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Various dynamical regimes associated with confined monopoles in the Higgs phase dftwo-flavor
QCD are studied. The microscopic model we deal with has the SKW()1) gauge group, with a Fayet—
lliopoulos term of the W1) factor, and large anthearly degenerate mass terms of the matter hypermultiplets.
We present a complete quasiclassical treatment of the BPS sector of this model, including the full set of the
first-order equations, derivations of all relevant zero modes, and derivation of an effective low-energy theory
for the corresponding collective coordinates. The macroscopic description is provided®yraodel with or
without twisted mass. The confined monopoles—string junctions of the microscopic theory—are mapped onto
BPS kinks of theC P model. The string junction ié BPS. Masses and other characteristics of the confined
monopoles are matched with those of BE*-model kinks. The matching demonstrates the occurrence of an
anomaly in the monopole central charge in 4D Yang—Mills theory. We study what becomes of the confined
monopole in thebona fidenon-Abelian limit of degenerate mass terms where a globaRBsymmetry is
restored. The solution of the macroscopic model is known, e.g., from the mirror description@Pthmodel.
The monopoles, ak& P-model kinks, are stabilized by nonperturbative dynamics of @R model. We
explain an earlier rather puzzling observation of a correspondence between the BPS kink spectru@th the
model and the Seiberg—Witten solution.
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[. INTRODUCTION Our task is to study this phenomenon in a controllable
manner. To this end we will use a unique model which
This is the third work in the project devoted to investiga- emerged recently athe oneproviding an ideal theoretical
tion of the string/D-brane phenomena in supersymmetricenvironment. The model will allow us to study, in a quasi-
gauge theoriefl,2]. In the first work[1] we studied Abelian classical regime, confined monopoles whose magnetic flux
strings ending on BPS domain walB-brane$ and localiza-  flows through non-Abelian strings attached to them. The pre-
tion of a (2+1)-dimensional W1) gauge field on the wall. dictive power of the model derives from the fact that it has
The second wor2] was devoted to localization of non- exactlyN'=2 supersymmetryi.e., eight superchargesThe
Abelian fields on a stack of BPS domain walls, &n@PS  non-Abelian strings ar¢ BPS, while the confined mono-
junctions of non-Abelian strings with the walls. Here we poles are; BPS saturated.
extend the analysis and study BPS non-Abelian string Let us outline some basic features of this model, which
junctions. This very interesting phenomenon has a clear-cowe will refer to as “microscopic.” We conside'=2 QCD
physical picture behind it—it describes monopoles in the[11,12 with the gauge group SU(XU(1) with N¢=2 fla-
confined phase. We are building the present analysis on owors of massive fundamental matter hypermultipletsarksg
previous results, as well as on the results of REBs:6] perturbed by the Fayet—lliopouldEl) term[13] of the U1)
interspersed in the fabric of the present work. factor. In this theory we focus on a special so-calted?
Results and techniques of string/D-brane theory, being ap/acuum[14—16 in which two quark flavors develop vacuum
plied to non-Abelian field theoriedoth supersymmetric and expectation value€/EVs). This vacuum is at weak coupling
non-supersymmetric lead to qualitative and quantitative if the quark mass terms, , are large enough. They may or
predictions which became especially numerous after the dignay not be equal. We consider both casesn{=m,, the
covery[7] of the ADS/CFT correspondence. If gauge theo-SU(2) gauge group remains unbroken by VEVs of the ad-
ries at strong coupling are in a sense dual to string/D-branint fields. The quark condensation does break the gauge
theory, they must support domain wallsr D-braneg [8], group SU(2)X U(1) at a scal& (FI parameterbut leaves a
and we know they dd9,10]. In addition, string/D-brane global diagonal SU(23. ¢ subgroup of the gauge and flavor
theory teaches us that a fundamental string that starts ongroups unbroken. It was recently shoy8] that in this case
confined quark can end on the domain wall. In the dual dethe flux tubes(string9 acquire additional orientational zero
scription the confined quark becomes a confined monopolenodes associated with rotation of the color magnetic flux
This is our primary object of study in the present paper. Theanside the SW2) group (similar results in three dimensions
question we ask is how the confined monopole connects tvere obtained in[5]). This makes them genuinely non-
the flux tube. Abelian. Moreover, it was found3,5] that the low-energy
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dynamics of the orientational zero modes of the non-Abelian Then the corresponding microscopic theory supports the
strings are described by an effectiilet 1)-dimensionalCP!*  conventional (unconfined 't Hooft—Polyakov monopoles
modef on the string world sheet. The two-dimensio@#P*  [19] due to the spontaneous breaking of t@uge SU(2)
model describing dynamics of the collective coordinates willdown to U1),
be referred to as “macroscopic.”

In fact, we can view our SU(2yU(1) microscopic 3 1
theory as a theory with the gauge group(S)lubroken down (%)=~ EAm 1.1
to SU(2)xU(1) at a large scale, of the order wf; ,. This
SU(3) theory has three types of monopoles associated Witlyhe ypper left comer of Fig.)1If we allow & to be nonva-
three roots of S(B) algebra. Two of them are confined by nishing but
“elementary” strings which we denote &%,0) and(0,1) [16]
[here (,k) denotes the string with two winding numbers |Am|> JE, (1.2)
andk with respect to two (1) subgroups of S(B), see Sec.
Il A for more detaild. These monopoles are very heavy, then the effect which comes into play first is the above spon-
with masses of the order afi; ,/g?, and we do not touch taneous breaking of the gauge @Y Further gauge symme-
them in this paper. They were considered recently in Reftry breaking, due t&+ 0, which leads to complete Higgsing
[17]. We will study only the monopoles which lie entirely of the model and the string formatigoonfinement of mono-
inside the SR) factor of the SW3) “proto” group. They are  poles, is much weaker. Thus, we deal here with the forma-
much lighter thanm, ,/g® Classically, on the Coulomb tion of “almost” 't Hooft—Polyakov monopoles, with a typi-
branch(i.e., when the FI parametérvanisheg their massis  cal size~|Am| 1. Only at much larger distances;& 2,
proportional to|Am|/g? where Am=m;—m,. In the limit  the charge condensation enters the game, and forces the mag-
Am—0 they become massless, formally, in the classical apnetic flux, rather than spreading evenly ‘a@aulomb, to
proximation. Simultaneously their size becomes infifit®].  form flux tubes(the upper right corner of Fig.)1There will
The mass and size are stabilized by confinement effectse two such flux tubes, with the distinct orientation of the
which are highly quantum. The confinement of monopolescolor-magnetic flux. The monopoles, albeit confined, are
occurs on the Higgs branch, &+0. An interplay between weakly confined.

Am, ¢ and the dynamical Yang—Mills scalé lead$ to a Now, if we further reducéAm|,

spectrum of dynamical scenarios, all of which are interesting

and will be discussed in the present paper from a unified A<|Am|<\/g, 1.3
point of view.

A qualitative evolution of the monopoles under consider-the size of the monopole~|Am|~1) becomes larger than
ation as a function of the relevant parameters is presented ihe transverse size of the attached strings. The monopole gets
Fig. 1. We begin with the limit—0 while Am is kept fixed. = squeezed in earnest by the strings—it becomésraa fide

confined monopoléthe lower left corner of Fig. )1 A mac-

roscopic description of such monopoles is provided by the
1CPN-1 for the gauge group S X U(L). twisted-massC P! model, on which we will dwell below.
2A is also the dynamical scale of the ZDP* model. The value of the twisted mags=Am. The confined mono-
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theory reduce to first-order BPS equations for the

M M CP!-model kink. We match the mass of the confined 4D
Yang—Mills monopole with that of theCP!-model kink.
(a) This evidence completes the proof of the statements that

were made in the literature previoudl§,2].

The mass match mentioned above requires the presence of
* an anomaly in the monopole central charge of 4D Yang—

(1,0) (0,1) Mills theory which must match its counterpart in tieP?
M model. While the anomaly in th€ P* model was known
(b) previously [20], that in the Yang—Mills theory was not
FIG. 2. (a) The monopole-antimonopole paily) the monopole known. Afermlo_nlofper%tor, anf_anomaly in the antlcommutfa—
with two (infinitely long) elementary flux tubes attached to it. tor {Q,Q}, crucial for the confined monopoles, was identi-

fied in our recent publicatiof2]. Here we further elaborate
pole is nothing but the twisted-mass sigma-model kinkon this issue. Meanwhile, another anomalous contribution,
which has a typical size-|u| 2. crucial for the monopoles in the Coulomb regime, was iden-

As we further diminish|/Am| approachingA and then tified and analyzed in Ref21].
getting belowA, the size of the monopole grows, and, clas- The identification of the confined monopoles of 4D
sically, it would explode. This is where quantum effects in Yang—Mills theory with the kinks of the 2BCP' model
the world-sheet theory take over. It is natural to refer to thisgives us two advantages. First, we can and do explore the
domain of parameters as the “regime of highly quantum dy-highly quantum regime oAm, x—0. In this limit no qua-
namics.” While the thickness of the strir{@ the transverse siclassical treatment is available. The global(3lyets re-
direction is ~ &2 the zdirection size of the kink repre- stored. Confined monopoles do not disappear, they survive.
senting the confined monopole in the highly quantum regiméA\ppropriate exploration tools are available in the framework
is much larger~A 1, see the lower right corner of Fig. 1. of the CP* model.

While the monopoles on the Coulomb brancke., those Second, we can and do explain a long-standing puzzling
of the 't Hooft—Polyakov typeare thoroughly discussed in observation made in Ref4]. A comparison of the corre-
the literature, the Higgs-branch monopoles—the confinegponding central charges revealgtl a close parallel be-
monopoles—received much less attention. We intend tdween four-dimensional Yang—Mills theory witdi=2 and
close this gap. We will study what becomes of the non-the two-dimensionaC P* model. The observation referred to
Abelian SU2) monopole in the confinement phase which isthe Coulomb branch of the Seiberg—Witten theory, with
set by the quark condensation and formation of the flux tubesnconfined 't Hooft—Polyakov-like monopoles/dyons. We
(at nonvanishing FI parameteé+0). The monopole- clarify physics responsible for this correspondence. In fact,
antimonopole pair will be confined in the mesonlike state bythe twisted-massCP! model is equivalent to thediggs
a composite string, a bound state of two “elementary”phaseof four-dimensional Yang—Mills theory withN;=2.
strings[16] [see Fig. 2a)]. Unfortunately, such mesons are These two theories are “microscopic-macroscopic” partners.
unstable and cannot be studied in the static limit. Instead, w&Ve show, however, that the BPS data are independent of the
will focus on another(statig field configuration typical of value of the FI parametef, because this parameter has khe
the confinement phase: an &) monopole with two semi- parity that does not match that of the central charges. There-
infinite elementary strings attached tdsee Fig. 20)]. This  fore, in the BPS sector one can vary the FI parameter at will;
configuration, a junction of two elementary strings, is stablen particular, pass to the limg— 0, where one finds oneself
and, moreover; BPS saturated. on the Coulomb branch. Thus, thena fidecorrespondence

We perform a complete quasiclassical analysis of our mivefers to the Higgs phase where it is rather obvious, but
croscopic model. A full set of the first-order master equationsiolomorphy allows one to extend it to the Coulomb branch,
describing all3 and ; BPS topological defects—domain too.
walls, strings, and all possible junctions—is derived. While The paper is organized as follows. In Sec. Il we outline
the domain walls, strings and the wall-string junctions wereour microscopic 4D Yang—Mills theory: SU(X)U(1) two-
studied previously, we expand the analysis to cover the cadtavor QCD with the Fayet-Illiopoulos term and extended
of the string junctions. We find appropriate solutions of theA’=2 supersymmetry. Section Il is devoted to description of
master equations. We derive zero modes, both bosonic aride non-Abelian strings and introduction of orientational
fermionic, specific for non-Abelian strings and their junc- moduli. In Sec. IV we derive and study the effective 2D
tions. The corresponding collective coordinatesduli) are  theory on the string world sheet. In particular, we show, by
introduced, which allows us to obtain the macroscopic devirtue of an explicit calculation, that a nonvanishidgn
scription of the topological defects in question. We preseninduces the twisted mass term in the world-sheetC P!
solid quantitative evidence that af¢>|Am| the effective =~ model, andAm=pu. Next we calculate superorientational
(1+1)-dimensional theory on the string world sheet is the(fermion) zero modes of the non-Abelian string. In Sec. V
CP! model, and that the confined monopoles of the microwe establish and exploit the correspondence between the
scopic theory must be identified with the kinks of the mac-monopole and the junction of two elementary strings. We
roscopicC P* model. In particular, we explicitly demonstrate solve the first-order master equations for the junction, match
that the first-order BPS equations of the 4D Yang—Millsthe monopole and kink masses, and discuss the multiplicity
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matching and other implications for the confined monopoles. TABLE I. Symmetries of the microscopic theory and the pattern
In Sec. VI we consider monopoles/kinks in the quantum limitof the symmetry breaking in the vacuum.
Am, u—0 and match anomalies in the central charges of

the corresponding superalgebras. In Sec. VIl we explain whyV=2 SUSY unbroken
the BPS sector of the two-dimensior@P! model is related SU2r unbroken

to the Seiberg—Witten solution of 4D super-Yang—Mills Am=0: {U(1)XSU(2)}cxSU(2)XU(1)  U(1)giagX SU(2)siag
theory: a direct correspondence is betwe@R* and the Am#0: {U(1)XSU(2)}cx U(1)xU(1) U(1)diag

Higgs phase of Yang—Mills; holomorphy of the central
charges makes possible a subsequent transition to the Cou-

lomb branch(the Seiberg—Witten solution Finally, Sec. classical results, at times we will leave the symmetric point
VIII briefly summarizes our conclusions. m;=m, and consider a deformed casg#m, assuming,

however, the deformation to be smay; —m,|<m, ,. The
reader is advised to exercise caution not to confuse these two
regimes.

