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Regularization techniques for the radiative corrections of Wilson lines and Kaluza-Klein states
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Within an effective field theory framework we compute the most general structure of the one-loop correc-
tions to the 4D gauge couplings in one- and two-dimensional orbifold compactifications with nonvanishing
constant gauge backgroudilson lineg. Although such models are nonrenormalizable, we keep the analysis
general by considering the one-loop corrections in three regularization schemes: dimensional regularization
(DR), zeta-function regularizatiofZR), and proper-time cutoff regularizatidi®T). The relations among the
results obtained in these schemes are carefully addressed. With minimal redefinitions of the parameters in-
volved, the results obtained for the radiative corrections can be applied to most orbifold compactifications with
one or two compact dimensions. The link with string theory is discussed. We mention a possible implication for
the gauge coupling unification in such models.
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I. INTRODUCTION for a particular choice of the regularization scheme, and
the link with other schemes is not always clear. Such a link is
There currently exists great interest in the physics of comimportant because models with compact dimensions are
pact dimensions in the context of experimental and theoretinonrenormalizable, and comparing the results for radiative
cal efforts to understand the physics beyond the standarcbrrections in  various  regularizations  provides
model(SM). Model building beyond the standard model is in additional valuable information on the UV behavior of the
general based on additional assumptions such as a higherodels.
amount of symmetrysupersymmetry, gauge symmetrsd- Previous studies of the link between field and string
ditional compact dimensions, and string theory, etc., whichtheory result§14—16 for Kaluza-Klein radiative corrections
attempt to explain the physics at high energy scales anduggest that in some cases the string “prefers” on the field
which must “recover” in the low energy limit the standard theory side a proper-time cutoff regularization for the UV
model physics. One way to “relate” these two very different region. However, such a regularization is not gauge invariant
energy scales and thus provide an insight into physics b&p, field theory. In this context our purpose is to provide for
yond the SM is to study the behavior of the gauge coupling$,ne. and two-dimensional field theory orbifolds, the most
of the model by considering their one-loop radiative Correc'general structure of the one-loop corrections to gauge cou-

tions. . . : . S
. L plings in the presence of a Wilson lines background, in di-
In this paper we use an effecuv_e field thedBFT) ap- mensional regularizatiofDR), and zeta-function regulariza-
pr_oach.to compute radlgtlve corrections to the 4D. gauge coyg, (ZR). Their link with results in the proper-time cutoff
plings induced by orbifold compactifications with Wilson regularization(PT) and with string theory is also provided.

line background. Such corrections are related to the “threshO its for the radiati . | and
old effects” of Kaluza-Klein(KK) states associated with the ur results for the radiative corrections are very general an

compact dimensions. In general higher dimensional model§&" Pe easily applied to specific models. _
also have a larger gauge symmetry than that in supersymmet- The analysis _starts frqm the observation that Whl|e_ the
ric versions of SM-like models. Examples of breaking thefield content, which contributes to the one-loop corrections,
higher-dimensional gauge Symmetries are the Hos@lam"r is Strongly model dependent, the genel’al structure of the
Wilson line[2,3] mechanism, which is natural for manifolds mass spectrum of Kaluza-Klein modes is determined by the
not simply connected. This symmetry breaking mechanisnteigenvalues of the Laplaciah in a constant gauge back-
affects the 4D Kaluza-Klein masses and thus the one-looground for th¢ manifold/orbifold of compactification. For
corrections to the gauge couplings. We discuss the correthe particular but often considered cases of an orbicircle or
tions to the couplings due to Kaluza-Klein modes in the prestwo-dimensional orbifoldr?/Zy, the integrals over compact
ence of such symmetry breaking mechanisms. dimensions and sums over associated nonzero Kaluza-Klein
Radiative corrections from compact dimensions weremodes can be performed in a model-independent way. Once
studied in the past in effective field theory approacheghis is done, this leaves the much simpler task of determining
(see, for example, Ref$4—7]) or in string theory(see, for the exact values of the beta functions to a model-by-model
example, Refs[8-13)]). On the field theory level the effect analysis.
of Wilson lines on the 4D gauge couplings has been little More explicitly, note that the general structure of one-loop
explored even for the simplest field theory orbifolds, due tocorrections to the inverse of the tree ley&bare”) gauge
technical difficulties, and this motivated the presentcouplingse;, induced by Kaluza-Klein modes, may be writ-
work. Further, field theory calculations are usually performeden formally as
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B(o) mode sector. The two regularizations and the UV and IR
Qf =tr 2, IndetA(o), (1) regions may not be “decoupled” from each other and a
UV-IR “mixing” (UV divergent, IR finitg is present. See
. ) Refs.[15,2Q for an example with two compact dimensions
where A(o) is the (spectrum of the Laplacian on the anq subsequent string theory interpretation. Such a situation
manifold/orbifold considered3() is the one-loop beta can arise in nonrenormalizable theories due to summing over
function of a “component” state of charge under some  yq infinite-level Kaluza-Klein towers, and is not present if
symmetries of compactificatiotboundary conditionsor a  yhe o sums are truncated to a finite number of modes. We
constant gauge background, belonging to a particula\rNiII encounter this issue in Sec. Il B.
multiplet/representation. The trace tr acts over all states/ In the following we compute the one-loop corrections due

representations of the theory that have associated Kaqu% massivemodes to the 4D gauge couplings for one- and

: : *
Klein modes. In the string cpnteﬂi can be related to the two-dimensional orbifolds in the DR, ZR, and PT regulariza-

free energy of compactificatidrl0] (see also Ref.17]) and . ) .
torsion[18,19 tion schemes of the UV region. As we shall see in our analy-
In general, the dependence of the spectrum of the Laplaé's’ the former two are very closely related. In the Ia§t
ian A on the charged) prevents one from factorizing the  SchemePT), the UV scale dependence appears naturally, in
a form that—for the case of the two compact dimensions—

dependencéfull beta function in front of the logarithm(1). ‘ i . . :
However, we regardr as afixed parameterand compute agrees with théheterotig string. This is supported by find-

IndetA(o) in general, for one- and two-dimensional orbi- ?ngs i_n Refs.[14,16 where suph_a regularizatio_r_l recovered
folds. Effectively this means to replaceby its eigenvalues N @ field theory approach théimit of “large” radii of the)
expressed in some mass units. In an effective field theory th@ne-loop string thresholds to the gauge couplings inND
natural mass unit is that associated with its ultraviolet cutoff=1 toroidal orbifolds withN=2 subsectors in the absence
A. With this argument Eq(1) gives the usual sum of loga- [14] or presenc¢16] of Wilson lines. _
rithms = ,In A/M (o) known in field theoryf21], with M (o) The_plan of the paper is tht_a foIIO\_/vmg. In t.he next section
the mass of a Kaluza-Klein state of levelfor two dimen- ~ We review for one- and two—dlmen_smnal orbifolds the struc-
sionsn is replaced by a set of two integefs, ,n,} associ- ture of the 4D KK mass spectrum in the presence of nonzero

ated each with one compact dimensio®ne then multiplies ~ Wilson line VEV's that “commute” with the orbifold projec-
this sum by 8(o) and performs the remaining model- tion of the model. The structure of the 4D KK mass spectrum

dependent surttr) over o. is the starting point for the main analysis of this w@Bec.

In the presence of a constant gauge background/twidf!) Where we compute the radiative corrections and their
(Wilson lines the eigenvalues of the Laplacian are changediependence on the UV regulator/scale. The Appendix pro-
by an amount function ofr, related to the Wilson line vides extensive and self-cor_lta_lned technical details for the
vacuum expectation value/EV’s). The correction of the general series of Ka_luza-!(leln mteg_rals that we enc_ountered
Wilson lines to the gauge couplings may be regarded in somé one—lpop calculations in dl_mensmnal, zeta-function, gnd
cases as an additional effe¢perturbation”) to that due to proper—nme cutoff regular|zat|ons. The exapt mathematical
Kaluza-Klein modes alone, for vanishing Wilson VEV's. relation among these schemgs is alsp proylded. Such results
This idea may in principle be used for much more complexc@n be useful for other applications involving one-loop ra-
manifolds (for example, Calabi YauG, manifold9 with diative corrections from compact dimensions.

Wilson line background, to relate their associated one-loop
corrections to those for vanishing background and the corre-
sponding topological quantitiggorsion [19].

