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Triviality-quantum decoherence of quantum chromodynamicsSU„`… in the presence
of an external strong white-noise electromagnetic field
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We analyze the triviality-quantum decoherence of Euclidean quantum chromodynamics in the gauge invari-
ant quark current sector in the presence of a very strong external white-noise electromagnetic~strength! field
within the context of QCD in the ’t Hooft limit of a large number of colors.
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I. INTRODUCTION

For a long time, a very interesting~and conceptually! im-
portant problem in quantum field theory has been the cor
understanding of the triviality phenomena of interacti
fields as a kind of ‘‘phase-transition’’ phenomena depend
on external parameters including the famous space–time
mensionality. The basic formalism used to understand s
an important phenomea is—until present time—the rewrit
of the given interacting quantum field generating functio
in terms of the famous Symanzik loop space~even at the
lattice! @1–3#.

The purpose of this paper is to point out quantum fi
triviality phenomena in another context, however in a mo
complicated quantum field theory than those analyzed in
literature which is quantum chronodynamics~QCD! at a
large number of colors but in the presence of an exte
random Abelian field. The main idea is to show that exac
such a triviality result for QCD@SU(`)# will be the system-
atic use of the loop space representation for QCD which
its turn, allows us to exactly integrate out the external r
dom Abelian field when one is analyzing the QCD@SU(`)#
on the physical sector~observable! of Abelian quark currents
~form factors!.

In Sec. II we present our ideas and a complete loop an
sis of QCD @SU(`)# triviality in the presence of random
ness. In Sec. III, we present a path-integral renormaliza
analysis of the resulting effective random surface theo
Finally in Sec. IV, we apply the previous QCD loop analys
to the important case of nonrelativistic~many-body! field
theories.

II. THE TRIVIALITY-QUANTUM DECOHERENCE
ANALYSIS

In order to show such a triviality-quantum decoherence
bosonic QCD~`! let us consider the Euclidean generati
functional of the Abelian~for simplicity! quarks currents in
the presence of an external white-noise electromagnetic
Bm(x), simulating a kind of ‘‘dissipative’’ vacuum structur
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or quantum external resorvoir acting on the system~see the
second reference in Ref.@2#!,

Z@Jm~x!,Bm~x!#5^detf
Nc~D” ~Am ,Bm ,Jm!

3D” * ~Am ,Bm ,Jm!!&Am
. ~1!

Here the Euclidean Dirac operator is explicitly given b

D” ~Am ,Bm ,Jm!5 igm~]m1eBm1Jm1gAm! ~2!

with gAm denoting the Yang-Mills non-Abelian quantum
field configurations averaged in Eq.~1! by means of the
usual Yang-Mills path integral,Jn(x) is the auxiliary source
field associated to the Abelian quark currents andBm(x) is a
random external electromagnetic field with a strength fi
Fmg(B) satisfying a Gaussian statistics with randomness
intensityl.0,

EF$Fmg~B!Fab~B!~y!%5ld~D !~x2y!•~dmadgb2dmbdga!.
~3!

HereEF denotes the stochastic average on the ensemble
the external strength Abelian fieldF(B).1

-

1It is worthwhile to consider that this Abelian external~diver-
genceless! white-noise field comes mathematically from a standa
Stratonovich-Hubbard parametrization of a nonlocal charged p
of quarks Lagrangean arising from interaction with an external
paratus, namely,

expH2
(e2l)

2 E
RD

dx[]n(c̄gmc)(x)•h22(x,y)]n(c̄gmc)(y)]J
5ED[Fmn]expH2

1

2l ERD
dx(Fmn)

2(x)J
3d(F)(]bBb50)d(F)[~]mFmn)2hBn)#

3expHieE
RD

(c̄gmc)•Bm)(x)J.
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In the bosonic loop space framework@3# we can express
the quark functional determinant, Eq.~1!—which was ob-
tained as an effective generating functional for the color s
glet quark current after integrating out the Euclide
quark action—as a functional on the bosonic loop sp
composed of all trajectoriesCxx5$Xm(s),Xm(0)5Xm(T)
5x;0<s<T%,

Z@Jm~x!,Bm~x!#5K exp2H Nc(
Cxx

@F@Cxx ,Bm#

3F@Cxx ,Jm#Trc~W@Cxx ,Am#!#J L
Am

,

~4!

whereF@Cxx ,Bm# is the usual Wilson-Mandelstan loop var
able defined by the random external electromagnetic fi
Bm(x), andW@Cxx ,Am# is the same loop space object, how
ever with a sum path order and defined by the non-Abe
Yang-Mills quantum Euclidean fieldAm

a (x)la . Namely,

F@Cxx ,Bm#5expS ie R
Cxx

Bm~Xb~s!dXm~s!! D , ~5!

