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Layered Higgs phase as a possible field localization on a brane
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So far it has been found by using lattice techniques that in the anisotropic five-dimensional Abelian Higgs
model, a layered Higgs phase exists in addition to the expected five-dimensional one. The exploration of the
phase diagram has shown that the two Higgs phases are separated by a phase transition from the confining
phase. This transition is known to be first order. In this paper we explore the possibility of finding a second-
order transition point in the critical line that separates the first-order phase transition from the crossover region.
This is shown to be the case only for the four-dimensional Higgs layered phase while the phase transition to the
five-dimensional broken phase remains first order. The layered phase serves as the possible realization of
four-dimensional spacetime dynamics, which is embedded in a five-dimensional spacetime. These results are
due to gauge and scalar field localization by confining interactions along the extra fifth direction.
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I. INTRODUCTION: MOTIVATION be introduced12]. Therefore the theory is to be considered
as an effective theory that emerges from a more fundamental
Since the mid-1980s lattice gauge models with anisofenormalizable theoryfor example, the string theoryFor
tropic couplings defined in higheb-dimensional spaces the U1) gauge field the introduction of the cutoff leads to
have been proposed. These models may exhibit, through the admission of the strong coupling phase to be the inter-
phase transiton, a phase that is Coulombic inesting phase for the five-dimensional theory. As a conse-
(D—1)-dimensions and shows confinement along the reduence the lattice methods have to be used as the unavoid-

maining dimension. In fact, this was the result of Fu ang@ble nonperturbative tool for the study of the system. .
Nielsen using mean field techniques in a five-dimensionaj, YP 0 now the Monte Carlo results show that the transi-

; ; ; ; ; tion between the five-dimensional strong coupling phase and
re U1) gauge theory with anisotropic couplings|. This
ng ;;i\a)sg Wugs caIIedyIz\;\gered ! b uplings]. Thi the layered Higgs phase is first order. A multilayer structure

: arises that supports the idea of the confinement along the
The Monte Carlo analysis that follow¢d] supported the efxtra dimension8,11]. A crucial question may arise: is there

tmheanhfleld rgsults and Qflpeq t(ln?gfet Z n:rc:re prdeuse }:f)lizrt]ure %ny possibility for this phase transition to be of second or-
e phase diagrarfB]. Also in Ref. [4] the orders of the der? We work on this possibility and we look for a second-

phase transitions have been analyzed. rder ending point along the first-order critical lih&his

th ”? ?dd't'?n' as_trr?ay ha\I/e bee? ?X?ec(tjedi cons_u::]eratl(r)]n ould give evidence for the layer mechanism to be more
€ interaction with a scalar particie leads 1o a rieher phasga ,iiic and useful in scenarios concerning the localization

diagram. ActuaIIy,. the exploratior] of the phase diagram of f the fields on the four-dimensional subspace.

the model for various sets of lattice paramgters values pro- Before proceeding to the lattice model let us present the
vides strong _eV'deT‘CE‘ that the layer phase is stable; and aBction of the W1) Higgs model in five dimensions, which in
pears either in a Higgs phase for thélllcase[7.8], or in a principle could inspire the lattice action used in the sequel

Coulomb phase for a S8 adjoint Higgs modé [11] for the numerical simulation. We assume a five-dimensional

K Smcc: gbauge theories I(_def;)r;ed Om? .fpa(t:gf:[f'hme ?re anti—de Sitter space (Adp with one warped extra dimen-
nown to be nonrenormalizable, an explicit cu asto  gon In general the metric reads

_ .2 2 402142
*Email address: dimopoulos@romaz2.infn.it ds’=a*(z)[dxo—dx*] ~dZ". 1.0

i ; .
Email address: kfarakos@central.ntua.gr . . . . .
11t has to be noted that for non-Abelian gauge theories the Iayey.ve ConSIdem#V to be the four-dimensional Minkowski met-

phase exists in six dimensiofik,2]. For the lattice realization of the “9 ‘T’md «(z) the warp factor. We do not need to qef'“e e_x-
four-dimensional confining phase in a five-dimensional non-pllCItIy the form of the warp factor. We On!y fequ'fe t_hat It
Abelian gauge theory in the context otampactifiecextra dimen- ~ 90€s to zero ag—c ([16-19). Hence the five-dimensional
sion the reader may refer to Ref§,6]. metric Is written

