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Quantum mechanics model on a Kaler conifold
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We propose an exactly solvable model of the quantum oscillator on the classisfr Kaacegwith conic
singularitie$, connected with two-dimensional complex projective spaces. Its energy spectrum is nondegener-
ate in the orbital quantum number, when the space has nonconstant curvature. We reduce the model to a
three-dimensional system interacting with the Dirac monopole. Owing to noncommutativity of the reduction
and quantization procedures, the Hamiltonian of the reduced system gets nontrivial quantum corrections. We
transform the reduced system into a MIC-Kepler-like one and find that quantum corrections arise only in its
energy and coupling constant. We present the exact spectrum of the generalized MIC-Kepler system. The
one{complex dimensional analog of the suggested model is formulated on the Riemann surface over the
complex projective plane and could be interpreted as a system with fractional spin.
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I. INTRODUCTION VI’S(Z;)V?l 1— V+E(Z;)V—a ) o
Jab™ — ab— — — 727 |.
The quantum oscillator ranks as a most important system 2[1+€(z2)"] 241+ €(z2)"]

of quantum mechanics, due to the existence of an overcoml;

plete set of hidden symmetries which form a linear algebra! "€ Scalar curvature takes the form
The hidden symmetries provide the oscillator wit.h unique 4 v—l—e(2v+1)(25”
properties, e.g., a degenerate quantum-mechanical energy R=— — — .
spectrum, the separability of variables and exact solvability vrg zz

in a several coordinate system. This allows one to preserve

the exact solvability even after some deformation of the po¥Ve choose the following oscillator potential:
tential, or, at least, to simplify the perturbative calculations. B w?r2
These features make the oscillator to be a relevant system in V= 02922 9K 9K = _O(Zf)v_ (4)
a wide class of problems in theoretical physics, including 2

string/field theory, gravity, and condensed matter. On the , . )
other hand, most problems in modern theoretical physicghe exact classical solvability of the model was established

deal with higher-dimensionalde3) curved spaces. How- " Refs.[4,5]. The potentia}K4).is distinguishgd also with its
ever, the quantum oscillator is generalized for spheres anfgSPeCt t0 supersymmetrization and inclusion of a constant
hyperboloids only[1], which have a constant curvature and Magnetic field4]. _ e _
no singularities. Fod>2 these spaces have noer struc- The system is described by the Satirger equation
ture; consequently, the corresponding oscillators have a bad
behavior with respect to supersymmetrization and the inclu-
sion of a constant magnetic field. Moreover(supejstring/
brane and(supejgravity theories Khler spaces[2] and
spaces with conic singularitigsonifolds, including Kanler
conifolds, are of special importanéeee, e.g., Ref.3] and
references therejn 2Jo=20—29, 23I=z09—-doz,
In this note we propose a model of the four-dimensional
quantum oscillator on thew(e) parametric family of Kaler [Jo.d]=0,  [Ji.dl=1€idr, ©®
°°”.'f°"?'3 related tzo the nonsingular cases qf the COmpk'})évherea are standard Pauli matrices, an#l,|=1,2,3. Here
projective spac€P“ (whenv=1 ande=1) and its noncom- _ . =
pact version, i.e., the four-dimensional Lobacewski spage 2and further below we use the notatiof,=d/d0z", da
(for v=1 ande=—1). The Kaler structure is defined by =d/dz°

()

7’:(\If=E‘I’, 'H: _ﬁzgagaaag_"voscv ®)

where the metric and the potential are given by expressions
(2) and(4), respectively. It is invariant undes(2) rotations
defined by the operators

the potential We find that the system has remarkable properties. It is
exactly solvable: We find itenergy spectrurand construca
2 complete basis of wave functior@n nonconstant curvature
K= 2—Olog[1+ €(z2)"], v>0, e=*1, (1)  spaces the spectrum is nondegenerate in the orbital quantum
€

number. Moreover, even on constant curvature spaces the
spectrum is nondegenerate in the eigenvalue of the operator

