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Triviality-quantum decoherence of quantum chromodynamicsSU(«) in the presence
of an external strong white-noise electromagnetic field
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We analyze the triviality-quantum decoherence of Euclidean quantum chromodynamics in the gauge invari-
ant quark current sector in the presence of a very strong external white-noise electrom@agreestgth field
within the context of QCD in the 't Hooft limit of a large number of colors.
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[. INTRODUCTION or quantum external resorvoir acting on the systsee the
second reference in Rgi2]),
For a long time, a very interestin@nd conceptuallyim-
portant problem in quantum field theory has been the correct

understanding of the triviality phenomena of interacting 2[3,(x),B (X)]:<de¢C(D(A B,,J.)

fields as a kind of “phase-transition” phenomena depending ® a a a

on external parameters including the famous space—time di- XD*(A,.B,,d)))A - 1
“w

mensionality. The basic formalism used to understand such
an important phenomea is—until present time—the rewriting
of the given interacting quantum field generating functional
in terms of the famous Symanzik loop spa@ven at the
lattice) [1-3]. .

The purpose of this paper is to point out quantum field D(AL By du)=iy,(d,+eB,+J,+gA,) )
triviality phenomena in another context, however in a more
complicated quantum field theory than those analyzed in thwith gA, denoting the Yang-Mills non-Abelian quantum
literature which is quantum chronodynami¢®CD) at a  field configurations averaged in E¢l) by means of the
large number of colors but in the presence of an externalisual Yang-Mills path integral] (x) is the auxiliary source
random Abelian field. The main idea is to show that exactlyfield associated to the Abelian quark currents Bngx) is a
such a triviality result for QCPSU(«)] will be the system- random external electromagnetic field with a strength field
atic use of the loop space representation for QCD which, by ,.,(B) satisfying a Gaussian statistics with randomness of
its turn, allows us to exactly integrate out the external ranintensity A >0,
dom Abelian field when one is analyzing the QCBU(x) ]
on the physical sectqobservablgof Abelian quark currents
(form factors. _ Er{Fuy(B)F ap(B)(Y)} =N 6 (X=Y) - (8,08y5~ 8,58 ya)-

In Sec. Il we present our ideas and a complete loop analy- (3
sis of QCD[SU(x)] triviality in the presence of random-
ness. In Sec. lll, we present a path-integral renormalizatiofyere £ denotes the stochastic average on the ensemble of-
analysis of the resulting effective random surface theoryihe external strength Abelian fieki(B).!
Finally in Sec. IV, we apply the previous QCD loop analysis
to the important case of nonrelativisticmany-body field

Here the Euclidean Dirac operator is explicitly given by

theories. It is worthwhile to consider that this Abelian externaliver-
gencelesswhite-noise field comes mathematically from a standard
Il. THE TRIVIALITY-QUANTUM DECOHERENCE Stratonovich-Hubbard parametrization of a nonlocal charged piece

ANALYSIS of quarks Lagrangean arising from interaction with an external ap-

L paratus, namely,
In order to show such a triviality-quantum decoherence on ()
exp[ -

bosonic QC») let us consider the Euclidean generating — dx[a”@wlp)(x).m2(x,y)ay(%ﬂ¢)(y)]]
functional of the Abelianfor simplicity) quarks currents in 2 Je

the presence of an external white-noise electromagnetic field 1

B.(x), simulating a kind of “dissipative” vacuum structure —jD[F,W]exp{—z—)\ LDdx(Fw)z(x)]

X 8 (9B,=0)8[(a,F,,)—0B,)]
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In the bosonic loop space framewdi&| we can express In order to show the triviality quantum decoherence of the
the quark functional determinant, E¢l)—which was ob- bosonic loop space generating functional, B), when av-
tained as an effective generating functional for the color sineraging over the quark currents dependence on the external
glet quark current after integrating out the Euclideanwhite-noise Abelian field ,(x), we consider the stochastic
quark action—as a functional on the bosonic loop spacaverage of the Wilson-Mandelstan phase factor defined by
composed of all trajectorie€,,={X,(c),X,(0)=X,(T) the Abelian random field with the following result:
=x;0<0o<T},

Z[J,L(x),B,L(x)]=<exp—[Ncc2 [®[Cy.B, ] EF{‘D[CXX’B“]}:EF{eXpiemexf“v(x)d"w(x)]
B _(ez)\)f do(x)
x@[cxx,Jﬂ]TraMcxx,Aﬂ])]]> , 12 s
AM
(4) Xé*D)(x—y)dcr“”(y)}- 9)

where®[C,,,B,] is the usual Wilson-Mandelstan loop vari-

able defined by the I’andom eXternal e|ectr0magnetic f|e|d Let us ana'yze the beha\/ior Of the |00p Space functionaL

