
PHYSICAL REVIEW D 70, 045004 ~2004!
Non-Abelian string junctions as confined monopoles
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Various dynamical regimes associated with confined monopoles in the Higgs phase ofN52 two-flavor
QCD are studied. The microscopic model we deal with has the SU(2)3U(1) gauge group, with a Fayet–
Iliopoulos term of the U~1! factor, and large and~nearly! degenerate mass terms of the matter hypermultiplets.
We present a complete quasiclassical treatment of the BPS sector of this model, including the full set of the
first-order equations, derivations of all relevant zero modes, and derivation of an effective low-energy theory
for the corresponding collective coordinates. The macroscopic description is provided by aCP1 model with or
without twisted mass. The confined monopoles—string junctions of the microscopic theory—are mapped onto
BPS kinks of theCP1 model. The string junction is14 BPS. Masses and other characteristics of the confined
monopoles are matched with those of theCP1-model kinks. The matching demonstrates the occurrence of an
anomaly in the monopole central charge in 4D Yang–Mills theory. We study what becomes of the confined
monopole in thebona fidenon-Abelian limit of degenerate mass terms where a global SU~2! symmetry is
restored. The solution of the macroscopic model is known, e.g., from the mirror description of theCP1 model.
The monopoles, akaCP1-model kinks, are stabilized by nonperturbative dynamics of theCP1 model. We
explain an earlier rather puzzling observation of a correspondence between the BPS kink spectrum in theCP1

model and the Seiberg–Witten solution.
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I. INTRODUCTION

This is the third work in the project devoted to investig
tion of the string/D-brane phenomena in supersymme
gauge theories@1,2#. In the first work@1# we studied Abelian
strings ending on BPS domain walls~D-branes! and localiza-
tion of a ~211!-dimensional U~1! gauge field on the wall.
The second work@2# was devoted to localization of non
Abelian fields on a stack of BPS domain walls, and1

4 BPS
junctions of non-Abelian strings with the walls. Here w
extend the analysis and study14 BPS non-Abelian string
junctions. This very interesting phenomenon has a clear
physical picture behind it—it describes monopoles in
confined phase. We are building the present analysis on
previous results, as well as on the results of Refs.@3–6#
interspersed in the fabric of the present work.

Results and techniques of string/D-brane theory, being
plied to non-Abelian field theories~both supersymmetric an
non-supersymmetric!, lead to qualitative and quantitativ
predictions which became especially numerous after the
covery @7# of the ADS/CFT correspondence. If gauge the
ries at strong coupling are in a sense dual to string/D-br
theory, they must support domain walls~or D-branes! @8#,
and we know they do@9,10#. In addition, string/D-brane
theory teaches us that a fundamental string that starts
confined quark can end on the domain wall. In the dual
scription the confined quark becomes a confined monop
This is our primary object of study in the present paper. T
question we ask is how the confined monopole connect
the flux tube.
1550-7998/2004/70~4!/045004~28!/$22.50 70 0450
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Our task is to study this phenomenon in a controlla
manner. To this end we will use a unique model whi
emerged recently asthe oneproviding an ideal theoretica
environment. The model will allow us to study, in a qua
classical regime, confined monopoles whose magnetic
flows through non-Abelian strings attached to them. The p
dictive power of the model derives from the fact that it h
exactlyN52 supersymmetry~i.e., eight supercharges!. The
non-Abelian strings are12 BPS, while the confined mono
poles are1

4 BPS saturated.
Let us outline some basic features of this model, wh

we will refer to as ‘‘microscopic.’’ We considerN52 QCD
@11,12# with the gauge group SU(2)3U(1) with Nf52 fla-
vors of massive fundamental matter hypermultiplets~quarks!
perturbed by the Fayet–Iliopoulos~FI! term @13# of the U~1!
factor. In this theory we focus on a special so-calledr 52
vacuum@14–16# in which two quark flavors develop vacuum
expectation values~VEVs!. This vacuum is at weak coupling
if the quark mass termsm1,2 are large enough. They may o
may not be equal. We consider both cases. Ifm15m2, the
SU~2! gauge group remains unbroken by VEVs of the a
joint fields. The quark condensation does break the ga
group SU(2)3U(1) at a scalej ~FI parameter! but leaves a
global diagonal SU(2)C1F subgroup of the gauge and flavo
groups unbroken. It was recently shown@3# that in this case
the flux tubes~strings! acquire additional orientational zer
modes associated with rotation of the color magnetic fl
inside the SU~2! group ~similar results in three dimension
were obtained in@5#!. This makes them genuinely non
Abelian. Moreover, it was found@3,5# that the low-energy
©2004 The American Physical Society04-1
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FIG. 1. Various regimes for
the monopoles and flux tubes. Th
dynamical scale parametersL are
the same in the microscopic an
microscopic theories. The effec
tive world-sheet theory we
derive—the twisted-massCP1

model—applies to the last two re
gimes: L!uDmu!j1/2 ~the left
lower corner! and Dm→0 ~the
right lower corner!. The latter case
corresponds to the vanishin
twisted mass.
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dynamics of the orientational zero modes of the non-Abe
strings are described by an effective~111!-dimensionalCP1

model1 on the string world sheet. The two-dimensionalCP1

model describing dynamics of the collective coordinates w
be referred to as ‘‘macroscopic.’’

In fact, we can view our SU(2)3U(1) microscopic
theory as a theory with the gauge group SU~3! broken down
to SU(2)3U(1) at a large scale, of the order ofm1,2. This
SU~3! theory has three types of monopoles associated w
three roots of SU~3! algebra. Two of them are confined b
‘‘elementary’’ strings which we denote as~1,0! and~0,1! @16#
@here (n,k) denotes the string with two winding numbersn
andk with respect to two U~1! subgroups of SU~3!, see Sec.
III A for more details#. These monopoles are very heav
with masses of the order ofm1,2/g2, and we do not touch
them in this paper. They were considered recently in R
@17#. We will study only the monopoles which lie entirel
inside the SU~2! factor of the SU~3! ‘‘proto’’ group. They are
much lighter thanm1,2/g2. Classically, on the Coulomb
branch~i.e., when the FI parameterj vanishes!, their mass is
proportional touDmu/g2 whereDm5m12m2. In the limit
Dm→0 they become massless, formally, in the classical
proximation. Simultaneously their size becomes infinite@18#.
The mass and size are stabilized by confinement eff
which are highly quantum. The confinement of monopo
occurs on the Higgs branch, atjÞ0. An interplay between
Dm, j and the dynamical Yang–Mills scaleL leads2 to a
spectrum of dynamical scenarios, all of which are interest
and will be discussed in the present paper from a uni
point of view.

A qualitative evolution of the monopoles under consid
ation as a function of the relevant parameters is presente
Fig. 1. We begin with the limitj→0 while Dm is kept fixed.

1CPN21 for the gauge group SU(N)3U(1).
2L is also the dynamical scale of the 2DCP1 model.
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Then the corresponding microscopic theory supports
conventional ~unconfined! ’t Hooft–Polyakov monopoles
@19# due to the spontaneous breaking of thegaugeSU~2!
down to U~1!,

^a3&52
1

A2
Dm ~1.1!

~the upper left corner of Fig. 1!. If we allow j to be nonva-
nishing but

uDmu@Aj, ~1.2!

then the effect which comes into play first is the above sp
taneous breaking of the gauge SU~2!. Further gauge symme
try breaking, due tojÞ0, which leads to complete Higgsin
of the model and the string formation~confinement of mono-
poles!, is much weaker. Thus, we deal here with the form
tion of ‘‘almost’’ ’t Hooft–Polyakov monopoles, with a typi-
cal size;uDmu21. Only at much larger distances,;j21/2,
the charge condensation enters the game, and forces the
netic flux, rather than spreading evenly a la´ Coulomb, to
form flux tubes~the upper right corner of Fig. 1!. There will
be two such flux tubes, with the distinct orientation of t
color-magnetic flux. The monopoles, albeit confined, a
weakly confined.

Now, if we further reduceuDmu,

L!uDmu!Aj, ~1.3!

the size of the monopole (;uDmu21) becomes larger than
the transverse size of the attached strings. The monopole
squeezed in earnest by the strings—it becomes abona fide
confined monopole~the lower left corner of Fig. 1!. A mac-
roscopic description of such monopoles is provided by
twisted-massCP1 model, on which we will dwell below.
The value of the twisted massm5Dm. The confined mono-
4-2
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NON-ABELIAN STRING JUNCTIONS AS CONFINED . . . PHYSICAL REVIEW D70, 045004 ~2004!
pole is nothing but the twisted-mass sigma-model k
which has a typical size;umu21.

