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Layered Higgs phase as a possible field localization on a brane
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So far it has been found by using lattice techniques that in the anisotropic five-dimensional Abelian Higgs
model, a layered Higgs phase exists in addition to the expected five-dimensional one. The exploration of the
phase diagram has shown that the two Higgs phases are separated by a phase transition from the confining
phase. This transition is known to be first order. In this paper we explore the possibility of finding a second-
order transition point in the critical line that separates the first-order phase transition from the crossover region.
This is shown to be the case only for the four-dimensional Higgs layered phase while the phase transition to the
five-dimensional broken phase remains first order. The layered phase serves as the possible realization of
four-dimensional spacetime dynamics, which is embedded in a five-dimensional spacetime. These results are
due to gauge and scalar field localization by confining interactions along the extra fifth direction.
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I. INTRODUCTION: MOTIVATION

Since the mid-1980s lattice gauge models with ani
tropic couplings defined in higherD-dimensional space
have been proposed. These models may exhibit, throug
phase transition, a phase that is Coulombic
(D21)-dimensions and shows confinement along the
maining dimension. In fact, this was the result of Fu a
Nielsen using mean field techniques in a five-dimensio
pure U~1! gauge theory with anisotropic couplings@1#. This
new phase was called layered.

The Monte Carlo analysis that followed@2# supported the
mean field results and helped to get a more precise pictur
the phase diagram@3#. Also in Ref. @4# the orders of the
phase transitions have been analyzed.1

In addition, as may have been expected, consideratio
the interaction with a scalar particle leads to a richer ph
diagram. Actually, the exploration of the phase diagram
the model for various sets of lattice parameters values
vides strong evidence that the layer phase is stable and
pears either in a Higgs phase for the U~1! case@7,8#, or in a
Coulomb phase for a SU~2! adjoint Higgs model2 @11#.

Since gauge theories defined on aD.4 spacetime are
known to be nonrenormalizable, an explicit cutoffL has to

*Email address: dimopoulos@roma2.infn.it
†Email address: kfarakos@central.ntua.gr
1It has to be noted that for non-Abelian gauge theories the la

phase exists in six dimensions@1,2#. For the lattice realization of the
four-dimensional confining phase in a five-dimensional no
Abelian gauge theory in the context of acompactifiedextra dimen-
sion the reader may refer to Refs.@5,6#.

2Recently a paper appeared@9# that presents a nonperturbativ
study of the Dvali-Shifman mechanism@10# of the gauge localiza-
tion on a brane. For that reason a SU~2! gauge theory with an
adjoint scalar, whose mass parameter is space dependent, is
ployed in 3D.
1550-7998/2004/70~4!/045005~8!/$22.50 70 0450
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be introduced@12#. Therefore the theory is to be considere
as an effective theory that emerges from a more fundame
renormalizable theory~for example, the string theory!. For
the U~1! gauge field the introduction of the cutoffL leads to
the admission of the strong coupling phase to be the in
esting phase for the five-dimensional theory. As a con
quence the lattice methods have to be used as the una
able nonperturbative tool for the study of the system.

Up to now the Monte Carlo results show that the tran
tion between the five-dimensional strong coupling phase
the layered Higgs phase is first order. A multilayer structu
arises that supports the idea of the confinement along
extra dimension@8,11#. A crucial question may arise: is ther
any possibility for this phase transition to be of second
der? We work on this possibility and we look for a secon
order ending point along the first-order critical line.3 This
would give evidence for the layer mechanism to be m
realistic and useful in scenarios concerning the localizat
of the fields on the four-dimensional subspace.

Before proceeding to the lattice model let us present
action of the U~1! Higgs model in five dimensions, which in
principle could inspire the lattice action used in the seq
for the numerical simulation. We assume a five-dimensio
anti–de Sitter space (AdS5) with one warped extra dimen
sion. In general the metric reads

ds25a2~z!@dx0
22dxW2#2dz2. ~1.1!