W@Cxx ,Am#5PFexpS i R
Cxx

Am~Xb~s!!dXm~s! D G .
~6!

The sum over the closed loopsCxx with end-pointx is
given by the proper-time bosonic path integral below

(
Cxx

5E
0

` dT

T E dDxE
X~0!5x5X~T!

DF@X~s!#

3expH 2
1

2 E0

T

Ẋ2~s!dsJ . ~7!

In Ref. @3#, the factorization of the color gauge invaria
averages of the products of Wilson loops associated to
Yang-Mills fieldsAm at SU(`) was presented on the basis
a diagrammatic analysis. As a consequence of this resul
nontrivial dynamical content of the generating functional
Abelian quark currents is entirely given by the fermion
functional determinant written in theSU(`) bosonic loop
space functional with a factorized form in relation to the lo
fields entering its~loop space! structural form as given be
low,

2 ln Z@Jm~x!,Bm~x!#SU~`!

5H(
Cxx

F@Cxx ,Bm#F@Cxx ,Jm#^TrcW@Cxx ,Am#&SU~`!J .

~8!
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In order to show the triviality quantum decoherence of t
bosonic loop space generating functional, Eq.~8!, when av-
eraging over the quark currents dependence on the exte
white-noise Abelian fieldBm(x), we consider the stochasti
average of the Wilson-Mandelstan phase factor defined
the Abelian random field with the following result:

EF$F@Cxx ,Bm#%5EFH expieE
(~Cxx!

Fmv~x!dsmv~x!J
5H 2

~e2l!

2 E
(~Cxx!

dsmn~x!

3d~D !~x2y!dsmn~y!J . ~9!

Let us analyze the behavior of the loop space function
Eq. ~9!, in terms of the metric properties of the surfa
((Cxx) bounded by the loopCxx(s). In order to analyze
such a geometrical behavior of Eq.~9! we consider an ex-
plicit parametrization of the~fixed! surface((Cxx) possess-
ing as a boundary the loopCxx ,

( ~Cxx!5$wm~s,s!,0<s<2p;0<s<T%. ~10!

In terms of this two-dimensional surface vector parame
zation we rewrite the loop functional, Eq.~9!, in the coordi-
nate invariant parametrization form, suitable to analyze
geometrical content

ln~E$F@Cxx ,Bm#%!

52
~e2l!

2 E ds dsE ds8 ds8Ah~s,s!Ah~s8,s8!

3tmn~wb~s,s!!tmn~wb~s8,s8!!

3~d~D !~wb~s,s!2wb~s8,s8!!!. ~11!

Here the surface area tensor is given by

dsmn~xb!uxb5Fb~s,s!5~Ah~s,s!tmn~wb~s,s!!ds ds!

~12!

with

Ah~s,s!5~Adet~]awb]bwb!~s,s!!, ~13!

tmn~Fb~s,s!5~«ab]awm]bwn/Ah~s,s!!. ~14!

By introducing a regularization form to the singular de
function appearing on the surface function@Eq. ~11!#
0-2
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d~«!
~D !~wb~s,s!2wb~s8,s8!!

5E
uku,1/«

dDk exp~ ika~wa~s,w!2wa~s8,s8!!!,

~15!

one obtains as the leading geometrical functional associ
to the trivial surface self-intersecting case (s,s)5(s8,s8),
the well-known Nambu-Goto area surface functional@4# ~see
Sec. III of this work!,

2 ln$E~F@Cxx ,Bm#!%

5 c̄~e2l!E ds ds~Ahhab]awm]bwm!~s,s!.

~16!

Here c̄ is a positiveRD-dimensional constant related to th
renormalization parameters« used on the regularizatio
form, Eq. ~15!, and somewhat related tho the analogous
pected phenomena of dimensional transmutation on Q
CD

m
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e
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@SU(`)#. Note that we have used the normalization con
tion of the surface area tensor to obtain the area functio
Eq. ~16!,

tmn~wb~s,s!!tmn~wb~s,w!!51. ~17!