B.(x), andW[Cyy,A, ] is the same loop space object, how- Eq. (9), in terms of the metric properties of the surface

ever with a sum path order and defined by the non-Abeliars (c, ) bounded by the 00|, (o). In order to analyze

Yang-Mills quantum Euclidean field? (x)\,. Namely, such a geometrical behavior of E() we consider an ex-
plicit parametrization of théfixed) surfaceX(C,,) possess-
ing as a boundary the loop,,,

CI)[CXX,BM]=exp{ie Eﬁc BM(X‘B(O')dXM(O'))), (5)
: 2 (Co={pu(s.0)0<s<2m0<0o<T}. (10

W[ Cyx,A,]l=P : In terms of this two-dimensional surface vector parametri-
©) zation we rewrite the loop functional, E(), in the coordi-
nate invariant parametrization form, suitable to analyze its

geometrical content

exp(i ﬁ: AM(XIB(O'))dXM(O'))

The sum over the closed loofis,, with end-pointx is
given by the proper-time bosonic path integral below
IN(E{®[Cyx.B,I})

s :f"“d_deDXf DF[X(0)] =—(e?‘)fds daf ds’ do’ Vh(s,o) Vh(s',0")
Cx Jo T X(0)=x=X(T)
1T X (g (5,0)) 7 (04(S" )
_ (2
Xexp{ Zfox (‘T)d“]' @ X (6P (¢p(5,0) ~ @pl(s',0"))). (11

In Ref. [3], the factorization of the color gauge invariant  Here the surface area tensor is given by
averages of the products of Wilson loops associated to the
Yang-Mills fieldsA , at SU() was presented on the basis of
a diagrammatic analysis. As a consequence of this result the dcr””(xﬁ)lxﬁz%(sygf(\/h(s,o ™" (@g(s,0))ds do)
nontrivial dynamical content of the generating functional of (12
Abelian quark currents is entirely given by the fermionic
functional determinant written in th8U(«) bosonic loop
space functional with a factorized form in relation to the loop
fields entering itloop spacg structural form as given be-

low, Vh(s,0)=(\del(da¢ pone”)(s,0)), (13

—InZ[J,(x),B . (X) sy

with

D 4(5,0) = (87,0  Ipe"I VN(s,0)). (14

= CE (D[Cxx7BM](D[CXX7‘Ju]<TrcW[CxxyAp.]>SU('x) -
xx By introducing a regularization form to the singular delta
(8)  function appearing on the surface functidfq. (11)]
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525))((;9[3(8,0')—(,03(8’,0")) [SU(«)]. Note that we have used the normalization condi-
tion of the surface area tensor to obtain the area functional,
. . Eqg. (16),
:f dequlka(QDa(stD)_QDa(s , O ))), d
|| <1l/e

(15) ™ (@p(s,0)) T (@p(s @) =1. 17

one obtains as the leading geometrical functional associated At thi; point, it is straightfqrward to see that for a large
to the trivial surface self-intersecting case,£)=(o",s'), white-noise external Abelian field—« [2], the noise aver-

the well-known Nambu-Goto area surface functigedl(see ~298d Wilson loop on Eql) is somewhat vanishing for any

Sec. Il of this work, loopC,,. It i; worth caIIing the reader’s attention to the fact
that for a given fixed noise strength+0, all loops C,
—In{E(P[Cy\,B, D)} bounding large minimal area surfacegC,,] are suppressed
on the bosonic loop path integral, E(), and leads to a
=) abs o u dynamics of Gluon condensatgs].
cle )\)f ds do(Vhh™oae 50" (5,0). Note that the same lodp,, appearing in Eq(9) enters in

(16) the definition of all loop space objects in E8). This result
in turns show us that at the very large noise strength limit
Herec is a positiveRP-dimensional constant related to the A— 4+, we have the strong triviality o6 U(=) quantum
renormalization parameters used on the regularization chromodynamics in the sector of the Abelian quark currents,
form, Eq.(15), and somewhat related tho the analogous exsince all closed loop&,,(o) degenerate to the loop base
pected phenomena of dimensional transmutation on QCIpoint x, namely,

lim Eg{Z(J,(x),B,(x))}= lim exp[ -, (2) : e‘E"ezArea@[CxxDQ[Cxx,JM]<TrC(V\/[CXX,AM])>] =exp(0)=1.
Cyx(o)—X

A—© A—

(18)
|
This is the first main conclusion of our paper about the QCD 1
[SU(e)] triviality-quantum decoherence. V(R)= lim — $|gEj[eXpie fﬁ BM(X,[J’])dX#].
A second result we wish to present is related to the some- T C(RT
what different situation of our Abelian random field, Origi- (21

nating from a source described by a manifold of random ) ) ) ) )

currents obeying a pure-white-noise statistics in a physicahere the quark-antiquark static space-time trajectory is

dimensional space—tim@®, given by a rectangleCgn={—T2<t<+T/2;—R2<o
<R/2} and E; denotes the stochastic average over the
vacuum current sources, E@O).