There remains the question of the regularization(Hf [l. ORBIFOLDS, WILSON LINES, AND THE 4D
This equation only makes sense in the presence of a regular- KALUZA-KLEIN MASS SPECTRUM
ization both in the UV and IR regions. Indeed, detvan-
ishes for massless modes and an IR regulat@ss shift y
is in general required to ensure In dets well definedbefore
proceeding further. Thus one should in fact comput

As an introduction we review the effect of Wilson lines on
the general form of the 4D Kaluza-Klein masses for one- and
two-dimensional field theory orbifolds. Although some de-

5 e Sails of the analysis may be different in specific models, the
Indet(A—x7). This is *avoided” in the sense that one usu- structure of the 4D Kaluza-Klein masses that we find in

ally evaluates only théR finite) contribution of themassive E 13) i 29 his | | .
(Fourien modes alone, denoted In dat(). This means that ng(ﬁl) and(13) is generaf22,23 and this is employed in

one implicitly takes the limity—0 in the massive mode
sector. This leaves only the IR regulator to be present, an
which acts only in the sector of the massless modes. Furth

Consider a one- and a two-dimensional orbifold of
Giscrete grouZy . For the one-dimensional case, its action

. ) ) o : z—7'= 6,z and z denotes the extra dimension. For two
the correction Indet{") itself requires a regularization, this . . — , - =
time in the UV region[14,15 since the contribution of the COmMpPact dimensiong,z one hasz—z'=6;z, z—2'= 6z,
KK tower is in general UV divergent and a regulator denotedwith  6;=exp(d=i/N), 1=0,1,...N—1. We denote u
¢ (é—0) is introduced. The important point is that the limits ={u,z} and w={u,z,z} for one and two compact
x—0 and¢é—0 of the above UV and IR regularization of dimensions, respectively, withu=0,...,3. Then the
Indet(A’ — x?) do not necessarily commute in teassive gauge fieldA7, and a scalar multiple® in the fundamental
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representation transform‘as
A5 (X, 6,2)= yePgA;(x,z)P}; (xe M%),

(D(Xvelz)zpﬂq)(xaz)v (2)
where y,=1 for u=u, andy,=6; * for the compact di-
mensiorts) index. Conditions(2) ensure that terms in the
action as|D;<I>D“<I>|2 are invariant under the orbifold ac-
tion. Suppose the action has a symme®y before the or-
bifold action (2) and is invariant under a gauge transforma-
tion U(x,2):

Ai(x,z) =U(x,2)A%(x,2UT(x,2)—iU(x,2)9;U"(x,2),

D' (x,2)=U(x,2)P(X,2). 3

Equation (2) is invariant under a gauge transformation
U(x,z) provided that

U(x,6,2)Py,=P,U(x,2). (4)

Equation(4) gives the remaining gauge symmetry after im-
posing the orbifold conditiori2). At fixed pointsz;= 6,z;,
this is generated bys={T,, with Ta=P0TaP£}. For bro-
ken generatorsT?) with P, T* Pl=wkT* (w=e"2"N) and
with w*a= 6, , the corresponding componer&§ of the field
A, respect the relatiod3(x, #z) =A%(x,z), and their non-
zero VEV's will break the grougs further.

A. One compact dimension: General structure of 4D

Kaluza-Klein masses

The initial fields satisfy periodicity conditions with re-
spect to the compact dimensian

Az (x,z+2mR)=QA;(x,2) Q1

d(x,z+27R)=Qd(x,2), 5)

whereQ is a global transformation. Equatiof are invari-
ant under a gauge transformatibr{x,z) if
U(x,z+27R)Q=QUI(x,2). (6)

We now assume th&, of (2) has some nonzero components
in the Cartan-Weyl basis @* [see discussion after EG})].
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with

=0; [T,.E,J=aE,; 1,J=1,...rkG, a
=1,...,dimG-rkG. The nonperiodic gauge transforma-
tion is

V(z)=e "MQ ™" (A=A]T). (7)

We useA,=A, T, +AE,, T,|®,=\,®, with &, the com-
ponent\ of the multiplet®. With (3) for U=V, conditions
(5) for the fields transformed und&t become

rl _al r_
A, (X,z+27R)=A,(x,2), A;=0,

ra —Ql2mp pl@
A (X, z+27R)=€'“"PeA “(X,2),

Pa=" RAIZall ’

| (x,z+2mR) =e2""d](X,2),

pr=—RA\, ®)
whereA, originates from Eq(2) ando=«a (\) for the ad-
joint (fundamental representation. In the following we refer
to p, as the Wilson line or “twist” of higher-dimensional
fields with respect to the compact dimension. From the
Klein-Gordon equation with no gauge backgrou(gince
A, =0) but with constrain{8), we find that component fields
with twist p, (o= a,\) have 4D modes with mass

Mﬁ(o)=x2+<n+po)2$. (9)

This provides the structure of the 4D Kaluza-Klein mass
spectrum, which takes account of nonzero background fields
A'Z or more generally op,, twists in the “new” boundary
conditions(8). The contributiony? is only present if higher-
dimensional fields such a® are massivé.For the gauge
fields y=0 andMy(a)#0 if there is a nonzerp,. As a
result the corresponding generaty, is “broken” and the
symmetryG is reduced. See Ref§24,26 for specific ex-
amples and related discussions. Equat@nwill be used in
Sec. llI A.

Although our derivation of the mass formu(8) is not
necessarily general, the important point is that its structure is

It is then easier to do calculations in a new gauge, with NQyeneric and appears in many orbifold compactifications

background field, i.e.,A;=0, which is achieved by a
z-dependent, nonperiodic gauge transformation. Ther(@qg.
is not respected and Ed5) will change for the gauge-
transformed“primed” ) fields. We consideA, constant and,
for simplicity, that it lies in the Cartan subalgebra Gf,
AZZA'ZTl* . The generators of the group satisfy[T,,T;]

There is an inconsistency in the notation in E(®—(4) in that
for two compact dimensions the fielés, and® and operatolJ are
actually functions of X,z,z) or (x,6,z,6,z) rather than %,z) or
(x,60,2).

S,1Z,, S$,1Z,XZ, [22,24] even in theabsenceof Wilson
line VEV's p,. In many caseg,, is just replaced by a con-
stant (twist), while its value given in(8) is specific to the
case of Wilson line symmetry breaking only.

For generality the one-loop corrections from the KK
modes are computed in Sec. Il A wih), an arbitrary pa-
rameter. Any model dependence will only involve minimal
redefinitions of the parameteps,, R, andy of the model.

2In such a casg will play the role of infrared regulator in the
radiative corrections to gauge couplings.
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B. Two compact dimensions: General structure of 4D Kaluza- MZ
Klein masses “1 n,(0)= 7,0, =[Nt poe—U(Ni+p1,) )%

We repeat the above analysis for two compact dimen-

sions. For compactifications on a two-torti§, the higher- o=a,\, (14
dimensional fields now satisfy periodicity conditions with
respect to shifts along both dimensions. Under the followingwith
; Y ; ' Y= (74 05 . _
shifts of Sz_,ﬁz) on the torus lattice, 2 z_) (z+2mR,e'%,z U=U,+iU,=R,/Rel’ (U,>0),
+27R,e™ '), and ",2")=(z+27R;,z+27R;), one has
To(p)=u?RiR,sing. (15)

AL(x;2',2') = QAL(x;2,2)Q",
D(x;2',2')=QP(x;2,2),

AL(X:Z",2") = QAL(x;2,2)Q,
d(x;,2",2")=Qd(x;2,2). (10

We assume thad, and A; of (2) have nonzero components
in the Cartan-Weyl basis. For simplicity we taka,

=ATF A= A';TT andA,, A, constant. A ¢,z)-dependent
gauge transformationV(z,z) = exp(-izA—izA)Q ! re-
moves the constant gauge “background,” A6=0 andAé

=0. After the transformatio the components in the Weyl-
Cartan basis of the gauge-transformed fields satisfy

A(x2',2')=€e?P2apl X (X;2,2),
D} (x;2',2') =22 D] (x;2,2),

AL (x;2",2") = €2TPLeA) *(X;2,2),

0 (x;2',2") =?"1d] (xi2,2), (11)
I
p1,=—Ry(AL+ A)ay,
P2o=" Rz(Alzei 04 Al—zefi No, o=a,\
(12

while A;L' do not acquire any twist. Here=a (oc=N\) for
adjoint (fundamental representationsp, denotes a compo-
nent\ of the multiplet®, and we used | ®,=\,®,, .

From the Klein-Gordon equation with no gauge

background but with “twisted” boundary conditiong11) it
can be shown that the 4D modes of component fiélgé,
®, acquire a masgl6]

i0
l(r11+131,a)

2
M2

CE

( 2t p2g)—

sing?|R

o=a Or o=\

(13

or, in a different notation,

3This was removed by gauge transformation.

We introduced a finite nonzero mass scaleto ensure a
dimensionless definition fof,; the dependence on can-
cels out inM, ,,. Equations(11)—(14) show that the sym-

metry G present after orbifolding is further broken by the
Wilson lines (12) or “twist” p; ,#0 since thenMg @)
=0, and the corresponding,’f‘ becomes massive and the
generatorE , is “broken.”

Equation (13) gives the general structure of 4D KK
masses o2 with Wilson lines or forT?/Zy. For example
for T?/Z, one hap, ,=0, 3 from orbifold parity conditions.
Additional constraints may apply #,,A; and thus to; ,,
i=1,2, which may take continuous/discrete values. How-
ever, for our analysis below we simply regasd,, asarbi-
trary, fixedparameters. This allows our results to be applied
to specific model§see examples in Ref23]) with twisted
boundary conditions, even in the absence of Wilson lines
(pi.«=0). Model-dependent constraints can be implemented
in the final results by using appropriate redefinitions of the
parametergp;, U, T.

Ill. GENERAL FORM OF ONE-LOOP CORRECTIONS
A. Case 1: One compact dimension

Using the general structure of the KK mass spectrum in
one- and two-dimensional orbifolds with Wilson lines, Egs.
(9) and (14), we can address the implications for the radia-
tive corrections to the 4D gauge couplings. The one-loop
correction to the gauge couplings induced by the Kaluza-
Klein states is given by the Coleman-Weinberg fornsiee,
for example, Ref[27] for a general derivation of);(o)]

1 1
— =—| +0F, =X X O0),
& 1loop %iliree ro=hea
,3(0') _ 2 2
Qi(o)= 2 e~ mMm(o)k reg»

meZ

(16)

where . is a finite, nonzero mass parameter that enforces a
dimensionless equation fd2;. We would like to mention
that the right-hand-sidéhs) formula for Q); is obtained by
evaluating one-loop diagrams for vanishing momentuh (
=0), such as that dfi (q?) shown in Fig. 1, with a tower of
KK states, each of magd (o) (m intege) present in the
loop. For more technical details on how to obtain this expres-
sion for ();, see, for example, Appendix A in R€R25], or

Ref. [21]. Note the distinction between the dependence
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p+q for t— o) is needed.The use of a particular regularization is
in general dictated by the symmetries of the initial, higher-
q q dimensional theory. If a string embedding exists for this
theory, a PT regularization is in some cases the appropriate
choice[14,16. In the absence of such a fully specified theory
and to keep the analysis general, we analykzein three
P regularization schemes: DR, ZR, and PT regularization.