At this point, it is straightforward to see that for a larg
white-noise external Abelian fieldl→` @2#, the noise aver-
aged Wilson loop on Eq.~1! is somewhat vanishing for an
loop Cxx . It is worth calling the reader’s attention to the fa
that for a given fixed noise strengthlÞ0, all loops Cxx
bounding large minimal area surfaces(@Cxx# are suppressed
on the bosonic loop path integral, Eq.~8!, and leads to a
dynamics of Gluon condensates@3#.

Note that the same loopCxx appearing in Eq.~9! enters in
the definition of all loop space objects in Eq.~8!. This result
in turns show us that at the very large noise strength li
l→1`, we have the strong triviality ofSU(`) quantum
chromodynamics in the sector of the Abelian quark curren
since all closed loopsCxx(s) degenerate to the loop bas
point x, namely,
lim
l→`

EB$Z~Jm~x!,Bm~x!!%5 lim
l→`

expH 2 (
~Cxx~s!→x!

e2 c̄le2 Area~(@Cxx# !V@Cxx ,Jm#^TrC~W@Cxx ,Am#!&J 5exp~0!51.

~18!
is

the

ce
i-
in
This is the first main conclusion of our paper about the Q
@SU(`)# triviality-quantum decoherence.

A second result we wish to present is related to the so
what different situation of our Abelian random field, Orig
nating from a source described by a manifold of rand
currents obeying a pure-white-noise statistics in a phys
dimensional space–timeR4,

DBm~x!5 j m~x!, ~19!

with the white-noise~spaghetti-vacuum@4#! current source
correlation function

Ej$ j m~x! j n~y!%5ld~4!~x2y!dmn . ~20!

In order to see the area behavior for the Abelian ph
factor F@Cxx ,Bm# in Eq. ~4!, we probe the system vacuum
energy by considering a static pair of quark-antiquark int
acting with the random electromagnetic field Eqs.~19! and
~20!.

The binding electromagnetic energy between such st
probing chargese, separated by a distanceR, is computed by
evaluating the energy of the Abelian white-noise fieldBm(x)
in the presence of these static quark sources and given
plicitly by the following Wilson loop average@3#:
e-

al

e

r-

ic

x-

V~R!5 lim
T→`

2
1

T
lgEj H expie R

C~R,T!
Bm~x,@ j # !dXmJ ,

~21!

where the quark-antiquark static space-time trajectory
given by a rectangleC(R,T)5$2T/2<t<1T/2;2R/2,s
,R/2% and Ej denotes the stochastic average over
vacuum current sources, Eq.~20!.

The evaluation of the binding energyV(R) can be more
invariantly accomplished by writing it in momentum spa
and using the dimensional regularization of Bollini and G
ambiagi@5#, after evaluating explicitly the source average
Eq. ~21!,

V~R!5 lim
T→`

2
1

2T F E dDk

~2p!D f m~k;C~R,T!!

3
ldmn

~k2!2 f n~2k,C~R,T!!G ~22!

with the rectangle form factor written as follows:

f m~k,C~R,T!!5 ie R
C~R,T!

e2 ika~s!Xa~s!
dXm~s!

ds
. ~23!
0-3
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As the rectanglesC(R,T) is contained in a two-dimensiona
subspace of the space-timeRD, we can decompose the vect

kW askW5k0eW01k1eW11 k̂, wherek̂ is the projection ofk̂ over

the subspace perpendicular to the subspace$eW0 ,eW1% contain-
ing C(R,T) . In addition, the space coordinate system is c

sen so that thex-axis direction coincides with the one define
by the spatial sides of the rectanglesC(R,T) . This coordinate
choice leads us to the solutions
he

s,

04501
-

f 0~k,C~R,T!!52
4e

k0
sinS k0T

2 D sinS k1R

2 D ,

~24!

f 1~k,C~R,T!!51
4e

k1
sinS k0T

2 D sinS k1R

2 D .

After substituting Eq.~24! into Eq.~22!, we face the prob-
lem of evaluating the following dimensionally regularize
integral limit of T→`. We get as a result,
V~R!5 lim
T→`

8~e2l!

T
H E

2`

1` dk1

~2p!

sin2S k1R

2
D

~k1!2
F E dn22k̂

~2p!n22
S E

2`

1` dk0

~2p!