Our task is to study the string/D-brane phenomena in su- The Fayet—lliopoulos term triggers the spontaneous
persymmetric gauge theories in a fully controllable mode. ArPreaking of the gauge symmetry. The vacuum expectation
appropriate theoretical set-up gradually emerged in the lagtalues(VEVs) of the squark fields can be chosen as
three yeard1-3,16—a particularN'=2 gauge model with
o : ; _ 10
judiciously chosen matter hypermultiplets and a special ad- KA KA 13

(@)=@=v5lo0 1

Il. A BRIEF SUMMARY OF THE THEORETICAL SET-UP

justment of the matter mass terms. The model evolved in the
direction of simplification; currently it presents a theoretical
scene fully fit for studies of the phenomena we are interested
in.

The gauge symmetry of the model we will deal with is 5 {5 gauge rotationsThe color-flavor locked form of VEVs
SU(2)xU(1). Besides the gauge bosons, gauginos and thejfy gq. (2.2) results in the fact that, while the theory is fully
N=2 superpartners, it has a matter sector consisting of Weiiggsed, a diagonal SU(2) ¢ survives as a global symme-
“‘quark” hypermultiplets, with large (and degenerateor v (in the limit my=m,). This is a particular case of the
nearly degenerajemass terms. One also introduces a Fayet-gardakci—Halpern mechanisi24]. The most economic way
lliopoulos term, so that the overall superpotential takes thg, see the occurrence of the above global symmetry is

k=1,2, A=12, 2.2

form through the matrix notation
1 2 qll q12
W=— UaAGA+QaA 2P =< 2.3
\/EAzl (daAg™+gaA®r9g") Q 9 g® (2.3

1 (and the same for). Here Q is a 2x2 matrix, the first
+A212mAq QA—E&‘L (2.1 superscript refers to @) “color” (we will also use the
o notatione" and ¢® meaning red and bljewhile the second
(A=1 or 2 to “flavor.” The covariant derivatives are de-

where A2 and A are chiral superfields, th&=2 superpart- fined in such a way that they act from that

ners of the gauge bosons of &YJand U1l), respectively.

Furthermoreg, andq, (A=1,2) represent two matter hy- i T
permultiplets, while¢, m; andm, are constants, assumed to V.Q=|d,~ EAM_'AZE Q. (2.4
be much larger than the dynamical scale parameter of the
SU(2) gauge theory, see Sec. lll. The mass terms, can  while the global flavor S(2) transformations then act o
always be made real and positive by virtue of an appropriatérom the right. Equatior(2.4) also shows our (1) charge
field definition. We will assume this to be the case. More-convention. Needless to sa}/=2 supersymmetry of the
over, for simplicity we will assume that the Fayet—Illiopoulos model is unaffected by the gauge symmetry breakihg).
parametert is real and positive tod.For further details of The local and global symmetries of the model and of the
our theoretical set-up the reader is referred to R&8,16.  vacuum state are summarized in Table I. In the vacuum,
Besides local symmetrie@nd besides a global SUR)n-  there are no massless modes, all excitations are massive.
herent toN=2), atm;=m, the model has a global $p) Concluding this section it would be in order to present a
flavor symmetry associated with rotations of the first andbroader perspective on our theoretical set-up. This will hope-
second hypermultiplets. This “symmetric” point is the focus fully provide additional conceptual insights, albeit techni-
of the present work. However, to make contact with quasically this aspect will not be pursued. We can view our model
as a descendant of ak’'=2 theory with the SIB) gauge
group broken down to SU(2)U(1) at a high scale, of the
3In fact, ¢ is the first component of an SU(R)vector & of the ~ order of the mass parametens; ,. This SU3) “proto”
generalized Fayet—lliopoulos parameters introducd@23, see  theory has three types of monopoles associated with three
Eg. (3.35 below. roots of the SW3) algebra. Two of them are confined by
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[16]. [In general, O,k) denotes the string with two winding

“elementary” strings which we denote a4,0) and (0,1 [
o[ o
numbersn andk with respect to two 1) Cartan subgroups

1 1
a \2 2 2
(F/_w) +4gi(FMV) +g_i|é),u.a|

of SU(3), see Sec. lll for detailfThese monopoles are very 1 2

heavy—their masses are of the order of;()/g>—and we + —IDMaa|2+Tr(VM<I>)T(VM<IJ)+%[Tr(¢Tra<I>)]2
do not discuss them in this paper. Note, however, that they g% 8

were considered recently in R¢L7]. Our primary interest is o 1

the “third” monopole which lies entirely inside the SP) J[Tr(¢f¢)_2§]2+ ETr{(q)T[aaTaJra]T

factor of the SW3) gauge group. It is much lighter than the
two mentioned above. This is the reason why in our studies

we settle for the SU(2XU(1) model while the full SWB) +\2M 1) ([a, 2 +a]d+ D V2M)} ¢, (3.3
model is behind the scene.

wherea is the lowest component of the chiral superfigld
IIl. NON-ABELIAN STRINGS Here yve_introduced a 2 mass mgtrixM_ ac_ting on the
flavor indices of®. With our conventiorM is diagonal,
In this section we review the formalism of R¢8] where
non-Abelian strings were first introduced, and make adjust- M _(ml 0 )
ments necessary for the present work. We start from U(1) 0 my)’
X U(1) moduli-free string solutions found in R¢fL6] in the
casem;#m,. Then we show how additional orientational Equation(3.3) implies that besides the squark VEV3.2),
zero modes arise in the limih,—m,, making the strings at the fieldsa anda® develop vacuum expectation values, too,

hand non-Abeliari3].

(3.9

Let us start from the casm; # m,. One can readily con- a=—\2m, a’=-— iAm (3.5
vince oneself that as far as the flux-tube solutions are con- ' J2
cerned, it is sufficient to limit oneself to the following ansatz
for the matter fields: where
1
m= E(m1+ m,), Am=m;—m,. (3.6
: 1
qkA: qkAE — quA. (31) .
V2 We see that atn; #m, the SU(2)< U(1) gauge symmetry is

broken down to U(1X U(1) by the VEV of the adjoint sca-
lar field a®. For definiteness, we will assume thag>m,.
Correspondingly, we introduce the matrix ThenAm is positive® If |Am|> &2, then the gauge symme-
try breaking by(a®) has a larger scale than that by the
squark fields. This is a more important effect leading to
ol 12 - monopoles with masses|Am|/g3. Formation of strings is
P= o2 (pzz)' o= \/EQ: \/EQ' 3.2 governed by¢ and can be viewed as a “secondary” effect.
On the other hand, ikm=0, the gauge S(2) group is
unbroken by the adjoint scalar VEVs, since they reduce to

where the first superscript refers to &Y color, while the —_2
second refers to flavor. Note that the field identificatiBri) a= m,

is inappropriate in dealing with quantum corrections, and, inWith two matter hypermultiplets, the $2) part of the gauge

particular, in the zero-mode analysis. : ; : : .
. . . group is asymptotically free, implying generation of a dy-
Then the bosonic part of the effective action of the modelnamical scaleA. If descent toA were uninterrupted, the

at hand takes the forn gauge couplingg§ would explode at this scale. Moreover,

a®=0. (3.7

“Here and below we use a formally Euclidean notation, e.g.
F2,=2F5+F%, (9,8)%=(0a)*+(4a)? etc. This is appropriate
smce we are going to study statiime-independentfield configu-

rations, andA,=0. Then the Euclidean action is nothing but the

' 5To keep our notation concise we will also use the parameter
=m; —m,=Am. This parameter is not to be confused with tkie
=2 breaking perturbation, e.g., Ref4,2], which is routinely de-
noted byu following Seiberg and Wittefi11,12). In most caseg
energy functional. Furthermore, we defing*“=(1,~i7), o0  will be reserved for the twisted mass in the macroscopie!
=(1ji7). Lowering and raising of spinor indices is performed by model, while the mass splittingm will be used in the microscopic
virtue of the antisymmetric tensor defined ag=ci=1, ¢** 4D Yang—Mills theory. We will show thaz=Am. In some sec-
=g?=—1. The same raising and lowering convention applies totions(e.g., Secs. IV C and VI for brevity, u will replaceAm in the
the flavor SU2) indicesf, g, etc. microscopic 4D Yang—Mills theory.
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X Tano=4méE. (3.12

This is not the string we are interested in here, however—in
fact, in the problem at hand there are “more elementary”
strings with3 of the above tension, so that the ANO string
can be viewed as a bound state of two elementary strings.

Where do they come from? Sineg (SU(2)) is trivial, at
first sight it might seem that there are no new options. This
conclusion is wrong—one can combine tlAg center of
SU(2) with the element—1< U(1) to get a topologically
stable stringlike solution possessing both windings, ifZU
and U1), of the following type:

String

axis Z

4.3

FIG. 3. Geometry of the string. d(x)= \/Eex;{ia(x) } [X|— 00,

strong coupling effects in the $P) subsector at the scale X

would break the S(2) subgroup through the Seiberg—Witten Ar=—gp—, Al=Fgu—, €k=12, (3.13
mechanisn11]. Since we want to stay at weak coupling we r r

assume that/¢> A, so that the S(2) coupling running is

; rr ndingly, th magnetic flux is twi maller
frozen by the squark condensation at a small value Correspondingly, the (1) magnetic flux is twice smalle

than in the ANO case. Since it is only thé1) magnetic flux

5 \/— that enters the expression for the appropriate central charge
8122 In—§+ > (3.9 (see below, the tension of the flux tube generated by the
g3 A winding (3.13 is
Alternatively one can say that T.=2m¢. 314
872 The = subscript corresponds to two types of elementary
A2=¢ _ o7 (3.90  strings in which either only" or only ©P are topologically
95() non-trivial.
We will refer to the strings corresponding to the boundary
with g§(§)<1. conditions(3.13 as(1,0) and(0,1) for the following reasons.
For the case of nonequal quark masses the SK(2()1)
A. Abrikosov—Nielsen-Olesen versus elementary strings group is broken by the adjoint scalar VEV to UY(1).

. i ) We have a lattice of strings labeled by two integer numbers
To warm up, let us discuss the conventional Abrikosov—p, \y associated with the windings with respect to two gauge

Nielsen—OIesemANO).string [25] in our modeP The exis- U(1) groups which are linear combinations of the twel)s
tence of the ANO string is due to the fact that(U(1))  apove which are natural in the $8) “proto” theory. In this
=Z, ensuring its topological stability. For this solution one terminology the ANO string is the sum (0:£)1,0)
can discard the S@). part of the action ¢ stands for =(1,1), seq16] for further details.
“color” ), putting A‘Z:aazo. Correspondingly, there is no
;g(aglm:\nd%ncg <cI)>f.£l,ontr|V|aI topology is realized through B. Embedding; first-order equations for the elementary strings
The charges of then(k)-strings can be plotted in the
D (x)=Jee ™, x|, (3.10  Cartan plane of the S3) algebra of the “proto” theory. We
will use the convention of labeling the flux of a given string
and by the magnetic charge of the monopole which produces this
flux and can be attached to its end. This is possible since
both the string fluxes and the monopole charges are elements
of the groupm,(U(1)?)=2Z2. This convention is convenient
because specifying the flux of a given string automatically
wherea is the angle in the perpendicular plafiég. 3), and fixes the charge of the monopole that it confines.
r is the distance from the string axis in the perpendicular Our strings are formed by the condensation of squarks
plane. Equation$3.10 and(3.11) refer to the minimal ANO  which have electric charges equal to the weights of thé35U
string, with the minimal winding. Needless to say, the ten-algebra. The Dirac quantization condition tells [d$] that
sion of the ANO string is given by the standard formula  the lattice of the i,k)-strings is formed by the roots of the
SU(3) algebra. This lattice of then(k)-strings is shown in
Fig. 4. Two strings (1,0) and (0,1) are the “elementary” or
5This subsection is insensitive with regards to the choicawf ~ “minimal” BPS strings. All other strings can be considered
which may or may not vanish. as bound states of these elementary strings. If we plot two

X
A€=—2s€k7“, ¢k=12, (3.1
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The off-diagonal components of the matfixare set to zero.
The (1,0) string arises when the first flavor has the unit
winding number while the second flavor does not wind at all.
And vice versathe (0,1) string arises when the second flavor
has the unit winding number while the first flavor does not
(0,1) an  ® @D wind. Consider for definiteness the (1,0) string. The solu-
’ ’ tions of the first-order equation8.15 will be sought for
using the following ansatfl6]:

® ®(1,1) ®

1~ ei“¢>1(r) 0
PO=l 0 g0
° °
AX) = — ey (1
® ® ° P (X)= Sijrz( 3(r)),

X.
A(X)= —eij (1 1(r)) (3.18
FIG. 4. Lattice of f,k) vortices. r

. . where the profile functiong,, ¢, for the scalar fields and
lines along the charges of these elementary strisge Fig. f,, f for the gauge fields depend only ofi,j=1,2). Apply-

4), they divide the lattice into four sectors. It turns ¢UB] ing this ansatz one can rearrangs] the first-order equa-
that the strings in the upper and lower sectors are BPS b 79 q

they are marginally unstable. On the contrary, the stringiIons (3.15 in the form
lying in the right and left sectors arémetgstable bound d 1
states of the elementary ones; they aot BPS saturated. fa(ﬁl(f)— E(f(r)+ f3(r))¢.(r)=0,
Our study objective is the elementary string. Since the
both strings,0,1) and(1,0), are3 BPS saturated, E¢3.14 d 1
is exact. These strings aabsolutgly degenergté’h_e deggn— r—o(r)— = (f(r)—f4(r)) do(r)=0,
eracy holds beyond the classical level, with inclusion of dr 2
guantum corrections, perturbative and nonperturbative. This
is important for what follows. The existence of two distinct
strings with exactly degenerate tensions is a special feature
of supersymmetry implying the existence of a two-string
junction. A similar phenomenon for domain walls—two-wall 1d gg 5 5
junctions—was studied recent]g26]. — 7 gr 3N+ S [(d1(r)" = (¢2(r))"]=0.
The first-order equations for the BPS strings following (3.19
from the action(3.3) are

1d ?
— S0+ (1) (6512~ 2£] =0,

Furthermore, one needs to specify the boundary conditions
which would determine the profile functions in these equa-
tions. Namely,

2
g —
F5%+ S olear®e®)=0, a=123,

% f3(0)=1, f(0)=1;
Fy+ 5 o(lg"2=28)=0,
f3(0)=0, f(*)=0 (3.20
(V,+ioV,)e”=0, (3.19 for the gauge fields, while the boundary conditions for the

squark fields are

br(0)=\E dy()=\E ¢1(0)=0. (3.21

1
F’r;]:E emniFnk, MNnk=123 (3.19 Note that since the fieleh, does not wind, it need not vanish
at the origin, and it does not. Numerical solutions of the
Bogomolny equation$3.19 for the (0,1) and (1,0) strings
were found in Ref[3], see, e.g., Figs. 1 and 2 in this paper.

whereo=*1 is the sign of the total flux and

(see Ref[3] and Sec. V A. To construct th€0,1) and (1,0
strings we further restrict the gauge fieki to the single
color componen&’ , settingA; =A% =0, and consider only

the squark fields of the:22 color-flavor diagonal form, C. Non-Abelian moduli

Now let us assumém=0 and demonstrate the occur-
oA(x)#0, for k=A=1,2. (3.17  rence of a more general solutidB] which contains non-
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d(x)= @exr{i%)w exp(ia(x) %T) (3.2

wheren is a moduli vector defined as

ni2=UrU"1, a=1,23. (3.26
It is subject to the condition
SU(2) group space n 2= 1. (327)

FIG. 5. Unwinding the (1 1) string. At n={0,0,=1} we get the field configurations quoted in Eq.