FIG._1. Generic one-loop diagram contributing®g, with KK 1. Dimensional regularization
modes in the loop. Its value fa?=0 can be read from Eq$16) ) )
and(26) for one and two compact dimensions. See also Appendix A In this scheme); of Eq. (16) has under the integral tl/
in Ref.[25]. replaced by 1€ with e—0 the UV regulator. In such case

w is the arbitrary(finite, nonzerp mass scale introduced in
the DR scheme id=4— e dimensions. The evaluation 6¥;

is rather long and is presented in detail in the Appendix, Egs.
(A1)—(A16). The calculation of); uses expansions in Hur-
witz or Riemann zeta functions that do not necessarily in-
volve a Poisson resummation of the “original” KK levels.
This has the advantage that one may be able to identify
which of theoriginal KK levels brings the leading contribu-
tion to ;. Using Egs.(9), (Al), (A2), and(A16) one finds

for €}, in the DR scheme

(“running”) of the couplings on the momentum scalé¢see
Fig. 1) for large g, given by 1k;(q?) — 1/a;(0)=[11;(q?)
—1I1;(0)]/«;(0), andtheir dependence on the UV cutoff
(regulatoj of the theory that we compute in this work for
q?=0, given byQ;. We will only briefly discuss the depen-
dence org?#0 of the couplings; for a detailed analysis see
Refs.[7,20].

Qi(o) is thus the contribution of an infinite tower of
Kaluza-Klein modes associated with a state of charge
the Weyl-Cartan basis and of mass “shifted” by redlo),

with o=\, « the weights or roots belonging to the represen- Qilor= M ! fx ie—wtmﬁ(o)/ﬂz

tation r. The “primed” sum overm runs over all nonzero 4w ez Jo tite

positive and negative integerglevels. The case when this

sum is restricted to positivénegative levels only will also _Bilo)] 1 | (Ru)? | 2sinm(p,+ixR)|?

be addressed. The effect of zero modes is not includé, in P L Te? n potixR | [
since their presence is in general model dependent. Thus

their contribution should be added separately ta; 1/The 17

important point to note is that while the sums ovesind o ) )
=a,\ in Eq. (16) depend on the field content and are thus T he presence of the pole &accounts for an UV divergence.

model dependent, the integral and the sum(ln over To find thescaledependence of this divergence in DR one

Kaluza-Klein modes of nonzero level depend only on theMaY in general introduce a small/infrared mass shiff the
geometry of compactification. It is this integral and sum ovefMomentum of the KK state. One would then expect the

KK levels that are difficult to perform exactly, and they are €mergence in the final result of a tepaie to account for a
evaluated below. linear divergence(in scalg, given the extra dimension

Supersymmetry is not a necessary ingredient in formul®resent. However, this procedure does not apply to the case
(16). Supersymmetry is however present in many modeldith one compact dimension orflyTherefore, unlike the
with compact dimensions that consider minimal supersym¢@se of two compact dimensions to be discussed later, the
metric standard modeMSSM)—like models as the viable Presence of the pole alone does not tell us the nature of the
“low-energy” limit. Regarding the beta functiong, we have scale dependence of the UV divergence. Note also that a
(we suppress the subscript (o) =k, (o 0")/TkG for o single state(such as the zero mode, for exampigves a
belonging to representation k,={—11/3,2/3,1/3 for ad- leading one-loop contribution proportional t61/e, which is

joint representations, Weyl fermion, and scakaressentially

counts the degrees of freedom in the corresponding represen; ) o

tations. The Dynkin inde>2|’(r)=(Ego,o')r/(rkG), where See, h0\_/vever,. the discussion in REf5] for the case of two

the sum is over all weights or rooisbelonging to represen- ¢9mpact dimensions. R

tation r, each occurring the number of times equal to its 1S IS somewhat similar to computinl”p/p®, which in cutoff

multipli(,:ity [31]. With the definitionb, (r)=ZX, 8,(c) for the regularization is quadratically divergent while in DR is vanishing.
. - .

weights o belonging to r, one has b= — 11/3T,(A) However, a small mass shify of the momentum leads to

- Jd*p/(p?+ x?), which has a pole in DR, which signals the usual
+.2/3T.i(R) + 1/3Ti(8).’ to account for_ the adjoint Weyl fer- quadratic divergence. In our case, even adding a small (fsisi)
mion in representatio® and scalar in representatich In

- ’ (accounted for by?) does not introduce a scale dependence of the
the supersymmetric case massNe-1 Kaluza-Klein states divergence in(17), such asy/e. For two(even number ofcompact

are organized abl=2 hypermultipletdvector supermultip-  gimensions, this procedure in DR does lead to the scale dependence
lets] with b;=2T;(R)[b;=—2T;(A)]. of the leading divergence, as opposed to the case ofadtenum-

The subscript “reg” shows that formulél6) is not well  per of) extra dimensiofs). See also Eq(A21), which shows the
defined in the UV regiorti—0, and a UV regularization is emergence of a linear divergence in DR when summing posi-
required. We assum (o) #0 so no IR regularizatiofi.e.,  tive (negative) modes only
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of the same form but obpposite sigrto that found in Eq. scheme(divided byI'[ —€]), and evaluated foe=0. From
(17) for the whole Kaluza-Klein tower, excluding the zero Egs.(9), (16), (A27), and(A28) one obtains the value @i,
mode[compareR . vs finite RI in Eq. (A16)]. Further, this in the ZR scheme,

—1/e pole due to a single state is also known to correspond

in four dimensions to a UV divergence only logarithmic in 1 Bi(a) i

scale(rather than linear Note, however, that the change of : sr 4m de

the couplings with momentum in Fig. 1 is indeed linear in

the momentum scalg and dominates if qR)?=0O(1) -7 € , (= dt — a2 ()2
[7.201 =€l iz J et )

If p, is @ nonzero integer, there exists a lemglsuch as
Mn,= X and theny plays the role of an IR regulator in Egs. B.(0)
o

(16) and (17), and ensures that the term $m m(p,+ixR)] = 4—{ —In(Ruw)?—1In
remains finite. Ifp,., x vanish, the last term ifil7) vanishes m
and one is left with the correction in the absence of the twist

or Wilson line backgroung,, . N This result is similar to that found in the DR scheme, with

~ In deriving Q; we summed over both positive and nega-he notable difference that there is no pole structure present.
tive Kaluza-Klein levels, as shown in EQL6). However, itis  The ahove result is only logarithmically dependent on the
interesting to analyze the effect of summing separately the,,¢q scalge. As discussed in Appendix A2 plays, in the
contributions of the positivenegative Ieve+|s. In such & case 456 ofz-function regularization, the role of the UV cutoff of
the corresponding value &t;, denoted(};” ({};), is com-  the model. Finally, note that the contribution of a zero

Eqgs.(A18) and(A21) is but of oppositesign to cancel this dependence in the total
sum(see alsoR, andR | in Appendix A2.

2 Sin’]T(p(,-H)(R)|2
’ .

psTIXR
(20)

. Bi(o) Po : 2 One can show that the separate contribution€)toof
x = - + —
07 lor A7 | 2€ € FInL(1=p,+ixR)[*=In(2m) positive and negative Kaluza-Klein modes are different due
to the asymmetry introduced by the Wilson lines or tvgist
1 I (Ru)? 18 The results denoteQ;" (), respectively, are given by Eq.
TlzEPe N (18 (a3),
e divergent terms of); are then Q; |ZR:—7T In|T[1%p,+ixR]|*—In(2m)
Qlt|DR~1/(26)ipa./6 (19)

- In(Ru)?, (21)

1+
E—po

The presence of the additional divergengg € is triggered
by a Nonzero background/twigt,, and is cancelled in the g4 the positivenegativé modes again bring a different UV
sum £ +Q, of both positive anq negative Kaluza-Klein panavior (« dependence

levels, giving the overall resul€); in (17). If p, has the

value given in(8) and is thus proportional to the VEV &, Q7 |2r~ — (12+ p,)In(Ru)?. (22

and toR, thenp,/e may be regarded as a divergence linear

in scale. It is also possible that in some models one mayFor p,, just aconstant the p,-dependent term is just an ad-
actually havep, a constant for examplep,=+1/2 (or  ditional logarithmic correctiortin . or R) to the couplings.
—1/2), thenQ; (Q;") arefinite, respectively, and theverall ~ However, in the casp,, is indeed due to a nonzero Wilson
divergence inQ;=Q;"+ Q. comes entirely from);" (") line VEV (from initial A, gauge fields alinear dependence
respectively. To conclude, the positive and negative Kaluzaof the couplings on this VEV/scale emerges. This term can
Klein levels propagating in opposite directions in the com-then have significant implications for the value of the gauge
pact dimension, with a nonzero background/twist con-  couplings. As it was the case in the DR scheme, such terms
tribute by different amounts to the overall divergencepf cancel in the sum of positive and negative mode contribu-
in special cases the positive or negative levels alone givéons. A special case is,= =+ 1/2 when the coefficient of the

(one-loop finite contributions. logarithmic UV divergencdin ) of ;" is vanishing, and
Q;"(Q;) has nou dependence, with similarities to the DR
2. ¢-function regularization case.