Recently a paper appear¢fl] that presents a nonperturbative
study of the Dvali-Shifman mechanisfiO] of the gauge localiza-
tion on a brane. For that reason a @Ugauge theory with an 3A similar behavior has been seen in thél)JHiggs model in 4D
adjoint scalar, whose mass parameter is space dependent, is eff3], in the SU2) Higgs model in 3014], and in the S(R) adjoint
ployed in 3D. Higgs model in 3D[15].
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1 ) .
gMN:( 7 —1). (1.2 + B2 LeL(0)—Ug() gL (x+ad)* oL (X)
a®(2) x
We consider now that in such a space we define a five- —Us(X) o, (x+aB) ]+ >, mPoX (X) e, (X
dimensional Abelian Higgs model, the action of which reads s00eLl ] 2 LeL (e (x)
1 ; L +Brer () eL(x))?], (1.9
S=Syaugst :——f d>xvg FunFkL0""g
waugét Secala 4g§ MNT KL We denote byp, (x) the lattice scalar field and
+f d%\g [Dy®*Dydg"N—V(®)] U,u(¥)=U,,()U,(x+am) Ul (x+anul(x),
. U,s(x)=U,(x)Us(x+ap)U(x+a5)U(x) (1.6)
:f d4XdZ{ - FF,WFKA 7 are the plaquettes on the four-dimensional space and along
9s the fifth direction, respectively The's are the links for the
aX(2) gauge field on the latticeThey are explicitly given by,
— —— F,sF .57 =e®w (with M=1,...,5). Theprimed couplings refer to
5 the interactions along the extra dimension. Moreover, as it

can be noticed from the corresponding continuous action, the
+J d4XdZ[a2(Z)DMCD*D,,<D Y couplings obey certain relationships, which depend on the
warp factof Hence we have

— &*(2)D,* D, — a*(Z)V(D)]. (1.3 ipa
’ ’ R
We note that the uppercase indices refer to the 5D space, By=a’(x1)By,  Bh=a’(x1)Bp, A= g2 1.7
M,N,K,L=0, ... ,4 and thdowercase Greek indices to the h
4D space, i.e.u,v,k,A=0, . ..,3. It isobvious that the sca- 2
lar field ® depends on the five-dimensional spacgz). a?M?(xq)= —m?. (1.9
Then we use the rescaling(z) ® = ¢ for the scalar field. In Pn

the rather general case where the quartic scalar potential i§,erefore due to the assumed form for the warp factor, the
considered, the scalar action takes the form interactions for both the gauge and scalar fields are strongly
coupled along the extra direction.

Sscalar:j d*xdZ D ,¢*D*¢—a?(z)D,¢*D,¢ Since a brane is defined as any three-dimensional sub-
manifold to which ordinary matter is trappé@0] so that it

—M(2)2¢* o—N(¢* 9)?], (1.4y ~ cannot escape to the bulk, a possible realization of the trap-

ping mechanism is to assume the existence of confinement

whereM?(z) = a?(z)m?+[a' (2) 12+ [ a?(2)]".* along the extra dimension. On the lattice this situation can be

It is a trivial matter for the action to be analytically con- realized using a lattice model with anisotropic couplings.
tinued to the Euclidean space from which the lattice actionlhis is sufficient to lead to the formation of the layered phase
can be defined after following the usual methods for discretithrough a phase transition. In our context we consider this

zation. Therefore we take layered phase on the lattice as a possible paradigm on how a
localization of the fields, obeying nonperturbative interac-
S = Sgauge Sscalar tions, may be carried out on the brane due to confining in-

teractions in the bulk.