so that the corresponding metric is given by the expression,. Reducing the quantum Hamiltonian on the three-
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dimensional ¢,e) parametric space we find that it gets aHerea€[0,27), Be[0,7], andye[0,47), andx is a di-
correction, with respect to the quantized three-dimensionainensionless radial coordinate taking values in the interval
Hamiltonian reduced from four dimensions classically. In[O) for e=+1, and in[0,1] for e=—1. In the Wigner
other words, the reduction and quantization are noncommufunction D'}nys(a,ﬂ,y) j, m denote orbital and azimuthal
tative operations in the proposed model. The reduced systeguantum numbers, respectively, whiés the eigenvalue of

is specified by the presence of a Dirac monopole field. In the,q operatod,

particular case=4 it has no singularity, as its configuration

space is a three-dimensional sphere/pseudosiitvenesheet Jo¥=sV, 9
hyperboloid. In this case the four-dimensional potential re- ~ ~
duces to the potential of the oscillator on(@seuddsphere. FPU=j(j+1)¥, J¥=mV, (10

The reduced oscillator could be converted into another ex-
actly solvable system on the {4—1)-parametric three-
dimensional space. For=1 it coincides with the MIC-
Kepler systeni.e., the superintegrable generalization of the
Coulomb system with the Dirac monopdlé]) on the two- vy x3

sheet hyperboloid7]. Hence, the latter system could be dV(4)=§ ————5 3 sinBdxdadpdy. (12
viewed as a generalization of the MIC-Keglesystem on (1+x%)

nonconstant curvature conifolds. Quantum correctionsl-he radial Schidinger equation looks as follows:
change the only value of the coupling constant and the en-
ergy, so that one could get the energy spectrum and the wave  d2y 3+ex? 1 dy
functions of the MIC-Kepler-like system from the oscillator T % dx
ones! The transformation to the Coulomb-like system does dx®  1+ex

ms=—j,—j+1,...j—1j j=01/21... (11

The volume element reads

2r2E+ ew?r

72(1+ ex?)?

not have a mere academic interest. Being related to the Hopf o w2 2
map, it has numerous applications in physics. The newest — A+ +4(l—-v)s — €0 $=0, (13
one is the higher-dimensional quantum Hall effg@t Note ?x?(1+ ex?) 1+ ex?
that the obtained results could be straightforwardly extended
to higher dimensions. where
2 wrg
Il. WAVE FUNCTIONS AND SPECTRUM 52:4_2+ 20_ (14)
. % h
The Schrdinger equation(5) could be separated in the
spherical coordinates Making the further substitution
Zt=xY"coq B2)exd (112)(a+ y)], x=tang, for e=1,
2= —1x"sin( Bl2yexd — (112)(a— )], 7
npZ)exe = (1/2)(a=)] @) x=tanh@, for e=-1, (15

upon the following choice of the wave function: _ _
we shall get the regular wave functions, which form a com-

W =(x)D}, (@, 8,7). (8 plete orthonormal basis,

Csint 10 coS0,F(—n,n+5+j,+1;j,+1;sirt6), for e=1
=7 _ 16
Csinh1 g cosh *2"9,F,;(—n,—n+4,j,+ 1 tantte), for e=—1 (16
|
and the energy spectrum Here
2
€h? 45> wirg . )
L =— ' = 4j(j+1 4(v—1)s
En,J,s 2r3(2n+11+e 2 + > +1 J%: J(] )+1_ ( 2) , (19
v v
2¢h” wzrg 1 whereas
- r(z) T e (17
0111"'100 for 6:1
= . 19
"=lo1, . pmaciso—j-1], for e=—1 Y

The MIC (Mclntosh-CisnerosKepler integrable system was
constructed by Zwanziger and rediscovered by Mcintosh-Cisnerois the radial quantum number. The normalization constants
[6]. are defined by the expression
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v2rgm?niT2(j,+1) , [@n+ji+1+ T (n+j;+1+ /T (n+1+6), for e=1,
42j+1)T(n+j1+1) ~ [ (6—=2n—j; = DI (§—n)/T(6—n—j,), for e=—1.