Alternatively, one can employ &function regularization
of Q;. In this case the correction is givénp to a factor
Bi(o)/(47)] by the derivative of thel function associated The above results fdi; can be compared to that obtained
with the Laplacian, evaluated at the origin. As detailed in thein the proper-time regularization. In this regularizatidn of
Appendix this means thd®; in this scheme is just the de- Eq. (16) has the lower limit of its integral set equal
rivative with respect toe of the value obtained in the DR >0, whereé—0 is a dimensionless UV regulator. For de-

3. Proper-time regularization
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tails of the calculation of); in this scheme see Appendix A3
and Ref.[16] (Appendix Al). From Egs.(9), (A32), (A33),
and (A36) and with the notatiom\?= u?/¢, one obtains for
Q; in the PT scheme

Bi(o) , (=dt o 2
(o RA)?
_ B ){ZRA_m( )
47T 7767

—In‘

The é-dependent terms combine naturally with the sqal®
define the UV cutoffA of the model and one obtains a de-

(23

ZSimT(p(,-i—i)(R)‘2
potixR | |

pendence o\ R only. Unlike the DR and ZR cases, a zero-
mode contribution to the above result—if included—would

not cancel the leading linear divergenen A ~1/\/€), but
only the logarithmic ondfor more details compar®&, and
R ¢ in Appendix A3, Eq.(A36)].
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of the latter may indicate that evenAfR is made smaller, of
order unity, a UV divergence is still manifest. Finally, if one
considered a string embedding of these models, the string
counterpart oiAR~1 would beM R~ 1 with M4 the string
scale. In this case string effects due to additiowéhding)
states not present in field theory may become important.

Comparing the three results f6; obtained in these dif-
ferent regularization schemes one observes that the finite
(regulator independentpart is the same in all regulariza-
tions. This is a strong consistency check of the calculation.
Regarding thdi.e., regulator dependenpart, note that the
1/e term of DR is replaced in the PT cutoff regularization by
the ¢ (A) dependent divergent term, accounting for a linear
divergence. Note that the ZR counterpart has dnéither
“mild” ) a logarithmic UV divergence. Equatiofk7) to (23)
generalize the resulf25] for one compact dimension, in the
presence of Wilson lines/twisjs, .

B. Case 2: Two compact dimensions

We now consider the case of a two-dimensional compac-
tification. With the structure of the mass spectrum of @4)
we again compute the general form of the correction to the

What is the meaning of the individual contributions to 4D gauge couplings due to nonzero level Kaluza-Klein

Q,;? Technical details show that the ternplpt+iyR| is simi-

modes in the presence of Wilson lines. This correction can be

lar to a contribution corresponding to a massive Kaluzaapplied to a large class of mod¢R3]. Formally, the correc-
Klein state of level zero. It may be interpreted as a one-loopion is

effect of this state between the compactification scake 1/
and the scale set by the Wilson lines VEVig{Al) with o
accounting for a root/weight. The term{&n(---)] in (23) is
an effect due to “Poisson re-summedPR) Kaluza-Klein
stategsee Eq.(A65)], with the dominant contribution from
the lower PR levels. Further, the logarithm Aig) can be

thought of as a one-loop effect from the compactification

scale to the UV cutoff scald. Finally, the termAR is due
to the presence of lrge enoughnumber of Kaluza-Klein

dt

>
npnpeZ fo t

Bi(o)

_ 2 2
yp e ﬂtMnl,nz(U)/'u

Qi(o)

reg

(26)

modes that enable the Poisson resummation. This term is di&@milarly to the case of one extra dimensidy, is obtained
to the Poisson resummed mode of zero level. Thus onby computing one loop diagrams evaluated @80 (Fig.

should expec\ R>1 because\ R approximates the number
of Kaluza-Klein modes. In fact the PT resi23) is valid
provided that

max LR? x?,((Ay) ) >+ x?} < A? (24
derived from Eq.(A35) of Appendix A3. Here we replaced
p, in terms of the VEV'’s ofA'Z as in Eq.(8). More generally,
for arbitrary p,, this condition is

max 1/R?, x2,p2/R?+ x?} < A2, (25)

Therefore the result in the PT scheme is valiRis large(in

UV cutoff units) and if the gauge symmetry breaking VEV'’s
or (p,/R)? and the mass scaj¢’ have a sum much smaller

1) with Kaluza-Klein states of madd nl'nz(g) in the loop.

In the following we perform—foro fixed—the integral
and the sums ovemg,n,)# (0,0) in Eq.(26). Any model
dependencegbeta functionsg;(o), sums over weightsr,
representations] can then easily be implemented on the
final result for QF . The presence of the state,(n,)
=(0,0) is model dependent and its contribution should be
considered separately. We again discuss the valu@,;dh
DR, ZR and PT regularization schemes for the UV diver-
gence {—0) of Eq. (26). We assumé n1,n2¢0 for all in-

tegers, so no IR divergendat t—o) exists. However, if
there exists a pairn,n;) for which M, , =0, see the

results in the PT scheme of R¢i.5] and the discussion in
the DR scheme to follow.

than the UV cutoff. Note that these constraints are not shared

by the DR or ZR counterparts computed above. This is im-
portant for in general to avoid a large UV sensitivity of the

couplings one would like to havd R~1 which is a region

1. Dimensional regularization

In the DR schemé); is defined with 1/ under its integral
replaced by ¥**€ where e—~0 is the UV regulator. The

for which the PT result does not hold accurately. From com-alculation is rather technical and is presented in Appendix
paring it with its DR counterpart, the presence of the pote 1/ A4, Egs.(A37) to (A41), where the sums over, , and in-
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tegral in (26) are evaluated. Using Eq$§l4), (26), (A38), Bi(o) d
(A41), and(A64), one obtaind}; in the DR scheme Q| zr= 47 de
_’77_6 ’ *© dt 2 2
’ o X{ — _e—WIMn n (o)
Qi|DR:@ ! f dt e—mMﬁl’nz(a)/u2 [T[—e] nyinpeZ Jo tlte v o
4m nympez Jo tlte e—
Bi(o)
=1 ~In[T2U;]
:,Bi(o') E_InTzuz 5
A € Y ~In ﬁl(pZ,O'_Upl,U|U) iﬂ'UPio- (28)
(pZ,U_Upl,(r) 77(U) '

191(92,0_ UP1,o| U)
(p20—Up1s)n(U)

’ 2
_|n |11-Up1'0_

2

J . (27)  This result has a form similar to that in the DR scheme from
which the pole structure has been subtracted. gZhscale
dependence “hidden” inT, should in this case be regarded
as the UV cutoff as discussed in Appendix A5, E&50). In

The special functionsy, ¢, are defined in Appendix A7. The this scheme there is thus only a logarithmic dependence on

pole 1k accounts for divergences up to quadratic level. Howthe UV cutoff. Finally, the finite part is similar to that ob-

can we see this? By introducing a small (mass)ift u°6to  tained in the DR scheme. It would be of phenomenological

M7 o, (8 dimensionless,5<1), ie, M . —M7 . interest to know which higher dimensional theories would

+ 125 under the integral irf26) and computing the integral require such a regularization, since in this case the UV cutoff

in this more general case one obtains fr, in addition to ~ dependence of the couplings is milder and the models would

the divergence ¥, a contributionm8T,/e. This is a qua- then have less amount of sensitivity to this cutoff scale, pos-

dratic divergence in scal@§ “contains” a u?) that 1k term  Sibly similar to that of MSSM-like models.

effectively signals in Eqs(27) and (A41). For additional ] o

technical details see Appendix A4, Eq#43) and (A44).° 3. Proper-time regularization

The emergence of the additional scale-dependent contribu- Finally, for a comparison we include here the valuepf

tion 76T, /€ is to be contrasted with what happened in DRin the proper-time cutoff regularization schef]. In this

in the one extra dimension case already discussed, wheresgheme(); of (26) is defined with a(dimensionlesscutoff

small mass shift did not introduce a scale dependence of the—0 in the lower limit of its integral, which acts as an UV

UV divergence. This is due to the different UV behavior of regulator. After a long calculation one obtains the refoit

models with ongor odd number gfand two(or even num-  details see Eqg26), (A56), (A59), (A64), and also Eq(52)

ber off compact dimensions, respectively. Note that in thein Ref.[16]]

special case when there exists a pair;,f,) such as

Mnl'.nzzq’ an IR regulator—in addition to the UV one—is Olpr= Bi(o) > fmﬂe‘”‘“"ﬁl,nz(")"‘z

required in Egs(26) and (27) to ensure the convergence of : nympez Je t

the integral att—o. The aforementioned shif.?s of the

KK masses would in such special case act as an IR regulator Bi(a) {Tz [(T,/€)U,]

in (26) and one would obtain if27) a termw 5T, /€, which =— ——I

represents an IR-UV “mixing” term between the IR sector 4m | ¢ me’

(6) and UV sector §) of the theory. For a discussion on this 91(pao—Upy|U 2

UV-IR mixing see Refs[15,20Q where its string theory in- _n|YaP2e " FP1e )eiwupia . (29
terpretation is also presented. Finally, considerations similar (p2,=Up1,)n(U)

to those for one extra dimension apply for the separate role ' ' o o
of negative or positive Kaluza-Klein levels, respectively. ~ Equation(29) is valid if [see Eq(A60) and definition(12)]