~k0
21k1

2!

k0
2

sin2S k0T

2
D

~k0
21k1

21 k̂2!2
D G J . ~25!
as
e-
to

l

gral
By using the elementary improper integral formula for t
evaluation of thek0-integrand in Eq.~25!,

lim
b→`

1

b H E
2`

1`S 11
a2

x2D sin2~bx!

~x21c2!2J 5
2pa2

c4 . ~26!

We arrive at the~partial! result

V~R!51
~e2l!

~4p!D/221

3H E dk1

~2p!

sin2S k1R

2 D
k1

2 GS 62n

2 D uk1un24J
~27!

with the final result on the dimensional regularized form~a
general space-time with a continuum dimensionn! and
where we have introduced a Coulomb term~by hand! to Eq.
~27! associated to a 1/k2 propagator—just for completenes

V~R!5VCoul~R!1VConf~R! ~28!

with

VCoul~R!5
~e2l!

~4p!~n/2!21
H G~n23!

3

sinS ~n24!
p

2 D
2p

GS 42n

2 D J ~R!2n13 ~29!

and
VConf~R!5
~e2l!

~4p!~n/2!21
H GS 62n

2 D

3

sinS p

2
~n26! D
2p

G~n25!J ~R!2n15.

~30!

At this point one can see that the potential energy term
given by Eq.~30! at the physical four-dimensional spac
time leads to the expected ‘‘confining’’ area behavior and
the stochastic Abelian phase factor

Ej H expie R
C~R,T!

Bm(x,[ j ]dXmJ
;exp exp$2 c̄T•R(e2l)% ~31!

with c̄ a positive adimensional constant.
It is worth commenting that Eq.~29! leads to the usua

Coulomb law atD54, namely,

VCoul~R!52
e2l

4pR
. ~32!

III. RANDOM SURFACE DYNAMICAL FACTOR
IN THE ANALYTICAL REGULARIZATION SCHEME

Sometimes, it is argued in the literature@3,6# that one
should consider a dynamical random surface path-inte
sum to the surface functional as given by Eq.~11! in the case
of the existence of only trivial self-intersections (s,s)[j
5(s8,s8)5j8 on the domain functional
0-4
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Z@w#~gbare!5
1

Z~0!
E DF@w~j!#

3expH 2
1

2 E d2j~wm~2D!1awm!~j!J
3expH 2gbareE d2j d~D !~wm~j!2wm~j8!!J .

~33!

Herea is a regularizing theory’s parametera>1.
Let us address the problem of renormalization on t

self-avoiding random surface functional Eq.~33!. First, we
point out that one can safely replace the surface s
avoidance on the path-integral interaction weight by an
teraction with the tangent plane at the surface pointwm(j),
namely

d~D !~wm~j!2wm~j8!!5d~D !~wm~j!2Tm~j!!, ~34!

where the tangent plane equation is given by

Tm~j8!5Tm~j!5tm
0
•j01tm

~1!j1 ~35!

with $tm
(0) ,tm

(1)% denoting the surface tangent vectors

wm( j̄).
By a simple variable change

wm~j!→wm~j!2Tm~j!, ~36!

we obtain as an effective random surface path integral to
analyzed from a renormalization point of view, the se
avoiding random surface interacting with the origin@6#,

Z@w#~gb!5
1

Z~0!
E DF@wm~j!#

3expH 2
1

2 E d2j~wm~2D!1awm!~j!J
3expH 2gbE d2jd~D !~wm~j!!J , ~37!

where gb denotes the~positive! bare self-avoiding random
surface coupling constant.

It is instructive to point out that the formal perturbatio
expansion around the massless two-dimensional~2D! fluctu-
ating surface vector position$wm(j)% is ill defined in the
case ofa51 in Eq. ~37! due to the severe infrared dive
gences of the associated Laplacean Green function onR2. As
a consequence of the above-mentioned remark, we start
the beginning with the Riesz-Hadamard expression of
Seeleya-power of the Laplacian as written in the kinet
term of Eq.~37!,
04501
s

f-
-

t

e

m
e

Ga~j1 ,j2!5~2D!2a~j1 ,j2!

5
e2 ipaG~12a!

4a~p!1/2G~a!
uj12j2u2~a21!

5E d2k eik~j12j2!uku22a. ~38!

