With lm5(m1r)2b1d as general eigenvalues of La

placian for one-dimensional case@see Eq.~9!# with boundary
conditions given in the text, and using the results of E
~A16!,
1-13
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Re[E
0

` dt

t11e (
mPZ

8 e2pt[(m1r)2b1d]

5
1

e
2 ln

u2 sinp@r1 i ~d/b!1/2#u2

peg~d1br2!
,

R e
T[E

0

` dt

t11e (
mPZ

e2pt[(m1r)2b1d]

52 lnu2 sinp@r1 i ~d/b!1/2#u2, ~A26!

we finally find

Rz52
d

de H p2e

G@2e#
ReJ

e50

52 ln
u2 sinp~r1 i ~d/b!~1/2!!u2

~d1br2!

R z
T52

d

de H p2e

G@2e#
Re

TJ
e50

52 lnu2 sinp~r1 i ~d/b!~1/2!!u2. ~A27!

Comparing the results of the last two sets of equations,
notices that~up to a constant! the result inz-function regu-
larization is equal to that in DR from which the pole cont
bution was subtracted.

Equations~A22!, ~A25!, and ~A27! allow us to evaluate
V i of Eq. ~20!. This is given by

V i uZR[b i~s!/~4p!Rz„d→x2/m2,b→1/~Rm!2,r→rs….
~A28!

According to Eq.~A24! m should be regarded as the effe
tive field theory UV cutoff.

~b! Using the DR results~A17! of summing over positive
~negative! modes only,

R e
6[E

0

` dt

t11e (
m.0

e2pt[(m6r)2b1d]

5
1

2e
6

r

e
1 lnuG@16r1 i ~d/b!1/2#u2

2 ln~2p!1F1

2
6rG ln~pbeg!, ~A29!

one finds the associatedz-regularized result for positive
~negative! mode contribution

R z
6[2

d

de H p2e

G@2e#
R e

6J 5 lnuG@16r1 i ~d/b!1/2#u2

2 ln~2p!1F1

2
6rG ln b. ~A30!
04501
e

The effect of positive~negative! modes on the gauge cou
plings in z-function regularization is then

V i
6uZR[

b i~s!

4p
R z

6
„d→x2/m2;b→1/~Rm!2;r→rs…

5
b i~s!

4p H lnuG@16rs1 ixR#u22 ln~2p!

1F1

2
6rsG ln 1

~Rm!2J . ~A31!

This result was used in Eq.~22!.

3. One compact dimension in proper-time regularization

Here we provide technical details used to derive the re
of Eq. ~23!. In the proper-time cutoff regularization, the g
neric structure of the one-loop corrections is

Rj[E
j

`dt

t (
nPZ

8 e2pt[(n1r)2b1d] ,

j→0 ~j.0!, d>0, b.0.
~A32!

V i of Eq. ~23! is then given by

V i uPT[b i~s!/~4p!Rj„b→1/~Rm!2;

r→rs ;d→x2/m2;j→j…. ~A33!

To obtainRj we use Eq.~A9! of Appendix A1 of Ref.@16#.
One has

Rj5E
bj

` dt

t (
nPZ

8 e2pt[(n1r)21d/b]

5 ln@~r21d/b!peg#2 ln
e22/Ajb

jb

2 lnu2 sinp@Dr1 i ~d/b!1/2#u2 ~A34!

with Dr defined after Eq.~A2! and which is valid if

jb!H 1;
1

pd/b
;

1

p~r21d/b!
J . ~A35!

One concludes that

Rj[ (
nPZ

8 E
j

`dt

t
e2pt[(n1r)2b1d]

52 ln
e22/Ajb

j
2 ln

u2 sinp@r1 i ~d/b!1/2#u2

@peg~d1br2!#
,

1-14
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R j
T[ (

nPZ
E

j

`dt

t
e2pt[(n1r)2b1d]

5
2

Ajb
2 lnu2 sinp@r1 i ~d/b!1/2#u2, ~A36!

with condition~A35!. In the above equations we replacedDr

by r.
Note that adding the zero mode toRj does not cancel the

leading linear divergence unlike the cases of DR or
schemes. To understand the differences among the va
regularization schemes it is useful to compare the above
sult of the PT regularization equations~A36! and~A35! with
that of DR regularization equation~A16!, and that of
z-functions regularization equation~A27!.