In this paper we study a simplified realization of the lat-
tice action given by Eq(1.5 below. This is inspired by Eq.
(1.7), i.e., to set the fiftitransversgdirection couplings to a
strong coupling regime while we neglect the explicit role of
the warp factor in the lattice action. Therefore the lattice
. ) action (which leads to the five-dimensional Higgs model in
—U (X e (x+aw)*[e (X) U, (X) e (X+au)] the naive continuum limif7,8] reads in standard notation

=Be2 2 [1-cosU, 0]+ > B

X lsp<vs IESTES

x[l—cosu@(x)]whg ) > Lo

sSus

4Assuming tham?<0 on the braneZ=0), we note that depend-  °Notice also that here we use the symbofor the whole dis-
ing from the exact form of the warp factor the mass term may turncretized five-dimensional space. The extra direction now is denoted
to be positive after a certain distance or at least tends to zero ady x+.
ymptotically along the transverse direction. So we meet the situa- ®For the transition from the continuous to the lattice action we
tion of two degenerate minima near the brane and only one minihave assumed the following rescaling for the scalar field:
mum far away from it. 2129325 =B, @, .
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S = Sgauge+ Sscalar

=B X 4[1—cosu,w<x>]+2 2435[1—cosuﬂ5(x>]+/sh§ Re{wt(x)mx)

X lsp<vs X lsups<

> , e (U ,(X) o (x+au) +§ B Re{(got(xmux)—¢t(x>Ug<x><pL(x+aé>]

1<,u,$

+§ {(1-2Br—4Bn— Bl eF () oL (X) + BrLef (X) oL ()12 (1.9

Apart from the resulting simplicity in the context of the  Space-like link:

phase diagram analysis, a connection of this work with pre-

vious studies of the layered phase can be achieved. More- < 1
SE

> 2 cod x(x+p)+ALX)— x(X)]

over, our impression is that the full lattice model is likely to _4N5 = A, >

produce physically similar results with the present simplified
version. This was also the case for the purél)Ugauge
model. The “static” representation of the model for which
the gauge couplings were fixed by hand gave equivalent re- <
L‘|’E

Transverse-like link:

sults with the model in which the warp factor was used for

1 -
_ : —2 COS{X(X+5)+AE-,(X)—X(X)]>,
the scaling of the gauge couplinf]. N> “x

IIl. THE ORDER PARAMETERS AND THE CHOICE Higgs field measure squared:

OF COUPLINGS

1
— > pA(x).

We study the Abelian Higgs model on the lattice by using R?= N

numerical methods. The action is given explicitly by Eq.
(1.5. We define five-order parameters, making also the disyye haye assumed the polar form for the scalar field, i.e.,
tinction between spacelike and transverselike ones. These a{De = p(X) el X(¥)

the following. - '

) In Ref.[8] this model has been already studied and a first
Spacelike plaquette:

exploration for the phase diagram is available. In that work,
1 since the parameter space is very large, consisting of five
Pe=( — E 2 cosU,,,(x) ), lattice parameters, th'e choice has been made tBfito 0.5,
6N° X 1<u<v=4 By, t0 0.001 and consider two values©f (0.1 and 0.01and
explore the parameter spacﬁé(, Br). Under these condi-
tions the analysis of the order parameters defined above
1 yielded a phase diagram consisting of the three expected
po=( _— cosU  «(X) ) | phases, which are the confining phas®),(the Coulomb
T <4N5 ; 1s§<4 s )> phase Cs), and the Higgs phaséd), each of them defined
in five dimensions. In addition a fourth phase is present: a

Transverselike plaquette:

B.=0.1 Higgs phase in four dimensions$i() (see Fig. 1 The dis-
08 — . . : . . . tinction betweerH, andHg can be achieved due to the dif-
07 | ferent behavior of the transverselike order parameters within
| the two phases. Details and conclusions on the existence of
061 H4 H5 ) this layer Higgs phase can be found in Ré&. Let us refer
0.5- 4 also to the fact that the identification for the order of the
B, o phase transitions was possible and has lead to the conclusion
7 that (for the two values ofBg used both H, andHg are
0.3 . separated from the confining phase by a first-order phase
02 S C | transition. We _reproduce t_he phase diagramdg=0.1, as it
5 was depicted in Ref8] (Fig. 1).
0.1 B
0.0 T T T T T T T T I1l. SEARCHING FOR A SECOND-ORDER PHASE
0.0 0.2 0.4 0.6 Og' 1.0 12 14 16 TRANS'T'ON
g