As we further diminishuDmu approachingL and then
getting belowL, the size of the monopole grows, and, cla
sically, it would explode. This is where quantum effects
the world-sheet theory take over. It is natural to refer to t
domain of parameters as the ‘‘regime of highly quantum
namics.’’ While the thickness of the string~in the transverse
direction! is ;j21/2, the z-direction size of the kink repre
senting the confined monopole in the highly quantum reg
is much larger,;L21, see the lower right corner of Fig. 1

While the monopoles on the Coulomb branch~i.e., those
of the ’t Hooft–Polyakov type! are thoroughly discussed i
the literature, the Higgs-branch monopoles—the confin
monopoles—received much less attention. We intend
close this gap. We will study what becomes of the no
Abelian SU~2! monopole in the confinement phase which
set by the quark condensation and formation of the flux tu
~at nonvanishing FI parameterjÞ0). The monopole-
antimonopole pair will be confined in the mesonlike state
a composite string, a bound state of two ‘‘elementar
strings @16# @see Fig. 2~a!#. Unfortunately, such mesons a
unstable and cannot be studied in the static limit. Instead
will focus on another~static! field configuration typical of
the confinement phase: an SU~2! monopole with two semi-
infinite elementary strings attached to it@see Fig. 2~b!#. This
configuration, a junction of two elementary strings, is sta
and, moreover,14 BPS saturated.

We perform a complete quasiclassical analysis of our
croscopic model. A full set of the first-order master equatio
describing all 1

2 and 1
4 BPS topological defects—domai

walls, strings, and all possible junctions—is derived. Wh
the domain walls, strings and the wall-string junctions we
studied previously, we expand the analysis to cover the c
of the string junctions. We find appropriate solutions of t
master equations. We derive zero modes, both bosonic
fermionic, specific for non-Abelian strings and their jun
tions. The corresponding collective coordinates~moduli! are
introduced, which allows us to obtain the macroscopic
scription of the topological defects in question. We pres
solid quantitative evidence that atAj@uDmu the effective
~111!-dimensional theory on the string world sheet is t
CP1 model, and that the confined monopoles of the mic
scopic theory must be identified with the kinks of the ma
roscopicCP1 model. In particular, we explicitly demonstra
that the first-order BPS equations of the 4D Yang–M

FIG. 2. ~a! The monopole-antimonopole pair;~b! the monopole
with two ~infinitely long! elementary flux tubes attached to it.
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theory reduce to first-order BPS equations for t
CP1-model kink. We match the mass of the confined 4
Yang–Mills monopole with that of theCP1-model kink.
This evidence completes the proof of the statements
were made in the literature previously@6,2#.

The mass match mentioned above requires the presen
an anomaly in the monopole central charge of 4D Yan
Mills theory which must match its counterpart in theCP1

model. While the anomaly in theCP1 model was known
previously @20#, that in the Yang–Mills theory was no
known. A fermion operator, an anomaly in the anticommu
tor $Q,Q%, crucial for the confined monopoles, was iden
fied in our recent publication@2#. Here we further elaborate
on this issue. Meanwhile, another anomalous contributi
crucial for the monopoles in the Coulomb regime, was ide
tified and analyzed in Ref.@21#.

The identification of the confined monopoles of 4
Yang–Mills theory with the kinks of the 2DCP1 model
gives us two advantages. First, we can and do explore
highly quantum regime ofDm, m→0. In this limit no qua-
siclassical treatment is available. The global SU~2! gets re-
stored. Confined monopoles do not disappear, they surv
Appropriate exploration tools are available in the framewo
of the CP1 model.

Second, we can and do explain a long-standing puzz
observation made in Ref.@4#. A comparison of the corre-
sponding central charges revealed@4# a close parallel be-
tween four-dimensional Yang–Mills theory withNf52 and
the two-dimensionalCP1 model. The observation referred t
the Coulomb branch of the Seiberg–Witten theory, w
unconfined ’t Hooft–Polyakov-like monopoles/dyons. W
clarify physics responsible for this correspondence. In fa
the twisted-massCP1 model is equivalent to theHiggs
phaseof four-dimensional Yang–Mills theory withNf52.
These two theories are ‘‘microscopic-macroscopic’’ partne
We show, however, that the BPS data are independent o
value of the FI parameterj, because this parameter has theR
parity that does not match that of the central charges. Th
fore, in the BPS sector one can vary the FI parameter at w
in particular, pass to the limitj→0, where one finds onese
on the Coulomb branch. Thus, thebona fidecorrespondence
refers to the Higgs phase where it is rather obvious,
holomorphy allows one to extend it to the Coulomb bran
too.

The paper is organized as follows. In Sec. II we outli
our microscopic 4D Yang–Mills theory: SU(2)3U(1) two-
flavor QCD with the Fayet–Iliopoulos term and extend
N52 supersymmetry. Section III is devoted to description
the non-Abelian strings and introduction of orientation
moduli. In Sec. IV we derive and study the effective 2
theory on the string world sheet. In particular, we show,
virtue of an explicit calculation, that a nonvanishingDm
induces the twisted mass termm in the world-sheetCP1

model, andDm5m. Next we calculate superorientation
~fermion! zero modes of the non-Abelian string. In Sec.
we establish and exploit the correspondence between
monopole and the junction of two elementary strings. W
solve the first-order master equations for the junction, ma
the monopole and kink masses, and discuss the multipli
4-3
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M. SHIFMAN AND A. YUNG PHYSICAL REVIEW D 70, 045004 ~2004!
matching and other implications for the confined monopo
In Sec. VI we consider monopoles/kinks in the quantum lim
Dm, m→0 and match anomalies in the central charges
the corresponding superalgebras. In Sec. VII we explain w
the BPS sector of the two-dimensionalCP1 model is related
to the Seiberg–Witten solution of 4D super-Yang–Mi
theory: a direct correspondence is betweenCP1 and the
Higgs phase of Yang–Mills; holomorphy of the centr
charges makes possible a subsequent transition to the
lomb branch ~the Seiberg–Witten solution!. Finally, Sec.
VIII briefly summarizes our conclusions.

II. A BRIEF SUMMARY OF THE THEORETICAL SET-UP

Our task is to study the string/D-brane phenomena in
persymmetric gauge theories in a fully controllable mode.
appropriate theoretical set-up gradually emerged in the
three years@1–3,16#—a particularN52 gauge model with
judiciously chosen matter hypermultiplets and a special
justment of the matter mass terms. The model evolved in
direction of simplification; currently it presents a theoretic
scene fully fit for studies of the phenomena we are interes
in.

The gauge symmetry of the model we will deal with
SU(2)3U(1). Besides the gauge bosons, gauginos and t
N52 superpartners, it has a matter sector consisting of
‘‘quark’’ hypermultiplets, with large ~and degenerateor
nearly degenerate! mass terms. One also introduces a Fay
Iliopoulos term, so that the overall superpotential takes
form

W5
1

A2
(
A51

2

~ q̃AAqA1q̃AA ataqA!

1 (
A51,2

mAqAq̃A2
1

A2
jA, ~2.1!

whereA a andA are chiral superfields, theN52 superpart-
ners of the gauge bosons of SU~2! and U~1!, respectively.
Furthermore,qA and q̃A (A51,2) represent two matter hy
permultiplets, whilej, m1 andm2 are constants, assumed
be much larger than the dynamical scale parameter of
SU~2! gauge theory, see Sec. III. The mass termsm1,2 can
always be made real and positive by virtue of an appropr
field definition. We will assume this to be the case. Mo
over, for simplicity we will assume that the Fayet–Iliopoul
parameterj is real and positive too.3 For further details of
our theoretical set-up the reader is referred to Refs.@2,3,16#.
Besides local symmetries~and besides a global SU(2)R in-
herent toN52), at m15m2 the model has a global SU~2!
flavor symmetry associated with rotations of the first a
second hypermultiplets. This ‘‘symmetric’’ point is the focu
of the present work. However, to make contact with qua

3In fact, j is the first component of an SU(2)R vector jW of the
generalized Fayet–Iliopoulos parameters introduced in@22,23#, see
Eq. ~3.35! below.
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classical results, at times we will leave the symmetric po
m15m2 and consider a deformed casem1Þm2 assuming,
however, the deformation to be small,um12m2u!m1,2. The
reader is advised to exercise caution not to confuse these
regimes.

The Fayet–Iliopoulos term triggers the spontaneo
breaking of the gauge symmetry. The vacuum expecta
values~VEVs! of the squark fields can be chosen as

^qkA&5^ q̄̃kA&5Aj

2S 1 0

0 1D ,

k51,2, A51,2, ~2.2!

up to gauge rotations. The color-flavor locked form of VEVs
in Eq. ~2.2! results in the fact that, while the theory is full
Higgsed, a diagonal SU(2)C1F survives as a global symme
try ~in the limit m15m2). This is a particular case of th
Bardakci–Halpern mechanism@24#. The most economic way
to see the occurrence of the above global symmetry
through the matrix notation

Q5S q11 q12

q21 q22D ~2.3!

~and the same forq̃). Here Q is a 232 matrix, the first
superscript refers to SU~2! ‘‘color’’ ~we will also use the
notationw r andwb meaning red and blue!, while the second
(A51 or 2! to ‘‘flavor.’’ The covariant derivatives are de
fined in such a way that they act from theleft,

¹mQ[S ]m2
i

2
Am2 iAm

a ta

2 DQ, ~2.4!

while the global flavor SU~2! transformations then act onQ
from the right. Equation~2.4! also shows our U~1! charge
convention. Needless to say,N52 supersymmetry of the
model is unaffected by the gauge symmetry breaking~2.2!.
The local and global symmetries of the model and of
vacuum state are summarized in Table I. In the vacuu
there are no massless modes, all excitations are massiv

Concluding this section it would be in order to presen
broader perspective on our theoretical set-up. This will ho
fully provide additional conceptual insights, albeit techn
cally this aspect will not be pursued. We can view our mo
as a descendant of anN52 theory with the SU~3! gauge
group broken down to SU(2)3U(1) at a high scale, of the
order of the mass parametersm1,2. This SU~3! ‘‘proto’’
theory has three types of monopoles associated with th
roots of the SU~3! algebra. Two of them are confined b

TABLE I. Symmetries of the microscopic theory and the patte
of the symmetry breaking in the vacuum.