ABL(X) =] u(X), (19 The evaluation of the binding energ§(R) can be more

invariantly accomplished by writing it in momentum space

with the white-noise(spaghetti-vacuuni4]) current source and _using the dimensional regu!arization of Bollini and G|

correlation function amb(l;%l[S], after evaluating explicitly the source average in
Eqg. ,

Eili u(0i (Y)} =N (x=Yy)6,, . (20 _ 1 dPk
V(R)= lim — >T J —(27T)D f.(KCrm)

T—o

In order to see the area behavior for the Abelian phase

factor ®[C,,,B,] in Eq. (4), we probe the system vacuum X)\5uyf (=K.Cnr) 22)
energy by considering a static pair of quark-antiquark inter- (k2" (R
acting with the random electromagnetic field E¢E9) and
(20. _ with the rectangle form factor written as follows:
The binding electromagnetic energy between such static
probing charges, separated by a distan& is computed by
evaluating the energy of the Abelian white-noise fiBlg(x) dX..(c)
in the presence of these static quark sources and given ex- f,(k,Cr)=ie 3§ e ka0 Xolo) L2 72 (23
plicitly by the following Wilson loop averagg3]: ' CrT) do
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As the rectangle€ 1) is contained in a two-dimensional 4e koT k;R
subspace of the space-tirR€, we can decompose the vector fo(k,CrT) = Sln 5 sinl —— 5|
k ask=ko&,+k,6,+k, wherek is the projection ok over A LT (KR (24)
the subspace perpendicular to the subsgégeg;} contain- f1(k,Crm)=+ esm( 0 )sm( iR
ing Cr 1. In addition, the space coordinate system is cho- 2 2

sen so that thg-axis direction coincides with the one defined  After substituting Eq(24) into Eq.(22), we face the prob-
by the spatial sides of the rectangl@g ). This coordinate lem of evaluating the following dimensionally regularized

choice leads us to the solutions integral limit of T—o. We get as a result,
|
k{R KoT
sir| == . o
- 8(e?\) +o dky 2 d” %k +o dky (k3+k3) 2
V(R)= lim f 5 f — f 5 . (25
e T o (2m)  (ky) mr 2\ J=@2m) K (kKR
|
By using the elementary improper integral formula for the
evaluation of theky-integrand in Eq(25), (e\) 6— v
. , Veond R) = (4m)D 1 ( 2 )
i 1[j+°° 1+a smz(bx)’ 27a 26
m — - = .
e D | J -0 X2 (x*+c?)? c* sin| E(V_G))
X———T(v=5) (R)~¥*5,
We arrive at thgppartia) result "
(30)

(e\)
V(R)=+ (47)P2°1 At this point one can see that the potential energy term as
given by Eq.(30) at the physical four-dimensional space-
sinz(kl—R) time leads to the expected “confining” area behavior and to
dk, 2

6—v 4 the stochastic Abelian phase factor
X r L1

(2m) K

@) E; expieé B,(x,[j1dX
! crT ¥ #
with the final result on the dimensional regularized fofan 5
general space-time with a continuum dimension and ~expexd—cT-R(e"\)} (31)
where we have introduced a Coulomb tefioy hand to Eq.

(27) associated to a &# propagator—just for completeness, with C a positive adimensional constant.

It is worth commenting that Eq.29) leads to the usual

V(R)=Vcou(R) +Veor R) (28 Coulomb law atD =4, namely,
with e2)\
VCOU|( R) = 4’7TR . (32)
Vv R)= —(92)\) r 3
coul R)= (47)(72-1 (=3 Ill. RANDOM SURFACE DYNAMICAL FACTOR
IN THE ANALYTICAL REGULARIZATION SCHEME
) aa
sin (v—4) E) 4—p Sometimes, it is argued in the literatuf®,6] that one
X F( ) (R)"**3 (29)  should consider a dynamical random surface path-integral
2m 2 sum to the surface functional as given by Et) in the case
of the existence of only trivial self-intersections,6)=¢
and =(o',s")=¢" on the domain functional
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1 F
Z[@](gbar&sz D e(8)]
1
XGXW’—EJ d2§(¢“(—A)+“¢”“)(§)]

Xexp[ ~Opare| 26 8P (@, (6)— @M(E))]-
(33

Here « is a regularizing theory’s parametae 1.