We, thus, renormalize Eq.~33! from Eq.~37! by means of
the renormalization prescription at the physical case oa
51 ~pure Laplacian!,

gb5
gren

~12a!D/2 ~39!

ZR@wm#~gren!5 lim
a→1
a.1

Z@wm#~gb~a!!. ~40!

Let us show that Eq.~40! is a well-defined formal power
expansion in the renormalized coupling constantgren as
given by Eq.~39!.

In order to show this result, we make the power expans
of the a-regularized path integral, Eq.~37!,

ZR@wm#~gren!

5 (
,50

`
~2gb!N

N! H )
j 51

N E d2j j det2D/2@Ga~j i ,j j !#J . ~41!

The particulars of Eq.~41! for eachN under the renormal-
ization prescription, Eq.~39!, are a straightforward conse
quence of the following properties:

First,

lim
a→0
a.1

~wa~j1 ,j2!!5 lim
a→1
a.1

H e2 ipaG~12a!

4ap1/2G~a!
~0!2a21D50.

~42!

Second,

lim
a→1
a.1

detFGa~j1 ,j2! Ga~j1 ,j2!

Ga~j2 ,j1! Ga~j2 ,j1!
G

5 lim
a→1
a.1

F2
e22p ia

42ap S G~12a!

G~a! D 2G~ uj12j2u!4~a21!

5
C2

~12a!2 . ~43!

Third,

lim
a→1
a.1

detF 0 Ga~j1 ,j2! Ga~j1 ,j2!

Ga~j2 ,j1! 0 Ga~j2 ,j1!

Ga~j3 ,j1! Ga~j3 ,j2! 0
G

5
e23p ia

43ap
3

2

S G~12a!

G~a! D 3

~1118!5
C3~1!

~12a!3 . ~44!
0-5
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Finally,

lim
a→1
a.1

det
N3N

@Ga~j1 ,j2!#5
e2p iaN

4NapN/2

1

~12a!N CN , ~45!

with

CN5det@Ai , j #52~N21!~21!N, ~46!

where@Ai , j # is the matrix whose entries are

@Ai , j #5H 0 if i 5 j ,

1 if iÞ j .
~47!

As a consequence of the above analysis, we obtain
renormalization result for Eq.~41! at the limit a→1,

ZR@wm#~gren!5 (
,50

`
~2gren!

,

,!
C,•A,,` ~48!

with A5*d2j denoting the internal random surface area a
C,5e2 ip,/4,pi,/2(21),(12,).

Finally, let us complement our studies on the area beh
ior of the surface functional as given by Eq.~9! in a more
physical way. Let us see its area behavior by using distri
tion theory on surfaces@6#. First, we introduce aRD vector
basis along the coordinate lines]fm/]s and ]fm/]s. We
have, thus, the surface-intrinsic distributional results

d~D !~fm~s,s!2fm~s8,s8!!

5d«
~D22!~0!S 1

Ah~~s,s!
d~1!~s2s8!d~1!~s2s8!D

~49!

and
ct
it

04501
ur

d

v-

-

dsmn~x!uxa5fa~s,s!5Ah~s,s!•ds ds•tmn~fa~s,s!!.
~50!

Here d«
(D22)(0) means a regularized form of the del

function singular valued (D22)(0) and physically related to
the nontrivial structure of the nonperturbative phenomen
of the coupling constant dimensional transmutation~see the
Appendix of the first reference in Ref.@4#!.

After substituting Eqs.~49! and~50! into the random sur-
face term, Eq.~9!, we obtain

Eq. ~11!5
e2l

2 E
0

T

dsE
0

2p

dsAh~fa~s,s!!E
0

T

ds8

3E
0

2p

ds8E
0

2p

ds8Ah~fa~s8,s8!!

3H d«
~2!~0!

d~s2s8!d~s2s8!

Ah~fa~s8,s8!!
J

5
e2l

2 E
0

T

dsE
0

2p

dsAh~fa~s,s!!

5AreaS (
Cxx

D e2l

2
. ~51!

IV. THE NONRELATIVISTIC CASE

In this section, we apply the analysis presented in Sec
for quantum chromodynamics at the ’t Hooft limit in a no
relativistic finite-temperature nonlinear Schro¨dinger theory.