At this point the question arises whether it could be pos-
FIG. 1. Phase diagram of the 5D Abelian Higgs model with thesible for theH, layer phase to appear via a second-order
spacelike gauge coupling set to the strong coupBye 0.5 (taken  phase transition. Following Rdi8], we consider the system
from Ref.[8]). being in the confining regime by settingy=0.5 and fixing
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* FIG. 2. Hysteresis loops showing that the
I 055 1 loop for the link-space order parameter disap-
pears forBg values larger than 0.153.
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By, to the very small value 0.001. We expect the phase tranto 0.2 while we increas@g. In advance, it should be noted
sitions to the Higgs phases to be weaker as the Higgs selfhat, as we move to larger values Bk, the relative posi-
coupling B increases. We explore the order of tBeH, tions of the phases in the phase diagram are substantially
phase transition by setting the transverse gauge couﬁlgng similar to what is shown in Fig. 1 fg8g=0.1. So, settingﬁé

Br=0.158 By =0.20 Br=0.158 By =0.20
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FIG. 3. Characteristic examples showing the obviously different order of the phase transition for th8-ehsasd S-Hs at the same
value of B, for two different values o3 .
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Bg ‘=

0.20

T

09 F
08 [

0.7

FIG. 4. Histograms ofR? over a spacelike
volume for three values 0Bg=0.153, 0.155,

0 0.158 and lattice lengtN=14.

02

0.1 F

to 0.2, we always explore th®-H, phase transition. changes to a smaller one f@z=0.149, and it seems to
In the sequel we give strong evidence that $ril, first-  disappear fopg=0.153. Although this value should not be
order phase transition line ends at a second-order point fotaken too seriously, one should keep in mind that around the
lowed by a crossover region. At the same momentSié; value Br=0.153 a weaker phase transition is still present.
phase transition remains first order. This additional fact conFurthermore we have to mention that the transverse link
firms the special nature of the four-dimensional layer Higgsquantity, L+ (not shown in the figuneremains almost unaf-
phase. fected by the phase transition, being stuck to a very small
We give now information for the simulating process. We value close to zer¢for details see Re{8]).
used a 4-hit Metropolis algorithm for updating the fields. In  In Fig. 3 we give an example of the different phase tran-
addition we implemented the global radial algorithm and thesition orders of theS-H, and S-H; transitions, both foiBg
overrelaxation algorithm for the updating of the Higgs field. =0.158 and lattice volume®8 In Fig. 3a) we present the
We used four lattice volumes,®81(°, 12°, 14, and we hysteresis loop results dAs and P+ for B;=0.20. The be-
performed 20000-30000 measurements for each poirtavior of Pg indicates a phase transition though a smooth
which we analyzed in the parameter space. We studied ane since there is no hysteresis loop, while heis almost
large number of3g values before concentrating our study to constant and equals 0.1, in accord with the strong coupling
the interval[ 0.140,0.165% in which the first-order phase tran- prediction 84/2. This figure should be compared with Fig.
sition turns to be a weaker one before it passes to the crosg¢h), which refers toﬂé=0.80. The hysteresis loop results
over region. shows a very strong first-order phase transition, exhibited by
In the subsequent paragraphs we present our results whigipth P and P.” This behavior refers to th&-Hs phase
are based upon using the hysteresis loop technique, the finifgansition. Figures @) and 3d) show the behavior foR?
volume size scaling, the susceptibility, and the study of theyhich illustrates the fact that for both cases the system
correlation functions for the Higgs field measure squared. passes to a broken phase. In other words, increggjnone
finds two different Higgs phasésee, for example, Fig.)la
A. Hysteresis loop technique results four-dimensional and a five-dimensional one both separated