Let us address the problem of renormalization on this

self-avoiding random surface functional E@3). First, we

point out that one can safely replace the surface self-
avoidance on the path-integral interaction weight by an in-

teraction with the tangent plane at the surface peipt¢),
namely

8PN (E) = @u(£))=0P) @, () =TL(8), (34
where the tangent plane equation is given by
Tu(EN=Tu(&) =ty Eo+t)E (35

i (0) (@) i
WIth_{tM ,t,’} denoting the surface tangent vectors at

®.(8).

By a simple variable change

(€)=, (8~ T,(8), (36)

we obtain as an effective random surface path integral to be
analyzed from a renormalization point of view, the self-

avoiding random surface interacting with the origjé],

1
260 = 555 | D@
1
Xex;){—EJ d2§(¢ﬂ(—A)+“<pM)(§)]
Xexp[—gb f d2§5<D>(¢M<§>>}, (37

where g, denotes thgpositive bare self-avoiding random
surface coupling constant.

It is instructive to point out that the formal perturbation

expansion around the massless two-dimensi(®@) fluctu-
ating surface vector positiofip,(£)} is ill defined in the
case ofae=1 in Eq. (37) due to the severe infrared diver-
gences of the associated Laplacean Green functidR?oAs

a consequence of the above-mentioned remark, we start from
the beginning with the Riesz-Hadamard expression of the

Seeleya-power of the Laplacian as written in the kinetic
term of Eq.(37),

PHYSICAL REVIEW D70, 045010 (2004

Gu(é1,6)=(-4)"

—Iwal'*(l a
( )lZF(a) |§l 52

“(61,62)

| 2(a—1)

:f d?k k&1 &)| k| ~2a, (38)

We, thus, renormalize E¢33) from Eq.(37) by means of
the renormalization prescription at the physical casexof
=1 (pure Laplaciaj

Op= (1_9—23012 (39
Zrl @, )(Gren) = lim Z[ ¢, 1(gp(a)). (40)

a—1

a>1
Let us show that Eq40) is a well-defined formal power
expansion in the renormalized coupling constapt, as
given by Eq.(39).

In order to show this result, we make the power expansion

of the a-reqgularized path integral, E¢37),
ZR[(P,u](gren)

25

gb)

[ f d¢, det D’Z[Ga(é.,fj)]} (41

The particulars of Eq41) for eachN under the renormal-
ization prescription, Eq(39), are a straightforward conse-
quence of the following properties:

First,
M (@(£1,E2)) = “m[e'mr(l Y (g2 1)—
w0 Pa §11§2 — 4 17? a) -
a>1 a>1 (42)
Second,
||m de{Ga(511§2) Ga(§11§2):|
a—1 Ga(§2!§l) Ga(§21§l)
a>1
- e—27ria F(l_ ) 2 -
:llTl - 42aﬂ_ ( F(a)a> }(|§l_§2|)4(a Y
a>1
_(1_614)2. (43)
Third,
0 Gu(é1,8) Gu(é1,62)
lim def G.(&2.61) 0 Gu(é2.61)
w1 LGul£3.60) Gul£s.6) 0
e ¥ T(1-a)® . C(1)
: 3( () )(1+1)——§(1_a) . (44
4 “775
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Finally, Ao, () ez s,y = Vh(s,0) - ds dor- TW<¢a<s,o>>.(50)
—aiaN
||m1N(ie'\f[Ga(§l,§2)]= gNe N2 (1—a)NCN’ (45) Here 5{°~2(0) means a regularized form of the delta
a>1 function singular values® ~2)(0) and physically related to

the nontrivial structure of the nonperturbative phenomenon
of the coupling constant dimensional transmutatisee the
Appendix of the first reference in Rg#]).

Cn=defA; jJ=—(N=1)(— HN, (46) After substituting Eqs(49) and(50) into the random sur-
face term, Eq(9), we obtain

with

where[A; ;] is the matrix whose entries are

i g={® Tk @ a. (11)= f f ds\h(¢7(s,0) f do’
b 1 if i#j.
As a consequence of the above analysis, we obtain our f j ds' Vh(¢%(s,o ))
renormalization result for Eq41) at the limita—1,

ol
(- gren)e [ 52(0) S(o—a')d(s— S)]

Zel[ ¢, 1(Gren) = EO Ci-Al<e (49 Vh(g%(s',0"))