(3.13. Every given matrixU defines the moduli vecton
Abelian moduli. The adjoint scalar VEV does not break theunambiguously. The inverse is not true. If we consider the
gauge S2) if Am=0. The relevant homotopy group in this left-hand side of Eq(3.26) as given, then the solution far
case is the fundamental group is obviously ambiguous, since for any solutibthone can
construct two “gauge orbits” of solutions, namely,
( SU(2) X U(1)
T — 5

- =7 (3.22

U—Uexpiary),

This means that then(k)-string lattice reduces to a tower U—>exp(i,Bﬁr)U. (3.28
labeled by a single integem(+k). For instance, the (1,

—1) string becomes classically unstabit® barriej. On the ~ We will use this freedom in what follows.

SU(2) group manifold it corresponds to a winding along the At finite [x| the non-Abelian string centered at the origin
equator on the sphe (Fig. 5). Clearly this winding can be can be written a$3]

shrunk to zero by contracting the loop towards north or south
poles[27]. On the other hand, the elementary (1,0) and (0,1)
strings cannot be shrunk, as was explained above. They cor-

respond to a half-circle winding along the equator. The (1,0)

eepy(r) 0

_ -1
Px) U( 0 @(r))”

and (0,1) strings form a doublet of the residual global

SU(2)c k-

A remarkable feature of the (1,0) and (0,1) strings is the

¢i(r) 0

i
:eia(l-*—na'ra)u( )U_l,
0 o)

occurrence of non-Abelian moduli which are absent in the

ANO strings. Indeed, while the vacuum fieli .= V¢l
(herel is 2X2 unit matri¥ is invariant under the global
SU2)c+r,

d—-U PUg, Ug=Ul, (3.23

the string configuratiofi3.18 is not! Therefore, if there is a
solution of the form(3.18), there is in fact a family of solu-
tions obtained from3.18 by the combined global gauge-

flavor rotation. Say, for quark fields it reads

d(x)—e'Pel 2P (x)e " Pe o2, (3.29
The U(1) factore'” does not act on the string soluti¢d.18).
It is not to be counted. Thus, what remains is(3UIn fact,
it is the coset S(2)/U(1), as is rather obvious from Eq.
(3.18: rotations around the third axis in the &)Y space
leave the solution with the asymptoti¢3.18 intact.

Thus, the introduction of the “moduli matrixU allows

a a. X
Ai(X)=—n%j; r_z[l_fs(f)],

Ai<x>=—si,-rx—;[1—f(r>], (3.29

where the profile functions are the solutions to Eg19.

Note that
U( o1 0 ) u
0 ¢,

Now it is particularly clear that this solution smoothly inter-
polates between the (1,0) and (0,1) stringsnif(0,0,1),
the first-flavorr squark winds at infinity while fon=(0,0,
—1) it is the second-flavab squark.

Since the S®)c,r symmetry is not broken by the
squark vacuum expectation values, it is physical and has
nothing to do with the gauge rotations eaten by the Higgs

b1ty b1~
1=T+n T (3.30

one to get a generic solution of the non-Abelian string Bogo-mechanism. The orientational moduliare not gauge arti-

molny equation with the following asymptotics jad — °:

"Below we will drop the subscript® andL.

facts. To see this we can constrgetuge invarianperators

which have explicitﬁ—dependence. Such a construction is
convenient in order to elucidate features of our non-Abelian
string solution as well as for other purposes.
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3 <I>-U(¢l(r) 0
- 0 ¢(r)

Ay — an.
A7 (X)=n 8ijr_zfs(f),

Ai<x>=ei,»rx—;f<r>. (333

2

In this gauge the spatial componentsAgf fall fast at large
FIG. 6. Bosonic moduln? describe the orientation of the color- distances. If the chromo-magnetic flux is defined as a circu-
magnetic flux of the (0,1) and (1,0) strings in thé3Dgroup space, lation of A; over a circle encompassing the string axis, the
Eg. (3.32. flux will be saturated by the integral coming from the small
circle around the(singula) string origin. We will use this

As an example, let us define the “non-Abelian” field singular-gauge form of the string solution later.

strength(to be denoted by bold letters D. Supersymmetry
So far theN'=2 SUSY nature of the model at hand was
( b ) behind the scene. Now it is in order to discuss this aspect.

bT
®'F3 ?‘I’Ta (33D The central charge relevant to flux tubes is the so-called

£,3) central chargg34]; in N=2 theory it can be written

as follows[23]:

1
F;:a:gTr

where the subscript 3 marks tlzeaxis, the direction of the

. . > : _ 1
string (Fig. 3). From the very definition it is clear that this 0. 1=258 () P +4i(c.).. ff d3xZ e =
field is gauge invarianf Moreover, Eq.(3.29 implies that 1QuQisg} =204(70) 0Pt 41(7,) apl 2 0“57(35;9

hereP , is energy-momentum operator, while
(#3449 1df, WHETET . 1 SNy i operaton W
"% rar (3.32 g=(r2)lem, (3.39
where ™ is an SU(2) triplet of the Fayet—lliopoulos pa-

rameters. In the model under consideration ogiy= ¢ is
nonzero, so that

*a_ _
F3 -

From this formula we readily infer the physical meaning of
the modulin: the flux of thecolor-magnetic field in the flux

tube is directed along (Fig. 6). For strings in Eq(3.18), see
also Eq.(3.13, the color-magnetic flux is directed along the

third axis in the @3) group space, either upward or down-

ward. It is just this aspect that allows us to refer to the strings N€ central charge is the second term in &434. Note that -
above as “non-Abelian.” They are as non-Abelian as it gets't IS only the Ul) field strength tensor that appears in this
at weak coupling central charge. Moreover, it is obvious that

Although the flux tubes in non-Abelian theories at weak 1
coupling were studied in numerous papers in recent years J d3x§soﬂayF57:Lnﬁf dxdyFR;
[16,28-33, in the previous constructions the flux was al-
ways directed in a fixed group directidnorresponding to a =Ln, X (Magnetic Fluy=2=Ln,,
Cartan subalgebyaand no moduli that would freely govern (3.37)
its orientation in the group space were ever obtained. '
To conclude this section let us present the non-AbeliafwhereL is the string length and,, is the unit vector pointing
string solution(3.29 in the singular gauge in which the in the direction of the string axievhich coincides with the
squark fields at —oe tend to fixed VEVs and do not wind axis in our convention, see Fig).3The strings in question
(i.e., do not depend on the polar anglet|x|— inthex,,  are; BPS saturated so thé) the combination of Eq¥3.34)

fg=§<n>;. (3.36

plane. In the singular gauge we have and(3.37) implies that the tension@.14) are exact, andii)
8n the vacuum, where the matrik is that of VEV's, F5? and The factori in the second term on the right-hand side is due to
F%® would coincide. our “Euclidean” notation, see footnote to E¢3.3). Note that the
°Defined in the gauge-invariant way, see E31). definition of §g in Ref.[23] differs by a factor of 2.
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a “macroscopic” world-sheet theory must have four super- A= —i(&kU)U‘lp(r), k=0,3, (4.2

charges, i.e., must b&/=2 in terms of two-dimensional

world-sheet classification. This is because the original “mi-where a new profile functiop(r) is introduced. To be more

croscopic” theory has eight supercharges. Note that th@recise, we must express the right-hand side in terms of our

Fayet—lliopoulos parameter is not renormalized by quantunmoduli fields n®. As was mentioned after Eq3.27), the

corrections. parametrization of the matri) is ambiguous. Correspond-
The flux tube is characterized by two translational moduli,ingly, if we introduce

Xg andy,, the positions of the string center in the perpen-

dicular plane. The four superchgrg_es that act non_triyially a=—i(3U)UL, a=a?

supplement, andy, by four fermionic superpartnerg' (i

=1,2,3,4), supertranslational moduli. As usual, tkapej- A ] _

translational moduli spliti.e., completely decouplefrom f[henak is defined moduloltwo gauge trgnsformaﬂons follow-

those describing internal dynamics. The dimension of repreind from Eq.(3.28. Equation(3.26) implies that

sentation is four, but this is a trivial multiplicity which we do

not count when we speak of distinct eIFe)me)r/nary strings. In ag—n*(n°ay) = — %N ", 4.3

fact, a “distinct” string means that we deal with distinct

dimension-four supermultiplets.

2

Ta
—) , 4.2

and we can impose the conditioia?=0. Then

We will return to V=2 superalgebra, in the anticommu- 1
t_ator{QLQgﬂ} relevant to the issue of string junctiofson- af=—e3nPyn°, —i(gU)U 1=— 5 3£3PP g, nC,
fined monopoles in Sec. VI. (4.4
IV. MACROSCOPIC THEORY The functionp(r) in Eqg. (4.1) is determined through a

minimization procedurédcf. [27]) which generateg’s own
In this section we will derive an effective low-energy equation of motion. Our task is to derive it. But at first we

theory for orientational collective coordinates on the stringnote thatp(r) vanishes at infinity,
world sheet. As was already mentioned, this macroscopic
theory is a two-dimensional supersymmet@®! model. p()=0. (4.5
This model is discussed in great detail in the review paper
[35] from which we borrow many definitions, notation and The boundary condition at=0 will be determined shortly.
normalizations. At first we will review derivatiof8] of the The kinetic term fom?® comes from the gauge and quark
effective theory for the bosonic moduif. In Secs. IV Aand ~ kinetic terms in Eq(3.3). Using(3.33 and(4.1) to calculate
IV B the mass difference is set to zetym=0. Switching the SU2) gauge field strength we find
on Am will lead us to theC P* model with a “twisted mass.”
Then we will work out the fermionic part. dp(r)

dr -~

A. Deriving the kinetic term; a basic normalizing integral (4.6)

Assume that the orientational collective coordinatds e see that in order to have a finite contribution fronF§r
are slow Val’ying functions of the Stl’ing world-sheet COOI’di-in the action we have to impose the constraint
natesx,, k=0,3. Then the modulh? become fields of a
(1+1)-dimensional sigma model on the world sheet. Since p(0)=1. 4.7
the vectom? parametrizes the string zero modes, there is no
potential term in this sigma model. We begin with the kinetic Substituting the field strengtf4.6) in the action(3.3) and

_1 ay.a. S ; 1 X
Fki_z(akn )T 8ijr_2f3[1_P(r)]+|((9kU)U T

term[3]. including, in addition, the kinetic term of quarks, we arrive at
To obtain the kinetic term we substitute our solution, 5
which depends on the moduii in the action(3.3) assuming s(“l):Ef dtdz(d,n?)?, (4.9

that the fields acquire a dependence on the coordingteis
n?(xy). Technically it is convenient to work with the solution
(3.33 in the singular gauge. In doing so we immediately
observe that wenustmodify the solution.

Indeed, Eq(3.30 or (3.33 was obtained as an SU()¢ o [ d
rotation of the “basic” (1,0)-string(3.18. Now we make B= _zf rdr[ (—p(l‘)
this transformation locali.e., depending om,). Because of g; /0 dr
this, the 0 andz components of the gauge potential no longer
vanish. They must be added to the ansatz. This situation is
quite familiar(e.qg.,[27]) since one routinely encounters it in
the soliton studies.