Let us start our analysis by considering the partition fun
tional of the following Schro¨dinger bosonic many-body field
theory with a quartic interaction at the temperatureT5kb ~k
denotes the Boltzmann constant! in the physical spaceR3

and the partition functional is written in the form of a Bel
Wiegel path integral@7#
Z@T,BW #5E
c~r ,0!5c~r ,b!

DF@c~r ,t !#E
c̃~r ,0!5c̃~r ,b!

DF@c̄~r ,t !# expH 2
1

2 E0

b

dtE
V

d3r c* ~r ,t !F2
\2

2m S i¹W 2
e\

mc
BW D 2

1
]

]t Gc~r ,t !J expH 2
1

2 E0

b

dtE
V

d3r d3r •uc~r ,t !u2V~r 2r 8!uc~r 8,t !u2J . ~52!
s
r-
Note the presence of the external random magnetic ve
potential supposed to satisfy the white-noise statistics w
randomness strengthl,

EB$~rotBW ! i~rW !~rotBW ! j~rW8!%5ld~3!~rW2rW8!d i j ~53!

and the nonrelativistic field excitations interacting through
short-range pair potentialV(r 2r 8).
or
h

a

At this point, we rewrite the partition functional by mean
of Siegert’s trick of reducing the nonlocal spatial pair inte
action by an independent interaction of each Schro¨dinger
field excitation with a fluctuating external scalar fieldf(rW,t)
with Gaussian~nonwhite! statistics,

Ef$f~rW,t !f~rW8,t8!%5V~rW2rW8!d~ t2t8!. ~54!
0-6
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One finds, thus, the following result for the partition fun
tional written as statistics averages over ensembles of
physical random magnetic field rotBW (r ,t) and the auxiliary
scalar fieldf(rW,t). Namely

EB$Z~T,BW !%5EBH EfFdet21/2S ]

]t
1

\2

2m S i¹W 2
e\

mc
BW D 2

1 if~rW,t ! D G J . ~55!

Let us go from the field path integrals on Eq.~55! to the
ensemble of spatial loops through a loop expansion for
functional determinant resulting from integrating out t
Schrödinger bosonic matter quantum fields. It yields as
result the following functional defined on the bosonic thre
dimensional loop space$xW (s),0<s<b,xW (0)5xW (b)5rW%:

lnFdet21/2S ]

]t
1

\2

2m S i¹W 2
e\

mc
BW D 2

1 if~r ,t ! D G
51

1

2 H NE
V

d3r F E
xW~0!5rW

xW~b!5rW

DF@xW~s!#

3expS 2
1

2
mE

0

b

~xW~s!!2 ds D
3expS ie

\c E0

b

BW ~xW~s!!xẆ~s!ds D
3expS 2E

0

b

f~xW~s!,s!ds D G J , ~56!
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where we have introduced explicitly the integerN, given by
the number of different bosonic matter species.

After substituting the purely bosonic loop space, Eq.~56!,
into the statistics averages as given by Eq.~55! and evaluat-
ing them by means of a cummulant expansion~in a generic
form! and valid, at least for the limitN→0 @1#,

E$eN f%5exp$N^ f &1 1
2 N2~^ f 2&2^ f &2!1O~N3!%, ~57!

one obtains explicitly that the dominant behavior of the ra
dom magnetic field average on Eq.~56! is governed by the
three-dimensional analogous of that area-surface functio
Eq. ~9!,

EBW H expS ie

\c ES
~rotBW !~S!dsW D J

5expH 2
le2

\2c2 E
Sr

E
Sr 8

dsW ~rW !d~3!~rW2rW8!dsW ~rW8!J , ~58!

where S is the ‘‘minimal’’ area surface bounded by th
bosonic closed contour~loop! xW (s) entering on the loop path
integral, Eq.~56!.

As a consequence of Eq.~58!, one can see that for a larg
white-noise magnetic field strengthl→`, this averaged
phase factor is only nonzero for a surfaceS of zero area,
which is equivalent to the suppression of the quantum p
nomena and reducing the quantum gas partition functio
Eq. ~52!, to a classical gas partition functional since a
closed quantum trajectories reduce to the loop base p
~see theorem 10.1 in second reference of Ref.@7#!.

Hence, one can see again that quantum phenomen
fluctuating magnetic field can be viewed as quantum p
nomena in a dissipative media that destroys quantum ph
coherence and leading to the theory’s triviality@8#.
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