(20

It is seen that fow# 1 the energy spectrum is degenerate inMIC-Kepler system on the three-dimensional hyperboloid
the azimuthal quantum number only. The explicit depen{7]. The quantum KS transformation includes a reduction of
dence of the spectrum on the orbital quantum nunliethe  the Schrdinger equation for the four-dimensional oscillator
quantum-mechanical reflection of the unclosedness of classpy the J, operator, with a subsequent transformation to the
cal trajectoried5]. On constant curvature spaces, where Schralinger equation of the MIC-Kepler system.
=1, the spectrum depends srand N=2n+2j, i.e., it is In Ref.[4] we applied a similar procedure to the classical
degenerate in the orbital quantum numpeérhis degeneracy oscillator onCP? and found that, as in th@rseudgspherical
is due to the existence of a hidden symmetry given by thease, it yields the MIC-Kepler system on the three-
operators dimensional hyperboloid.
_ _ Let us extend the KS transformation to the proposed
1=12)03"+ 202, J,=10,+12%(z ). (21)  model. We begin by considering the reduction of the system
to three dimensions. For this purpose we consider(8gas

In the flat limit (r5—, 6—0 andrg#=const), we get the 4 constraint and choose the functions below as coordinates of
correct formula for the four-dimensional oscillator energythe reduced system:
spectrum
_ v/i2—1 3 _
Ey=fio(N+2), N=2n+2j=0,1,2..., (22 x=(22"" "z07, [Jo.X]=0.
X3=XCOSB, Xp+iXx;=xsinpBe. (24

i.e., N=2n+2j becomes the “principal” quantum number.
Notice that in the nonconstant curvature case:1 the 1he wave function of the reduced system is related with the
infiniteness/finiteness of the energy spectrum is not straightnitial one as follows:
forwardly correlated with the curvature, as opposed to the .
case of constant curvature spafesmpare(3) and (19)]. V)X, a,B) = VX/(1+ ex?)e 7V,

The two-dimensional counterpart of our model has
single complex coordinate Performing the transformation
w=2z" we get the Hamiltonian and the angular momentum
operator on the Riemann surface ove®! (for e=1) or
Lobacewski planeC (for e=—1):

(29

4t is convenient to pass to the following coordinates:

m—l)mx 2y V2

=X= =, (26)
eX X l_Ey\“V

y:

H=—h%(1+ eww)?d,,dy+ w’r2ww, where the metric of the reduced space takes a conformally
flat form
2J=v(Wdy,,— Wdy,), (23 2vr§y";*2(dy)2
where argv e [0,27v). The energy of the system is given by dsiE,,O: (1+ Gym‘/)z ' (27)
expression(17), wheres/v and j, are replaced by =j/v.
For integer values of we could make a reduction by tie, ~ Thus, we arrive at the reduced Sctiimger equation
group and get a family of oscillators specified by the frac-
tional spink=1/v,2/v, ...,(1-1/v) (see Ref[8]). It this Hied Y, TV (3)=EW 3y, Hieq= Hugti2AY,  (28)
casej =k,k+1, ... gets the meaning of the orbital quantum
number on the complex projective plane. The arising of fracWhere
tional spins can be interpreted as a consequence of the pres-

ence of a magnetic flux tudeee Ref[8]). As opposed to the . 4 _ 1. \/_ i ~ 5 (1+ey')* 2w2r§yv‘v
higher dimensional case, the spectrum is nondegenerate f&?red_\/_gwi 99 m+s 2v2r2y\5(1—ey\’;)2 (1—ey\"7)2
any v, which reflects the absence of hidden symmetry of the 0 (29)
system.

and

IlI. REDUCTION AND COULOMBLIKE SYSTEMS

1 4 g 1— V2
There is a well-known Kustaanheimo-Stief&lS) trans- Al y 3 63_/ ) +10e|. (30

formation relating the four-dimensional oscillator with the 8ri[ (1—ey™)? 4y
three-dimensional Coulomi@nd MIC-Kepler[6]) system. A A

similar transformation of the oscillator on the four- Here « is the momentum operator in the Dirac monopole
dimensional sphere andwo-sheek hyperboloid yields the field
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. P o yK Using the expressiond 6), we could convert the energy
w=— |h(9—y—sA(y), [, m]=hsep—. (31)  spectrum of the oscillator into that of the MIC-Kepler system
y