We considerhmn to be the four-dimensional Minkowski met
ric and a(z) the warp factor. We do not need to define e
plicitly the form of the warp factor. We only require that
goes to zero asz→` ~ @16–19#!. Hence the five-dimensiona
metric is written

er

-

em-

3A similar behavior has been seen in the U~1! Higgs model in 4D
@13#, in the SU~2! Higgs model in 3D@14#, and in the SU~2! adjoint
Higgs model in 3D@15#.
©2004 The American Physical Society05-1
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gMN5S 1

a2~z!
hmn,21D . ~1.2!

We consider now that in such a space we define a fi
dimensional Abelian Higgs model, the action of which rea

S5Sgauge1Sscalar52
1

4g5
2E d5xAg FMNFKLgMKgNL

1E d5xAg @DMF* DNFgMN2V~F!#

5E d4xdzF2
1

4g5
2

FmnFklhmkhnl

2
a2~z!

2g5
2

Fm5Fn5hmnG
1E d4xdz@a2~z!DmF* DnFhmn

2a4~z!DzF* DzF2a4~z!V~F!#. ~1.3!

We note that the uppercase indices refer to the 5D sp
M ,N,K,L50, . . . ,4 and thelowercase Greek indices to th
4D space, i.e.,m,n,k,l50, . . . ,3. It isobvious that the sca
lar field F depends on the five-dimensional space (x,z).
Then we use the rescalinga(z)F5w for the scalar field. In
the rather general case where the quartic scalar potenti
considered, the scalar action takes the form

Sscalar5E d4xdz@Dmw* Dmw2a2~z!Dzw* Dzw

2M ~z!2w* w2l~w* w!2#, ~1.4!

whereM2(z)5a2(z)m21@a8(z)#21 1
2 @a2(z)#9.4

It is a trivial matter for the action to be analytically con
tinued to the Euclidean space from which the lattice act
can be defined after following the usual methods for discr
zation. Therefore we take

SL5Sgauge1Sscalar

5bg(
x

(
1<m,n<4

@12cosUmn~x!#1(
x

(
1<m<4

bg8

3@12cosUm5~x!#1bh(
x

(
1<m<4

@wL~x!

2U m̂~x!wL~x1am̂ !#* @wL~x!2U m̂~x!wL~x1am̂ !#

4Assuming thatm2,0 on the brane (z50), we note that depend
ing from the exact form of the warp factor the mass term may t
to be positive after a certain distance or at least tends to zero
ymptotically along the transverse direction. So we meet the si
tion of two degenerate minima near the brane and only one m
mum far away from it.
04500
-
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1bh8(
x

@wL~x!2U 5̂~x!wL~x1a5̂!#* @wL~x!

2U 5̂~x!wL~x1a5̂!#1(
x

mL
2wL* ~x!wL~x!

1bR~wL* ~x!wL~x!!2], ~1.5!

We denote bywL(x) the lattice scalar field and

Umn~x!5Um~x!Un~x1am̂ !Um
† ~x1an̂ !Un

†~x!,

Um5~x!5Um~x!U5~x1am̂ !Um
† ~x1a5̂!U5

†~x! ~1.6!

are the plaquettes on the four-dimensional space and a
the fifth direction, respectively TheU ’s are the links for the
gauge field on the lattice.5 They are explicitly given byUM
5eiaAM ~with M51, . . . ,5). Theprimed couplings refer to
the interactions along the extra dimension. Moreover, a
can be noticed from the corresponding continuous action,
couplings obey certain relationships, which depend on
warp factor.6 Hence we have

bg85a2~xT!bg , bh85a2~xT!bh , l5
4bRa

bh
2

, ~1.7!

a2M2~xT!5
2

bh
mL

2 . ~1.8!

Therefore due to the assumed form for the warp factor,
interactions for both the gauge and scalar fields are stron
coupled along the extra direction.

