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Quantum mechanics model on a Ka¨hler conifold
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We propose an exactly solvable model of the quantum oscillator on the class of Ka¨hler spaces~with conic
singularities!, connected with two-dimensional complex projective spaces. Its energy spectrum is nondegener-
ate in the orbital quantum number, when the space has nonconstant curvature. We reduce the model to a
three-dimensional system interacting with the Dirac monopole. Owing to noncommutativity of the reduction
and quantization procedures, the Hamiltonian of the reduced system gets nontrivial quantum corrections. We
transform the reduced system into a MIC-Kepler-like one and find that quantum corrections arise only in its
energy and coupling constant. We present the exact spectrum of the generalized MIC-Kepler system. The
one-~complex! dimensional analog of the suggested model is formulated on the Riemann surface over the
complex projective plane and could be interpreted as a system with fractional spin.
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I. INTRODUCTION

The quantum oscillator ranks as a most important sys
of quantum mechanics, due to the existence of an overc
plete set of hidden symmetries which form a linear algeb
The hidden symmetries provide the oscillator with uniq
properties, e.g., a degenerate quantum-mechanical en
spectrum, the separability of variables and exact solvab
in a several coordinate system. This allows one to prese
the exact solvability even after some deformation of the
tential, or, at least, to simplify the perturbative calculatio
These features make the oscillator to be a relevant syste
a wide class of problems in theoretical physics, includ
string/field theory, gravity, and condensed matter. On
other hand, most problems in modern theoretical phys
deal with higher-dimensional (d.3) curved spaces. How
ever, the quantum oscillator is generalized for spheres
hyperboloids only@1#, which have a constant curvature an
no singularities. Ford.2 these spaces have no Ka¨hler struc-
ture; consequently, the corresponding oscillators have a
behavior with respect to supersymmetrization and the in
sion of a constant magnetic field. Moreover, in~super!string/
brane and~super!gravity theories Ka¨hler spaces@2# and
spaces with conic singularities~conifolds!, including Kähler
conifolds, are of special importance~see, e.g., Ref.@3# and
references therein!.

In this note we propose a model of the four-dimensio
quantum oscillator on the (n,e) parametric family of Ka¨hler
conifolds related to the nonsingular cases of the comp
projective spaceCP2 ~whenn51 ande51) and its noncom-
pact version, i.e., the four-dimensional Lobacewski spaceL2
~for n51 ande521). The Kähler structure is defined by
the potential

K5
r 0

2

2e
log@11e~zz̄!n#, n.0, e561, ~1!

so that the corresponding metric is given by the express
1550-7998/2004/70~4!/045006~5!/$22.50 70 0450
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gab̄5
nr 0

2~zz̄!n21

2@11e~zz̄!n#
S dab̄2

12n1e~zz̄!n

zz̄@11e~zz̄!n#
z̄azbD . ~2!

The scalar curvature takes the form

R52
4

nr 0
2

n212e~2n11!~zz̄!n

zz̄
. ~3!

We choose the following oscillator potential:

Vosc5v2gāb] āK]bK5
v2r 0

2

2
~zz̄!n. ~4!

The exact classical solvability of the model was establish
in Refs.@4,5#. The potential~4! is distinguished also with its
respect to supersymmetrization and inclusion of a cons
magnetic field@4#.

The system is described by the Schro¨dinger equation

ĤC5EC, Ĥ52\2gab̄]a] b̄1Vosc, ~5!

where the metric and the potential are given by express
~2! and~4!, respectively. It is invariant underU(2) rotations
defined by the operators

2Ĵ05z]2 z̄]̄, 2Ĵ5zs]2 ]̄sz̄,

@J0 ,J#50, @Ji ,Jk#5ıe iklJl , ~6!

wheres are standard Pauli matrices, andi ,k,l 51,2,3. Here
and further below we use the notation]a5]/]za, ]̄ ā