N52 SUSY unbroken
SU~2!R unbroken
Dm50: $U(1)3SU(2)%G3SU(2)3U(1) U(1)diag3SU(2)diag

DmÞ0: $U(1)3SU(2)%G3U(1)3U(1) U(1)diag
4-4
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‘‘elementary’’ strings which we denote as~1,0! and ~0,1!
@16#. @In general, (n,k) denotes the string with two winding
numbersn andk with respect to two U~1! Cartan subgroups
of SU~3!, see Sec. III for details.# These monopoles are ver
heavy—their masses are of the order of (m1,2)/g

2—and we
do not discuss them in this paper. Note, however, that t
were considered recently in Ref.@17#. Our primary interest is
the ‘‘third’’ monopole which lies entirely inside the SU~2!
factor of the SU~3! gauge group. It is much lighter than th
two mentioned above. This is the reason why in our stud
we settle for the SU(2)3U(1) model while the full SU~3!
model is behind the scene.

III. NON-ABELIAN STRINGS

In this section we review the formalism of Ref.@3# where
non-Abelian strings were first introduced, and make adju
ments necessary for the present work. We start from U
3U(1) moduli-free string solutions found in Ref.@16# in the
casem1Þm2. Then we show how additional orientation
zero modes arise in the limitm1→m2, making the strings a
hand non-Abelian@3#.

Let us start from the casem1Þm2. One can readily con-
vince oneself that as far as the flux-tube solutions are c
cerned, it is sufficient to limit oneself to the following ansa
for the matter fields:

qkA5qD kA[
1

A2
wkA. ~3.1!

Correspondingly, we introduce the matrix

F5S w11 w12

w21 w22D , F5A2Q5A2QD , ~3.2!

where the first superscript refers to SU~2! color, while the
second refers to flavor. Note that the field identification~3.1!
is inappropriate in dealing with quantum corrections, and
particular, in the zero-mode analysis.

Then the bosonic part of the effective action of the mo
at hand takes the form4

4Here and below we use a formally Euclidean notation, e
Fmn

2 52F0i
2 1Fi j

2 , (]ma)25(]0a)21(] ia)2, etc. This is appropriate
since we are going to study static~time-independent! field configu-
rations, andA050. Then the Euclidean action is nothing but th

energy functional. Furthermore, we definesaȧ5(1,2 i tW ), s̄ ȧa

5(1,i tW ). Lowering and raising of spinor indices is performed
virtue of the antisymmetric tensor defined as«125« 1̇2̇51, «12

5« 1̇2̇521. The same raising and lowering convention applies
the flavor SU~2! indicesf, g, etc.
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S5E d4xH 1

4g2
2 ~Fmn

a !21
1

4g1
2 ~Fmn!21

1

g1
2

u]mau2

1
1

g2
2

uDmaau21Tr~¹mF!†~¹mF!1
g2

2

8
@Tr~F†taF!#2

1
g1

2

8
@Tr~F†F!22j#21

1

2
Tr$~F†@aata1a#†

1A2M†F†!~@aata1a#F1FA2M !%J , ~3.3!

wherea is the lowest component of the chiral superfieldA.
Here we introduced a 232 mass matrixM acting on the
flavor indices ofF. With our conventionM is diagonal,

M5S m1 0

0 m2
D . ~3.4!

Equation~3.3! implies that besides the squark VEVs~2.2!,
the fieldsa andaa develop vacuum expectation values, to

a52A2m, a352
1

A2
Dm, ~3.5!

where

m5
1

2
~m11m2!, Dm5m12m2 . ~3.6!

We see that atm1Þm2 the SU(2)3U(1) gauge symmetry is
broken down to U(1)3U(1) by the VEV of the adjoint sca-
lar field a3. For definiteness, we will assume thatm1.m2.
ThenDm is positive.5 If uDmu@j1/2, then the gauge symme
try breaking by ^a3& has a larger scale than that by th
squark fields. This is a more important effect leading
monopoles with masses;uDmu/g2

2. Formation of strings is
governed byj and can be viewed as a ‘‘secondary’’ effect

On the other hand, ifDm50, the gauge SU~2! group is
unbroken by the adjoint scalar VEVs, since they reduce

a52A2m, a350. ~3.7!

With two matter hypermultiplets, the SU~2! part of the gauge
group is asymptotically free, implying generation of a d
namical scaleL. If descent toL were uninterrupted, the
gauge couplingg2

2 would explode at this scale. Moreove

.,

o

5To keep our notation concise we will also use the parametem
[m12m2[Dm. This parameter is not to be confused with theN
52 breaking perturbation, e.g., Refs.@1,2#, which is routinely de-
noted bym following Seiberg and Witten@11,12#. In most casesm
will be reserved for the twisted mass in the macroscopicCP1

model, while the mass splittingDm will be used in the microscopic
4D Yang–Mills theory. We will show thatm5Dm. In some sec-
tions~e.g., Secs. IV C and VI!, for brevity,m will replaceDm in the
microscopic 4D Yang–Mills theory.
4-5
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strong coupling effects in the SU~2! subsector at the scaleL
would break the SU~2! subgroup through the Seiberg–Witte
mechanism@11#. Since we want to stay at weak coupling w
assume thatAj@L, so that the SU~2! coupling running is
frozen by the squark condensation at a small value

8p2

g2
2

52 ln
Aj

L
1•••@1. ~3.8!

Alternatively one can say that

L25j expS 2
8p2

g2
2~j!

D ~3.9!

with g2
2(j)!1.

A. Abrikosov –Nielsen–Olesen versus elementary strings

To warm up, let us discuss the conventional Abrikoso
Nielsen–Olesen~ANO! string @25# in our model.6 The exis-
tence of the ANO string is due to the fact thatp1(U(1))
5Z, ensuring its topological stability. For this solution on
can discard the SU~2! c part of the action (c stands for
‘‘color’’ !, putting Am

a 5aa[0. Correspondingly, there is n
SU~2! winding of F. Nontrivial topology is realized through
the U~1! winding of F,

F~x!5Ajeia(x), uxu→`, ~3.10!

and

A,522«,k

xk

r
, ,,k51,2, ~3.11!

wherea is the angle in the perpendicular plane~Fig. 3!, and
r is the distance from the string axis in the perpendicu
plane. Equations~3.10! and~3.11! refer to the minimal ANO
string, with the minimal winding. Needless to say, the te
sion of the ANO string is given by the standard formula

6This subsection is insensitive with regards to the choice ofDm
which may or may not vanish.

FIG. 3. Geometry of the string.
04500
r

-

TANO54pj. ~3.12!

This is not the string we are interested in here, however—
fact, in the problem at hand there are ‘‘more elementa
strings with 1

2 of the above tension, so that the ANO strin
can be viewed as a bound state of two elementary string

Where do they come from? Sincep1(SU(2)) is trivial, at
first sight it might seem that there are no new options. T
conclusion is wrong—one can combine theZ2 center of
SU~2! with the element21PU(1) to get a topologically
stable stringlike solution possessing both windings, in SU~2!
and U~1!, of the following type:

F~x!5Aj expF ia~x!
16t3

2 G , uxu→`,

A,52«,k

xk

r
, A,

357«,k

xk

r
, ,,k51,2, ~3.13!

Correspondingly, the U~1! magnetic flux is twice smaller
than in the ANO case. Since it is only the U~1! magnetic flux
that enters the expression for the appropriate central ch
~see below!, the tension of the flux tube generated by t
winding ~3.13! is

T652pj. ~3.14!

The 6 subscript corresponds to two types of element
strings in which either onlyw r or only wb are topologically
non-trivial.

We will refer to the strings corresponding to the bounda
conditions~3.13! as~1,0! and~0,1! for the following reasons.
For the case of nonequal quark masses the SU(2)3U(1)
group is broken by the adjoint scalar VEV to U(1)3U(1).
We have a lattice of strings labeled by two integer numb
(n,k) associated with the windings with respect to two gau
U~1! groups which are linear combinations of the two U~1!’s
above which are natural in the SU~3! ‘‘proto’’ theory. In this
terminology the ANO string is the sum (0,1)1(1,0)
5(1,1), see@16# for further details.

B. Embedding; first-order equations for the elementary strings

The charges of the (n,k)-strings can be plotted in the
Cartan plane of the SU~3! algebra of the ‘‘proto’’ theory. We
will use the convention of labeling the flux of a given strin
by the magnetic charge of the monopole which produces
flux and can be attached to its end. This is possible si
both the string fluxes and the monopole charges are elem
of the groupp1(U(1)2)5Z2. This convention is convenien
because specifying the flux of a given string automatica
fixes the charge of the monopole that it confines.