1 1 2
2. ¢-function regularization max(R—l, W,(A'Z)a-, ,(AI;)O-,} <A, A= %
In this schemd); is related to the derivative of the zeta- (30)
function associated with the Laplacian, as discussed in Ap-
pendix A5. In fact(); in ZR is the derivative with respect to This condition requires “large” compactification radiin
e of Q); in DR divided byI'[ — €], and evaluated foe=0. UV cutoff units and symmetry breaking VEV’s much
Using Eqs.(14), (A53), (A54), (A64) one finds(); in the ZR ~ smaller tham\. Here we replaceg; ,, in terms of the VEV’s
scheme of A, Eq. (12) but for arbitrary pi.» this condition is
maxX{1/Ry,1/R,SiN6,|p1 4| /R1,|p2s—Up1 s/ (RoSiNO}<A.
Equation(29) shows the presence of a UV quadratic di-
bThis also has consequences for the change of the gauge couplingérgent term also known as “powerlike” threshold, given by
with momentumg in Fig. 1 as discussed in RdR0]. T,/&=A’R;R,sin 0 where A2~ 1/¢ is the UV cutoff scale.
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A logarithmic correction is also present, (& It is interesting to mention that imposing on the field
=In(AR;R;sin 6), as well as a ItJ,=In(R;sin 6/R,) part. The  theory result(31) one of the string symmetrie$—U or
remaining term inQ; includes effects due to nonzem, T« 1/T enables one to recover tigl heterotic string result
which bring in a finite, regulator independent correction.  [9] from that derived using only field theory methods. Thus
The field theory resul(29) has a great advantage over its one may obtain full string results by using only field theory
DR and ZR counterparts in that it allows a straightforwardmethods supplemented by some of the symmetries of the
comparison with results of 4DN=1 heterotic string orbi- string, not respected by the field theory approach, but im-
folds with N=2 sectors and Wilson linefl2], when this  posed on the final field theory result. For more details on the
string result is considered in the limit of large compactifica-exact link with the heterotic string without Wilson lines, see
tion radii/area(in string unitg [16], as required by Eq30).  Refs.[14,15. This ends our discussion on the corrections in
The UV regulatoré~1/A% has a natural counterpart in the the PT regularization scheme and their relation to string
(heterotig string in a’~1/M?2 (Mg is the string scale theory.
Therefore,T,/¢ of (29) has a counterpart at the string level  comparing the results fof; in the three regularization
inT,/a’, whereT,/a’ is the(imaginary part of theKahler schemes, Egs(27) to (29), one notices that the finite
structure modl_,lli. With thg correspondence _of the fundamen(regulator-independeh'part of Q; is the same in all cases
tal lengths in field and string theory respectivayy ', the \ hich is a consistency check of the calculation. An important
result(29) is indeed similaf16] to the limit of large radii of point to mention is that the result in the PT scheme has the
the heterotic string resuli.2]. Such agreement provides sup- .- it that the compactification radii be large UV

p:)(;tagﬁr gI]tlr?oLeg%uiI?ir;Zﬁg?gaicr:aem\?alr?arg?esftlreirl% ;Eig:y :Iz'cutoff unitg. The results in the DR and ZR schemes show
P ' 9 . Y hat the finite part of the one-loop correction has the value

brings additional corrections, nonperturbative on the fiel kound without h restrici
theory side(world-sheet instantongut their effect is expo- ound without such restrictions. :
Regarding the divergent part of the one-loop corrections,

nentially s_uppre_ssec(?(e Tzla.) [12]. For more detal_ls ON this is effectively dictated by the regularization choice one
the exact link with the corrections to the gauge couplings du‘laﬁas to make, in agreement with the symmetries of the model
'E(iGShe heterotic string with Wilson lines present, see Ref.our discussion above shows that for two compact dimen-.
' . . . . sions the PT regularization is indeed appropriate in calcula-
Iim?;h(tehgtﬁ ?)?I\I,V:ni]lﬁ!ﬂgtr@ﬁ;)é,:ﬁisnuetfg\)/;\?z g? tw:;;:stmg tions seeking the Iink_ Wit_h their string counterparts. Further,
FOI’[’)- _.0 (o fixed) after using the relations in quo\'é‘flj f[he g_-functlon r_egul_arlzatlon leads to an UV d|v_ergence_that

and(KéZ) one finds ' is milder (logarithmig than in the PT scheme with possible
phenomenological implications. This is important because

models with “powerlike” regime require in general a signifi-

Oilor(py s 0) = — Bi(o) In[4me e T2/t cant amount of fine-tuningB2]. It is difficult to justify, with-
' 4 out the knowledge of the full higher-dimensional theory, in
4 which case the-function regularization is the right choice.
X(To/ U n(U)I], The results of Eq927) to (31) generalize, in the presence of
Wilson lines, early resultf25] for the radiative corrections
T,/€=ARyRysin . (31))  from two compact dimensions.

The one-loop corrections obtained in the DR, ZR, or PT

For two compact dimensions this result generalizes th&chemes have strong similarities with their one-dimensional
“power-law” corrections(in the UV cutoff of Ref.[25], by ~ counterparts, Eqg17) to (23), with T,U, andp,,—Upy,
including the dependence dh=R,/R;e'’. of Egs.(27) to (29) replaced in the one-dimensional case by

The field theory result31) is itself the exact limif 14,15 Ru andp,, respectively, while In{; /%) has as counterpart in
of “large Ry’ (in string unity of the result in 4DN=1  the one-dimensional case the terrfsinm(p+ix)]. A similar
heterotic string orbifolds wittN=2 sectors and without Wil- term appears in compactification @p manifolds[19] sug-
son lines[9]. The only differencé between(); of (31) and  gesting that this latter correction is rather generic.
the above limit of the string resul®] is that the leading term We end with a remark on possible phenomenological im-
T,/¢ in Q; has a coefficient that depends on the regulatoplications. The result for(); has a divergence which
choice €) while in string case at “largeR; ;’ the leading ~ depends—as expected—on the regularization choice. Since
term i€ (7/3)T,/a’. With the correspondendg—a’ men-  this is a nonrenormalizable theory, a natural question is
tioned before, the exact matching of these two terms thu¥hether one can make a prediction without the knowledge of
requires a redefinition of the PT regulatgr (3/m)é or the fundamental, underlying theory that would otherwise dic-
equivalently A2— m/3A2. Such specific normalization gf ~ tate the regularisation to use. If the gauge group G after

(or A) cannot be motivated on field theory grounds only. orbifolding is a grand unified group which is further broken
by Wilson lines to a SM-like group, the coefficient of the

(regularization-dependentlivergent terms found i) is

’See however Ref15] and the discussion in the DR scheme.  the same for all group factors into whicG is broken

®The presence ofr/3 is a “remnant” of the modular invariance (G-invariand. If so, such UV divergent terms df2; can
symmetry of the string. then be absorbed into the redefinition of the initial 4D tree
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level coupling of the groubG. The newly defined coupling In proper-time regularization the leading divergences of
can be regarded as the 4D “MSSM-like” unified coupling. the radiative corrections are for one and two compact dimen-
Further, the remainindfinite part of Qf brings a splitting sions linear and quadratic in scale, respectively. The finite
term to this coupling, due to Wilson line VEY, , but inde-  (regulator-independenpart is the same as in the DR and
pendent on the UV cutoff(regularization. Finally, the zeta-function regularization, which is a strong consistency
“MSSM-like” massless states not included so far would check of the calculation. The result in the proper-time regu-
bring the usual logarithmic correctiqlV scale dependent  |arization is only valid for “large” compactification radiin
This raises the possibility of allowing MSSM-like logarith- yv cutoff units), a constraint not shared by the results in the
mic unification even for “large” compact dimensions, and pr and ZR schemes. The effect of zero motesose exis-
the aforementioned splitting of couplings would “mimit  tance is model dependerdan easily be added to the results
a scale of the order of the compactification statbat could |y optained. In specific cases they may even cancel the di-
be seen from a 4D point of view as further runrlifigp to a vergence from the entire KK tower afonzeromodes. Fi-
h|gr816un|f|cat|onh_s%ale, such as that of the MSSW2 nally, we also discussed the cases when for special values of
x10™ GeV) or higher. the background/twists,,, one obtains one-loofinite results
for the corrections due to positive or negative modes
alone.
IV. CONCLUSIONS There remains the question of which regularization
o ) scheme to use itnonrenormalizablemodels with compact
The general structure of radiative corrections to gaugjimensions. Explicit calculations and comparison with the

couplings was investigated in generic 4D models with One}heterotic) string show that proper-time cutoff regularization
and two-dimensional compactifications in the presence ojg i, exact quantitative agreement with the limit of large

W|I§on lines. The analysis was ba;ed on the following ObserE:ompactification radii of the string results. This applies to the
vation. Although one-loop corrections are dependent on th

; e ase of two compact dimensions that contribute to the radia-

exact field content of the model, for the compactifications,. : : .
. . : tive corrections to the gauge couplings. Therefore this regu-
considered one can still perform in a general case, the OMarization is an appropriate choice for computing radiative
loop integral and the infinite sums ovémnonzerg Kaluza- pprop puting