)\ 2
with A= [d2¢ denoting the internal random surface area and f d‘ff dovh(¢“(s,0))
Co=e " 4tpi(— 1)/ (1—¢).
Finally, let us complement our studies on the area behav-

ior of the surface functional as given by E@®) in a more =Areq 2, )T (5)
physical way. Let us see its area behavior by using distribu-
tion theory on surfacefs]. First, we introduce &P vector
basis along the coordln_ate_ I|r_1@$b_“/(9_o a}nd dptlds. We IV. THE NONRELATIVISTIC CASE
have, thus, the surface-intrinsic distributional results

In this section, we apply the analysis presented in Sec. Il

for quantum chromodynamics at the 't Hooft limit in a non-

5(D)(¢M(S’U)_¢“(S 0’)) relativistic finite-temperature nonlinear Sctioger theory.
1 Let us start our analysis by considering the partition func-
= 5<8D2>(0)( — §W(s—s") eV (o— 0!)) tional of the following Schrdinger bosonic many-body field
vh((s,o) theory with a quartic interaction at the temperatlirek3 (k

(49) denotes the Boltzmann constaim the physical spac®®
and the partition functional is written in the form of a Bell-

and Wiegel path integral 7]
Z[T I§]=J DF[y(r,t)] F[zﬁ(r t)] exp[——f dtf d3r o> (r t)[ e (ﬁ—ﬁé)z
' 0= (r,B) 0= e mc
J 18
+ o ¢(r,t)]exp{ -5 fo dtfﬂd3r d3r-|¢//(r,t)|2V(r—r’)|¢(r’,t)|2}. (52)

Note the presence of the external random magnetic vector At this point, we rewrite the partition functional by means
potential supposed to satisfy the white-noise statistics witlof Siegert's trick of reducing the nonlocal spatial pair inter-
randomness strength action by an independent interaction of each Sdimger

- S e (3 e e field excitation with a fluctuating external scalar fieddr,t)
Eg{(rotB);(F)(rotB);(F")} =X (F=F")5; (53 itk Gaussiannonwhite statistics,

and the nonrelativistic field excitations interacting through a
short-range pair potentidl(r—r'). Edod(F D o(F t")=V(F=r")s(t—t"). (549
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One finds, thus, the following result for the partition func- where we have introduced explicitly the integérgiven by
tional written as statistics averages over ensembles of thiéie number of different bosonic matter species.
physical random magnetic field B{(r,t) and the auxiliary After substituting the purely bosonic loop space, &),

scalar field(F,t). Namely into the statistics averages as given by E§) and evaluat-

e ing them by means of a cummulant expansiona generic
ﬁ2
Zm(

form) and valid, at least for the limiN—0 [1],

12
Eg{Z(T,B)}=Eg{ E 4| det 2

]

Let us go from the field path integrals on E§5) to the ie .
ensemble of spatial loops through a loop expansion for thEg{ exr{h—f (rotB)(E)d&)}
. . . . . ClJs
functional determinant resulting from integrating out the
Schralinger bosonic matter quantum fields. It yields as a
result the following functional defined on the bosonic three-

E{eN}=exp{N(f) +3N?((f?)—(f)?>) + O(N®)}, (57)

one obtains explicitly that the dominant behavior of the ran-
dom magnetic field average on E@6) is governed by the
three-dimensional analogous of that area-surface functional,
Eq. (9),

efi *>2
V__
mc

(59

dimensional loop spacg(o),0<o=<B,X(0)=X(B)=r}:

2
In| def™ 12 a i (IV—%B +i¢(r,t)”
é’t
1 (B)=
_ 3 DF
+2 Nfgdrf(o) D"[X(o)]

Xex%—% j (X(O'))Zd(r)
Xex;{h—e B(X(O'))X(a')da')
B
><exp( - Jo ¢()?(0'),0')d0'> ], (56)

2
:exp‘ _ f%%z erLr’d&(F)ﬁ@(F— FYAG(F) L, (59)

where 3, is the “minimal” area surface bounded by the
bosonic closed contoloop) X(o) entering on the loop path
integral, Eq.(56).

As a consequence of E(h8), one can see that for a large
white-noise magnetic field strengtk—oo, this averaged
phase factor is only nonzero for a surfakeof zero area,
which is equivalent to the suppression of the quantum phe-
nomena and reducing the quantum gas partition functional,
Eq. (52), to a classical gas partition functional since all
closed quantum trajectories reduce to the loop base point
(see theorem 10.1 in second reference of R&J.

Hence, one can see again that quantum phenomena in
fluctuating magnetic field can be viewed as quantum phe-
nomena in a dissipative media that destroys quantum phase
coherence and leading to the theory’s trivialig].
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