Since a brane is defined as any three-dimensional s
manifold to which ordinary matter is trapped@20# so that it
cannot escape to the bulk, a possible realization of the t
ping mechanism is to assume the existence of confinem
along the extra dimension. On the lattice this situation can
realized using a lattice model with anisotropic coupling
This is sufficient to lead to the formation of the layered pha
through a phase transition. In our context we consider
layered phase on the lattice as a possible paradigm on h
localization of the fields, obeying nonperturbative intera
tions, may be carried out on the brane due to confining
teractions in the bulk.

In this paper we study a simplified realization of the la
tice action given by Eq.~1.5! below. This is inspired by Eq
~1.7!, i.e., to set the fifth~transverse! direction couplings to a
strong coupling regime while we neglect the explicit role
the warp factor in the lattice action. Therefore the latti
action ~which leads to the five-dimensional Higgs model
the naive continuum limit@7,8# reads in standard notation

n
s-

a-
i-

5Notice also that here we use the symbolx for the whole dis-
cretized five-dimensional space. The extra direction now is deno
by xT .

6For the transition from the continuous to the lattice action
have assumed the following rescaling for the scalar fie
21/2a3/2w5bhwL .
5-2
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SL5Sgauge1Sscalar

5bg(
x

(
1<m,n<4

@12cosUmn~x!#1(
x

(
1<m<4

bg8@12cosUm5~x!#1bh(
x

ReF4wL* ~x!wL~x!

2 (
1<m<4

wL* ~x!U m̂~x!wL~x1am̂ !G1(
x

bh8 ReF ~wL* ~x!wL~x!2wL* ~x!U 5̂~x!wL~x1a5̂!#

1(
x

$~122bR24bh2bh8!wL* ~x!wL~x!1bR@wL* ~x!wL~x!#2%. ~1.9!
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Apart from the resulting simplicity in the context of th
phase diagram analysis, a connection of this work with p
vious studies of the layered phase can be achieved. M
over, our impression is that the full lattice model is likely
produce physically similar results with the present simplifi
version. This was also the case for the pure U~1! gauge
model. The ‘‘static’’ representation of the model for whic
the gauge couplings were fixed by hand gave equivalen
sults with the model in which the warp factor was used
the scaling of the gauge couplings@4#.

II. THE ORDER PARAMETERS AND THE CHOICE
OF COUPLINGS

We study the Abelian Higgs model on the lattice by usi
numerical methods. The action is given explicitly by E
~1.5!. We define five-order parameters, making also the
tinction between spacelike and transverselike ones. Thes
the following.

Spacelike plaquette:

PS[K 1

6N5 (
x

(
1<m,n<4

cosUmn~x!L ,

Transverselike plaquette:

PT[K 1

4N5 (
x

(
1<m<4

cosUm5~x!L ,

FIG. 1. Phase diagram of the 5D Abelian Higgs model with
spacelike gauge coupling set to the strong couplingbg50.5 ~taken
from Ref. @8#!.
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Space-like link:

LS[K 1

4N5 (
x

(
1<m<4

cos@x~x1m̂ !1Am̂~x!2x~x!#L ,

Transverse-like link:

LT[K 1

N5 (
x

cos@x~x15̂!1A5̂~x!2x~x!#L ,

Higgs field measure squared:

R2[
1

N5 (
x

r2~x!.

We have assumed the polar form for the scalar field, i
wL5r(x)eix(x).