Our strings are formed by the condensation of squa
which have electric charges equal to the weights of the SU~3!
algebra. The Dirac quantization condition tells us@16# that
the lattice of the (n,k)-strings is formed by the roots of th
SU~3! algebra. This lattice of the (n,k)-strings is shown in
Fig. 4. Two strings (1,0) and (0,1) are the ‘‘elementary’’
‘‘minimal’’ BPS strings. All other strings can be considere
as bound states of these elementary strings. If we plot
4-6
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lines along the charges of these elementary strings~see Fig.
4!, they divide the lattice into four sectors. It turns out@16#
that the strings in the upper and lower sectors are BPS
they are marginally unstable. On the contrary, the stri
lying in the right and left sectors are~meta!stable bound
states of the elementary ones; they arenot BPS saturated.

Our study objective is the elementary string. Since
both strings,~0,1! and~1,0!, are 1

2 BPS saturated, Eq.~3.14!
is exact. These strings areabsolutely degenerate. The degen-
eracy holds beyond the classical level, with inclusion
quantum corrections, perturbative and nonperturbative. T
is important for what follows. The existence of two distin
strings with exactly degenerate tensions is a special fea
of supersymmetry implying the existence of a two-stri
junction. A similar phenomenon for domain walls—two-wa
junctions—was studied recently@26#.

The first-order equations for the BPS strings followi
from the action~3.3! are

F3*
a1

g2
2

2
s~w̄AtawA!50, a51,2,3,

F3* 1
g1

2

2
s~ uwAu222j!50,

~¹11 is¹2!wA50, ~3.15!

wheres561 is the sign of the total flux and

Fm* 5
1

2
«mnkFnk , m,n,k51,2,3 ~3.16!

~see Ref.@3# and Sec. V A!. To construct the~0,1! and~1,0!
strings we further restrict the gauge fieldAm

a to the single
color componentAm

3 , settingAm
1 5Am

2 50, and consider only
the squark fields of the 232 color-flavor diagonal form,

wkA~x!Þ0, for k5A51,2. ~3.17!

FIG. 4. Lattice of (n,k) vortices.
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The off-diagonal components of the matrixF are set to zero.
The (1,0) string arises when the first flavor has the u

winding number while the second flavor does not wind at
And vice versa, the (0,1) string arises when the second flav
has the unit winding number while the first flavor does n
wind. Consider for definiteness the (1,0) string. The so
tions of the first-order equations~3.15! will be sought for
using the following ansatz@16#:

F~x!5S eiaf1~r ! 0

0 f2~r !D ,

Ai
3~x!52« i j

xj

r 2
~12 f 3~r !!,

Ai~x!52« i j

xj

r 2
~12 f ~r !! ~3.18!

where the profile functionsf1 , f2 for the scalar fields and
f 3 , f for the gauge fields depend only onr ( i , j 51,2). Apply-
ing this ansatz one can rearrange@16# the first-order equa-
tions ~3.15! in the form

r
d

dr
f1~r !2

1

2
~ f ~r !1 f 3~r !!f1~r !50,

r
d

dr
f2~r !2

1

2
~ f ~r !2 f 3~r !!f2~r !50,

2
1

r

d

dr
f ~r !1

g1
2

2
@~f1~r !!21~f2~r !!222j#50,

2
1

r

d

dr
f 3~r !1

g2
2

2
@~f1~r !!22~f2~r !!2#50.

~3.19!

Furthermore, one needs to specify the boundary conditi
which would determine the profile functions in these equ
tions. Namely,

f 3~0!51, f ~0!51;

f 3~`!50, f ~`!50 ~3.20!

for the gauge fields, while the boundary conditions for t
squark fields are

f1~`!5Aj, f2~`!5Aj, f1~0!50. ~3.21!

Note that since the fieldf2 does not wind, it need not vanis
at the origin, and it does not. Numerical solutions of t
Bogomolny equations~3.19! for the (0,1) and (1,0) strings
were found in Ref.@3#, see, e.g., Figs. 1 and 2 in this pape

C. Non-Abelian moduli

Now let us assumeDm50 and demonstrate the occu
rence of a more general solution@3# which contains non-
4-7
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Abelian moduli. The adjoint scalar VEV does not break t
gauge SU~2! if Dm50. The relevant homotopy group in th
case is the fundamental group

p1S SU~2!3U~1!

Z2
D5Z. ~3.22!

This means that the (n,k)-string lattice reduces to a towe
labeled by a single integer (n1k). For instance, the (1
21) string becomes classically unstable~no barrier!. On the
SU~2! group manifold it corresponds to a winding along t
equator on the sphereS3 ~Fig. 5!. Clearly this winding can be
shrunk to zero by contracting the loop towards north or so
poles@27#. On the other hand, the elementary (1,0) and (0
strings cannot be shrunk, as was explained above. They
respond to a half-circle winding along the equator. The (1
and (0,1) strings form a doublet of the residual glob
SU(2)C1F .

A remarkable feature of the (1,0) and (0,1) strings is
occurrence of non-Abelian moduli which are absent in
ANO strings. Indeed, while the vacuum fieldFvac5AjI
~here I is 232 unit matrix! is invariant under the globa
SU(2)C1F ,

F→ULFUR , UR5UL
† , ~3.23!

the string configuration~3.18! is not.7 Therefore, if there is a
solution of the form~3.18!, there is in fact a family of solu-
tions obtained from~3.18! by the combined global gauge
flavor rotation. Say, for quark fields it reads

F~x!→eibeivW tW /2F~x!e2 ibe2 ivW tW /2. ~3.24!

The U~1! factoreib does not act on the string solution~3.18!.
It is not to be counted. Thus, what remains is SU~2!. In fact,
it is the coset SU~2!/U~1!, as is rather obvious from Eq
~3.18!: rotations around the third axis in the SU~2! space
leave the solution with the asymptotics~3.18! intact.

Thus, the introduction of the ‘‘moduli matrix’’U allows
one to get a generic solution of the non-Abelian string Bo
molny equation with the following asymptotics atuxu→`:

7Below we will drop the subscriptsR andL.

FIG. 5. Unwinding the (1,21) string.
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F~x!5Aj expS i
a~x!

2 DexpS ia~x!
nW tW

2
D , ~3.25!

wherenW is a moduli vector defined as

nata5Ut3U21, a51,2,3. ~3.26!

It is subject to the condition

nW 251. ~3.27!

At n5$0,0,61% we get the field configurations quoted in E
~3.13!. Every given matrixU defines the moduli vectornW
unambiguously. The inverse is not true. If we consider
left-hand side of Eq.~3.26! as given, then the solution forU
is obviously ambiguous, since for any solutionU one can
construct two ‘‘gauge orbits’’ of solutions, namely,

U→U exp~ iat3!,

U→exp~ ibnW tW !U. ~3.28!

We will use this freedom in what follows.
At finite uxu the non-Abelian string centered at the orig

can be written as@3#

F~x!5US eiaf1~r ! 0

0 f2~r !
DU21

5e
i
2 a(11nata)US f1~r ! 0

0 f2~r !
DU21,

Ai
a~x!52na« i j

xj

r 2
@12 f 3~r !#,

Ai~x!52« i j

xj

r 2
@12 f ~r !#, ~3.29!

where the profile functions are the solutions to Eq.~3.19!.
Note that

US f1 0

0 f2
DU215

f11f2

2
1nata

f12f2

2
. ~3.30!

Now it is particularly clear that this solution smoothly inte
polates between the (1,0) and (0,1) strings: ifn5(0,0,1),
the first-flavorr squark winds at infinity while forn5(0,0,
21) it is the second-flavorb squark.

Since the SU~2! C1F symmetry is not broken by the
squark vacuum expectation values, it is physical and
nothing to do with the gauge rotations eaten by the Hig
mechanism. The orientational modulinW are not gauge arti-
facts. To see this we can constructgauge invariantoperators
which have explicitnW -dependence. Such a construction
convenient in order to elucidate features of our non-Abel
string solution as well as for other purposes.
4-8
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As an example, let us define the ‘‘non-Abelian’’ fiel
strength~to be denoted by bold letters!,

F3*
a5

1

j
TrS F†F3*

b tb

2
FtaD , ~3.31!

where the subscript 3 marks thez axis, the direction of the
string ~Fig. 3!. From the very definition it is clear that thi
field is gauge invariant.8 Moreover, Eq.~3.29! implies that

F3*
a52na

~f1
21f2

2!

2j

1

r

d f3

dr
. ~3.32!

From this formula we readily infer the physical meaning

the modulinW : the flux of thecolor-magnetic field9 in the flux

tube is directed alongnW ~Fig. 6!. For strings in Eq.~3.18!, see
also Eq.~3.13!, the color-magnetic flux is directed along th
third axis in the O~3! group space, either upward or dow
ward. It is just this aspect that allows us to refer to the strin
above as ‘‘non-Abelian.’’ They are as non-Abelian as it g
at weak coupling.

Although the flux tubes in non-Abelian theories at we
coupling were studied in numerous papers in recent ye
@16,28–33#, in the previous constructions the flux was a
ways directed in a fixed group direction~corresponding to a
Cartan subalgebra!, and no moduli that would freely gover
its orientation in the group space were ever obtained.