We suggest an obvious ansatz for these comportentbe ~ We will have to deal with the integral on the right-hand side
checkeda posteriorj, more than once in what follows. There are various arguments

where the coupling constag is given by a normalizing
integral

2

1
t5151-p)

2
+05

2
%(¢i+¢>§)+(1—p)<¢1—¢2>2”. 4.9
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allowing one to find it analytically; however, the first calcu- ebratedO(3) sigma mode{which is the same a8 P'). The

lation was carried out numerically by R. Auzzi to whom we symmetry of this model reflects the presence of the global

are deeply grateful. SU(2) ¢, ¢ symmetry in the microscopic theory. The cou-
The functional(4.9) must be minimized with respect i  pling constant of this sigma model is determined by minimi-

with the boundary conditions given k4.5 and(4.7). Vary-  zation of the action(4.9) for the profile functionp. The

ing (4.9 with respect top one readily obtains the second- minimal value ofl is unity. Clearly, Eq.(4.8) describes the

order equation which the functign must satisfy, low-energy limit. In principle, the zero-mode interaction has

higher derivative corrections which run in powers of

2 1d 1, 9% L,
—FP—FaP—r—zfs(l—PH > (1t d2)p (92VE) 10y, (4.14
92 whereg, /& gives the order of magnitude of masses of the
—52(@— $,)%=0. (4.10 gauge/quark multiplets in our microscopic @uUxU(1)

theory. The sigma moddHK.8) is adequate at scales below

The second-order equation occurs because, once we allfe V€ where higher-derivative corrections are negligibly

the dependence of on the world-sheet coordinateg, the ~ SmMall- ) _ _
string is no longer BPS saturated. After some algebra and The very same scaleggV€) !, determines the thickness

extensive use of the first-order equatiof®19 one can ©f the strings we deal with. In other words, the effective

show that the solution of4.10) is given by sigma model(4.8) is applicable at scales below the inverse
string thickness which, thus, plays the role of an ultraviolet
b1 (UV) cutoff for the model(4.8).
p=1—-—=. (4.11)

2
B. (1+1)-dimensional CP' model

I4h$) Z?Sllij:'gﬁojat'ﬁ'es the boundary conditio5) and Let us discuss the theory on the string world sheet as it
Substituting this solution back into the expression for theemerges after factoring ousupejtransiational moduli. As

. : was mentioned, the solution of the string BPS condition is in
sigma model coupling constaft.9) one can check that the i i ) . -
integral in(4.9) reduces to a total derivative and is given by fact @ two-parametric family of solutions parametrizedrby

the flux of the string determined big(0)=1. Namely'* with the constrainh?=1. The target space of the bosonic
moduli is SU2)/U(1), the same a€P.
o d 2 1 5 Since it is also endowed with four supercharges, the
|Efo rdr (ap(r) +r—2f3(1—P)2 world-sheet theory must beV=2 two-dimensional C P*

sigma model. In Sec. IV D we will explicitly construct four
2 fermion zero modes in the microscopic thedmpt counting
p—(¢§+ ¢§)+(1—P)(¢1— ¢2)2H supertranslationawhich match two bosonic zero modes as-
2 sociated with the color-magnetic flux rotation in th&3D
group space, Fig. 6. This will essentially conclude the proof
_ fxdr( _ if )zl (4.12 that the world-sheet theory is tf@P* sigma model. Let us
0 dr 3 ' : briefly review the properties of this model.
The N'=2 two-dimensionaC P* model has the following
where we use the first-order equatiqi3s19 for the profile  action(e.g.,[35], Sec. 6:
functions of the string. Returning to tl@P* model(4.8) we
conclude that the sigma model coupliggdoes not depend
on the ratio of W1) and SU2) coupling constants and is

2
+03

1 i — 1
SCP(l)::Bj dzx[z(&kna)2+§Xaka9an+ g(XX)Z],

given by (4.15
20 where they matrices in (1) dimensions are defined’as
B=—. (4.13
g5 Yo=T1, ¥3= T2, (4.16

The two-dimensional coupling constant is determined by thevhile x? is a real two-component Majorana fermion field
four-dimensional non-Abelian coupling. As we will see later, (y = yy,). It is subject to the constraint
this fact is very important for our interpretation of confined
monopoles as sigma-model kinks. x2n?=0; 4.1
In summary, the effective world-sheet theory describing
dynamics of the string orientational zero modes is the celtherefore, in fact, we have four real fermion components, as
expected. Note thas is related to the conventional coupling

UThe numerical result of R. Auzzi mentioned above was
=1.00008. 2This is a “Euclidean” notation, see footnote to E&.3).
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constant of theCP! model as,le/géP(l), and the loop
expansion runs in powers gﬁp(l)/w. Given Eq.(4.13 we
see that that the loop expansion parametgsié272) which

PHYSICAL REVIEW D 70, 045004 (2004

are no logarithms below this scale. The logarithms of the
macroscopic theory take over. Moreover, the dynamical
scales of the microscopic and microscopic theories turn out

coincides with the loop expansion parameter in the microl0 be the same! We will explain the reason why the dynami-

scopic theory.

cal scale of the (* 1)-dimensional effective theory on the

In the holomorphic representation upon the stereographiétfing world sheet equals that of the @Jfactor of the (3

projection the Lagrangian of th@ P* model(4.15 becomes

— i — — -
‘CCP(l):G akwakW‘FE(‘PLaR\PL‘f"PRﬁL\I’R)

i — — — —
- Z[‘I’L‘I’L(WﬁRW) +WRrVR(Wd W)]

2 — — i6 1 o —
__\PL\I,L‘I,R\I}R +__8m 0"mWO7kW,

§2 2 §2
(4.18
whereG is the metric on the target space,
GEZB;_, (4.19
(1+ww)?
and
(=1+ww. (4.20

(It is useful to note that the Ricci tens®=2{"2.) For

+1)-dimensional gauge theory later, in Sec. VII.
The superalgebra induced by four supercharges of the
world-sheet theory is as follows:

{QQuU=(H+P), {QrQa}=(H-P), (4.29

(QeQul- = f dza,({ W g¥y), (4.29
_ i —

{QLQr}= ;j dzo({ 72V V), (4.29

with all other anticommutators vanishing. Hetd,P) is the
energy-momentum operator. Equatiof.25 and (4.26
present a quantum anomaly derived in R&D]. These anti-
commutators vanish at the classical level. The above
anomaly is similar (and, in fact, related to that in
N=1 supersymmetric gluodynami¢87]. Its occurrence is
crucial for self-consistency of matching of the underlying
microscopic theory with the macroscopic description pro-
vided by Eq.(4.18. The fact that the anomaly does take
place can be viewed as a test that we are on the right track.
As is well-known, two-dimensional P! model possesses

completeness we also included the vacuum-angle term, s@®o vacua labeled by the bifermion order parameter,

the last term in Eq(4.18. Furthermore, the fermion field is

a two-componenbirac spinor

y| VR 2
“lw ) (4.21
Finally, the bars ovew and ¥ g denote Hermitian conju-

gation.
The sigma mode(4.15 or (4.18 is asymptotically free
[36]; at large distancedow energies it gets into the strong

(4.27

The distinct vacua of the world-sheet effective theory, in the
language of the microscopic theory, describe two distinct
strings. The physical meaning of this distinction will be re-
vealed shortly. The dynamical scale,, defined in Eq.
(4.22 is of the order of Acppy. More exactly, A,p
=eAcpq)-

We will interrupt here our discussion of the superalgebra

(2P )=+ Acpuye 2.

coupling regime. The corresponding Gell-Mann—Low func-in the macroscopic theory, with the intention to return to it
tion is one-loop, and the running coupling constant as a functater, in Sec. VI.

tion of the energy scal& is given by

E
4mp=2 In(A—ZD), (4.22

C. Unequal quark mass terms;CP* with the twisted mass

The fact that we have two distinct vacua in the world-
sheet theory—two distinct strings—is not quite intuitive in

where A ,p is the dynamical scale of the sigma model; athe above consideration. This is understandable. At the clas-

related definition of this scale is given below in E4.27).

sical level theA’=2 two-dimensional sigma model has a

As was mentioned previously, the ultraviolet cut-off of the continuous vacuum manifol8,. This is in one-to-one cor-

sigma model at hand is determined y\¢. At this UV
cut-off scale Eq(4.13 holds. Hence,

(4.23

—872/g2
A§D=§e 8 /92=A2,

where we take into account E@.9) for the dynamical scale

respondence with continuously many strings parametrized by

n. The continuous degeneracy is lifted only upon inclusion
of quantum effects that occiin the sigma modglat strong
coupling. Gone with this lifting is the moduli nature of the
fields n?. They become massive. This is difficult to grasp.
To facilitate contact between the microscopic and macro-

A of the SU2) factor of the microscopic theory. Note that in scopic theories, it is instructive to start from a deformed
the microscopic theoryper se because of the VEVs of the microscopic theory so that the string moduli are lifted al-

squark fields, the coupling constant is frozerya{/¢; there

ready at the classical level. Then the origin of the two-fold

045004-12



NON-ABELIAN STRING JUNCTIONS AS CONFINED . .. PHYSICAL REVIEW D0, 045004 (2004

potential atn={0,0,+1} correspond to twdona fidesolu-
tions for the (1,0) and (0,1) strings.

Let us derive this potential. To this end we start from the
expression for the non-Abelian string in the singular gauge
(3.33 parametrized by modulh® and substitute it in the
action (3.3). The only modification that we actually have to
make is to supplement our ansd&33 by that for the ad-
joint scalar fielda?; the neutral scalar field will stay fixed

/ at its vacuum expectation valize= — \2m.
At larger the fielda® tends to its VEV directed along the
o ] ) ] third axis in the color space and is given by E8.5). At the

FIG. 7. Meridian slice of the target space sphétack solid same time, at =0 it must be directed along the vectof.
line). Arrows present the_scalar potenti@l 38, their length being 1 reason for this behavior is easy to understand. The ki-
the stren_gth of the potential. Two vacua of the model are denoted bxetic term fora® in Eq. (3.3 contains the commutator term
closed circles. . :

of the adjoint scalar and the gauge potential. The gauge po-
ential is singular at the origin, as is seen from Eg33.
his implies tha® must be directed along? atr =0. Oth-
rwise, the string tension would become divergent. The fol-
bwing ansatz fom® ensures this behavior:

degeneracy of the non-Abelian strings become transpare
This will help us understand, in an intuitive manner, other
features listed above. After this understanding is achieve
nothing prevents us from returning to our case of strings with
non-Abelian moduli at the classical level, by smoothly sup-
pressing the moduli-breaking deformation. The two-fold de- 2= — il
generacy will remain intact as it follows from the Witten \/5
index[38]. _ . . _
Thus’ let us drop the assumptiml: m, and introduce a Here we introduced a new prOflle funCtIdD‘(r) Wh|Ch, as
small mass difference. We will still assume that Usual, will be determined from a minimization procedure.
Note that an®=(0,0,+1) the fielda? is given by its VEV,
pm=m;—my>0. (4.28 as expected. The boundary conditions for the funcbén)
are
At m; #m, the flavor(globa) SU(2) symmetry of the micro-
scopic theory is explicitly broken down to(l) (correspond- b(»)=1, b(0)=0. (4.30
ing to rotations around the third axis in the(3D group
space. Correspondingly, the moduli of the non-Abelian

string are lifted, since the vect&gets fixed in the position

[623p+n2n3(1—b)]. (4.29

Substituting Eq(4.29 in conjunction with(3.33 in the ac-

tion (3.3) we get the potential

2

pointing in the third directionn={0,0,+1}. These are the , K 5
(1,0) and (0,1) strings, respectively, see Sec. Il A.uf ch(1)=7’j d*5-(1-n3), (4.30
< /£, the set of parameters® becomesguasimoduli, as is
clear from Fig. 7. wherey is presented by the integral
Now, our aim is to derive the effective two-dimensional
theory on the string world sheet for the case of unequal quark 2T (= d 2 1 2.2
masses, when SU(X)U(1) gauge theory is broken down to =2, rdr (ab(r) + r—2f3b
U(1)XU(1), assuming thaj is small. As was discussed in 92
Sec. lll A, the bona fidesolutions of first-order equations 1
(3.19 (and, hence, the equations of motiamith the mini- +g3 E(l—b)2(¢f+ ¢§)+b(¢1—¢2)2H.
mal windings are the (1,0) and (0,1) strings. The solution for
the (1,0) string is given by3.18 while the solution for the (4.32
(0,1) string can be obtained from the one in E2118 by the
replacement Here two first terms in the integrand come from the kinetic
term of the adjoint scalar field? while the term in the
fa— —f3 square brackets comes from the last term in the a¢Ba3).
Minimization with respect tab(r), with the constraint
and (4.30, yields
e'“d>1<—> d)z. ¢1(r)
b(r)=1-p(r) D1’ (4.33

However, at small. we can still introduce the orientational

quasi-modulin®. In terms of the effective two-dimensional cf. Egs.(4.9) and (4.11). Thus, y=1X2m/(g3)=2m/(g5).
theory on the string world shegi#0 leads to a shallow We see that the normalization integrals are the same for both,
potential for the quasi-modui?®. The two minima of the the kinetic and the potential terms in the world-sheet sigma
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model,y= B. As a result we arrive at the following effective
theory on the string world sheet:

1 /J'2 Imy
SCP(l)vM:Bf dZX[E(akna)z'i‘ 7(1_n§) . (434) T
A
This is the only functional form that allowsV=2 Rey
completion®® 0
The fact that we obtain this form shows that our ansatz is 2 _n
fully adequate. The informative aspect of the procedure is (@) (b)

the confirmation of the ansatz affiil) constructive calcula-
tion of the constant in front of (% n%) in terms of the mi- FIG. 8. The target space of the mirror model and the trajectories
croscopic parameters. The mass-splitting param&tarof  of the BPS solutions interpolating between two vacua of the model.
the microscopic theory exactly coincides with the twistedThe vacua are denoted by closed circles. The livesdB in (b)
massu of the macroscopic model. must be identified.

As was already mentioned, this sigma model gives an
effective description of our string at low energies, i.e., enerwill keep u real and positive and ignoré unless stated to
gies much lower than the inverse string thickness. Typicathe contrary. The (1)-invariant scalar potential term in the
momenta in the theory.34 are of the order ofx. There- holomorphic representation is
fore, for the action4.34) to be applicable we must impose

the condition Vep()u= w2Gww. (4.39
|Am|<g,VE. (435 If ,u2>AéP(1), the classical description is fully applicable.
" As we already explained, two minima &cpy ,, atw

The CP" model (4.34 has two vacua located af'=(0,0,  —g andw=cc, correspond to the (1,0) and (0.1) strings of
*+1), see Fig. 7. Clearly these two vacua correspond to tWene four-dimensional theorgFig. 7).
elementary strings: (;,O) qnd (0,1), respectlvely- Now, after this lengthy digression, we can return to the

Upon stereographic projection the actiGh34) takes the  jimit Am—0. The quasiclassical treatment of the world-
form sheet theory applies no longer since the world-sheet theory

gets into the strong coupling regime, but we still have two
scp(l)#:f dZXG{ﬁkW(%(W*' M2|W|2}: (4.36 vacua(Witten’s index). These two vacua differ from each

other by the expectation value of the chiral bifermion opera-
tor (4.27), see, e.g.[35]. At strong coupling £=0) the
chiral condensate is the order parameter. T model has
a discreteZ, symmetry, a remnant of the anomalougllJ
chiral symmetry. The condensaté.27) breaks it down to
Z,; hence, the two-fold degeneracy.

whereG is given in Eq.(4.19. We pause here to make a few
remarks regarding the sigma model wjh=0.