In Ref. @8# this model has been already studied and a fi
exploration for the phase diagram is available. In that wo
since the parameter space is very large, consisting of
lattice parameters, the choice has been made to fixbg to 0.5,
bh8 to 0.001 and consider two values ofbR ~0.1 and 0.01! and
explore the parameter space (bg8 , bh). Under these condi-
tions the analysis of the order parameters defined ab
yielded a phase diagram consisting of the three expe
phases, which are the confining phase (S), the Coulomb
phase (C5), and the Higgs phase (H5), each of them defined
in five dimensions. In addition a fourth phase is presen
Higgs phase in four dimensions (H4) ~see Fig. 1!. The dis-
tinction betweenH4 andH5 can be achieved due to the di
ferent behavior of the transverselike order parameters wi
the two phases. Details and conclusions on the existenc
this layer Higgs phase can be found in Ref.@8#. Let us refer
also to the fact that the identification for the order of t
phase transitions was possible and has lead to the conclu
that ~for the two values ofbR used! both H4 and H5 are
separated from the confining phase by a first-order ph
transition. We reproduce the phase diagram forbR50.1, as it
was depicted in Ref.@8# ~Fig. 1!.

III. SEARCHING FOR A SECOND-ORDER PHASE
TRANSITION

At this point the question arises whether it could be p
sible for theH4 layer phase to appear via a second-ord
phase transition. Following Ref.@8#, we consider the system
being in the confining regime by settingbg50.5 and fixing
5-3
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FIG. 2. Hysteresis loops showing that th
loop for the link-space order parameter disa
pears forbR values larger than 0.153.
a
se

d

ially
bh8 to the very small value 0.001. We expect the phase tr
sitions to the Higgs phases to be weaker as the Higgs
coupling bR increases. We explore the order of theS-H4

phase transition by setting the transverse gauge couplingbg8
04500
n-
lf-
to 0.2 while we increasebR . In advance, it should be note
that, as we move to larger values ofbR , the relative posi-
tions of the phases in the phase diagram are substant
similar to what is shown in Fig. 1 forbR50.1. So, settingbg8
FIG. 3. Characteristic examples showing the obviously different order of the phase transition for the casesS-H4 andS-H5 at the same
value ofbR , for two different values ofbg8 .
5-4
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FIG. 4. Histograms ofR2 over a spacelike
volume for three values ofbR50.153, 0.155,
0.158 and lattice lengthN514.
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fact
to 0.2, we always explore theS-H4 phase transition.
In the sequel we give strong evidence that theS-H4 first-

order phase transition line ends at a second-order point
lowed by a crossover region. At the same moment theS-H5
phase transition remains first order. This additional fact c
firms the special nature of the four-dimensional layer Hig
phase.

We give now information for the simulating process. W
used a 4-hit Metropolis algorithm for updating the fields.
addition we implemented the global radial algorithm and
overrelaxation algorithm for the updating of the Higgs fie
We used four lattice volumes, 85, 105, 125, 145, and we
performed 20 000–30 000 measurements for each p
which we analyzed in the parameter space. We studie
large number ofbR values before concentrating our study
the interval@0.140,0.165# in which the first-order phase tran
sition turns to be a weaker one before it passes to the cr
over region.

In the subsequent paragraphs we present our results w
are based upon using the hysteresis loop technique, the
volume size scaling, the susceptibility, and the study of
correlation functions for the Higgs field measure squared

A. Hysteresis loop technique results

The first tool for the exploration of the phase diagra
with bR is the hysteresis loop technique. Although this tec
nique gives results that have to be taken into account w
caution quantitatively, they prove to be very useful as qu
tative ones. To this end we use the hysteresis loop resul
a general guide to get a crude estimate on thebR interval
within which the phase transition is converted from a fi
order to a higher-order one. In Fig. 2 we depict the hyster
loop results for the four-dimensional gauge invariant qu
tity LS and for four values ofbR , namelybR50.143, 0.149,
0.153, 0.160. The lattice volume in this example is 85. One
can see from the figure that while there is a well-formed lo
for bR50.143 indicating a first-order phase transition, th
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changes to a smaller one forbR50.149, and it seems to
disappear forbR50.153. Although this value should not b
taken too seriously, one should keep in mind that around
value bR50.153 a weaker phase transition is still prese
Furthermore we have to mention that the transverse
quantity,LT ~not shown in the figure! remains almost unaf-
fected by the phase transition, being stuck to a very sm
value close to zero~for details see Ref.@8#!.