Klein levels associated with a given state, component of é;orrectlonsfor the purpose of establ_lshlng thg I'N_mh re-
multiplet. This leaves the much simpler analysis of determinSUlts from string theory. However, this regularization may be

ing which states have associated Kaluza-Klein towers, to gf limited use in field theory_ sinceiis not gauge inva_riant. For
model-by-model analysis. the case of one compact .d|menS|_on_ the lack of string results
The evaluation of the one-loop radiative corrections fromPrevents one from making a similar statement, and the
compact dimensions summed up the individual effects ofhoice of regularization should follow the usual guidelines
nonzero-level Kaluza-Klein modes. Although the models aresuch as its compatibility with the symmetries of the model.
nonrenormalizable, the calculation was kept general by con- We addressed the possibility of making phenomenological
sidering the radiative effects in three regularization schemesaredictions that are independent of the UV divergence of the
dimensional, zeta-function, and proper-time cutoff regular+adiative corrections, which, in the case of a grand unified
izations for the UV divergences and the exact link amonggroup G broken by Wilson line VEVs/twigi,, can be ab-
these results was investigated. The results in DR andorbed in the redefinition of the tree level coupling. This
{-function regularization schemes are very similar with theleaves a splitting of the couplings at the compactification
notable difference that théJV) pole structure of the DR scale possibly compatible with what can be regarded in a 4D
scheme (¥) is not present in thg-function regularization.  (renormalizable theory as further “running” up to a high,
This applies to both one and two extra dimension cases. IfySSM-like unification scale.
the ZR scheme fof); only a logarithmic divergence in the  The paper provides all the technical details necessary in
UV cutoff scale is present. This is important, since it pro-models with one and two compact dimensions that examine
vu_jes an amount of sensitivity of the radlatlvg corrections toye one-loop corrections to the gauge couplings from
this scale smaller than that of other regularizations, which -2 kiein thresholds in the presence of Wilson lines. Al-

m?]y be fteh'e"f?‘r!: for ;t)hizr;ﬁmenolﬁgy. n I'tg’?‘ DR_thandI ZRthough we discussed only the dependence of the corrections
schemes the finite part of Ine Tesulls 1S valid for elther 1arg&, , e yv cutoff/regulator, the paper provides the technical
or small compactification radii, for both one and two com-

pact dimension cases results for investigating the change of the gauge couplings
' with respect to thémomentum scaleq as well. Extensive
mathematical details of regularizations of integrals and series

%The method of “absorbing” the divergences in the initial tree present |n.one-.loop COI’I‘GCtIOI:]S due to compact dlmenspns
level coupling also exists in heterotic string modgld] where ~ Were provided in the Appendix. Our results can be applied
gauge universal, gravitational effects are included in the tree-levelvith minimal changes to many one- and two-dimensional

coupling, in addition to the dilaton, with the remark that this is Qrbif0|d3 with Wilson lines, by making appropriate redefini- .
actually dictated by the symmetries of ttteee level coupling of  tions of the parameters of the models, such as the compacti-

the string. fication radii R), the twist of the initial fields with respect to
9n a 4D renormalizable theory. the compact dimensions or the Wilson line VEVs)(
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(A1)
APPENDIX Q; of Eq. (17) is then given by
We provide general results for series of integrals present 5
in one-loop corrections to the gauge couplings, evaluated in Qilpr=Bi(0)(4m)R(B—LU(Ru)?;
DR, ¢-function, and proper-time cutoff regularizations, for
one and two compact dimensiofsee also Appendix A4 in 5—(xIw)?  p—py) (A2)

Ref.[16]). The notation used is as follows: a “primed” sum
2f(m) is a sum overme Z—{0}; =, ,f(m,n) is a sum  Proof. Consider first 6<8/3<1. With the notationp=[p]
over all pairs of integersn,n) excluding(m,n)=(0,0). +A4,, [pleZ, 0<A,<1 one has

e~ wtd

_e—ﬂrtﬁp2+e—thA§+ E " e m(n+4,)%8
neZ

[ dt
Re_ J;) tl+e

=T[—e]n

(8+BA2) —(8+Bp?)+

go [B(n+A,)2+ 5]6+(APH—A,))H

=I'[—e]m[(6+ BAZ)E—(5+BPZ)E]+T[— el(mB)V~2e1+A, ]+ {[~2€1-A, ]}

k_
+(mPB)¢ E I ]{ {§[2k 2¢,1+A, ]+ (A,——A,)}, 0<d/B<1. (A3)
|
which is convergent under conditions shown. In the last stejplere {[q,a] with a#0,-1,—2,... is theHurwitz zeta
we used thébinomial expansior 29] function, with ¢[g,a]=2,=¢(a+n)~% for Re(@)>1. The
Flk+s] v Hurwitz zeta-function has one singularifgimple pole at
s - sli—q =1 and{[qg,1]= with the Riemann zeta func-
2 S_— s N q f[q, ] g[Q] f[(ﬂ
g‘o [a(n+c)"+a] a g‘o KIT[s] | a [2k tion. Further, using EqA3) and the identity
+2s,c], {[g,a]=a 9+ {[qg,a+1],
0<g/a<1, (A4)  we obtain that

Re=mT[—€l[(8+BAY)—(5+ Bp?) ]+ (mB) T~ €ell{[— 26,1+ A, ]+ {[~2€,1-A,]]

—-d8lk1 -
+k§l [7} E[g[2k,1+Ap]+g[2k,2—A,,]+(1—Ap) 2k

=mT[—€l[(6+BAL) = (6+Bp”) T+ (7B T[— el Ll — 26,1+ A, ]+ L[ — 26,1 A, ]]

|sm77[A +i(s1B) 2|2
7?(A2+ 51 )

—2In[T[1-A,JT[1+A,]], (A5)
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provided that

5 5
0<—<1, —<(1+A,)? —<(2-A,)% (A6)

B B B

SinceA ,<1 we conclude thatA5) is valid if the first con-

dition (the strongestis respected:

(A7)

In the last step of deriving EGA5) for each of the series in

zeta functions we us€@0]

2K _ T[a+t]I[a—t]
glrg[Zk,a]—lnT, |t|<|a|,

(A8)

with t=i(8/8)*% a=1+A,, 2— A, and from which the last
two conditions in(A6) emerged. Finally, in the last step in

(A5) we also used

2 X2+ 2
H IMNlizxzxiy]= X y) x,y real, (A9)

|sinar(x+iy)|?’

where the product runs over all 4 combinations of plus/minus

signs in the argument df functions. EquatiorfA9) can be
easily proved using thdt[1—z]['[1+ z]= wz/sin7z

In Eq. (A5) we now evaluate the dependent part foe
—0 by using(see, for example, Ref28])

1 d
{-2e.0a]=5-aq-2e g {z.q]l=0t O(€?)

d 1

az¢1zall=0=InT'[a] - 5In(2m),

1
I[-el==Z2-y+0(e),

x¢=1+elnx+O(x). (A10)

We finally find from Eqgs.(A5), (A7), and (A10) that (if p
eZ*, 6=0 is excludeg

R :jm t g mtl(mep)?p+al
€ 0 tl+€ meZ

1 | |2 sina[A,+i(81B)Y]|2
—In

€ meB(p?+ 81 B)

0=<d/B=<1

(A11)

(2) We now evaluater . for the cased/8>1 (with nota-
tion p=[p]+A,, [p]eZ, 0<A,<1)

PHYSICAL REVIEW D 70, 045011 (2004

= dt , 2
R :f o ml(m+ )26+ ]
€ 0 t1+5 ngz

~ dt
:fo t1+6 E

neZ

e 7'rt(n+A/))2B_ e 7Tt,8p2 e mtd

=I'[—e€]7*

Ez [B(n+A,)2+ 515—(5+Bp2)f}
(A12)

We further use the well-known expansion given beldar
details see, for exampl€4.13 in Ref.[29] ]

q

27 e
ZZ [a(n+c)2+q] S= | = M .

a I'[s]
1/4
n 4m°lq ~sl2,—sl2
I'[s]|a

[

X > n3"Y2cog27nc)
n=1

XKs_1(2mnygla) (A13)

with a>0, c#0,—1,—2, ... andwhich is rapidly conver-
gent forg/a>1. K,, is the modified Bessel function of index
w. The first term proportional tg/a gives the leading con-
tribution; the remaining ones give “instantonlike” correc-
tions. This result is then used to evaluafel2). Compare
(A13) rapidly convergent forg/a>1 with (A4) valid for
g/a<1. Alternatively, instead ofA13) one can simply use a
Poisson resummation ifA12) and the definition of the
modified Bessel functions to reach the same result. \&/ith
=—¢€in (A13) and with

1 T
M-d--2-yrota, K Mo- et

(A14)
one finds from(A12) and (A13)
» dt 2
R = " o= mtl(m+p)?B+ ]
€ 0 t1+E mezZ
1 2 sinm[ A +i(8/8)Y?]|?
_L | [2sinala, vicars) T if sIp>1
€ me?(5+ Bp?)
(A15)

To see the complementarity 0A11) and(A15) note that the
latter is not valid for6=0 since(A13) is not valid in that
case.

In conclusion from Eqs(A1l) and (A15) we have

045011-12
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o0 ' + B(U) +
_ [ > e mlmrp?sel O lor= "4 R £ (B—URw)% 6= (xI )% p—p,)
€ 0 tl+€ mezZ ™
1 2 sinm[p+i(8/B)Y?]|? (o)1 p,
T L UG e LB e ir(1s g +ixR)P
€ we?(Bp+ 6) 47 | 2¢ €
dt In(2m)+| = % Wey] (A21)
oc o ) —In(2m)+| 5 *p,[IN——.
Rl= fo T 2, e~ 7tl(m+p)p+4] 2 (Ru)?
— —In|2 sinm] p+i(81B)Y22,  8=0,8>0. One findsQ;" +Q; =Q; with Q; as in(17). The “linear”

divergencep,/e cancels between positive and negative
(A16)  modes’ contributions.