First and foremost, Eq4.36 is the bosonic part of an
N=2 two-dimensional sigma mod¢B9] which is usually
referred to as th€ P* model with the twisted mass. This is a X ,
generalization of the massle@P! model which preserves _The physics of the model bec_omes more transparent in the
four supercharges. As we know, the BPS nature of the string®""0" represelntat|or[4p]. In this representation one de-
under consideration does require the world-sheet theory ta¢"i0es theCP™ model in terms of the Coulomb gas of in-
have four supercharges. Crucial for the construction of thStantons ltO prove its equglence to a sine-Gordon _theory_
twisted-mass\=2 model is the fact that the target space of "€ CP~ model (4.15 is dual to the following
the CP! model has isometries. One can exploit the isomeV=2 Sine-Gordon modeH0]:
tries to introduce theV'=2 supersymmetric mass terja,

namely, Sea= f d?xd?6d?6B8- 1YY
5 — 1-ww — A
A, Lep)=G) [u[ww+i ;¥ VrmuWrY L)), +{—Cp(1)J d2xd?6 coshY +h.c|. (4.39
2
(4.37
to be added to Eq4.18. Here ¢ is defined in Eq(4.20). Here the last term is a dual instanton-induced superpotential.

Generically speakingy is a complex parameter. Certainly, The scalar potential of this sine-Gordon theory is

one can always eliminate the phaseuwoby a chiral rotation 3

of the fermpn fields. Due to the chiral anomaly, this will Vo= zAép(1)|Si”hY|2, (4.40
lead to a shift of the vacuum angte In what follows we 4

which has two minima, ay=0 andy=*iw. The target
Note that, although the global SU(2)r is broken byAm, the ~ space of the mirror model is the cylinder depicted in Fig.
extendedV=2 supersymmetry is not. 8(a). That is why the pointyy=i7 andy= —i#w must be
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identified; they present one and the same vacuum. In Fignoduli n?; therefore, we will refer to these modes as super-
8(b) this identification means gluing the lindsandB. The  orientational.
straight lines in Fig. &) passing through the points=0 To obtain these modes in the simplest and fastest way we
andy= =i are the lines on which the co¥hsuperpotential designed a special strategy which is outlined below. We start
is real. Since the imaginary part of the superpotential mustrom the supersymmetry transformations for the fermion
vanish on the solutions of the BPS equations startergd-  fields in the microscopic theory,
ing) on the vacuum points, the solution trajectories can lie 1
only on the above lines of “reality” of superpotential. fa_ — fa ap~m, _m f

%/his mirror model explicitly et>}</hibits rfmgss gap of the =5 (0,0,€) F DT
order of Acpq). It shows that there are no Goldstone bosons
(corresponding to the absence of the spontaneous breaking of afe — fiara wpam, _m i
the microscopic theory SU(). ¢ on the string. This means, A= 2 (0,0,€)F L, + DI+ -,
in turn, that the string orientation vectof* has no particular
direction; it is smeared all over. The strings we deal with
here are genuinely non-Abelian. Two degenerate strings of
the microscopic theory corresponding to two degenerate _ ) _
vacua of the theory(4.18 are two “elementary” non- SUonc= V2V oo Opake™ + - - - (4.41
Abelian strings of theAm=0 theory which form a doublet

- Here Af® and A3'® are the fermions from the&/=2 vector
of SU(2)c .. They arenotthe (1,0) and (0,1) strings of the . .
quasicla(s:s+izal U(X U(1) theory since the vectar® has no supermultiplets of the (1) and SU2) factors, respectively,

particular direction. while y** and Y are the fermion partners of the squark

The mirror model also demonstrates the occurrence ofields g“* andq,, in the quark hypermultiplets. Moreover,
two distinct kinks interpolating between the two vacua of thef =1,2 is the SU(2} index, a=1,2 is the spinor indexk
model. (More precisely, since each kink has two fermion =1,2 is the color index, and=1,2 is the flavor index. The
zero modes, we should speak of two distinct dimension-twgarameters of SUSY transformations in the microscopic
supermultiplet9. The two solutions are theory are denoted as''. Furthermore, th® terms in Eq.

(4.41) are

SYL=I\2V e+

2

7T .
y==* E+arcsn[tanhmyz] » Mmy=BAcpay/(2m). D1+iD2=i%(Tr|<I>|2—2§), D3=0,  (4.42

The kink doubling is in full accord with the fact that the for the U(1) field, and
Cecotti—Fendley—Intriligator—VafeCFIV) index[41] of the

CP(1) model equals two. 2
(1) a Dal+iDaz=i%Tr(<bTra®), D33=0, (4.43

D. Fermion zero modes of the strin
g for the SU2) field. The dots in4.41) stand for terms involv-

In this section we use supersymmetry to explicitly con-ing the adjoint scalar fields which vanish on the string solu-
struct the fermion zero modes—those not associated Withion (atm,=m,) because the adjoint fields are given by their
supertranslations—and show that they reproduce the fermiofacuum expectation valués.?).
part of A/=2 two-dimensionalCP* model on the string In Ref. [23] it was shown that the four supercharges se-
world sheet. We will sem;=m, and work with the string |ected by the conditions
solution(3.33 in the singular gauge.

Our string solution ist BPS saturated. This means that €= -l =€ (4.44
four supercharges, out of eight of the four-dimensional
theory, act trivially on the string solutio8.33. The remain-  act trivially on the BPS string. Now, to generate the super-
ing four supercharges generate four fermion zero modesrientational fermion zero modes we use the following
which are called supertranslational modes because they amethod. We assume that the orientational modélin the
superpartners to two translational zero modes. The correstring solution(3.33 have a slow dependence on the world-
sponding four fermionic moduli are superpartners to the cosheet coordinateg, and x5 (or t and z), as in Sec. IV A.
ordinatesx, andy, of the string center. The supertransla- Then the four supercharges selected by the conditi44s)
tional fermion zero modes were found in Rg23]. As a no longer act trivially. Instead, their action now gives fer-
matter of fact, they were found for the(lJ ANO string in  mion fields proportional to the&, and x5 derivatives ofn?.
N=2 theory but the transition to the model at hand is absoThis is exactly what one expects from the residual
lutely straightforward. We will not dwell on this procedure A'=2 supersymmetry in the world-sheet theory. The above
here. four supercharges generate the world-sheet supersymmetry

Instead, we will focus on foumdditional fermion zero in the A’=2 two-dimensionalCP! model. We use this
modes which arise only for the non-Abelian strifef m;  world-sheet supersymmetry to reexpress the fermion fields
=m,). They are superpartners of the bosonic orientationabbtained upon the action of these four supercharges in terms
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of the (1+1)-dimensional fermions. This will give us the
superorientational fermion zero modes.
After this brief outline we can proceed to the implemen-

PHYSICAL REVIEW D 70, 045004 (2004

1
gatin,= E(fll_ €)= 261,

tation of the procedure. We substitute the string solution

(3.33 in (4.41) assuming that®" are subject to the con-
straints(4.44) and the modulh® have a slow dependence on
the world-sheet coordinates. Then we get

EAkézi(Ta)Ak[ [(do—1d3)n?](p1— d’z)( 1- g)

—iSabcnb[(50_if93)nc]g(¢1+¢2) €,
jliA:i(Ta)kA[[((90+if73)na](¢1_¢2)(1_g)
+isabcnb[(ao+ia3)n°]g(¢1+¢>z) e,
EAkiZOa j‘;A:o,
)\a22:_%[[(ao+i0’)3)na]f3(1—p)
d
+isab°nb[(ao+ia3)n°]rap]ell,
V‘“=—Xl;'xz[[(ao—ia3>na]f3<1—p>
d
—isabcnb[(ﬁo—iﬁg,)nc]rap]622,
ABR=2\1 \A= )\ (4.49

Let us compare these transformations with the supersymmébove

1
= (2+ =262

1 E (4.48

e1—in
we can express the derivativesrsfin Eq. (4.45 in terms of

X5 and x5, thus obtaining the zero modes of the quark and
gluino fields in terms of the four superorientational moduli.
In this way we arrive at

Emz(; 34, (@1~ $2)lxa+ie™ N K],
Ak
— a\ kA 1
wi’*=(%) 34, (#1~ $2)lxi-ien ],

- ~kA
¢Aki:01 lﬂz :O;

i Xq+ix
)\a22:E 1r2 Zfs%[X?_iSabcani '
I X1—iXy | ¢ .
Nall:z = fs—z[X§+lsab°an§],
)\12: )\11' )\Zl: _ )\22' (449)

where we use the solutiof@.11) for the functionp to sim-
plify the expressions for the profile functions of the fermion
zero modes. Equatiof®.49 is our final result for the super-
orientational fermion zero modes. Here the dependencg on
is encoded in the profile functions of the string, whifé
should be considered a®nstant Grassmann collective co-
ordinates

To conclude this section let us chétkhat the zero modes
do produce the fermion part of the

try transformations on the string world sheet. For the modelV=2 two-dimensionalCP* model (4.15. To this end we

(4.195 they are

OX*=IN2[ (ydn®e+ &Ny n®) 7], (4.46

where ¢ is a real two-component parameter of the two-
dimensional supersymmetry, whilge“ is another such pa-

rameter @=1,2), so that assembled together they form a

full set of A’'=2 transformations. If we rewrite E¢4.46) in
components,

SxE=i\2[(dg+id3)N% ,+£20NP(Jg+id3)n 7, ],

SX3=12[(3y—id3)n%e1+e22N°(G—id3)N° 7, ],
(4.4

and identify properly normalized parameters of the four-
dimensional SUSY transformationpwith the constraint
(4.44] in terms ofe; 5, n1,, namely,

return to the usual assumption that the fermion collective
coordinatesy’ in Eq. (4.49 have an adiabatic dependence
on the world sheet coordinateg (k=0,3). This is quite
similar to the procedure of Sec. IV A. Substituting E4.49

in the kinetic terms of fermions in the microscopic theory,

f d4x[ZAi%ﬁ“+~_<ﬁimA+l—zﬁa7\af], (4.50
9>

and taking into account the derivatives gt with respect to
the world-sheet coordinates, after some algebra we arrive at

1
B f de[ X Vnanxa] , (4.51)

YFor simplicity, we restrict ourselves to terms in the action qua-
dratic in the fermion fields.
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whereg is given by the same integr&t.9) as for the bosonic 1 o 2
kinetic term, see Eq4.8). We see that4.51) exactly repro- Mk=;|A<§ VeW)|= —Acea)- (5.9
duces the kinetic term of th@.+1)-dimensional fermions in
the CP* model (4.15. Second, the size of the kirin the z direction is of the order
~Acpq)- _
This means that the SB) monopole, although classically
V. SIGMA-MODEL KINKS: MONOPOLES massless and infinitely spread in the lidim—0, in fact
OF THE MICROSCOPIC THEORY acquires a small but finite mass and finite size due to non-

perturbative effects on the string world sheet. In this section

Thus, we concluded our consideration of non-Abehanwe give a detailed quantitative evidence in favor of our iden-

strings in the microscopic theory and derivation of the MaCiification of the SW2) monopole as th€ P model kink. We

roscopic world-sheet theory they induce. Our task in thisgi .t \yith the quasiclassical limit of nonzeton considered

section is the study and analysis of the BPS string, 1ong[6] and then eventually arrive at the quantum limit
junctions—the confined monopoles—both in the micro-Am .o

scopic and macroscopic theories.

A general picture is best inferred from consideration in
the quasiclassical regime, namely, we start from the case
Am=0 but subject to the constraiii4.35. This limit was In this section we derive the first-order equations forhe
studied in Ref[6]. In the CP! model with the twisted mass BPS junction of the(1,0) and(0,1) strings in the quasiclas-
there is a kink(a.k.a. domain wall interpolating between Sical limit
two vacua at the north and south poles, see Fig. 7. Two
distinct strings of the microscopic theory are the two vacua
of the macroscopic model, while the confined monopole is1
the CP?! kink interpolating between them. We intend to back

up this quzlj\litgtive stgtement by qugntitgtive data.. , twisted masp On the other handy is much larger than the
The CP- kink solution is easy to find in the explicit form. ¢-,ja ofcp! model, so the latter is in the weak coupling

This is dlscussed_ln Sec. V C,_ as well as _the occurrence of 8ftgime which allows one to apply the quasiclassical treat-

“extra”  collective  coordinate. Kinks in  the ment

N=2 two-di_mensiongl sigma model with the twi_sted mass  The geometry of our junction is shown on FigbR Both

are exhaustlvely studied in the Ilteratl[ﬂﬂ. These kinks are Strings are stretched a|0ng threaxis. We assume that the

3 BPS saturatedi.e., preserve two supercharge$he cor-  monopole sits near the origin, t@,1) string is at negative,

responding collective coordinates axg(a complexified po-  while the(1,0) string is at positive. The perpendicular plane

sition of the centgrand two fermion moduli. We will say is parametrized by, andx,. What is sought for is a static

more on whyz, gets complexified. solution of the BPS equations, with all relevant fields de-

Now, if we sendAm—0, we still have two vacua in the pending only orx,, X, andz

CP! model, as was explained in Sec. IV C, and do have Ignoring the time variable we can represent the energy

kinks interpolating between them. This kink is best seen irfunctional of our theory3.3) as follows(Bogomolny repre-

the mirror description of the model. It interpolates betweensentation42]):

the two vacua of sine-Gordon potent{@dl40. The kinks are

counted in dimension-two supermultiplets. The Cecotti— J— 4 {
= X

A. Microscopic theory: First-order master equations

Acpy<pu<gaVéE p=Am. (5.2

n this limit w is small enough so we can use our effective
low-energy description in terms of th@P* model(with the

2
9

2.2

1
Fendley—Intriligator—\VafdCFIV) index[41] tells us that, in \/——F§a+
fact, we have two distinct kinks, albeit this number is not 29>
invariant under the variation of the twisted mass, see Sec.
VCT7. + _F’g\’ +

The Am=0 kink should be interpreted as a “highly V29,
bound” monopole(it has multiplicity two as we)l which
realizes a junction of two “elementary” strings. However, i
the quantum numbers of this monopole are no longer (1, g%
—1). Similar to strings, it does not have definite Abelian

charges in the limitAm—0. It becomes @ona fidenon-

— _a A 1 a
(eaTe )+$D361
2

J1

242

1
(|e*2—2¢)+ —dsa
01

2
1
—(F1%+iF3%)+(D,+iD,)a?