In Fig. 3 we give an example of the different phase tra
sition orders of theS-H4 andS-H5 transitions, both forbR
50.158 and lattice volume 85. In Fig. 3~a! we present the
hysteresis loop results onPS and PT for bg850.20. The be-
havior of PS indicates a phase transition though a smo
one since there is no hysteresis loop, while thePT is almost
constant and equals 0.1, in accord with the strong coup
predictionbg8/2. This figure should be compared with Fi
3~b!, which refers tobg850.80. The hysteresis loop resul
shows a very strong first-order phase transition, exhibited
both PS and PT .7 This behavior refers to theS-H5 phase
transition. Figures 3~c! and 3~d! show the behavior forR2

which illustrates the fact that for both cases the syst
passes to a broken phase. In other words, increasingbg8 one
finds two different Higgs phases~see, for example, Fig. 1!, a
four-dimensional and a five-dimensional one both separa
from the five-dimensional confining phase by phase tran
tions of different orders.

B. Finite volume size scaling

As it has been discussed in Ref.@8# one of the main fea-
tures of theS-H4 phase transition is the multilayer structur
This means that since the system undergoes a transition
four-dimensional phase rather than a five-dimensional o

7Notice that the unbroken phase is a confining one due to the
that PS and PT follow the strong coupling limitsbg/2 andbg8/2,
respectively~for more on that see Ref.@8#!.
5-5
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some special signal should appear. Besides a first-o
phase transition this consists of a multipeak structure in
finite lattice volume histograms for the gauge invariant o
servables, instead of the expected behavior of the two-p
structure. Furthermore, it has been shown that every sp
like gauge invariant quantity defined on each spacelike v
ume~i.e., a four-dimensional layer! ‘‘feels’’ the phase transi-
tion for different pseudocritical values of the lattic
parameters. Since this is a consequence of the finite la
volume used for Monte Carlo simulations in combinati
with the four-dimensional dynamics when the layer pha
arises, we justify the choice of analyzing the results on
four-dimensional subspace.

In Fig. 4 we depict the histograms of the Higgs field me
sure squared,R2 for bg850.20 and three values ofbR . All
the three histograms refer tobh values in the critical region
The lattice volume in this figure is 145. The R2 histograms
refer to four-dimensional~spacelike! volume. The two peak
structure is more pronounced for the smaller value ofbR
~i.e., 0.153!, where the two peaks are totally separated.
bR50.155 the two-peak structure is less emphasized w
for bR50.158 it has already disappeared. In order for som
one to use this method with more safety the lattice volu
dependence of the two-peak structure should be taken
account. This is provided in Fig. 5. In Fig. 5~a! it is easily
seen that the two peaks become well separated as the la
length increases from 10 to 14, which serves as an indica
of a first-order phase transition for the case ofbR50.153.
This has to be compared with the really inversed beha
for bR50.158 shown in Fig. 5~c!. ThebR50.155 case, Fig.
5~b!, for which the peak separation does not change sign
cantly as the lattice length goes from 10 to 14, gives
estimate of a first-order phase transition becoming m
weaker and probably of higher order.

Let us now present more quantitative results by giving
results for the susceptibility ofR2 on the layers for various
values ofbR . This is defined by

S~R2!5Vs@^~R2!2&2^R2&2#,

whereVs denotes the spacelike lattice volume. The resu
are depicted in Fig. 6. The errors have been calculated
using the Jackknife method. It is known that a first-ord
phase transition is signaled by a linear increase of the m
mum of the susceptibility with the volume. This is actua
the case forbR50.149 and 0.153. The situation changes
bR50.155 where the linear behavior is apparently absen
addition, for the bigger valuesbR50.158 and 0.160 there i
not a clear increase with the volume. This case correspo
to a crossover behavior. Therefore, the conclusion is tha
the vicinity of bR50.155 we meet with the well-known situ
ation, where a first-order phase transition line ends t
second-order phase transition point followed by a crosso