Equation~A36! was used in the text, Eq.~23!.
e

04501
us
e-

4. Two compact dimensions in dimensional regularization

~a! For two compact dimensions we evaluate the integ

Le[E
0

` dt

t11e (
m1 ,m2PZ

8 e2pttum21r22U(m11r1)u2,

t.0; U5U11 iU 2 . ~A37!

V i of Eq. ~27! is then given by

V i uDR5b i~s!/~4p!Le„t→1/~T2U2!,r i→r i ,s….
~A38!

Proof: To computeLe we use the Poisson resummation E
~A65!, so the integrand ofLe becomes
s

(
m1 ,m2

8 e2pttum21r22U(m11r1)u25(
m2

8 e2pttum21r22Ur1u21(
m1

8 (
m2PZ

e2pttum21r22U(m11r1)u2

5(
m2

8 e2pttum21r22Ur1u21
1

Att
(
m1

8

e2pttU2
2(m11r1)2

1
1

Att
(
m1

8 (
m̃2

8 e2
pm̃2

2

tt 2pttU2
2(m11r1)212p im̃2[r22U1(r11m1)] . ~A39!

A prime on the double sum in the lhs indicates that the mode (m1 ,m2)5” (0,0) is excluded. Ifr1 is non-integer the three serie
in the rhs of~A39! can be integrated separately over (0,`) to find

Le5L11L21L3 ,

where

L1[E
0

` dt

t11e (
m2

8 e2pttum21r22Ur1u25
1

e
2 lnu2 sinp~r22Ur1!u21 ln@ptegur22Ur1u2#,

L2[
1

At
E

0

` dt

t3/21e (
m1

8 e2pttU2
2(m11r1)2

52pU2F ur1u1
1

6
2Dr1

1Dr1

2 G ,
L3[

1

At
E

0

` dt

t3/21e(m1

8 (
m̃2

8 e2pm̃2
2 1

tt 2pttU2
2(m11r1)212p im̃2[r22U1(r11m1)]

5 lnu2 sinp~r22Ur1!u222pU2F ur1u1
1

6
2Dr1G2 lnUq1~Dr2

2UDr1
uU !

h~U !
U2

, ~A40!
he
al
where Dy denotes the positive definite fractional part ofy
defined asy5@y#1Dy , 0,Dy,1, with @y# an integer num-
ber. q1(zut) and h(U) are special functions defined in th
Appendix, Eqs.~A61!, ~A62!.

To evaluateL1 we used Eq.~A15! with the following
replacements for the arguments of this equation:b→t, r
→r22U1r1 andd→tU2
2r1

2. To computeL2 we used the re-
sults of Appendix A of Ref.@16#, Eq. ~A22! or more gener-
ally Eqs. ~A43! and ~A45!. RegardingL3, taking the limit
e→0 is allowed under the integral before performing t
integral itself or the two sums. This is justified by technic
calculations~not shown! which prove thatL3 is bound by an
1-15
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expression which has no poles ine→0. This is actually ex-
pected because the integrand is well defined fort→0 or t
→` whene50. After settinge50 the integral equals tha
evaluated in Eqs.~A28!–~A31! in Appendix A 3 of Ref.@16#.

Adding togetherL1 ,L2 ,L3 we find for U5U11 iU 2 , t
.0

Le[E
0

` dt

t11e (
m1 ,m2PZ

8e2pttum21r22U(m11r1)u2

5
1

e
1 ln@pteg#2 lnUq1~Dr2

2UDr1
uU !

@r22Ur1#h~U !
U2

12pU2Dr1

2 , t.0. ~A41!

Further, one can make the replacementDr i
→r i , due to the

identity given by Eq.~A64!. Equation~A41! was used in the
text, Eq.~27!.

Using the properties ofq1 one also finds an interestin
limit of Le for r15r250:

Le~r1,250![E
0

` dt

t11e (
m1 ,m2PZ

8 e2pttum22Um1u2

5
1

e
1 ln@teg/~4p!#2 lnuh~U !u4, t.0 ~A42!

in agreement with Eq.~B12! of Ref. @14#. Note that the con-
tribution of the (0,0) mode-if added toLe-would cancel the
pole 1/e and lntur22Ur1u term above.