V2

2

1 . . .
Abelian monopole of S(2) representing the junction be- +— E(F’{“F;)Hﬁﬁlﬂz)a +| Vi +i V0
tween two “elementary” non-Abelian strings associated with 91
two quantum vacua o€ P* model (Fig. 1, the right lower

corney. +
There are two features of thtm=0 kinks that we can
establish on general grounds. First, their BPS saturated na-
ture and Egs(4.25 and(4.26 tell us that the kink mass is plus surface terms. Following our conventions we assume
equal to[20] the quark masses to be real, implying that the vacuum ex-

2

1
Voo + — (a7 +a+ 2m,) o (5.3
3¢ /—2( A)QD }
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pectation values of the adjoint scalar fields are real too. Thérst two equations in Eq(3.15. The last equation 5.5
surface terms mentioned above are reduces to the last equation (8.15.

Now, turn to the monopole solution. The 't Hooft—
Polyakov monopole equatiorjd9] arise from those in Eq.
I (5.5 in the limit £=0. Then all quark fields vanish, and Eg.
(a3> (5.5 reduces to the standard first-order equations for the
_\/Eg_gj dS,F*3, (5.4) BPS 't Hooft-Polyakov monopole,

z=00

Esurface™ gf d3x F; + \/ng d2X<a>

where the integral in the last term runs over a large two-

dimensional sphere at?—x. The first term on the right- Fi®+y2Da*=0. (5.6
hand side is related to strings, the second to domain walls,
and the third to monopole&string junctions.

The Bogomolny representatia$.3) leads us to the fol- The U1) scalar fielda is given by its VEV while the 1)

lowing first-order equations: gauge field vanishes.
Now, Eq.(5.4) shows that the central charge of the(8U

R _ monopole is determined bya®) which is proportional to the
Fi+iF3+2(91+id,)a=0, quark mass difference. Thus, for the monopole on the Cou-
lomb branch(i.e., with ¢ vanishing Eq. (5.4) yields

F*a+iF%2+2(D,+iD,)a*=0,
A

o7 M = 5
F3+ o (|*2-26)+ 20,20, " &0

2 This coincides, of course, with the Seiberg—Witten result

92 —

F3%+ 7(<PATa<PA)+ V2D;3a%=0, [11] in the weak coupling limit. As we will see shortly, the
same expression continues to hold evep # ¢ (provided
that u is still much larger tham\). An explanation will be

1 given in Sec. VII.
Viph=— T(aaTa+ a+ \/EmA)(PA1 We pause here to make a remark on the literature. The
2 Abelian version of the first-order equatios.5) were de-
rived in Ref.[1] where they were used to find the BPS
saturated solution for the wall-string junction. A subset of
These are oumaster equationsOnce these equations are NON-Abelian equations.9) in the SU(2)< U(1) theory was
satisfied the energy of the BPS object is given by &). derived in[6] with the ptlrpose pf studying the junction of

Let us discuss the central chargéise surface termsof ~ WO €lementary stringg“a confined monopolej at Am
the string, domain wall and monopole in more detail. Say, in” 0- We extensively exploit this construction too, as a refer-
the string case, the three-dimensional integral in the firsENC€ Point, while our main interest is the linim=0. Non-
term in Eq.(5.4) gives the length of the string times its flux. Abelian equationg5.5) were derived and extensively used in
In the wall case, the two-dimensional integral in the second€ recent analysig2] of the wall-string junctions for non-
term in (5.4 gives the area of the wall times its tension, AP€lian strings ending on a stack of domain walls.

Finally, in the monopole case the integral in the last term in
Eq. (5.4) gives the magnetic-field flux. This means that the
first-order master equation&.5 can be used to study
strings, domain walls, monopoles and all their possible junc- Now we apply our master equations in order to find the
tions. junction of the(0,1) and (1,0 strings via the (1; 1) mono-

It is instructive to check that the wall, the string and thepole (see Fig. 1, the left lower cornein the quasiclassical
monopole solutions, separately, satisfy these equations. Féimit. We will show that the solution of the BPS equations
the domain wall this check was done [i2] where we used (5.5 of the four-dimensional microscopic theory is deter-
these equations to study the string-wall junctions. Let us conmined by the kink solution in the two-dimensional sigma
sider the string solution. Then the scalar fiebdanda® are  model (4.34).
given by their VEVs. The gauge flux is directed along the To this end we will look for the solution of equatioft.5)
axis, so thaF} =F}5 =F}#=F%2=0. All fields depend only in the following ansatz. Assume that the solution for the
on the perpendicular coordinates andx,. As a result, the string junction is given, to the leading order i \£, by the
first two equations and the fifth one 5.5 are trivially = same string configuratio(8.33, and(4.29 which we dealt
satisfied. The third and the fourth equations reduce to th&ith previously, in Sec. IV Qin the caseu# 0),

(V1 +iV,) ¢”=0. (5.5

B. The string junction solution for &us>A
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(D_U(¢1(r) 0 )Ul
- 0 ¢ur)

(¢1t+ ¢2)+na%(¢1_ b)),

N

AR(x)=nRe; i
T)=n"e; 3(r),

Ai<x)=eijf—;f<r>,

A3=—&2"n’(33n%p(r), AG=0,
o
a?=—"=[6%(1-p)+n?nsp], a=-—+2m,
ﬁ[ (1-p) o] V2
(5.9

with n? slowly-varying functions ofz, to be determined be-
low, replacing the constant moduli vector The ansatz for
the gauge potentiald3 and A follows from Egs.(4.1) and
(4.4). As we have thg0,1) string atz— —oo, the function
n?(z) satisfies the boundary condition

n?(—«)=(0,0-1), (5.9

while

n?(«)=(0,0,1). (5.10
The latter condition ensures that we have th@) string at
z—o, The ansatz(5.8) corresponds to the non-Abelian
string in which the vecton? slowly rotates from(5.9) at z
— —o0 to (5.10 at z—. Now we will show that the repre-
sentation5.8) solves the master equatiof&5) provided the
functionsn?(z) are chosen in a special way.

Note that the first equation if6.5) is trivially satisfied
because the field is constant and=; =F%=0. The last
equation reduces to the first two equationg3rl9 because
it does not contain derivatives with respectzand, there-
fore, is satisfied for arbitrary function®(z). The same re-
mark applies also to the third equation in E§.5), which
reduces to the third equation {8.19.

Now let us consider the fifth equation in E¢.5). Sub-
stituting (5.8) in this equation and using expressi@nll) for
p we find that this equation is satisfied provide¥{(z) are
chosen to be the solutions of the equation

93n?= (6% —n2n). (5.11)

PHYSICAL REVIEW OO0, 045004 (2004

To the leading order in this parameter the fourth equation in
(5.5 reduces to the last equation (®.19. In principle, one
could go beyond the leading order. Solving the fourth equa-
tion in (5.5 in the next-to-leading order would allow one to
determineO(u?/ &) corrections to our solutio3.19. This
goes beyond the scope of our current investigation.

Let us dwell on the meaning of E¢5.11). This equation
is nothing but the equation for the kink in tf@P! model
(4.34). A thorough analysis of th€ P-model kinks will be
carried out in Sec. V C. Here we will limit ourselves to the
Bogomolny completion of this model. The energy functional
can be rewritten as

E= gf dz{|9,n?— u(5*3—n3n3)|2+2ud,n%}.
(5.12

The above representation implies the first-order equation
(5.1 for the BPS saturated kink. It also yieldgza for the
kink mass.

Thus, we have demonstrated that the junction solution for
the (0,1) and (1,0 strings is given by the non-Abelian string
with a slowly varying orientation vectar®. The variation of
n? is described in terms of the kink solution of tk&+1)-
dimensionalCP' model with the twisted mass. This was
expected.

In conclusion, we would like to match the masses of the
four-dimensional monopole and two-dimensional kink. The
string mass and that of the string junction is given by the first
and last terms in the surface ener@y4) (the second term
vanisheg The first term obviously reduces to

M string= 2L, (5.13
i.e., proportional to the total string length Note that both
the (0,1) and (1,0 strings have the same tensit®14). The
third term should give the mass of the {11) monopole.
The surface integral in this term reduces to the flux of the
(1,0 string atz—o minus the flux of the0,1) string atz
— —oo, TheF*? flux of the (1,0) string is 27 while theF*3
flux of the (0,1 string is— 2. Thus, taking into account Eq.
(3.5, we get

4
Mp=—pu.
92

(5.19

Note that, although we discuss the monopole in the confine-
ment phase dtAm|< /¢ (which is a junction of two strings
in this phasg nevertheless, in terms of the andg§ depen-
dence its mass coincides with the reg8lf7) for the uncon-

This equation, written in the holomorphic representation, ifined monopole on the Coulomb bran@le., até=0). There

discussed in Sec. V C.

is no change in the monopole mass formula in the first three

By the same token, we can consider the second equatiarases in Fig. 1. This is no accident—there is a deep theoret-

in (5.5). Upon substituting there the ansd&®), it reduces

ical reason explaining the validity of the unified formula. A

to Eq. (5.11 too. Finally, consider the fourth equation in change occurs only in passing to the highly quantum regime
(5.5). One can see that in fact it contains an expansion in thelepicted in the right lower corner of Fig. 1. We will discuss
parametenw?/£. This means that the solution we have justthis regime shortly, see E¢6.18, while more details will be

built is not exact; it has corrections of the order@fu?/¢).

given in Sec. VII.
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Now let us comparg5.14 with the kink mass in the familiar with these results can proceed directly to Sec. V D.
effective C P! model on the string world sheet. As was men- Among other topics, we will dwell on the role of theterm
tioned, the surface term in E¢6.12 gives and on “dyonic” kinks which are counterparts of “dyonic”

confined monopoles of the microscopic theory.
Mo
—In

Myink=2B8un= AL (5.19 1. The @ term

So far we chose to be real, and pu#=0. Both require-

where in the second equality we used 422 to expres3 ments can and must be relaxed. Let us paramefrizs
0 )

in terms of the dynamical scale parameter. Two remarks ar
in order here. First, expressing the two-dimensional coupling
constantg in terms of coupling constant of the microscopic
theory, see Eq4.13, we obtain

p=|ule. (5.20

The chiral anomaly implies that neither not 6 are sepa-
4o rately observable. The physically observable phase combina-
Muink=—7 &, (5.19 fonis

2
Ooii= 0+ 2. (5.20)

thus verifying that the four-dimensional calculation Mf,
and the two-dimensional calculation bf,;, yield the same, Correspondingly, we can always eliminateby including it
in the definition of the phase k. Alternatively, we can
M m=Midnk - (5.17 always defineu to be real and positive, at a price of shifting

P . .__the original & by an appropriate amount, according to Eq.
Needless to say, this is in full accordance with the phySICaES.ZD. Note thatf is defined mod 2k wherek is an integer.

picture that emerged from our analysis, that the two-

dimensionalC P* model is nothing but the macroscopic de-

scription of the confined monopoles occurring in the four-

dimensional microscopic Yang—Mills theory. In the CP* model with the twisted mass
Technically the coincidence of the monopole and kink L

masses is based on the fact that the integral in the definitio -~ . oo

(4.9 of the sigma-model coupling is unity. Q= _"“qU(D_'“f dzo,h+ Ef dzo,({"WRYL),
The second remark concerns the second equality in Eq.

(5.15. In fact, using this form, one can gé#] a unified _ _ _ 1 _

formula for M, (and, hence, foM,,) describing the last {QRQL}:iMqU(l)_Mf dzdh+ ;f dzd,({72V ¥R),

2. Superalgebra at g£0

two regimes in Fig. 1. To this end one replaces the logarithm (5.22
In L Eln /_L2+4A(2:p(1)+lu’ “AJ1s 4Aép(1) whereqyy is the conserved (1) charge,
Ao |27 P +4AEpq)— 1 pu?
(5.18) qu(l)EJ' dzjg(l),

In the quasiclassical regime/ A>1 the right-hand side and

left-hand side coincide provided,p=eAcp(). If, on the o B WW_
other handu—0, combining Eqs(5.15 and (5.18 we ar- j{j(l)=G(wi 3’“W+‘Ify“‘lf—2—‘1’y‘”l’ ,
rive at Eq.(5.1) for the kink mass. Using our identification of ¢ 5
the four-dimensional monopole as a two-dimensional kink (5.23
we then get the confined monopole mass, and
M 2 A (5.19 2
-Z , , 1
" P h=—=2, (5.24)
9 ¢

in the limit u—0.
where g% is the bare coupling constant of ti@P! model
C. More on kinks in the CPl model with the twisted mass (i_e.’ normalized at an ultraviolet ScaMUV)- The super-
Identification of the confined monopoles in four dimen- charges are normalized in such a wage Eq.(4.26)] that
sions with the two-dimensional kinks yields an immediatethe kink mass equals the absolute value of the expectation
bonus: all we know of theCP*-model kinks can be re- Value of the right-hand side. jf is real,
phrased in terms of the confined monopoles. The goal of this
section is to briefly reviewC P*-model kinks, with an eye on _@f 5.2
the parallel with the confined monopoles. Introductory data qu(l)_27r’ (529
on theCP! model can be found in Secs. IV B and IV C. We
will heavily rely on the results of Ref44,20]. The reader and, quasiclassically,
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4. Quantization of the bosonic moduli

To carry out conventional quasiclassical quantization we,
as usual, assume the moda}j and « in Eq. (5.28 to be
(weakly) time-dependent, substitutg.28) in the bosonic La-
grangian(4.36), integrate over and thus derive a quantum-
mechanical Lagrangian describing moduli dynamics. In this
way we obtain

Miink- 5, B,  ei-
+—a’~ =—a. :
5 20 Mae 5 (5.29

Lom=—Myint

The variablex is compact. The canonic momentum), con-
jugate toa must be defined as