5]/] z̄a.
We find that the system has remarkable properties. I

exactly solvable: We find itsenergy spectrumand constructa
complete basis of wave functions. On nonconstant curvatur
spaces the spectrum is nondegenerate in the orbital qua
number. Moreover, even on constant curvature spaces
spectrum is nondegenerate in the eigenvalue of the ope
Ĵ0. Reducing the quantum Hamiltonian on the thre
©2004 The American Physical Society06-1
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dimensional (n,e) parametric space we find that it gets
correction, with respect to the quantized three-dimensio
Hamiltonian reduced from four dimensions classically.
other words, the reduction and quantization are noncom
tative operations in the proposed model. The reduced sys
is specified by the presence of a Dirac monopole field. In
particular casen54 it has no singularity, as its configuratio
space is a three-dimensional sphere/pseudosphere~two-sheet
hyperboloid!. In this case the four-dimensional potential r
duces to the potential of the oscillator on a~pseudo!sphere.
The reduced oscillator could be converted into another
actly solvable system on the (4n,21)-parametric three-
dimensional space. Forn51 it coincides with the MIC-
Kepler system~i.e., the superintegrable generalization of t
Coulomb system with the Dirac monopole@6#! on the two-
sheet hyperboloid@7#. Hence, the latter system could b
viewed as a generalization of the MIC-Kepler1 system on
nonconstant curvature conifolds. Quantum correctio
change the only value of the coupling constant and the
ergy, so that one could get the energy spectrum and the w
functions of the MIC-Kepler-like system from the oscillat
ones! The transformation to the Coulomb-like system d
not have a mere academic interest. Being related to the H
map, it has numerous applications in physics. The new
one is the higher-dimensional quantum Hall effect@9#. Note
that the obtained results could be straightforwardly exten
to higher dimensions.

II. WAVE FUNCTIONS AND SPECTRUM

The Schro¨dinger equation~5! could be separated in th
spherical coordinates

z15x1/ncos~b/2!exp@~ ı/2!~a1g!#,

z252ıx1/nsin~b/2!exp@2~ ı/2!~a2g!#, ~7!

upon the following choice of the wave function:

C5c~x!Dm,s
j ~a,b,g!. ~8!
s
er
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Here aP@0,2p), bP@0,p#, andgP@0,4p), andx is a di-
mensionless radial coordinate taking values in the inter
@0,̀ ) for e511, and in @0,1# for e521. In the Wigner
function Dm,s

j (a,b,g) j, m denote orbital and azimutha
quantum numbers, respectively, whiles is the eigenvalue of
the operatorĴ0

Ĵ0C5sC, ~9!

Ĵ2C5 j ~ j 11!C, Ĵ3C5mC, ~10!

m,s52 j ,2 j 11, . . . ,j 21,j j 50,1/2,1, . . . ~11!

The volume element reads

dV(4)5
n2r 0

4

32

x3

~11x2!3
sinbdxdadbdg. ~12!

The radial Schro¨dinger equation looks as follows:

d2c

dx2
1

31ex2

11ex2

1

x

dc

dx
1F2r 0

2E1ev2r 0
4

\2~11ex2!2

2
4n j ~ j 11!14~12n!s2

n2x2~11ex2!
2

ed2

11ex2Gc50, ~13!

where

d254
s2

n2
1

v2r 0
4

\2
. ~14!

Making the further substitution

x5tanu, for e51,

x5tanhu, for e521, ~15!

we shall get the regular wave functions, which form a co
plete orthonormal basis,
c5H C sinj 121u cosdu2F1~2n,n1d1 j 111; j 111;sin2u!, for e51

C sinhj 121u cosh2d12nu2F1~2n,2n1d, j 111,tanh2u!, for e521
~16!
nts
and the energy spectrum

En, j ,s5
e\2

2r 0
2 S 2n1 j 11eA4s2

n2
1

v2r 0
4

\2
11D 2

2
2e\2

r 0
2

2
v2r 0

2

2e
. ~17!

1The MIC ~McIntosh-Cisneros!-Kepler integrable system wa
constructed by Zwanziger and rediscovered by McIntosh-Cisn
@6#.
Here

j 1
25

4 j ~ j 11!

n
112

4~n21!s2

n2
, ~18!

whereas

n5H 0,1, . . . ,̀ for e51

0,1, . . . ,nmax5@d/22 j 21#, for e521
~19!

is the radial quantum number. The normalization consta
are defined by the expression

os
6-2
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n2r 0
4p2n!G2~ j 111!

4~2 j 11!G~n1 j 111!
C25H ~2n1 j 1111d!G~n1 j 1111d!/G~n111d!, for e51,

~d22n2 j 121!G~d2n!/G~d2n2 j 1!, for e521.
~20!
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It is seen that fornÞ1 the energy spectrum is degenerate
the azimuthal quantum number only. The explicit depe
dence of the spectrum on the orbital quantum numberj is the
quantum-mechanical reflection of the unclosedness of cla
cal trajectories@5#. On constant curvature spaces, wheren
51, the spectrum depends ons and N[2n12 j , i.e., it is
degenerate in the orbital quantum numberj. This degeneracy
is due to the existence of a hidden symmetry given by
operators

I5\2JsJ†1 z̄sz, Ja5ı]a1ı z̄a~ z̄ ]̄ !. ~21!