~b! One important observation is in place here. To find
scale dependence of the divergence (1/e) of Le in the DR
scheme one can introduce a small/infrared (mass)2 param-
eterm2d (d dimensionless,d.0) in addition to the (mass)2

of the Kaluza-Klein states in the exponent in Eqs.~26! and
~A37!. This amounts to multiplying the integrand in Eq.~26!

by e2ptdm2
or that in~A37! by e2ptd. After lengthy algebra,

one obtains the following change forL1 , L2 , L3:

L1→L185L1 , if d→0

L2→L285L21
pd

e

1

tU2
, if d→0

L3→L385L3 , if d→0. ~A43!

As a result

Le8[E
0

` dt

t11e (
m1,2PZ

8 e2pttum21r22U(m11r1)u22pdt

5L181L281L385Le1
pd

e

1

tU2
, with d→0;

d,t.0; U5U11 iU 2 ~A44!
04501
e

with Le given in ~A41!. Therefore a divergence is emergin
d/(tU2e), induced by the change ofL2. With t
51/(T2U2) the divergence is proportional toT2 /e, and is
quadratic in mass, given the definition ofT2. It is similar to
that of proper-time regularization (T2 /j); see Appendix A
~6!. Note thatL28 , which brings in this term, is a contributio
from both compact dimensions, as Kaluza-Klein mode
fects from one dimension and Poisson resummed Kalu
Klein zero modes of the second compact dimension. A
note a particular and useful limit of Eq.~A44!, that with r1
5r250.

~c! For future reference we also give the result of co
puting the integral:

Le* [E
0

` dt

t11e (
m1 ,m2PZ

8 e2pttuUm12m2u22ptd t.0;

d>0, U[U11 iU 2 . ~A45!

Proof. Following the steps in Eq.~A39! one hasLe* 5L1*
1L2* 1L3* with

L1* [E
0

` dt

t11e (
m2

8 e2pttm2
2
2pdt

5
1

e
2 lnF u2 sinhp~d/t!1/2u2

pegd
G ,

L2* [
1

At
E

0

` dt

t3/21e (
m1

8 e2pttU2
2m1

2
2pdt

5
pU2

3
1

pd

etU2
1

pd

tU2
ln@4pe2gtU2

2#

12ApU2(
k>1

G@k11/2#

~k11!! F 2d

tU2
2G k11

z@2k11#,

~A46!

L3* [
1

At
E

0

` dt

t3/21e (
m1

8 (
m̃2

8

3e2pm̃2
2/(tt)2pttU2

2m1
2
22ipm̃2m1U12pdt

52 ln )
m1>1

u12e22p(d/t1U2
2m1

2)1/2
e2ipU1m1u4.

For L1* we used Eq.~A16!, for L2* see Eqs.~B11! to ~B15! in
Appendix B of Ref.@15#. ForL3* one may sete50 ~no poles
at t→0 or t→`) and use the integral representation
Bessel functionK1/2 with K1/2(z) given in ~A14!. Adding
together the above contributions one has
1-16
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Le* 5
1

e
1

pd

e

1

tU2
2 lnF4pe2g

1

t
uh~U !u4G

1
pd

tU2
ln~4pe2gtU2

2!22 ln
sinhp~d/t!1/2

p~d/t!
1
2

1WS d

t D ,

~A47!

with the constraint 0,duUu2/(U2
2t)<1, 0,d/(tU2

2)<1.
Also W(y→0)→0 and is defined as

W~y![2ApU2(
k>1

G@k11/2#

~k11!! F2y

U2
2 G k11

z@2k11#

2 ln )
m1>1

u12e22p(y1U2
2m1

2)1/212ipU1m1u4

u12e2ipUm1u4
.

~A48!

5. Two compact dimensions inz-function regularization

~a! Here we derive the result forV i of Eq. ~28!. The
one-loop correction to gauge couplings inz-function regular-
ization is proportional to the derivative ofz function associ-
ated with the Laplacian on the compact manifold, evalua
in 0.

The z function of the Laplacian~eigenvalueslm,n.0) is
defined as

zD@s#[ (
m,nPZ

8
1

lm,n
s

5
1

G@s# (
m,nPZ

8 E
0

` dt

t12s
e2lm,nt,

~A49!

where we used Eq.~A23! and the ‘‘primed’’ sum excluded
the (0,0) mode. Note that as in the one-extra-dimension c
one can expresslm,n in some mass unitsm, lm,n

5Mm,n
2 /m2 and one has that,formally

dzD@s#

ds U
s50

52(
m,n

8 ln lm,n5(
m,n

8 ln~m/Mm,n!2

~A50!

and one can see the link of this derivative with the one-lo
radiative corrections, given by a sum over individual log
rithmic corrections, withm acting as the UV cutoff of the
model. Up to a beta function coefficient, Eq.~A50! is also in
agreement with the formal expression in Eq.~1!.