C. Correlation functions

In this section we present the behavior of two correlat
functions, one defined on the whole five-dimensional sp
and the other on the spacelike, four-dimensional one. Th
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correlation functions involve the Higgs field measu
squaredR2, defined in Sec. II. The definition of the correla
tion functions is given by

CS,T~n!5(
i

^~R2! i~R2! i 1n&2^~R2! i&
2

^~R2! i
2&2^~R2! i&

2
, ~3.1!

wheren takes values from 1 toN ~i.e., the lattice size!. The
indicesS and T are used to distinguish the correlators. T
one defined in the transverse direction is noted with the
dex T. The other defined in the spacelike volume is deno
with S.

FIG. 5. The histograms forR2 as the lattice length increases fo
the three values ofbR50.153, 0.155, 0.158.
5-6
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FIG. 6. The susceptibility versus the spaceli
volume for five values ofbR in the critical bR

region.
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The results for the two correlators are radically differe
An example of our results is shown in Fig. 7. This refers
the case ofN514 lattice size for three values ofbR . We see
that whileCT decreases very fast, reaching zero and fluc
ating around it,CS takes values different from zero. Th
serves as a clear evidence that a layered phase is formed
layers are decoupled as a consequence of the strong cou
imposed on the transverse direction, which has the impl
tion of vanishingCT . Moreover, the rather reasonable b
havior ofCS shows that inside the layers a four-dimension
dynamics is still met as it might be expected.

Another very interesting feature of theCS correlation
function is that as thebR value decreases the curve becom
more flat. We should note that in the case of a second-o
phase transition and for infinite volume this should be rea
flat. This is a fact corresponding to infinite correlation leng
04500
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s
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y

or vanishing mass for the lightest scalar mode. In ot
words, by adjusting thebh value into the critical region we
might expect a mass behavior of the typems}(bR2bR

c )n.
The light scalar mass calculation can be achieved by usin
fit of the form const3cosh@ms(x2N/2)# to the correlation
functionsCS . The parameterms is the dimensionless mas
parameter of the scalar mode. An example of the fits
shown in Fig. 7. The results forms for the cases considere
are shown in Table I. From Table I and for the largest latt
size used we can see thatms decreases by a factor of 1.
betweenbR50.160 and 0.155. A more clear signal for th
vanishingms would require larger volumes and still highe
computer time. Nevertheless, after considering the previ
analysis on susceptibility combined with the results from
study of the correlations, we are justified to estimate tha
n
FIG. 7. The spacelike and timelike correlatio
functions for L514 and for three values ofbR

50.155, 0.158, 0.160, in the region ofbh where
the susceptibilities show a peak.
5-7
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bR50.155(2) a second-order phase transition point sho
be expected.

IV. CONCLUSIONS

We believe that we have serious evidence that the fi
dimensional Abelian Higgs model with strong coupled int
actions along the fifth~transverse! direction reveals a four-
dimensional dynamics with broken gauge symmetry. T

TABLE I. The masses in lattice units. We observe that forL
514 andbR50.155 the value for the mass parameter has decre
by a factor of 1.7 in comparison with thebR50.160 corresponding
value.

Lattice size bR50.155 bR50.158 bR50.160

10 0.145~3! 0.165~4! 0.181~4!

12 0.112~3! 0.137~3! 0.167~7!

14 0.090~3! 0.131~6! 0.152~7!
. B
c-

a

n

ls

ni-

04500
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occurs via a second-order phase transition. The existenc
the layered phase can be considered as a realization fo
localization of the gauge and scalar fields for models defi
in a higher-dimensional space with the extra dimensions
ing warped. Although the lattice volumes and the compu
power available is not conclusive for the second-order cr
cal point ~so that the calculation of critical exponents is o
of consideration for the moment!, our results provide an es
timate for the value of the Higgs self-coupling at which t
line of the first-order transition line ends in a second-ord
transition point along the four-dimensional space.
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