To conclude this section let us present the non-Abe
string solution ~3.29! in the singular gauge in which th
squark fields atr→` tend to fixed VEVs and do not wind
~i.e., do not depend on the polar anglea at uxu→` in thex1,2
plane!. In the singular gauge we have

8In the vacuum, where the matrixF is that of VEV’s, F3*
a and

F3*
a would coincide.

9Defined in the gauge-invariant way, see Eq.~3.31!.

FIG. 6. Bosonic modulina describe the orientation of the colo
magnetic flux of the (0,1) and (1,0) strings in the O~3! group space,
Eq. ~3.32!.
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F5US f1~r ! 0

0 f2~r !
DU21,

Ai
a~x!5na« i j

xj

r 2
f 3~r !,

Ai~x!5« i j

xj

r 2
f ~r !. ~3.33!

In this gauge the spatial components ofAm fall fast at large
distances. If the chromo-magnetic flux is defined as a cir
lation of Ai over a circle encompassing the string axis, t
flux will be saturated by the integral coming from the sm
circle around the~singular! string origin. We will use this
singular-gauge form of the string solution later.

D. Supersymmetry

So far theN52 SUSY nature of the model at hand wa
behind the scene. Now it is in order to discuss this asp
The central charge relevant to flux tubes is the so-ca

( 1
2 , 1

2 ) central charge@34#; in N52 theory it can be written
as follows@23#:

$Qa
f Q̄ḃg%52dg

f ~sm!aḃPm14i ~sm!aḃjg
f E d3x

1

2
«0mdgFdg ,

~3.34!

wherePm is energy-momentum operator, while10

jg
f 5~tm/2!g

f jm, ~3.35!

wherejm is an SU(2)R triplet of the Fayet–Iliopoulos pa
rameters. In the model under consideration onlyj1[j is
nonzero, so that

jg
f 5

j

2
~t1!g

f . ~3.36!

The central charge is the second term in Eq.~3.34!. Note that
it is only the U~1! field strength tensor that appears in th
central charge. Moreover, it is obvious that

E d3x
1

2
«0mdgFdg5LnmE dxdyF3*

5Lnm3~Magnetic Flux!52pLnm ,

~3.37!

whereL is the string length andnm is the unit vector pointing
in the direction of the string axis~which coincides with thez
axis in our convention, see Fig. 3!. The strings in question
are 1

2 BPS saturated so that~i! the combination of Eqs.~3.34!
and~3.37! implies that the tensions~3.14! are exact, and~ii !

10The factori in the second term on the right-hand side is due
our ‘‘Euclidean’’ notation, see footnote to Eq.~3.3!. Note that the
definition of jg

f in Ref. @23# differs by a factor of 2.
4-9
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a ‘‘macroscopic’’ world-sheet theory must have four sup
charges, i.e., must beN52 in terms of two-dimensiona
world-sheet classification. This is because the original ‘‘m
croscopic’’ theory has eight supercharges. Note that
Fayet–Iliopoulos parameter is not renormalized by quan
corrections.

The flux tube is characterized by two translational mod
x0 and y0, the positions of the string center in the perpe
dicular plane. The four supercharges that act nontrivia
supplementx0 andy0 by four fermionic superpartnersh i ( i
51,2,3,4), supertranslational moduli. As usual, the~super!-
translational moduli split~i.e., completely decouple! from
those describing internal dynamics. The dimension of rep
sentation is four, but this is a trivial multiplicity which we d
not count when we speak of distinct elementary strings
fact, a ‘‘distinct’’ string means that we deal with distinc
dimension-four supermultiplets.

We will return toN52 superalgebra, in the anticommu
tator $Qa

f Q b
g % relevant to the issue of string junctions~con-

fined monopoles!, in Sec. VI.

IV. MACROSCOPIC THEORY

In this section we will derive an effective low-energ
theory for orientational collective coordinates on the str
world sheet. As was already mentioned, this macrosco
theory is a two-dimensional supersymmetricCP1 model.
This model is discussed in great detail in the review pa
@35# from which we borrow many definitions, notation an
normalizations. At first we will review derivation@3# of the
effective theory for the bosonic modulina. In Secs. IV A and
IV B the mass difference is set to zero,Dm50. Switching
on Dm will lead us to theCP1 model with a ‘‘twisted mass.’’
Then we will work out the fermionic part.

A. Deriving the kinetic term; a basic normalizing integral

Assume that the orientational collective coordinatesna

are slow varying functions of the string world-sheet coor
natesxk , k50,3. Then the modulina become fields of a
~111!-dimensional sigma model on the world sheet. Sin
the vectorna parametrizes the string zero modes, there is
potential term in this sigma model. We begin with the kine
term @3#.

To obtain the kinetic term we substitute our solutio
which depends on the modulinW , in the action~3.3! assuming
that the fields acquire a dependence on the coordinatesxk via
na(xk). Technically it is convenient to work with the solutio
~3.33! in the singular gauge. In doing so we immediate
observe that wemustmodify the solution.

Indeed, Eq.~3.30! or ~3.33! was obtained as an SU(2)C1F
rotation of the ‘‘basic’’ (1,0)-string~3.18!. Now we make
this transformation local~i.e., depending onxk). Because of
this, the 0 andz components of the gauge potential no long
vanish. They must be added to the ansatz. This situatio
quite familiar~e.g.,@27#! since one routinely encounters it i
the soliton studies.

We suggest an obvious ansatz for these components~to be
checkeda posteriori!,
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Ak52 i ~]kU !U21r~r !, k50,3, ~4.1!

where a new profile functionr(r ) is introduced. To be more
precise, we must express the right-hand side in terms of
moduli fields na. As was mentioned after Eq.~3.27!, the
parametrization of the matrixU is ambiguous. Correspond
ingly, if we introduce

ak[2 i ~]kU !U21, ak[ak
aS ta

2 D , ~4.2!

thenak
a is defined modulo two gauge transformations follo

ing from Eq.~3.28!. Equation~3.26! implies that

ak
a2na~nbak

b!52«abcnb]kn
c, ~4.3!

and we can impose the conditionnbak
b50. Then

ak
a52«abcnb]kn

c, 2 i ~]kU !U2152
1

2
ta«abcnb]kn

c.

~4.4!

The functionr(r ) in Eq. ~4.1! is determined through a
minimization procedure~cf. @27#! which generatesr ’s own
equation of motion. Our task is to derive it. But at first w
note thatr(r ) vanishes at infinity,

r~`!50. ~4.5!

The boundary condition atr 50 will be determined shortly.
The kinetic term forna comes from the gauge and qua

kinetic terms in Eq.~3.3!. Using~3.33! and~4.1! to calculate
the SU~2! gauge field strength we find

Fki5
1

2
~]kn

a!ta« i j

xj

r 2
f 3@12r~r !#1 i ~]kU !U21

xi

r

dr~r !

dr
.

~4.6!

We see that in order to have a finite contribution from TrFki
2

in the action we have to impose the constraint

r~0!51. ~4.7!

Substituting the field strength~4.6! in the action~3.3! and
including, in addition, the kinetic term of quarks, we arrive

S(111)5
b

2E dtdz~]kn
a!2, ~4.8!

where the coupling constantb is given by a normalizing
integral

b5
2p

g2
2 E0

`

rdr H S d

dr
r~r ! D 2

1
1

r 2
f 3

2~12r!2

1g2
2Fr2

2
~f1

21f2
2!1~12r!~f12f2!2G J . ~4.9!

We will have to deal with the integral on the right-hand si
more than once in what follows. There are various argume
4-10
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allowing one to find it analytically; however, the first calc
lation was carried out numerically by R. Auzzi to whom w
are deeply grateful.

The functional~4.9! must be minimized with respect tor
with the boundary conditions given by~4.5! and~4.7!. Vary-
ing ~4.9! with respect tor one readily obtains the second
order equation which the functionr must satisfy,

2
d2

dr2
r2

1

r

d

dr
r2

1

r 2
f 3

2~12r!1
g2

2

2
~f1

21f2
2!r

2
g2

2

2
~f12f2!250. ~4.10!

The second-order equation occurs because, once we a
the dependence ofna on the world-sheet coordinatest,z, the
string is no longer BPS saturated. After some algebra
extensive use of the first-order equations~3.19! one can
show that the solution of~4.10! is given by

r512
f1

f2
. ~4.11!

This solution satisfies the boundary conditions~4.5! and
~4.7!, as it should.

Substituting this solution back into the expression for
sigma model coupling constant~4.9! one can check that th
integral in~4.9! reduces to a total derivative and is given
the flux of the string determined byf 3(0)51. Namely,11

I[E
0

`

rdr H S d

dr
r~r ! D 2

1
1

r 2
f 3

2~12r!2

1g2
2Fr2

2
~f1

21f2
2!1~12r!~f12f2!2G J

5E
0

`

drS 2
d

dr
f 3D51, ~4.12!

where we use the first-order equations~3.19! for the profile
functions of the string. Returning to theCP1 model~4.8! we
conclude that the sigma model couplingb does not depend
on the ratio of U~1! and SU~2! coupling constants and i
given by

b5
2p

g2
2

. ~4.13!

The two-dimensional coupling constant is determined by
four-dimensional non-Abelian coupling. As we will see lat
this fact is very important for our interpretation of confine
monopoles as sigma-model kinks.