From Eq.~A49! one has

Lz[
dzD@s#

ds U
s50

5
d

dsF 1

G@s# (
m,nPZ

8 E
0

` dt

t12s
e2lmtG

s50

,

~A51!

which relatesz-function regularization of an operator to~the
derivative of! its DR result.

With general eigenvalues of Laplacian for the tw
dimensional case@see Eq.~14!#

lm,n5tu~m21r2!2U~m11r1!u2, t.0 ~A52!
04501
d

e,

p
-

and usingLe of Eq. ~A41!, one has

Lz52
d

de H p2e

G@2e#
LeJ 5 ln@t#2 lnUq1~Dr2

2UDr1
uU !

@r22Ur1#h~U !
U2

12pU2Dr1

2 . ~A53!

One can further replaceDr i
→r i , due to the identity in Eq.

~A64!. The result inz-function regularization is equal to tha
in DR from which the contribution of the pole was su
tracted.

~b! Equation~A53! was used to evaluateV i in Eq. ~28!
with

V i uZR5b i~s!/~4p!Lz~t→1/~T2U2!,r i→r i ,s!.
~A54!

6. Two compact dimensions in proper-time regularization

In the PT regularization one evaluates~see the Appendix
in Ref. @16#!

Lj[E
j

`dt

t (
m1,2PZ

8 e2pttum21r22U(m11r1)u2,

j→0, j.0, t.0 ~A55!

with U[U11 iU 2. ThereforeV i of Eq. ~29! is

V i uPT5b i~s!/~4p!Lj~t→1/~T2U2!! ~A56!

Using the results of the Appendix in Ref.@16# one has

Lj5H 1

jtU2
1 ln jJ 1 ln@pegt#2 lnUq1~Dr2

2UDr1
uU !

ur22Ur1uh~U !
U2

12pU2Dr1

2 , ~A57!

with the condition

1

tj
@$U2

2,1/U2
2%. ~A58!

The ~divergent! expression in the curly braces is correspon
ing to 1/e in the DR result, Eq.~A41!. Finally

Lj„t→1/~T2U2!…5
T2

j
1 ln

peg

~T2 /j!U2

2 lnUq1~Dr2
2UDr1

uU !

~r22Ur1!h~U !
U2

12pU2Dr1

2 ,

~A59!

with

maxH 1

R1
,

1

R2sinu
,
ur1u
R1

,
ur22Ur1u

R2sinu J !L, ~A60!
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which was derived in Eq. ~52! of @16#. Here T2
5m2R1R2sinu, U25R2 /R1exp(iu) andL2[m2/j. One can
make the replacementDr i

→r i , due to the identity given in
Eq. ~A64!.

7. Mathematical appendix, definitions, and conventions

In the text we used the special functionh

h~t![ep i t/12)
n>1

~12e2iptn!,

h~21/t!5A2 i th~t!, h~t11!5eip/12h~t!.
~A61!

We also used the Jacobi functionq1,

q1~zut![2q1/8sin~pz!)
n>1

~12qn!~12qne2ipz!

3~12qne22ipz!,

q[e2ipt5
1

i (
nPZ

~21!neipt(n11/2)2e(2n11)ipz,

~A62!

which has the properties
n

v.

s.

s,

ys

J.

04501
q18~0ut!52ph3~t!,

q18~0ut![]q1~nut!/]nun50 ,

q1~nut11!5eip/4q1~nut!,

q1~n11ut!52q1~nut!, ~A63!

q1~n1tut!52e2 ipt22ipnq1~nut!

q1~2n/tu21/t!5eip/4t1/2exp~ ipn2/t!q1~nut!.

Our conventions forq1 are those of Ref.@3#. q1(zut) above
is equal toq1(pzut) of Ref. @28#, Eq. 8.180~2!.

Using these properties one can show that

2 lnuq1~Dr2
2UDr1

uU !u212pU2Dr1

2

52 lnuq1~r22Ur1uU !u212pU2r1
2 , ~A64!

where Dr i
is the fractional part ofr i defined asr i5@r i #

1Dr i
, @r#PZ, 0<Dr i

,1. Throughout the Appendix we
used the Poisson resummation formula:

(
nPZ

e2pA(n1s)2
5

1

AA
(
nP̃Z

e2pA21ñ212ipñs. ~A65!
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