In Eq. (A16) we used the properties of the sine function to

2. One compact dimension in{-function regularization
replaceA , by p. The pole 1¢ cancels between zero-mode P " g

and nonzero mode contributions. Equatidi6) was used in (@ Here we define/evaluat®; of Eqg. (20) in the ZR
Eq. (17). scheme. The one-loop correction to the gauge couplings in
(3) We compute the integral zeta-function regularization is defined Hgroportional to

the derivative of the zeta function associated with the La-
- dt placian on the compact manifold and evaluated in 0. To see
R+EJ 2 e~ m(m+p)2p+4] 5=0,6>0 this note that{ function of the Laplaciar(eigenvalues\,

€ ’

otttem=o >0) is defined as
(A17)
_y 1 _ 1 ! t —Apt
which sums positive modes onlR _ , which sums negative 5A[S]I§ s I[s] 4 fo tl—se ™, (A22)
modes only, is thelR _ =R [ (p— —p). Q;” mentioned in "
the text, Eq.(19), and corresponding to summing only posi- \where we use
tive (negative Kaluza-Klein modes is then given by

1 [~ dt
Q7 |or=Bi(0)/(4m)R 2 (B—U(Rw)? 6—(xI m)* p—p,) Q=g —e Q>0 (A23)
(A18) ot

The calculation proceeds almost identically to Appendix SecFTom (A22) theformal derivative of the zeta functioti,[ 0]
1(1). The result is is an infinite sum of individual logarithms of,,. With \,

expressed in some mass units (A ,,= M%/MZ) one has the
1 formal result
R::2—+ —+In|T[1+p+i(8/B)Y?]|?—In(27)
€ € dZals]
ds |
In(wBe”), (A19) s=0
and the link ofQ); with the one-loop corrections is obvious;

which shows that a new divergenpée is present. One can 4 acts as the effective field theory UV cutoff.

== =3 (/M) (A24)
+ ’ ”‘

L,
>tp

easily verify that From Eq.(A22) we have
* = d{als d| 1 , (= dt
RI+R. =R, (A20) R,= dulsl}] _d 3 f ernt|
ds |, ds[T[s]® Jo t*s o
with R, given in (A16). This shows that the divergenpée (A25)

of separate contributions from the positive and negative

modes iscancelled in their sugwhich equalsk,.. While R, which relates th&-function regularization of an operator to
corresponds to states propagating in both directions in thgs value in the DR scheme. One can also include the contri-
compact dimension in the “backgroung, R . account for  bution of the zero modem=0 (if \+0) in the definition of
effects propagating in one direction only. {als]. Accordingly R, changes and is relabelléd}.

Similar properties exist for the full one-loop radiative cor- ~ With \,,=(m+p)?B+ 5 as general eigenvalues of La-
rections ();- given below, corresponding to positive and placian for one-dimensional cageee Eq(9)] with boundary
negative modes, respectively. The radiative correction in DRonditions given in the text, and using the results of Eq.
due to positive(negative modes only is (Alb),
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= dt , The effect of positive(negative modes on the gauge cou-
E:f " e mil(mEp)7p+ ] plings in Z-function regularization is then
0 t1+6 meZ
1 + ,3( o) )
:l |25In77[p+l(5/,3) 2]| Q7| z2r= 'R, (5~>X /,u ,8~>1/(R,u) iP—Py)
€ me’(6+ Bp?)
~ Bi(o) -
RTEJ dt e*ﬂt[(m+p)zﬁ+5] = A INT[1=p,+ixR]|[*—In(27)
¢ Jo tltemez
. . 1212 1 1
—In|2 sinm p+i(8/8)?]|?, (A26) +|Z=+p,|In (A31)
2 (Ru)?
we finally find
This result was used in E@22).
d| = ¢
Re==gel Tr=aRe N _ -
de [I'[—€] =0 3. One compact dimension in proper-time regularization
(1/2)|2 Here we provide technical details used to derive the result
= |2 sinm(p+i(4/8)™%)| of Eq. (23). In the proper-time cutoff regularization, the ge-
(8+Bp?) neric structure of the one-loop corrections is
d( o edt [ 2
T—_ T R.= z e~ mtl(n+p) B+§]
Rq de(F[—e]R] . et i
=—In|2 sinm(p+i(8lB)*?)|2. (A27) £—-0 (£>0),  6=0, B>0.
(A32)
Comparing the results of the last two sets of equations, one
notices that(up to a constantthe result in{-function regu- (). of Eq. (23) is then given by
larization is equal to that in DR from which the pole contri-
bution was subtracted. Oilpr=Bi(0) (4R AB— LURw)%
Equations(A22), (A25), and(A27) allow us to evaluate lpr=Ai(o)l( el (Rus
Q; of Eq. (20). This is given by pspyi 0\ uE— ), (A33)

. = . s 2 2 N 2 s
Qilzr=Bi( @) (AR (9= X w7, f—L(Rp) %, p ZK)Z'S) To obtainR, we use Eq(A9) of Appendix A1 of Ref[16].

One has
According to Eq.(A24) u should be regarded as the effec-
tive field theory UV cutoff. R,= E e~ — mt[(n+p)2+814]
(b) Using the DR result$A17) of summing over positive ¢ Bgt Hey
(negative modes only,
, e 2VEB
) = Yl —
R dt > o (=28 o In[(p=+ 8/ B)me?]—In 3
€ 0 t1+5 m=0
—In|2 sin@[ A, +i(8/B)"4]|? (A34)
1
=5t +In|1“[1+p+|(5/,8)1’2]|2 with A, defined after Eq(A2) and which is valid if
—In(2m)+ p|In(mBe?), (A29) &p< ! (A35)
aa o
wé/ﬁ m(p?+8IB)|

one finds the associategtregularized result for positive one concludes that
(negative mode contribution

N d T€ . ) R et [(n+p)2B+ 5]
Rgz—&[ﬁRE]=|n|F[lip+l(5/B)1/2]|2 n;z
I e‘z"@ |2 sina[ p+i(8/B8)Y?)|?
=—In
—In(2m)+ pllnB. (A30) 2 [7eY(5+ Bp?)]
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odt ) 4. Two compact dimensions in dimensional regularization
’R,-grz E _e_”t[(n+P) B+ 4]
et

= (a) For two compact dimensions we evaluate the integral

2 * dt ! 2
= —Inl2si 4 12112 A LSEI @~ mtrlmy+py—U(my+py)| ,
T3 n|2 sinw[p+i( 8/ B)Y4|?, (A36) 0 D em By
with condition(A35). In the above equations we replackg 7>0: U=U,+iU,. (A37)

by p.
Note that adding the zero mode & does not cancel the ) .
leading linear divergence unlike the cases of DR or zri of Eq. (27) is then given by
schemes. To understand the differences among the various
regularization schemes it is useful to compare the above re-  Qilpr=Bi(0)/(4m)L (7—1(T,U3),pi— pi,o)-

sult of the PT regularization equatiofs36) and(A35) with (A38)

that of DR regularization equatioiA16), and that of

{-functions regularization equatiqi27). Proof: To computeL . we use the Poisson resummation Eq.
Equation(A36) was used in the text, Eq23). (A65), so the integrand of . becomes

! e*WtT|m2+92*U(m1+P1)|2: E ! e*WtT|m2+92*UP1|2+ 2 ! E e*WtT|m2+PZ*U(m1+P1)|2
myq,my my my mpeZ

’

1
:2 ! e—'thT|m2+P2—UP1\2+_ 2 e—ﬂTug(ml*'Pl)z
my tr my
1 w5 s , -
+— 2/ 2/ e T —atrU5(mg+pq) +2mm2[p2—U1(pl+m1)]_ (A39)

tr mq m,

A prime on the double sum in the |hs indicates that the madg ith,) # (0,0) is excluded. Ip; is non-integer the three series
in the rhs of(A39) can be integrated separately over{pto find

LE:L1+ L2+ L3,

where

» dt 1
Li= fo T > e M2 Uni == —in[2 sinm(p,— Upy) 2+ In[wre”| pp—Upi 2],
2

1 (> dt ' 2 2 1
_ _ —mtrUs(my+pq)°— - 2
L= \/;-jo (e ;1 e 2AMFPY) =27 U, | pq| + 5 A, T4
0 ~5 1 ~
L3E 1 dt ! E’ e*ﬂ'mgﬁ_7wtrug(m1+pl)2+2ﬂ'im2[p27Ul(p1+ml)]

\/;_ 0 t3/2+€ml az

191(Ap2—UAp1|U)‘2
n(U)

1
=In|2 sinw(pz—Up1)|2—2wuz[|pl|+E—Apl}—ln‘ , (A40)

where A, denotes the positive definite fractional partyf —p,—U;p; and 65— 7U2p3. To computel, we used the re-
defined ay=[y]+A,, 0<A <1, with[y] an integer num-  sults of Appendix A of Ref[16], Eq. (A22) or more gener-
ber. 9,(z|7) and »(U) are special functions defined in the ally Egs. (A43) and (A45). RegardingL s, taking the limit
Appendix, Eqs(A61), (A62). €—0 is allowed under the integral before performing the
To evaluateL; we used Eq.A15) with the following integral itself or the two sums. This is justified by technical
replacements for the arguments of this equatiBp>7, p  calculationgnot shown which prove that ; is bound by an
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expression which has no polesén-0. This is actually ex-
pected because the integrand is well definedtfer0 ort

—oo whene=0. After settinge=0 the integral equals that

evaluated in EqgA28)—(A31) in Appendix A 3 of Ref[16].
Adding togetherLq,L,,L5 we find forU=U,+iU,, 7
>0

€

ij dt Ie_WtT‘m2+P2_U(m1+P1)‘2
0 tI1Temmez

ﬁl(Apz—UApl|U)‘2
[p2—Upaln(U) |
+27TU2A§1, 7>0. (A41)

1
= < +In[77eY]—In

Further, one can make the replacemAr,;ithi , due to the

identity given by Eq(A64). Equation(A41) was used in the
text, EqQ.(27).