In summary, the effective world-sheet theory describ
dynamics of the string orientational zero modes is the c

11The numerical result of R. Auzzi mentioned above wasI
51.000 08.
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ebratedO(3) sigma model~which is the same asCP1). The
symmetry of this model reflects the presence of the glo
SU~2! C1F symmetry in the microscopic theory. The co
pling constant of this sigma model is determined by minim
zation of the action~4.9! for the profile functionr. The
minimal value ofI is unity. Clearly, Eq.~4.8! describes the
low-energy limit. In principle, the zero-mode interaction h
higher derivative corrections which run in powers of

~g2Aj!21]n , ~4.14!

whereg2Aj gives the order of magnitude of masses of t
gauge/quark multiplets in our microscopic SU~2!3U~1!
theory. The sigma model~4.8! is adequate at scales belo
g2Aj where higher-derivative corrections are negligib
small.

The very same scale, (g2Aj)21, determines the thicknes
of the strings we deal with. In other words, the effecti
sigma model~4.8! is applicable at scales below the inver
string thickness which, thus, plays the role of an ultravio
~UV! cutoff for the model~4.8!.

B. „1¿1…-dimensional CP1 model

Let us discuss the theory on the string world sheet a
emerges after factoring out~super!translational moduli. As
was mentioned, the solution of the string BPS condition is
fact a two-parametric family of solutions parametrized bynW

with the constraintnW 251. The target space of the boson
moduli is SU~2!/U~1!, the same asCP1.

Since it is also endowed with four supercharges,
world-sheet theory must beN52 two-dimensionalCP1

sigma model. In Sec. IV D we will explicitly construct fou
fermion zero modes in the microscopic theory~not counting
supertranslational! which match two bosonic zero modes a
sociated with the color-magnetic flux rotation in the O~3!
group space, Fig. 6. This will essentially conclude the pro
that the world-sheet theory is theCP1 sigma model. Let us
briefly review the properties of this model.

TheN52 two-dimensionalCP1 model has the following
action ~e.g.,@35#, Sec. 6!:

SCP(1)5bE d2xH 1

2
~]kn

a!21
i

2
x̄agk]kx

a1
1

8
~ x̄x!2J ,

~4.15!

where theg matrices in (111) dimensions are defined as12

g05t1 , g352t2 , ~4.16!

while xa is a real two-component Majorana fermion fie
(x̄5xg0). It is subject to the constraint

xana50; ~4.17!

therefore, in fact, we have four real fermion components
expected. Note thatb is related to the conventional couplin

12This is a ‘‘Euclidean’’ notation, see footnote to Eq.~3.3!.
4-11
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constant of theCP1 model asb51/gCP(1)
2 , and the loop

expansion runs in powers ofgCP(1)
2 /p. Given Eq.~4.13! we

see that that the loop expansion parameter isg2
2/(2p2) which

coincides with the loop expansion parameter in the mic
scopic theory.

In the holomorphic representation upon the stereograp
projection the Lagrangian of theCP1 model~4.15! becomes

LCP(1)5GH ]kw̄]kw1
i

2
~C̄L]R

JCL1C̄R]L
JCR!

2
i

z
@C̄LCL~w̄]R

Jw!1C̄RCR~w̄]L
Jw!#

2
2

z2
C̄LCLC̄RCRJ 1

iu

2p

1

z2
«mk]mw̄]kw,

~4.18!

whereG is the metric on the target space,

G[2b
1

~11ww̄!2
, ~4.19!

and

z[11ww̄. ~4.20!

~It is useful to note that the Ricci tensorR52z22.! For
completeness we also included the vacuum-angle term,
the last term in Eq.~4.18!. Furthermore, the fermion field i
a two-componentDirac spinor

C5S CR

CL
D . ~4.21!

Finally, the bars overw and CL,R denote Hermitian conju-
gation.

The sigma model~4.15! or ~4.18! is asymptotically free
@36#; at large distances~low energies! it gets into the strong
coupling regime. The corresponding Gell-Mann–Low fun
tion is one-loop, and the running coupling constant as a fu
tion of the energy scaleE is given by

4pb52 lnS E

L2D
D , ~4.22!

where L2D is the dynamical scale of the sigma model;
related definition of this scale is given below in Eq.~4.27!.
As was mentioned previously, the ultraviolet cut-off of th
sigma model at hand is determined byg2Aj. At this UV
cut-off scale Eq.~4.13! holds. Hence,

L2D
2 5je28p2/g2

2
5L2, ~4.23!

where we take into account Eq.~3.9! for the dynamical scale
L of the SU~2! factor of the microscopic theory. Note that
the microscopic theoryper se, because of the VEVs of the
squark fields, the coupling constant is frozen atg2Aj; there
04500
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ee

-
c-

are no logarithms below this scale. The logarithms of
macroscopic theory take over. Moreover, the dynami
scales of the microscopic and microscopic theories turn
to be the same! We will explain the reason why the dyna
cal scale of the (111)-dimensional effective theory on th
string world sheet equals that of the SU~2! factor of the (3
11)-dimensional gauge theory later, in Sec. VII.

The superalgebra induced by four supercharges of
world-sheet theory is as follows:

$Q̄LQL%5~H1P!, $Q̄RQR%5~H2P!, ~4.24!

$Q̄RQL%5
i

pE dz]z~z22C̄RCL!, ~4.25!

$Q̄LQR%5
i

pE dz]z~z22C̄LCR!, ~4.26!

with all other anticommutators vanishing. Here (H,P) is the
energy-momentum operator. Equations~4.25! and ~4.26!
present a quantum anomaly derived in Ref.@20#. These anti-
commutators vanish at the classical level. The abo
anomaly is similar ~and, in fact, related! to that in
N51 supersymmetric gluodynamics@37#. Its occurrence is
crucial for self-consistency of matching of the underlyin
microscopic theory with the macroscopic description p
vided by Eq. ~4.18!. The fact that the anomaly does tak
place can be viewed as a test that we are on the right tr

As is well-known, two-dimensionalCP1 model possesse
two vacua labeled by the bifermion order parameter,

^z22C̄RCL&56LCP(1)e
iu/2. ~4.27!

The distinct vacua of the world-sheet effective theory, in t
language of the microscopic theory, describe two disti
strings. The physical meaning of this distinction will be r
vealed shortly. The dynamical scaleL2D defined in Eq.
~4.22! is of the order of LCP(1) . More exactly, L2D
5eLCP(1) .

We will interrupt here our discussion of the superalgeb
in the macroscopic theory, with the intention to return to
later, in Sec. VI.

C. Unequal quark mass terms;CP1 with the twisted mass

The fact that we have two distinct vacua in the worl
sheet theory—two distinct strings—is not quite intuitive
the above consideration. This is understandable. At the c
sical level theN52 two-dimensional sigma model has
continuous vacuum manifoldS2. This is in one-to-one cor-
respondence with continuously many strings parametrized
nW . The continuous degeneracy is lifted only upon inclusi
of quantum effects that occur~in the sigma model! at strong
coupling. Gone with this lifting is the moduli nature of th
fields na. They become massive. This is difficult to grasp

To facilitate contact between the microscopic and mac
scopic theories, it is instructive to start from a deform
microscopic theory so that the string moduli are lifted
ready at the classical level. Then the origin of the two-fo
4-12
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degeneracy of the non-Abelian strings become transpa
This will help us understand, in an intuitive manner, oth
features listed above. After this understanding is achiev
nothing prevents us from returning to our case of strings w
non-Abelian moduli at the classical level, by smoothly su
pressing the moduli-breaking deformation. The two-fold d
generacy will remain intact as it follows from the Witte
index @38#.

Thus, let us drop the assumptionm15m2 and introduce a
small mass difference. We will still assume that

m[m12m2.0. ~4.28!

At m1Þm2 the flavor~global! SU~2! symmetry of the micro-
scopic theory is explicitly broken down to U~1! ~correspond-
ing to rotations around the third axis in the O~3! group
space!. Correspondingly, the moduli of the non-Abelia
string are lifted, since the vectornW gets fixed in the position
pointing in the third direction,nW 5$0,0,61%. These are the
(1,0) and (0,1) strings, respectively, see Sec. III A. Ifm
!Aj, the set of parametersna becomesquasimoduli, as is
clear from Fig. 7.

Now, our aim is to derive the effective two-dimension
theory on the string world sheet for the case of unequal qu
masses, when SU(2)3U(1) gauge theory is broken down t
U(1)3U(1), assuming thatm is small. As was discussed i
Sec. III A, the bona fidesolutions of first-order equation
~3.19! ~and, hence, the equations of motion! with the mini-
mal windings are the (1,0) and (0,1) strings. The solution
the (1,0) string is given by~3.18! while the solution for the
(0,1) string can be obtained from the one in Eq.~3.18! by the
replacement

f 3→2 f 3

and

eiaf1↔f2 .

However, at smallm we can still introduce the orientationa
quasi-modulina. In terms of the effective two-dimensiona
theory on the string world sheetmÞ0 leads to a shallow
potential for the quasi-modulina. The two minima of the

FIG. 7. Meridian slice of the target space sphere~thick solid
line!. Arrows present the scalar potential~4.38!, their length being
the strength of the potential. Two vacua of the model are denote
closed circles.
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potential atn5$0,0,61% correspond to twobona fidesolu-
tions for the (1,0) and (0,1) strings.