2B. O d
=—a—5———17. 5.3
Ta ) 277 da (5.30
FIG. 9. The soliton solution family. The collective coordinate . o
in Eq. (5.28 spans the interval € a<2. For givena the soliton ~ With these definitions

trajectory on the target space sphere follows a meridian, so that

when « varies from 0 to 2r all meridians are covered. Ot
qU(l):i‘F T s (531)
2 1 M3, O . o
= —  In—L4+i=]. . while the Hamiltonian
Mklnk M g(z) 27T|n /_L2 I2’7T (5 26)
H= Myt @‘):om 7). (532
At 6.=0 Eqgs.(5.26 and(5.15 are identical. Knk®4p | 2m e '
3. Kinks in the quasiclassical limit For the BPS stater,=0, and Egs.(5.3) and (5.32 are

) ] o ) ) consistent with Eq(5.26. In fact, they describe a whole
In the quasiclassical limi(5.2) the physical meaning of qwer of BPS kinks sinc@. is defined modulo 2k with
the kink is absolutely transparent. It is the tunneling trajecintegerk. The states witly;,# 0 are “dyonic” kinks. They
tory from the north poldthe (1,0) string] to the south pole pave a nonvanishing charge with respect to the gloka) U

[the (0,1) string]. The BPS equation in the holomorphic rep- symmetry present in theP(1) model with the twisted mass.
resentation reads

5. Switching on fermion moduli

I,W=—puwW Or J,W=—puw, (5.27 The equations for the fermion zero modes of the kink are
to be compared with Eq5.11). Hereu is assumed real and 2 = 1-ww _
positive, see Sec. V C 1. g g(wazw)‘lfﬁ— r¥r=0,
The BPS equatiori5.27) has a number of peculiarities,
the most important of which is its complexification, i.e., the 2 1—ww
fact that Eq.(5.27) is holomorphic inw. The solution of this I,V r— = (WIW)¥Vg— ——uW¥ =0,
equation is, of course, trivial, and can be written as ¢ ¢

(5.33
w(z)=e #ER)TIe, (528 plus similar equations fo. It is not difficult to find nor-
malizable solutions to these equations, either directly or us-
Here z, is the kink center whilex is an arbitrary phase. In ing supersymmetry,
fact, these two parameters enter only in the combination
uZo—ia. As was noted, the notion of the kink center gets LA 7 e Bt A P
complexified. The physical meaning of the modulusis v, -7 ﬁ € °
obvious: there is a continuous family of solitons interpolat-
ing between the north and south poles of the target spacgyq
sphere. This is due to (@) symmetry. The soliton trajectory
can follow any meridian(Fig. 9. As we will see shortly, (— )

(5.39

there are two fermion counterparts f and «, which will
be referred to ag and 7.

12/
A s o
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where the numerical prefactors are introduced to ensure Note that the integer parametgin Eqg. (5.39 is not the

proper normalization of the quantum-mechanical Lagrangphysical U1l) charge. The latter is related ¢pas follows(at

ian. T=1):
Now, to perform quasiclassical quantization the fermion

moduli », » are assumed to be time-dependent, and we de-

rive their quantum mechanics starting from the original La-

)73
qU(1)=q+Im7D. (5.43

grangian(4.18 and (4.37),
Low=inn, (5.39
implying the anticommutation relations

{nnt=1, {9n}=0, {nn}=0, (5.37

which tell us that the wave function 8vo-componenti.e.,

the kink supermultiplet is two-dimensionaOne can imple-
ment Eq.(5.37) by choosing, e.g.p=0", n=0". The

eigenstates then will be of the typg) and||).

The limit |u|/Acpy— corresponds to the quasiclassical
domain, while corrections of the type&(;p(l)/,u)2k are in-
duced by instantons.

7. Multiplicity

The two-dimensionaC P! model has\'=2 supersymme-
try; correspondingly, each shortened supermultiplet is two-
dimensional. In fact, one can introduce a fermion pdi2],
and each shortened supermultiplet has one plus and one mi-
nus state with respect to this parity. The question to be ad-

Upon quantization of the fermion moduli one finds thatdressed below is whether one has an extra degeneracy,
the U1) charge of the BPS kink states gets a fractional shift@nd—if yes—how many degenerate two-dimensional super-

0eff 0eff 1

_
27 27 2’

(5.38

where the plus or minus signs correspond| t® and || ),

multiplets one has for given values of parameters. We will
limit ourselves toT=1, but the value ofjy;) can be arbi-
trary.

Let us start from the quasiclassical limit>Acp(;) as-
suming u to be real. Of course, ai#0, the results are

respectively. This fractional shift is due to fact that there aref-dependent. Let us consider a general caseQ. Then, for
two fermion zero modes, and is conceptually similar to the®ach value of the soliton mass determined from E§s39

well-known charge fractionalization phenomend3].

6. Exact solution
The above features of the BPS kinks in 16®! model

are concisely summarized by the exact expression for th

corresponding central chardef. Eq. (5.22)]

Zyp=ipgq+pupT (5.39

obtained in Ref[4] exploiting methods similar to those of
Seiberg and Wittef11]. HereT is the topological charge of

the kink under consideration. In this work

T=1, (5.40
while the parameteq in Eq. (5.39 is
g=0, =1, =2,.... (5.4

The quantityup is introduced in analogy witlay of Ref.
[11],

1 nM+ Vil +4Agp e’
2 p= P+ 4Ny

4NEppye !
- \/1+ — 2
M

where u is now assumed to be complex, as in E§.20.

K
™

MD

, (5.42

and (5.42 we have one two-dimensional supermultiplet.
There is a whole tower oT =1 solitons corresponding to
g=Kk. In this tower a single two-dimensional supermultiplet
is the lightest.

Now, if 6=0 (or =2, =41, etc), we get a special
Ease, because in this case the states with didticoinspire.

For each given value of the mass from E@s39 and(5.42
we have two degenerate two-dimensional supermultiplets.

One can readily rephrase these statements allowing one-
self to travel in the complex plane. The above degeneracy
will hold provided 6.4=0.

What happens when one travels from the domain of large
|u| to that of small|u|? If u=0 we know, e.g., from the
mirror representatiori4.39, that there are two degenerate
two-dimensional supermultiplets, corresponding to the CFIV
index=2. Of course, aix=0 there is nod dependence, and
two BPS supermultiplets—those witfg, T} charges(0,1)
and (1,1)—are degenerate. Away from the point=0 the
masses of these states are no longer equal; there are two
singular points with one of the two states becoming massless
at each. The region containing the pojat0 is separated
from the quasiclassical region of largeby an infinite fam-
ily of curves of the marginal stabilityCMS) on which the
infinite number of other BPS states, visible quasiclassically,
decay. Thus, the infinite tower of tHe, T} BPS states exist-
ing in the quasiclassical domain degenerates in just two
stable BPS states in the vicinity pf=0.

The CFIV index for the BPS states in question is indepen-
dent of D andF terms but does depend, generally speaking,
on twistedF terms, and the twisted mass parameigrin

The two-dimensional central charge is normalized in such garticular. The CFIV index can change discontinuously as

Way thatM kink = |ZZD| .

one crosses a CMS. For more details, see, e.g., the last work
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in Ref.[41] [in particular, Eq(2.9)] although this work does important is that it has no connection with the bulk Higgs

not allow for the possibility of a global Noether charge suchphaseW bosons which are not BPS and much heavier than

asqy)- . Neither of these nontopological excitations have connec-
In the four-dimensional'=2 SUSY theories on the Cou- tion with the bulk quarks in our microscopic model which

lomb branch it turned out possibld4] to find all CMS ex- are not BPS saturated, too.

plicitly by a careful study of the phase of the exact central

charges. Since the latter are fully equivalgfif to a central VI. ANOMALY: MATCHING THE CENTRAL CHARGES

charge in the two-dimensional sigma model, a similar analy-

sis should go through in tH@ P* model as well, see also Sec.  If #=0, which will be assumed in this section, tBP*
VII. model runs into strong coupling and its physics is determined

by quantum effects. In particular, at=0 the vacuum expec-

tation value(a3>=0; the strings become genuinely non-
D. Implications for confined monopoles Abelian.

Since, as we have proven, ti@P! model presents the  There are no massless states in @" model atu=0.
macroscopic description of solitons in our four-dimensionalln particular, the kink mass is of the order 8¢p(;), as it is
microscopic model, all results regarding the BPS kinks sumglear, e.g., from the mirror description of the modéI39.
marized in Sec. V C can be immediately translated in state©On the other hand, in this limit both the last term(f14) and
ments regarding the confined monopoles-BPS states in  the surface term iri5.12) vanish for the monopole and kink
N'=2 four-dimensional Yang—Mills theory. masses, respectively. This puzzle is solved by the following

If |Am|> A, our microscopic model has an infinite tower OPServation: anomalous terms in the central charges of both
of “dyonic” confined monopoles. In addition to the topologi- four- and two-dimensional SUSY algebras emerge. Below
cal chargeT these BPS states carry a NoethetllUcharge. We discuss the relation between the central charge anomalies
This U(1) charge has nothing to do with the electric chargell the microscopic and macroscopic theories. _
of the Julia—Zee dyon@5]. The latter is associated with the [N the microscopic theory the central charge associated
gauge W1) symmetry which remains unbroken in the With the monopole has the following general form:

't Hooft—Polyakov theory. In our theory the gauge symmetry

is completely broken; there are no long-range forces. It is a

global U(1) symmetry that survives. The “dyonic” confined {Q;Q%}zsaﬂafgzzm, (6.1
monopoles are charged with respect to this glob&l)U

Their masses are given by Eq$.39 and (5.42, with T ) ) ) )

=1 andg=k, see alsd5.43. Generally speaking, the “dy- WhereZ,p is an SU(2} singlet. It is most convenient to
onic” confined monopoles carry irrational (1) charges. Write Zsp as a topological chargé.e., the integral over a
Thus, in the presence of titeterm, they experience the same topological density,

charge “irrationalization” [46] as the 't Hooft—Polyakov

monopolesthe Witten phenomenor®

Needless to say, the dyonic confined monopoles do not Z“D:f d3x20(x). (6.2
exist without the non-Abelian strings attached to them. The
latter carry a non-Abelian magnetic flux. The elementary ex-
citations of these strings carry int_egm(l);&o butT=0.As | the model at hand
|Am| decreases, the dyonic confined monopoles become un-
stable, as one passes through a family of CMS. Eventually,
only two monopole supermultiplets survive as staplBPS 1 i i
saturated states. Aim=0 they are degenerate, which re- 5"258””””0"V(—2aa|:20+ —aF,,
flects the global S(2) symmetry of the microscopic model. 2 1

At Am#0 the nontopologicali.e., T=0 and qy )=
+1) excitations of the string are BPS states with mass
confined to the string. They can be interpreted as follows.
Inside the string the squark profiles vanish, effectively bring-
ing us towards the Coulomb branclf=0) where theW
bosons and quarks would become BPS saturated states in the
bulk. As a matter of fact, on the Coulomb branch e
boson and off-diagonal quark mass would just equal
Hence, theT=0 BPS excitation of the string is a wave of wherec is a numerical coefficient which can be obtained
such W bosons/quarks propagating along the string. Ondrom a one-loop calculation in th&=2 regularized SU(2)
could call it a “confinedW boson/quark.” It is localized in X U(1) gauge theory which is our microscopic model. The
the perpendicular but not in the transverse direction. What isperator in the square brackets represents the anomaly, since

c vanishes at the tree level. Note that the general structure of
the operator in the square brackets is unambiguously fixed by
BFor semi-integer)y,) there is an additional mass degeneracy. dimensional arguments, the Lorentz symmetry and other

C

+ ﬁ[x?awp)“%a) a2 TP

+293T/an<ap>“@<a);,ﬂW]), (6.3
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symmetries of the microscopic theory. It is only the coeffi- 2¢ 1_

cientc which is unknown. The anomalous term plays a cru- Z4D=—f dz&z< —\IfL\IfR> . (6.8
. . . T 2

cial role in the Higgs phas®. 4

It is quite difficult to calculatec directly because to this ) ) ) )
end one needs an explici=2 ultraviolet regularization of The right-hand side of this equation reproduces the two-

the four-dimensional theory. Although this is doable, the di-dimensional anomaly4.26) provided that the coefficient

rect calculation has not been completed yet. However, one
can findc indirectly, by comparing the expressions for the - 1 6.9
masses of the BPS saturated confined monopole, on the one 22 '
hand, and the BPS saturated kink in 8@(1) on the other
hand. More precisely, we will compare the correspondingThe four-dimensional central chard6.8 with the coeffi-
central charges in the microscopic and macroscopic theoriegientc given by(6.9) leads to the resul.19 for the mono-
~ The mass of the monopole in terms of the central charg@ole mass in the limitm=0, provided we use the values of
is given by the fermion condensai@.27) in the two vacudat z= * )
of the CP! model.
Mm=12|Zsp|. (6.4
L. . . . VII. 2D SIGMA-MODEL KINK AND 4D SEIBERG —-WITTEN
In the limit =0 the classical term ihZ,p| vanishes, and EXACT SOLUTION
the central charge is determined by the last anomalous term
in Eq. (6.3). Now our task is to project it onto the macro-  Why is the 't Hooft—Polyakov monopole masse., on
scopic theory. Substituting the superorientational fermiorthe Coulomb branch af=0) given by the same formula
zero modes of the strin@.49 in the square brackets in Eq. (5.7) as the masg5.14 of the strongly confined largé-
(6.3) we get monopole subject to conditiort5.2)]? This fact was noted in
Sec. V B. Now we will explain the reason lying behind this

. c a a : aboa. b c observationEn route we will explain another striking ob-
Zypp=— Ef dzd,(x1x2—1e¥M%x1x2 servation made in Ref4]. A remarkably close parallel be-
tween the four-dimensional Yang—Mills theory wily=2
e d 2 1 and the two-dimensionad P* model was noted, at an obser-
X fo rdr[ (mp(r) + r—zfg(l—P)2 vational level, by virtue of comparison of the corresponding

central charges. The observation was made on the Coulomb

1 branch of the Seiberg—Witten theory, with unconfined

ZpA( P2+ P5)+(1—p)(py— ¢2)2H_ 't Hooft—Polyakov-like monopoles/dyons. Valuable as it is,

2 the parallel was quite puzzling since the solution of @t

(6.5 model seemed to have no physics connection to the Seiberg—
Witten solution. The latter gives the mass of the unconfined

Here we recognize the same normalization integral whicHnonopole in the Coulomb phase &=0 while the CP*
emerges in Sec. IV A. Keeping in mind thiat 1 we arrive n;odel emerges only in the Higgs phase of the microscopic
at theory.