Using the properties oft; one also finds an interesting

limit of L, for p;=p,=0:

[ dt
|—e(l)1,2—0)=f0 {ite

! e~ 71"(T|m27Um1|2

my,myeZ
1
=+ In[ 7e”/(47)]—In|n(U)|*, 7>0 (A42)

in agreement with EqiB12) of Ref.[14]. Note that the con-
tribution of the (0,0) mode-if added to_-would cancel the
pole 1k and In7p,—Up,| term above.

(b) One important observation is in place here. To find the

scale dependence of the divergencee)1df L, in the DR
scheme one can introduce a small/infrared (nfagsyam-
eter 125 (6 dimensionlessg>0) in addition to the (mas$)
of the Kaluza-Klein states in the exponent in E¢&6) and
(A37). This amounts to multiplying the integrand in E&6)

by e~ ™% or that in(A37) by e~ ™. After lengthy algebra,
one obtains the following change fag, L,, L3:

Li—Li=L,, if 6—0

, wo 1 )
L2—>L2:L2+?_ |f 5—)0

’TUZ,
Ly—Li=Ls, if 80 (A43)
As a result
|_'Efoc dt ! e*””\szer*U(ml*Pl)\z*7751
¢ Jo ttremizez

w6 1
=Lj+Ly+Li=L +——, with §—0;
TU2

5,7>0; U=U,;+iU, (A44)
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with L, given in (A41). Therefore a divergence is emerging
6l(7Uye), induced by the change ofL,. With r
=1/(T,U,) the divergence is proportional t6,/e, and is
guadratic in mass, given the definition ©f. It is similar to
that of proper-time regularizationT{/¢); see Appendix A
(6). Note thatL;, which brings in this term, is a contribution
from both compact dimensions, as Kaluza-Klein mode ef-
fects from one dimension and Poisson resummed Kaluza-
Klein zero modes of the second compact dimension. Also
note a particular and useful limit of E¢A44), that with p,
=p2=0.

(c) For future reference we also give the result of com-
puting the integral:

= dt
L*= 'e—ﬂ't’r\Uml—m2|2—7Tt§ >0:
0t1t e mimez

6=0,U=U,+iU,. (A45)

Proof. Following the steps in Eq(A39) one hasL’ =L}
+L%+L3 with

» dt 2
* 4 —mtrm,— 7ot
1_f t1+E 2 N

0 my

1

€

|2 sinhw(5/7)1’2|2]

me?s

dt

1 , 2 2
L*E—f - 2 e_’thTUZml—'n’é‘t
2 7)o t32+e

_11'U2+ 7o 775| 4 YU
=73 T, Ty, MAme T 2]

k+1

F[k+ 1/2] o

TU%

(A46)

1 (= dt
L*E—f ekl ’ ’
3 \/; 0 t3/2+e% Fnzz

xXe~ WFﬂ%/(tT)— wtvU%mi—Zi anzmlu 1—mot

—In H = e—277(5/7+U2m1)1/2 2|77U1m1|4
m;=1

ForL} we used Eq(A16), for L3 see Eqs(B11) to (B15) in
Appendix B of Ref[15]. ForL} one may set=0 (no poles

at t—0 or t—o) and use the integral representation of
Bessel functionK,,, with K;,(z) given in (Al4). Adding
together the above contributions one has
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L*_1+775 1 |
€ e € 1U, :

1
e 72Ul

w8 o sinhr( 8/ 7)? 5
+—goIn(4me 77U%) 2 In——————+W| -,
™2 (81 7)2 T

(A47)
with the constraint & 6|U|%/(U37)<1, 0<é/(7U5)=<1.
Also W(y—0)—0 and is defined as

W(y)=2\mU,

TTk+1/2][ —y <" .
i1 (k+D! | uz2 {d !

I1-e —2am(y+U3m3) M2+ 2i ﬂ-Ulml| 4

—InH

mi=1 |1_e2|’7TUm1|4

(A48)

5. Two compact dimensions ing-function regularization
() Here we derive the result fof); of Eq. (28). The

one-loop correction to gauge couplings¢iiunction regular-
ization is proportional to the derivative gffunction associ-

PHYSICAL REVIEW D 70, 045011 (2004

and usingL . of Eq. (A41), one has

N

91(A,,—UA, |U)
[p2—Up1]n(U)
(A53)

d| = ¢
ng—g[ﬁLf] =In[r]—|n

+2mURA7

One can further replacApi—>pi , due to the identity in Eq.
(A64). The result inZ-function regularization is equal to that
in DR from which the contribution of the pole was sub-
tracted.

(b) Equation(A53) was used to evaluat@; in Eq. (28)
with

Qilzr=Bi() /(AL (7—1(T,U3),p

i— Pi, )
(A54)

6. Two compact dimensions in proper-time regularization

In the PT regularization one evaluatege the Appendix
in Ref.[16])

ated with the Laplacian on the compact manifold, evaluated

in 0.
The { function of the Laplaciarteigenvalues., ,>0) is
defined as

1 2 , f“’ dt N
—_—— — e m,n y
)\ﬁm I'[s] mhez Jo ti—s

Llsl= 2
mneZ

=dt 2 —WtT‘m2+p2—U(m1+p1)|2’
¢ t mizeZ
£—0, &0, >0 (A55)
with U=U;+iU,. ThereforeQ); of Eq. (29 is
Qilpr=Bi()(4m)L(7—1(T,U5)) (A56)

(A49)  Using the results of the Appendix in R¢fl6] one has
where we used EqA23) and the “primed” sum excluded 1 91(A, —UA, |U)‘2
the (0,0) mode. Note that as in the one-extra-dimension case| ,={ ——+In ¢} +In[ we?7]— 2 !

£ leny [p2=Upa n(V) |
one can express\py,, in some mass unitsu, Apy, ™2 P2— P17
2 »/n? and one has thafprmally +2wu2A§1, (A57)
dgA[S] ' ’
== INNpn=2 " IN(1/M )2 with the condition
ds =0 mn m.n
(A50) 1
—>{U3 13} A
and one can see the link of this derivative with the one-loop Té {U2, 103} (AS8)

radiative corrections, given by a sum over individual loga-

rithmic corrections, withu acting as the UV cutoff of the The (divergeni expression in the curly braces is correspond-
model. Up to a beta function coefficient, EA50) is also in  ing to 1/e in the DR result, Eq(A41). Finally

agreement with the formal expression in Ef).

From Eq.(A49) one has T me”
a.(A49) L(r—1U(ToU))= 241N
& (T2/6)U;
=% :E L E ’fw dt e Mt 2
¢ ds | ds|I[s]matz Jo ti-s ’ ﬁl(APz_UAPJU)‘ 2
s=0 s=0 —In +27U5A°
(A51) (p2—Up1) n(U) | 1
which relateg/-function regularization of an operator (the (AS9)
derivative of its DR result. with
With general eigenvalues of Laplacian for the two-
dimensional casgsee Eq.(14
e Ealia)l nad L Ll lomUpd)
)\manT|(m2+p2)—U(ml+pl)|2, 0 (A52) Rl R25|n0 R]_’ R25|n0 '
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which was derived in Eq.(52) of [16]. Here T, 90| n)=277%(7),
=u?RyRysing, U,=R, /R exp(6) and A?= u?/¢. One can

make the replacemedt, — p;, due to the identity given in 90| 7)=001(v| P dv| o0,
Eq. (A64).

(v 7+ 1) =€, (v|7),
7. Mathematical appendix, definitions, and conventions
) ) P (v+1|7)=—9(v|7), (AB3)
In the text we used the special function

S (v+rr)=—e " AT (v]7)

= e7'ri 7/12 1— eZiﬂ'Tn , )
7(7) nl;ll ( ) O (— vl 7| — Ur)=e' 4 V2expi mv? 1) 941 (v| 7).

n(—=lUr)=\—irn(7), n(r+1)=€e"25(7). _Our conventions for; are those of Ref.3]. ¥,(z| ) above
(A61) is equal tod,(7z|7) of Ref.[28], Eq. 8.1802).
Using these properties one can show that
We also used the Jacobi functidh,
—In|94(A,,—UA, [U)[>+2mU,A7

%1(2| 7)=2qY5sin( 7z 1-g"(1—q"e?™?
1zl m)=2q7sin(m )nl;ll( T)1-a ) =—In|91(p—Upa|U)[*+27U,p7, (A4)
X(1—qle 2'7?), where Api is the fractional part ofp; defined asp;=[p;]
1 +4,, [pleZ, 0<A,<1. Throughout the Appendix we
q=e?"T=2> (_1)neiw(n+1/2)2e(2n+1)iwzl used the Poisson resummation formula:
I nez
(A62) E e*ﬂTA(n‘FO')Z:i Z e*ﬂA71F12+2i77~I"10'. (A65)
which has the properties nez VATZz
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