Let us derive this potential. To this end we start from t
expression for the non-Abelian string in the singular gau
~3.33! parametrized by modulina and substitute it in the
action ~3.3!. The only modification that we actually have t
make is to supplement our ansatz~3.33! by that for the ad-
joint scalar fieldaa; the neutral scalar fielda will stay fixed
at its vacuum expectation valuea52A2m.

At large r the fieldaa tends to its VEV directed along th
third axis in the color space and is given by Eq.~3.5!. At the
same time, atr 50 it must be directed along the vectorna.
The reason for this behavior is easy to understand. The
netic term foraa in Eq. ~3.3! contains the commutator term
of the adjoint scalar and the gauge potential. The gauge
tential is singular at the origin, as is seen from Eq.~3.33!.
This implies thataa must be directed alongna at r 50. Oth-
erwise, the string tension would become divergent. The
lowing ansatz foraa ensures this behavior:

aa52
m

A2
@da3b1nan3~12b!#. ~4.29!

Here we introduced a new profile functionb(r ) which, as
usual, will be determined from a minimization procedu
Note that atna5(0,0,61) the fieldaa is given by its VEV,
as expected. The boundary conditions for the functionb(r )
are

b~`!51, b~0!50. ~4.30!

Substituting Eq.~4.29! in conjunction with~3.33! in the ac-
tion ~3.3! we get the potential

VCP(1)5gE d2x
m2

2
~12n3

2!, ~4.31!

whereg is presented by the integral

g5
2p

g2
2 E0

`

rdr H S d

dr
b~r ! D 2

1
1

r 2
f 3

2b2

1g2
2F1

2
~12b!2~f1

21f2
2!1b~f12f2!2G J .

~4.32!

Here two first terms in the integrand come from the kine
term of the adjoint scalar fieldaa while the term in the
square brackets comes from the last term in the action~3.3!.

Minimization with respect tob(r ), with the constraint
~4.30!, yields

b~r !512r~r !5
f1~r !

f2~r !
, ~4.33!

cf. Eqs. ~4.9! and ~4.11!. Thus,g5I 32p/(g2
2)52p/(g2

2).
We see that the normalization integrals are the same for b
the kinetic and the potential terms in the world-sheet sig

by
4-13
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model,g5b. As a result we arrive at the following effectiv
theory on the string world sheet:

SCP(1),m5bE d2xH 1

2
~]kn

a!21
m2

2
~12n3

2!J . ~4.34!

This is the only functional form that allowsN52
completion.13

The fact that we obtain this form shows that our ansat
fully adequate. The informative aspect of the procedure is~i!
the confirmation of the ansatz and~ii ! constructive calcula-
tion of the constant in front of (12n3

2) in terms of the mi-
croscopic parameters. The mass-splitting parameterDm of
the microscopic theory exactly coincides with the twist
massm of the macroscopic model.

As was already mentioned, this sigma model gives
effective description of our string at low energies, i.e., en
gies much lower than the inverse string thickness. Typ
momenta in the theory~4.34! are of the order ofm. There-
fore, for the action~4.34! to be applicable we must impos
the condition

uDmu!g2Aj. ~4.35!

The CP1 model ~4.34! has two vacua located atna5(0,0,
61), see Fig. 7. Clearly these two vacua correspond to
elementary strings: (1,0) and (0,1), respectively.

Upon stereographic projection the action~4.34! takes the
form

SCP(1),m5E d2xG$]kw̄]kw1m2uwu2%, ~4.36!

whereG is given in Eq.~4.19!. We pause here to make a fe
remarks regarding the sigma model withmÞ0.

First and foremost, Eq.~4.36! is the bosonic part of an
N52 two-dimensional sigma model@39# which is usually
referred to as theCP1 model with the twisted mass. This is
generalization of the masslessCP1 model which preserves
four supercharges. As we know, the BPS nature of the str
under consideration does require the world-sheet theor
have four supercharges. Crucial for the construction of
twisted-massN52 model is the fact that the target space
the CP1 model has isometries. One can exploit the isom
tries to introduce theN52 supersymmetric mass termm,
namely,

DmLCP(1)5GH umu2ww̄1 i
12ww̄

z
~mC̄LCR2m̄C̄RCL!J ,

~4.37!

to be added to Eq.~4.18!. Here z is defined in Eq.~4.20!.
Generically speaking,m is a complex parameter. Certainl
one can always eliminate the phase ofm by a chiral rotation
of the fermion fields. Due to the chiral anomaly, this w
lead to a shift of the vacuum angleu. In what follows we

13Note that, although the global SU(2)C1F is broken byDm, the
extendedN52 supersymmetry is not.
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will keep m real and positive and ignoreu unless stated to
the contrary. The U~1!-invariant scalar potential term in th
holomorphic representation is

VCP(1),m5m2Gw̄w. ~4.38!

If m2@LCP(1)
2 , the classical description is fully applicable

As we already explained, two minima ofVCP(1),m , at w
50 andw5`, correspond to the (1,0) and (0,1) strings
the four-dimensional theory~Fig. 7!.

Now, after this lengthy digression, we can return to t
limit Dm→0. The quasiclassical treatment of the worl
sheet theory applies no longer since the world-sheet the
gets into the strong coupling regime, but we still have tw
vacua~Witten’s index!!. These two vacua differ from eac
other by the expectation value of the chiral bifermion ope
tor ~4.27!, see, e.g.,@35#. At strong coupling (m50) the
chiral condensate is the order parameter. TheCP1 model has
a discreteZ4 symmetry, a remnant of the anomalous U~1!
chiral symmetry. The condensate~4.27! breaks it down to
Z2; hence, the two-fold degeneracy.

The physics of the model becomes more transparent in
mirror representation@40#. In this representation one de
scribes theCP1 model in terms of the Coulomb gas of in
stantons to prove its equivalence to a sine-Gordon the
The CP1 model ~4.15! is dual to the following
N52 sine-Gordon model@40#:

SSG5E d2xd2ud2ūb21ȲY

1H LCP(1)

2p E d2xd2u coshY1h.c.J . ~4.39!

Here the last term is a dual instanton-induced superpoten
The scalar potential of this sine-Gordon theory is

VSG5
b

4p2
LCP(1)

2 usinhyu2, ~4.40!

which has two minima, aty50 and y56 ip. The target
space of the mirror model is the cylinder depicted in F
8~a!. That is why the pointsy5 ip and y52 ip must be

FIG. 8. The target space of the mirror model and the trajecto
of the BPS solutions interpolating between two vacua of the mo
The vacua are denoted by closed circles. The linesA andB in ~b!
must be identified.
4-14
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identified; they present one and the same vacuum. In
8~b! this identification means gluing the linesA andB. The
straight lines in Fig. 8~b! passing through the pointsy50
andy56 ip are the lines on which the coshY superpotential
is real. Since the imaginary part of the superpotential m
vanish on the solutions of the BPS equations starting~end-
ing! on the vacuum points, the solution trajectories can
only on the above lines of ‘‘reality’’ of superpotential.

This mirror model explicitly exhibits a mass gap of th
order ofLCP(1) . It shows that there are no Goldstone boso
~corresponding to the absence of the spontaneous breaki
the microscopic theory SU(2)C1F on the string!. This means,
in turn, that the string orientation vectorna has no particular
direction; it is smeared all over. The strings we deal w
here are genuinely non-Abelian. Two degenerate string
the microscopic theory corresponding to two degene
vacua of the theory~4.18! are two ‘‘elementary’’ non-
Abelian strings of theDm50 theory which form a double
of SU(2)C1F . They arenot the (1,0) and (0,1) strings of th
quasiclassical U(1)3U(1) theory since the vectorna has no
particular direction.

The mirror model also demonstrates the occurrence
two distinct kinks interpolating between the two vacua of t
model. ~More precisely, since each kink has two fermio
zero modes, we should speak of two distinct dimension-
supermultiplets.! The two solutions are

y56H p

2
1arcsin@ tanhmyz#J , my5bLCP(1) /~2p!.

The kink doubling is in full accord with the fact that th
Cecotti–Fendley–Intriligator–Vafa~CFIV! index @41# of the
CP(1) model equals two.

D. Fermion zero modes of the string

In this section we use supersymmetry to explicitly co
struct the fermion zero modes—those not associated
supertranslations—and show that they reproduce the ferm
part of N52 two-dimensionalCP1 model on the string
world sheet. We will setm15m2 and work with the string
solution ~3.33! in the singular gauge.

Our string solution is1
2 BPS saturated. This means th

four supercharges, out of eight of the four-dimensio
theory, act trivially on the string solution~3.33!. The remain-
ing four supercharges generate four fermion zero mo
which are called supertranslational modes because they
superpartners to two translational zero modes. The co
sponding four fermionic moduli are superpartners to the
ordinatesx0 and y0 of the string center. The supertransl
tional fermion zero modes were found in Ref.@23#. As a
matter of fact, they were found for the U~1! ANO string in
N52 theory but the transition to the model at hand is ab
lutely straightforward. We will not dwell on this procedur
here.

Instead, we will focus on fouradditional fermion zero
modes which arise only for the non-Abelian string~at m1
5m2). They are superpartners of the bosonic orientatio
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moduli na; therefore, we will refer to these modes as sup
orientational.