In the flat limit (r 0
2→`, u→0 andr 0

2u5const), we get the
correct formula for the four-dimensional oscillator ener
spectrum

EN5\v~N12!, N52n12 j 50,1,2, . . . , ~22!

i.e., N52n12 j becomes the ‘‘principal’’ quantum numbe
Notice that in the nonconstant curvature case,nÞ1 the
infiniteness/finiteness of the energy spectrum is not strai
forwardly correlated with the curvature, as opposed to
case of constant curvature spaces@compare~3! and ~19!#.

The two-dimensional counterpart of our model has
single complex coordinatez. Performing the transformation
w5zn we get the Hamiltonian and the angular moment
operator on the Riemann surface overCP1 ~for e51) or
Lobacewski planeL ~for e521):

H52\2~11eww̄!2]w] w̄1v2r 0
2ww̄,

2J5n~w]w2w̄] w̄!, ~23!

where argwP@0,2pn). The energy of the system is given b
expression~17!, wheres/n and j 1 are replaced byj̃ 5 j /n.
For integer values ofn we could make a reduction by theZn

group and get a family of oscillators specified by the fra
tional spin k51/n,2/n, . . . ,(121/n) ~see Ref.@8#!. It this
casej̃ 5k,k11, . . . gets the meaning of the orbital quantu
number on the complex projective plane. The arising of fr
tional spins can be interpreted as a consequence of the
ence of a magnetic flux tube~see Ref.@8#!. As opposed to the
higher dimensional case, the spectrum is nondegenerat
anyn, which reflects the absence of hidden symmetry of
system.

III. REDUCTION AND COULOMBLIKE SYSTEMS

There is a well-known Kustaanheimo-Stiefel~KS! trans-
formation relating the four-dimensional oscillator with th
three-dimensional Coulomb~and MIC-Kepler@6#! system. A
similar transformation of the oscillator on the fou
dimensional sphere and~two-sheet! hyperboloid yields the
04500
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MIC-Kepler system on the three-dimensional hyperbolo
@7#. The quantum KS transformation includes a reduction
the Schro¨dinger equation for the four-dimensional oscillat
by the Ĵ0 operator, with a subsequent transformation to
Schrödinger equation of the MIC-Kepler system.

In Ref. @4# we applied a similar procedure to the classic
oscillator onCP2 and found that, as in the~pseudo!spherical
case, it yields the MIC-Kepler system on the thre
dimensional hyperboloid.

Let us extend the KS transformation to the propos
model. We begin by considering the reduction of the syst
to three dimensions. For this purpose we consider Eq.~9! as
a constraint and choose the functions below as coordinate
the reduced system:

x5~zz̄!n/221zsz̄, @ Ĵ0 ,x#50,

x35x cosb, x21 ix15x sinbeia. ~24!

The wave function of the reduced system is related with
initial one as follows:

C (3)~x,a,b!5Ax/~11ex2!e2 isgC. ~25!

It is convenient to pass to the following coordinates:

y5SA11ex221

ex D 2/n x

x
⇒x5

2yAn/2

12eyAn
, ~26!

where the metric of the reduced space takes a conform
flat form

dsn,e,r 0

2 5
2nr 0

2yAn22~dy!2

~11eyAn!2
. ~27!

Thus, we arrive at the reduced Schro¨dinger equation

Ĥred~y,p!C (3)5EC (3) , Ĥred5Ĥred
0 1\2L1, ~28!

where

Ĥred
0 5

1

Ag
p̂ iAggi j p̂ j1s2

~11eyAn!4

2n2r 0
2yAn~12eyAn!2

1
2v2r 0

2yAn

~12eyAn!2

~29!

and

L15
1

8r 0
2 F 4yAn

~12eyAn!2
2

3~12eyAn!2

4yAn
110eG . ~30!

Here p̂ is the momentum operator in the Dirac monopo
field
6-3
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p̂52ı\
]

]y
2sA„y…, @p̂ i ,p̂ j #5\se i jk

yk

y3
. ~31!

The energy spectrum is given by the same formula~17! as in
the four-dimensional case, with the only difference thas
50,61/2,1, . . . becomes a fixed parameter~i.e., the ‘‘mono-
pole number’’!. Hence, instead of~11! one has

j 5usu,usu11, . . . , m52 j ,2 j 11, . . . ,j 21,j . ~32!