The first tool for the exploration of the phase diagram oM the five-dimensional confining phase by phase transi-
tions of different orders.

with Bg is the hysteresis loop technique. Although this tech-
nigue gives results that have to be taken into account with o _ )

caution quantitatively, they prove to be very useful as quali- B. Finite volume size scaling

tative ones. To this end we use the hysteresis loop results as As it has been discussed in Rg8] one of the main fea-

a general guide to get a crude estimate on @einterval  tures of theS-H, phase transition is the multilayer structure.
within which the phase transition is converted from a firstThis means that since the system undergoes a transition to a
order to a higher-order one. In Fig. 2 we depict the hysteresifour-dimensional phase rather than a five-dimensional one,
loop results for the four-dimensional gauge invariant quan-

tity Lg and for four values oBgr, namelyBr=0.143, 0.149,

0.153, 0.160. The lattice volume in this example s ®ne "Notice that the unbroken phase is a confining one due to the fact
can see from the figure that while there is a well-formed loophat Pg and P+ follow the strong coupling limits3,/2 and 8;/2,

for Bg=0.143 indicating a first-order phase transition, thisrespectively(for more on that see Reff8]).
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some special signal should appear. Besides a first-order Pr=10.153
phase transition this consists of a multipeak structure in the ' A ' '
finite lattice volume histograms for the gauge invariant ob- os 4
servables, instead of the expected behavior of the two-peak ost
structure. Furthermore, it has been shown that every space- ;|
like gauge invariant quantity defined on each spacelike vol- |
ume(i.e., a four-dimensional laygffeels” the phase transi- <l
tion for different pseudocritical values of the lattice =
parameters. Since this is a consequence of the finite lattice **f
volume used for Monte Carlo simulations in combination o3 r
with the four-dimensional dynamics when the layer phase o2}

arises, we justify the choice of analyzing the results on the | ,,,,,,,,
four-dimensional subspace. o
In Fig. 4 we depict the histograms of the Higgs field mea- v

2.7

sure squaredR? for ,Bé=0.20 and three values @r. All
the three histograms refer 18}, values in the critical region.
The lattice volume in this figure is $4The R? histograms
refer to four-dimensionalspacelikg¢ volume. The two peak esr
structure is more pronounced for the smaller valueBaf o8t
(i.e., 0.153, where the two peaks are totally separated. For o7}
Br=0.155 the two-peak structure is less emphasized while |
for Bg=0.158 it has already disappeared. In order for some- &
one to use this method with more safety the lattice volume =
dependence of the two-peak structure should be taken into
account. This is provided in Fig. 5. In Fig(& it is easily o3
seen that the two peaks become well separated as the lattice oz}
length increases from 10 to 14, which serves as an indication |
of a first-order phase transition for the case@)=0.153.
This has to be compared with the really inversed behavior 7
for Bg=0.158 shown in Fig. &). The Bg=0.155 case, Fig.
5(b), for which the peak separation does not change signifi-
cantly as the lattice length goes from 10 to 14, gives an
estimate of a first-order phase transition becoming much

weaker and probably of higher order. o8
Let us now present more quantitative results by giving the
results for the susceptibility dR? on the layers for various os |
values of Bg. This is defined by &
=
S(R?)=VJ((R)?*)—(R*?],

where Vg denotes the spacelike lattice volume. The results  °2r
are depicted in Fig. 6. The errors have been calculated by
using the Jackknife method. It is known that a first-order 0
phase transition is signaled by a linear increase of the maxi-
mum of the susceptibility with the volume. This is actually

the case foBg=0.149 and 0.153. The situation changes for FIG. 5. The histograms fdR? as the lattice length increases for
Br=0.155 where the linear behavior is apparently absent. 1€ three values oBz=0.153, 0.155, 0.158.

addition, for the bigger value8z=0.158 and 0.160 there is correlation functions involve the Higgs field measure

not a clear increase with the volume. This case correspondgyuaredr?, defined in Sec. II. The definition of the correla-
to a crossover behavior. Therefore, the conclusion is that ifion functions is given by

the vicinity of Bg=0.155 we meet with the well-known situ-
ation, where a first-order phase transition line ends to a (
second-order phase transition point followed by a crossover. Csr(n)= Z