2 H 2 2 2
The energy spectrum is given by the same fornlild as in E=— 2(y—eh™(2n+]1+1)7/(4Ro)) _&r iz
the four-dimensional case, with the only difference that h2(2n+j;+1)? Ro  2Rg
=0,+1/2,1 ... becomes a fixed parametge., the “mono- (36)
pole number?). Hence, instead ofL1) one has

wherej; is defined by the expressidi8). We obtained an
i=|sl.|s|+1,..., m=—j,—j+1,...j—1j. (320  exactly solvable generalization of the MIC-Kepler system on
a class of three-dimensional spaces having conic singularities
;and nonconstant curvature. In the case of constant curvature,
the system is degenerate in the orbital quantum number
otherwise it has an explicit dependencejon
In our consideration we have used the common construc-

tion of the quantum Hamiltonian on the curved configuration

pace, where the kinetic energy term is replaced by the

aplace operator,

Thus, we got a rather remarkable result: Reducing the qua
tum Hamiltonian yields a different outcome from quantizing
the reduced classical Hamiltonian. In the special casel
we get the system on the three-dimensional spherel() or
pseudospheréwo-sheet hyperbolojd e=—1). In this case
the reduced oscillator potential coincides with the potentia
of the oscillator on the spher@yperboloid [1], so that in
the absence of monopoles=0, H %, coincides with the
Hamiltonian of the three-dimensional Higgs oscillator. Com- - 1 .
paring the spectrum of the latter syst¢h0] with that con- 9 pim— Tﬁi Vogls;,
structed abovefor s=0), one can see that they coincide 9

only in the semiclassical limit. This is due to the quantum

correctionfi?A ;. which guarantees that the Hamiltonian is Hermitean and
Now, we can complete the KS transformation, dividing reparametrization-invariant.
the both sides of the Schiimger equatior{28) by r3x?, and In fact this definition assumes that the following realiza-

going to the wave functioﬂf(g)=x*1’2\lf(3). As aresult, we tion of the momenta operatorsy;=—#d;, which is non-
shall get the Schitinger equation of a MIC-Kepler-like sys- Hermitean in the case of a nonconstant metric. In REf]
tem on a three-dimensional conifold with the metric thea priori Hermitean realization of the momenta operators
ds;, _1g, given by Eq.(27), wherev;=4v, Ry=rg, m=—h(9;— Ldlogdetg) was suggested, together with a
slightly different definition of the observables quadratic on
momenta(and, consequently, of the Hamiltonjarespecting

Huic¥(@)=E¥ ). 33 the reduction procedure. Upon this definition of momenta,
R both the initial and the reduced quantum Hamiltonian will
where the HamiltoniarH),,¢ is of the form get quantum corrections, with respect to the Hamiltonian as
we defined it in our conventions. It seems to be interesting to
1 (1—yv71)2 y 1+yv71 compare the spectra and the properties of the systems under

consideration in both approaches.

~ 1. A -
HMIC_\/_§7Ti \/ag'l’sz-i-ZS h V%ngv/”_l - R_o 2y\/71 ,

(34)

IV. SUMMARY AND CONCLUSION

while the energy and the coupling constant are given by the | et us summarize our results. We proposed an exactly
EXpressions solvable model of a quantum oscillator on tw@omplex
dimensional complex projective spa¢a its compact and
Eose €h? 52 noncompact versiofsas well as on the related nonconstant
Y= —( - ) curvature Kaler spaces with conic singularities, parameter-
ized by »>0 and e=*1. We reduced the oscillators to
those on the #,€) parametric family of three-dimensional
nonconstant curvature conifolds related with the three-
. (35 dimensionalpseudgsphere. The reduced systems are speci-
fied by the presence of a Dirac monopole. During the reduc-
tion the quantum Hamiltonian gets additional corrections
So, as opposed to the reduction procedure, where nontrivialith respect to the quantized Hamiltonian, reduced from
guantum corrections arise, the KS transformation of the fourfour-dimensional space at the classical level. Then we trans-
dimensional oscillator yields the MIC-Kepler-like system onformed the reducedi,e) oscillator in the MIC-Kepler-like
the three-dimensional conifold, where the quantum correcsystem on the (#,—1)-conifold and get its exact energy
tions have an impact on the coupling constant and the energgpectrum. Opposite to the reduced oscillator, in the final sys-
only. tem quantum corrections affect the energy and coupling con-

2
Mo

2

€Eqsc 2
+2—
1 2v

fi
+_

2 4
) o

—2E=w?+
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