Thus, we got a rather remarkable result: Reducing the qu
tum Hamiltonian yields a different outcome from quantizi
the reduced classical Hamiltonian. In the special casen54
we get the system on the three-dimensional sphere (e51) or
pseudosphere~two-sheet hyperboloid! (e521). In this case
the reduced oscillator potential coincides with the poten
of the oscillator on the sphere~hyperboloid! @1#, so that in
the absence of monopoles,s50, H red

0 coincides with the
Hamiltonian of the three-dimensional Higgs oscillator. Co
paring the spectrum of the latter system@10# with that con-
structed above~for s50), one can see that they coincid
only in the semiclassical limit. This is due to the quantu
correction\2L1.

Now, we can complete the KS transformation, dividi
the both sides of the Schro¨dinger equation~28! by r 0

2x2, and
going to the wave functionC (3)5x21/2C (3) . As a result, we
shall get the Schro¨dinger equation of a MIC-Kepler-like sys
tem on a three-dimensional conifold with the met
dsn1 ,21,R0

2 given by Eq.~27!, wheren154n, R05r 0
2,

ĤMICC̃ (3)5EC̃ (3) , ~33!

where the HamiltonianĤMIC is of the form

ĤMIC5
1

Ag
p̂ iAggi j p̂ j12s2\2

~12yAn1!2

n1
2R0

2yAn1
2

g

R0

11yAn1

2yAn1
,

~34!

while the energy and the coupling constant are given by
expressions

g5
Eosc

2
1

e\2

r 0
2 S 12

s2

n2D ,

22E5v21
eEosc

r 0
2

1
\2

r 0
4 S 112

s2

n2D . ~35!

So, as opposed to the reduction procedure, where nontr
quantum corrections arise, the KS transformation of the fo
dimensional oscillator yields the MIC-Kepler-like system
the three-dimensional conifold, where the quantum corr
tions have an impact on the coupling constant and the en
only.
04500
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Using the expressions~16!, we could convert the energ
spectrum of the oscillator into that of the MIC-Kepler syste

E52
2~g2e\2~2n1 j 111!2/~4R0!!2

\2~2n1 j 111!2
2

eg

R0
1

\2

2R0
2 ,

~36!

where j 1 is defined by the expression~18!. We obtained an
exactly solvable generalization of the MIC-Kepler system
a class of three-dimensional spaces having conic singular
and nonconstant curvature. In the case of constant curva
the system is degenerate in the orbital quantum numbej;
otherwise it has an explicit dependence onj.

In our consideration we have used the common const
tion of the quantum Hamiltonian on the curved configurati
space, where the kinetic energy term is replaced by
Laplace operator,

gi j pip j→
1

Ag
] iAggi j ] j ,

which guarantees that the Hamiltonian is Hermitean a
reparametrization-invariant.

In fact this definition assumes that the following realiz
tion of the momenta operators,p̂ i52\] i , which is non-
Hermitean in the case of a nonconstant metric. In Ref.@11#
the a priori Hermitean realization of the momenta operato
p̂ i52\(] i2

1
4 ] i log detg) was suggested, together with

slightly different definition of the observables quadratic
momenta~and, consequently, of the Hamiltonian! respecting
the reduction procedure. Upon this definition of momen
both the initial and the reduced quantum Hamiltonian w
get quantum corrections, with respect to the Hamiltonian
we defined it in our conventions. It seems to be interesting
compare the spectra and the properties of the systems u
consideration in both approaches.

IV. SUMMARY AND CONCLUSION

Let us summarize our results. We proposed an exa
solvable model of a quantum oscillator on two-~complex!
dimensional complex projective space~in its compact and
noncompact versions!, as well as on the related nonconsta
curvature Ka¨hler spaces with conic singularities, paramet
ized by n.0 and e561. We reduced the oscillators t
those on the (n,e) parametric family of three-dimensiona
nonconstant curvature conifolds related with the thr
dimensional~pseudo!sphere. The reduced systems are spe
fied by the presence of a Dirac monopole. During the red
tion the quantum Hamiltonian gets additional correctio
with respect to the quantized Hamiltonian, reduced fro
four-dimensional space at the classical level. Then we tra
formed the reduced (n,e) oscillator in the MIC-Kepler-like
system on the (4n,21)-conifold and get its exact energ
spectrum. Opposite to the reduced oscillator, in the final s
tem quantum corrections affect the energy and coupling c
6-4
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stant only. The two-dimensional counterpart of the sugges
model corresponds to a system with fractional spin on
complex projective plane. Its spectrum is nondegenerate
any n.

It appears that the proposed system preserves its e
solvability after inclusion of aconstant magnetic field. It is
also a distinguished system with respect to supersymm
zation, as it admits anonstandardN54 supersymmetric ex
tension, which respects the inclusion of a constant magn
field ~cf. Ref.@4#!. We are planning to discuss such matters
detail elsewhere.
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