Physics lying behind the above remarkable parallel will
c . X be revealed here. First and foremost, the previous study re-
Zip=— ZJ dzo,(x5x53—1e2*N?x1x5). (6.6 vealed the fact that th@.P1 model is a macroscopic descrip-
tion of the four-dimensional Yang—Mills theory witk;=2
in the Higgs phase. This establishes a direct correspondence
between theC P! model and our microscopic model ji|
<¢. Needless to say, the correspondence covers the central
charges, CMS, dyonic excitations, aall other featuresof
abcpa, b C _ 4 V., 6.7) the two theories in 4D and 2D, respectively.
X1X2 (1+]w|?)2 LPR ' Now we will show that in the BPS sectéandonly in this
sectoj the correspondence extends further, since the param-
and substituting it ir(6.6) we finally get eteré, in fact, cannot enter relevant formulas. Therefore, one
can vary¢ at will, in particular, making it less thahu| or
even tending to zero, whe@P? is no more the macroscopic
16 similar (albeit distinc} effect exists on the Coulomb branch. Model for our microscopic theory. Nevertheless, the parallel
The relationship between the 't Hooft—Polyakov monopole mas£Xpressions for the central charges and other BPS data in 4D
and theA'=2 central charge is analyzed in the recent publication@nd 2D, trivially established au|<¢, will continue to hold

[21], which identifies an anomaly in the central charge explaining 28ven on the Coulomb branch. The “strange coincidence” we
constant(i.e., nonlogarithmig term in the monopole mass on the observed in Sec. V B is no accident. We deal here with an

Coulomb branch. The result of RdR1] is in agreement with the exact relation which stays valid including both perturbative
Seiberg—Witten formula for the monopole mass. and nonperturbative corrections.

2
+03

Rewriting the bifermion operator i(6.6) in the holomorphic
representatiofi35],

Xixa—ie
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TABLE II. The U(1)g charges of fields and parameters of the quantity and, thus, cannot depend on the Fl paraméter

microscopic theory. which is not holomorphidit is a component of the SU(R)
triplet [23]).

Field/parameter a a® \* q ¢ my A ¢§ Now recall that the mass of the monopole in the confine-

U(1)r charge 2 2 1 0 -1 2 2 0 mentphase is given by the kink mass in thé&=2CP?!

model, se€5.17). Thus, we obtain

Physically the monopole in the Coulomb phase is very I Coulomb,_ g confinement g o (7.3
different from the one in the confinement phase, see Fig. 1.
In the Coulomb phase it is a 't Hooft—Polyakov monopole, In particular, at the one-loop level, the kink mass is given by
while in the confinement phase it becomes related to a jundd. (5.15. This leads to the relatiod ,p=A between the
tion of two non-Abelian strings. Still, let us show that the 2D and 4D dynamical scales which we noted earlier as a
masses of these two objects are given by the same exprestrange coincidence,” see Ed4.23. Now we know the
sion, physical reason behind it. A puzzling question immediately
coming to one’s mind is what would happen with more quark
] Coulomb_ 4 confinement (7.1) flavors. One may suspect that adding extra quark flavors in
m m ' our microscopic theoryi.e., more than twpwill change its
) ) i renormalization-group flow while the renormalization-group
provided thatAm and the gauge couplings are kept fixed. g4 in the macroscopic model seemingly remains the same,
The superscripts refer to the Coulomb and monopoleyich would certainly destroy the correspondence. This con-
confining phases, respectively. clusion is wrong because, with more than two flavors in the
Our point is that the mass of the monopole cannot depenghicroscopic theory, the strings that form in the microscopic
on the FI parametef. Start from the monopole in the Cou- he6ry hecome semilocit7]. Semilocal strings have addi-
Iomb phase at=0. Its mass is given by the exact Seiberg—iional zero modes associated with the change in their trans-
Witten formula[12] verse size. Thus, the moduli space of these strings changes,
and is no longer given by th€ P model[5]. The macro-
scopic model is just different.
Summarizing, the exact expression for the BPS kink
masses in the 2D sigma model is given |&yp|, see Egs.
(5.39 and(5.42. These are also the expressions for the con-
, (7.2  fined monopolegand dyonic monopolgsn the 4D Yang—
Mills theory, and, in view of the above, the expressions co-
inciding with the SU2) Seiberg—Witten monopole/dyon
wherea‘g is the dual Seiberg—Witten potential for the @J  solution on the Coulomb branch at the particular paift
gauge subgroup, and we take into account thalNfer 2 the = — ul/\2. Although we do not discuss it in the present pa-
first coefficient of theB function is 2. Herea®= —u/\2 is  per, the above relation can be generali¢efd[4,48]) to theo-
the argument o&2 , the logarithmic term takes into account ries with the SUN) X U(1) gauge group antl;=N flavors
the one-loop result3.8) for the SU2) gauge coupling at the on the four-dimensional side, a@PN~1) sigma models on
scaleu, while the power series is the expansion in instantonthe two-dimensional side. This is because the effective
induced corrections. world-sheet theory for non-Abelian strings iN=2 QCD
Now, if we introduce a small FI parametér=0 in the  with the SUN) X U(1) gauge group and;=N flavors is the
theory, on dimensional grounds, we could expect in () CP(N~1D sigma model5,3]. We are planning to return to this
corrections to the monopole mass in powers/éfA and/or  issue elsewhere.
V&l u. These corrections aferbiddenby the U(1) charges.
Namely, the U(1) charges ofA andu=Am are equal to 2 VIII. CONCLUSIONS
[and so is the U(J charge of the central charge under con-
sideratior] while £ has a vanishing U(}) charge. For con-
venience, the U(XH charges of different fields and param-

eters of _the mlcrOSkCOp'C theoryk are collected in Table II'ation is the quasiclassical treatment of the string junctions in
Thus, neither (/¢/A)¥ nor (JJé/ w)¥ can appear. the domain

By the same token, we could start from the confined
monopole at largé, and study the dependence of the mono- A<|Am|<VE.
pole (string junction mass as a function d@f as we reduce.
Again, the above arguments based on the Y(@)arges tell The BPS sector is fully solvable. The confined monopole
us that corrections in powers af/ /¢ and u/\/¢ cannot ap-  carries two elementary strings attached to it, and can be
pear. This leads us to E(7.1). viewed as a string junction. We derived a complete set of the
Another way to arrive at the same conclusion is to ob-first-order master equations, and found their solutions corre-
serve that the mass of the monopole is determined by theponding to} and; BPS saturation. The string junctionjs
central chargg6.2). This central charge is a holomorphic BPS. We obtained the orientational and superorientational

M S]oulomb: \/E

o
a%(a3=——

V2

pon e [A
—In—+ Cyl —
m A 'ukgl k(#)

In this paper we studied various dynamical regimes asso-
ciated with the confined monopoles that occur on the Higgs
branch ofA/=2 two-flavor QCD. The focus of our consider-
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zero modes, introduced the corresponding modgliasi- the quarks acquire magnetic quantum numipéds and their

moduli) and developed a macroscopic description of stringsondensation should trigger confinement of color-electric

and their junctions based on two-dimensio@P! model charges.

with a twisted mass relate@qua) to the difference of the Note addedDavid Tong has just informed us that he is

mass parameters of two flavors in our microscopic theoryfinalizing a paper, a sequel to his inspiring publicat[6,

The masses and other characteristics of the confined mon#thich has an overlap with the results reported here.

poles are matched with those of tlP!-model kinks. The

matching reveals, in particular, the occurrence of an anomaly Note added in proof

in the monopole central charge in 4D Yang—Mills theory. After this paper was submitte@nd acceptedfor publi-
Building on the established identification of the micro- cation in Physical Review D, we became aware of some new

scopic and microscopic models, we expand in two cruciafircumstances. First, string junctions in the Yang-Mills-

directions. We study what becomes of the confined monopol&199S system were consideréd a nonsupersymmetric con-

in the bona fidenon-Abelian limitAm—0 where the global €XV in the 1980's. In a model with the 3B)—U(1)—Z,

SU(2) symmetry is restored. To this end we considered sucRymmetry breaking pattern it was foufs0] that there exist

monopolegclassically they would become massless and jn WO d|st|nct(_degenerat)estrmgs, each ca_rrymgv?_/e units Qf
. . . the magnetic flux. Although these strings had no orienta-
finitely spreadl as quantum states interpolating between two

vacua of theC PL model with vanishing twisted mass. This is tional moduli, they did support kinks interpolating between

highl i ) h lution is K h them, which were called “monopole beads” by the authors.
a highly quantum regime, whose solu |oln IS known, OWeverTl'opological arguments were presenfé@] proving the sta-
e.g., from the mirror description of tH@P*- model. The clas-

; ) bility of such field configurations. Further analysis was car-
sical would-be explosion never happens. Instead, the mongieq out in Ref.[51] where it was shown that, in fact, many

pole becomes stabilized by nonperturbative dynamics in thgopylar models of the typé— H—Z, do not support stable
effective 2D sigma model on the string world sheet. Thismonopole beads. Non-translational zero modes of strings
monopole, aka th€ P*-model kink, acquires a nonvanishing were discussed in a(@W)xU(1) model[52,53 and later, in
mass of the order of and a finite size of the order & *.  more contrived models, if54] (the latter paper is entitied

Another direction is the smalf-domain. If Am is kept  “Zero Modes of Non-Abelian Vortices). Kibble and Hind-
fixed, while ¢ decreases, we move towards a weaker confinemarsh’s results were generalized to cover various gauge
ment, eventually ending up on the Coulomb braiich., ¢  groups in[55-57,16. In various models the monopole and
=0) where the Seiberg—Witten exact solution applies. Needvortex fluxes were showib5-57,14 to match each other, so
less to say, in this limit the P model is irrelevant to the that monopoles can be confined by one or several strings of
macroscopic description. In the Coulomb phase thé25U Various kinds that get attached to monopoles in the Higgs
gauge subgroup gets broken down téLU[11], but the re-  Phase.

sidual U1) is not broken if A’=2 is maintained. The break- It is worth emphasizing that, along with apparent similari-
ing of U(1) occurs only if an explicit breaking af'=2 is ties of which we will say later, there are drastic distinctions

introduced “by hand,” and strings which develop in this Casebe_tween the “non—AbeIian str?ngs” we cor,15ider herg and the
are Abelian (Abrikosov—Nielsen—Olesen strings. The strings that were discussed in the 1980's. In particular, the

monopole never becomé®na fidenon-Abelian, although it example treated in Ref54], the gauge group is not com-
P : : ] 9 letely broken in the vacuum, and, therefore, there are mass-
acquires a mass given by the Seiberg—Witten formula. Phys-

. . . ess gauge fields in the bulk. If the unbroken generator acts
ics 1of the Coulomb phase has nothing to do with Fhat of thqﬁontrivially on the string flux(which is proportional to a
CP* model. And, nevertheless, as was observed in Riéf.

1 e broken generatgrthen it can and does create zero modes.
the BPS spectrum of th€P" model is in one-to-one corre-  gome divergence problems ensue.

spondence with the exact Seiberg—Witten solution. In contrast, in our case the gauge group is completely
The puzzle is solved by the following observation. Phys-hroken(up to a discrete subgrou). The theory in the bulk

ics of our microscopic model in the Higgs phage;0, is s fully Higgsed. The unbroken group $2)c. ¢, a combina-

perfectly similar to that of th&CP* model. More precisely, tion of the gauge and flavor groups, is global. There are no

the BPS sectors can be mapped one onto another. On tleassless fields in the bulk.

other hand, holomorphic nature of the central charges pre- We could model the example considered[84] if we

clude them from developing &dependence. Therefore, BPS gauge our unbroken global symmetry @V, ¢ with respect

data in the Higgs phase are related to those in the Coulomto yet anotheiad hocgauge fieldB,,.

phase. Some technical points first introduced in REb4] are
Needless to say, of more practical interest is condensatiodlose to constructions exploited in our papgts?,27] and

of non-Abelian monopoles which must be responsible forthe present paper. In particular, generation0,3 compo-

non-Abelian confinement of quarks—a phenomenon dual tments of the gauge potential upon switching on tfede-

the one studied in this paper, where confined are non-Abeliapendence of the moduli, determined by an extra profile func-

monopoles, while quarks condense. We are not sure how tiion p [see Eq(4.1)] was first implemented ih54].

dualize our results. One way to approach this problem is a We are very grateful to Mark Hindmarsh and M.A.C.

reduction of the quark mass parametens,. If they get Kneipp for pointing out to us the above publications which,

sufficiently small, below the Argyres—Douglas poi9], unfortunately, escaped our attention.
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We use this opportunity to add that the Hanany-Tong pastringsg. In this case, solving the first order equations seems
per mentioned in our Note addé¢dbove, was posted on 15 to be an easier task than in ours. This paves the way to a full
March[58]. Another relevant development was reported in aanalytical solution.
publication of Isozumiet al. [59] which was posted on 14
May. The authors obtained a general solution of 1/4 BPS
equations similar to those we have derived and discussed in ACKNOWLEDGMENTS
the bulk of the papefsee also our previous work4,2]).

Their construction is applicable in the strong coupling limit We are grateful to Alexander Gorsky, Adam Ritz, and

in U(N) gauge theories with the number of fundamental hy-Arkady Vainshtein for very useful discussions. We would

permultiplets exceedindy. In fact, due to this reason their like to thank N. Dorey for extremely valuable communica-

strings are “semilocal strings.” In this case one has Higgstions. The work of M.S. is supported in part by DOE Grant

branches instead of isolated vacua, as is the case in olNo. DE-FG02-94ER408. A.Y. is supported in part by the

analysis. When one goes to the strong coupling limit, theRussian Foundation for Basic Research Grant No. 02-02-
model effectively reduces to a sigma model on the Higgsl7115, by INTAS Grant No. 00-00334, and by Theoretical

branch. Strings become instantons lifted in 4&milocal Physics Institute at the University of Minnesota.
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