(R?)i(R¥);1n) —((R¥);)?
(R —((R?);)?

wheren takes values from 1 tdl (i.e., the lattice size The
indicesSand T are used to distinguish the correlators. The

In this section we present the behavior of two correlationone defined in the transverse direction is noted with the in-
functions, one defined on the whole five-dimensional spacelex T. The other defined in the spacelike volume is denoted
and the other on the spacelike, four-dimensional one. Thesgith S,

(3D

C. Correlation functions
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c FIG. 6. The susceptibility versus the spacelike
D a0k 4 volume for five values of3g in the critical B
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The results for the two correlators are radically different.or vanishing mass for the lightest scalar mode. In other
An example of our results is shown in Fig. 7. This refers towords, by adjusting th¢s,, value into the critical region we
the case o= 14 lattice size for three values gf;. We see  might expect a mass behavior of the tymgx(Br— BR)"-
that while C; decreases very fast, reaching zero and fluctuThe light scalar mass calculation can be achieved by using a
ating around it,Cg takes values different from zero. This fit of the form consk cosim(x—N/2)] to the correlation
serves as a clear evidence that a layered phase is formed. ThgctionsCg. The parametems is the dimensionless mass
layers are decoupled as a consequence of the strong couplipgrameter of the scalar mode. An example of the fits is
imposed on the transverse direction, which has the implicashown in Fig. 7. The results fan, for the cases considered
tion of vanishingCr. Moreover, the rather reasonable be- 5re shown in Table I. From Table | and for the largest lattice
havior _ofC_S sh_ows that |_nS|d_e the layers a four-dimensionalgi,e ,sed we can see tha, decreases by a factor of 1.7
dynamics is still ”."'et as '.t might be expected. . betweenBr=0.160 and 0.155. A more clear signal for the

An_oth_er very interesting feature of thés correlation vanishingmg would require larger volumes and still higher
function is that as th@g value decreases the curve becomes

. computer time. Nevertheless, after considering the previous
more flat. We should note that in the case of a second—ordearnal sis on susceptibility combined with the results from the
phase transition and for infinite volume this should be really Y P Y

flat. This is a fact corresponding to infinite correlation IengthStUdy of the correlations, we are justified to estimate that at

1 T T T T
S
g Cg(n): Br=0.155 ——
2 =3138 FIG. 7. The spacelike and timelike correlation
g ™r Crin): PR —0.155 .o 71 functions forL=14 and for three values g8
3 "R 0,158 mo =0.155, 0.158, 0.160, in the region Bf, where
8 =0.160 o+ the susceptibilities show a peak.
02| i
8 ® 8 ] o] d ]
oF @& ] 5 ) E ] Q 8 E [ 5 ] i
0.2 1 1 1 1
0 0.20 0.40 0.60 0.80 1
n/N
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TABLE |. The masses in lattice units. We observe that lfor occurs via a second-order phase transition. The existence of
=14 andBr=0.155 the value for the mass parameter has decreasethe layered phase can be considered as a realization for the
by a factor of 1.7 in comparison with th&;=0.160 corresponding |ocalization of the gauge and scalar fields for models defined

value. in a higher-dimensional space with the extra dimensions be-
— ing warped. Although the lattice volumes and the computer
Lattice size r=0.155 r=0.158 r=0.160 power available is not conclusive for the second-order criti-
cal point(so that the calculation of critical exponents is out
10 0.14%3) 0.1654) 0.1814) Qf consideration for the mom_e)r,nour results .provide an es-
12 0.1123) 0.1373) 0.1677) timate for the value of the Higgs self-coupling at which the

line of the first-order transition line ends in a second-order

14 0.09@3 0.1316 0.1527 " . . .
) 16 A7) transition point along the four-dimensional space.

Br=0.155(2) a second-order phase transition point should ACKNOWLEDGMENT
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