To obtain these modes in the simplest and fastest way
designed a special strategy which is outlined below. We s
from the supersymmetry transformations for the fermi
fields in the microscopic theory,

dl f a5
1

2
~sms̄ne f !aFmn1eapDm~tm!p

f 1•••,

dla fa5
1

2
~sms̄ne f !aFmn

a 1eapDam~tm!p
f 1•••,

dcD ȧ
kA

5 iA2¹”̄ ȧaqf
kAea f1•••,

dc̄ȧAk5 iA2¹”̄ ȧaq̄f Ake
a f1•••. ~4.41!

Here l f a and la fa are the fermions from theN52 vector
supermultiplets of the U~1! and SU~2! factors, respectively,
while ckA and c̃Ak are the fermion partners of the squa
fields qkA and q̃Ak in the quark hypermultiplets. Moreove
f 51,2 is the SU(2)R index, a51,2 is the spinor index,k
51,2 is the color index, andA51,2 is the flavor index. The
parameters of SUSY transformations in the microsco
theory are denoted asea f . Furthermore, theD terms in Eq.
~4.41! are

D11 iD 25 i
g1

2

2
~TruFu222j!, D350, ~4.42!

for the U~1! field, and

Da11 iD a25 i
g2

2

2
Tr~F†taF!, Da350, ~4.43!

for the SU~2! field. The dots in~4.41! stand for terms involv-
ing the adjoint scalar fields which vanish on the string so
tion ~at m15m2) because the adjoint fields are given by th
vacuum expectation values~3.7!.

In Ref. @23# it was shown that the four supercharges s
lected by the conditions

e1252e11, e215e22 ~4.44!

act trivially on the BPS string. Now, to generate the sup
orientational fermion zero modes we use the followi
method. We assume that the orientational modulina in the
string solution~3.33! have a slow dependence on the worl
sheet coordinatesx0 and x3 ~or t and z), as in Sec. IV A.
Then the four supercharges selected by the conditions~4.44!
no longer act trivially. Instead, their action now gives fe
mion fields proportional to thex0 andx3 derivatives ofna.
This is exactly what one expects from the residu
N52 supersymmetry in the world-sheet theory. The abo
four supercharges generate the world-sheet supersymm
in the N52 two-dimensionalCP1 model. We use this
world-sheet supersymmetry to reexpress the fermion fie
obtained upon the action of these four supercharges in te
4-15
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of the ~111!-dimensional fermions. This will give us th
superorientational fermion zero modes.

After this brief outline we can proceed to the impleme
tation of the procedure. We substitute the string solut
~3.33! in ~4.41! assuming thatea f are subject to the con
straints~4.44! and the modulina have a slow dependence o
the world-sheet coordinates. Then we get

c̄Ak2̇5 i ~ta!AkH @~]02 i ]3!na#~f12f2!S 12
r

2D
2 i«abcnb@~]02 i ]3!nc#

r

2
~f11f2!J e22,

c̄̃ 1̇
kA

5 i ~ta!kAH @~]01 i ]3!na#~f12f2!S 12
r

2D
1 i«abcnb@~]01 i ]3!nc#

r

2
~f11f2!J e11,

c̄Ak1̇50, c̄̃ 2̇
kA

50,

la2252
x11 ix2

r 2 H @~]01 i ]3!na# f 3~12r!

1 i«abcnb@~]01 i ]3!nc#r
d

dr
rJ e11,

la1152
x12 ix2

r 2 H @~]02 i ]3!na# f 3~12r!

2 i«abcnb@~]02 i ]3!nc#r
d

dr
rJ e22,

l125l11, l2152l22. ~4.45!

Let us compare these transformations with the supersym
try transformations on the string world sheet. For the mo
~4.15! they are

dxa5 iA2@~gk]kn
a!«1«abcnb~gk]kn

c!h#, ~4.46!

where «a is a real two-component parameter of the tw
dimensional supersymmetry, whileha is another such pa
rameter (a51,2), so that assembled together they form
full set of N52 transformations. If we rewrite Eq.~4.46! in
components,

dx1
a5 iA2@~]01 i ]3!na«21«abcnb~]01 i ]3!nch2#,

dx2
a5 iA2@~]02 i ]3!na«11«abcnb~]02 i ]3!nch1#,

~4.47!

and identify properly normalized parameters of the fo
dimensional SUSY transformations@with the constraint
~4.44!# in terms of«1,2, h1,2, namely,
04500
-
n

e-
l

-

a

-

«21 ih25
1

A2
~e112e12!5A2e11,

«12 ih15
1

A2
~e221e21!5A2e22, ~4.48!

we can express the derivatives ofna in Eq. ~4.45! in terms of
x1

a andx2
a , thus obtaining the zero modes of the quark a

gluino fields in terms of the four superorientational modu
In this way we arrive at

c̄Ak2̇5S ta

2 D
Ak

1

2f2
~f1

22f2
2!@x2

a1 i«abcnbx2
c#,

c̄̃ 1̇
kA

5S ta

2 D kA 1

2f2
~f1

22f2
2!@x1

a2 i«abcnbx1
c#,

c̄Ak1̇50, c̄̃ 2̇
kA

50,

la225
i

2

x11 ix2

r 2
f 3

f1

f2
@x1

a2 i«abcnbx1
c#,

la115
i

2

x12 ix2

r 2
f 3

f1

f2
@x2

a1 i«abcnbx2
c#,

l125l11, l2152l22, ~4.49!

where we use the solution~4.11! for the functionr to sim-
plify the expressions for the profile functions of the fermio
zero modes. Equation~4.49! is our final result for the super
orientational fermion zero modes. Here the dependence oxi

is encoded in the profile functions of the string, whilexa
a

should be considered asconstant Grassmann collective co
ordinates.

To conclude this section let us check14 that the zero modes
above do produce the fermion part of th
N52 two-dimensionalCP1 model ~4.15!. To this end we
return to the usual assumption that the fermion collect
coordinatesxa

a in Eq. ~4.49! have an adiabatic dependen
on the world sheet coordinatesxk (k50,3). This is quite
similar to the procedure of Sec. IV A. Substituting Eq.~4.49!
in the kinetic terms of fermions in the microscopic theory

E d4xH c̄Ai¹”̄ cA1 c̄̃Ai¹”̄ c̃A1
i

g2
2
l̄ f

aD”̄ la fJ , ~4.50!

and taking into account the derivatives ofxa
a with respect to

the world-sheet coordinates, after some algebra we arriv

bE d2xH 1

2
x̄aign]nxaJ , ~4.51!

14For simplicity, we restrict ourselves to terms in the action qu
dratic in the fermion fields.
4-16
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whereb is given by the same integral~4.9! as for the bosonic
kinetic term, see Eq.~4.8!. We see that~4.51! exactly repro-
duces the kinetic term of the~111!-dimensional fermions in
the CP1 model ~4.15!.

V. SIGMA-MODEL KINKS: MONOPOLES
OF THE MICROSCOPIC THEORY

Thus, we concluded our consideration of non-Abeli
strings in the microscopic theory and derivation of the m
roscopic world-sheet theory they induce. Our task in t
section is the study and analysis of the BPS str
junctions—the confined monopoles—both in the mic
scopic and macroscopic theories.

A general picture is best inferred from consideration
the quasiclassical regime, namely, we start from the c
DmÞ0 but subject to the constraint~4.35!. This limit was
studied in Ref.@6#. In theCP1 model with the twisted mas
there is a kink~a.k.a. domain wall! interpolating between
two vacua at the north and south poles, see Fig. 7. T
distinct strings of the microscopic theory are the two vac
of the macroscopic model, while the confined monopole
theCP1 kink interpolating between them. We intend to ba
up this qualitative statement by quantitative data.

TheCP1 kink solution is easy to find in the explicit form
This is discussed in Sec. V C, as well as the occurrence o
‘‘extra’’ collective coordinate. Kinks in the
N52 two-dimensional sigma model with the twisted ma
are exhaustively studied in the literature@4#. These kinks are
1
2 BPS saturated~i.e., preserve two supercharges!. The cor-
responding collective coordinates arez0 ~a complexified po-
sition of the center! and two fermion moduli. We will say
more on whyz0 gets complexified.

Now, if we sendDm→0, we still have two vacua in the
CP1 model, as was explained in Sec. IV C, and do ha
kinks interpolating between them. This kink is best seen
the mirror description of the model. It interpolates betwe
the two vacua of sine-Gordon potential~4.40!. The kinks are
counted in dimension-two supermultiplets. The Cecot
Fendley–Intriligator–Vafa~CFIV! index @41# tells us that, in
fact, we have two distinct kinks, albeit this number is n
invariant under the variation of the twisted mass, see S
V C 7.

The Dm50 kink should be interpreted as a ‘‘highl
bound’’ monopole~it has multiplicity two as well! which
realizes a junction of two ‘‘elementary’’ strings. Howeve
the quantum numbers of this monopole are no longer
21). Similar to strings, it does not have definite Abeli
charges in the limitDm→0. It becomes abona fidenon-
Abelian monopole of SU~2! representing the junction be
tween two ‘‘elementary’’ non-Abelian strings associated w
two quantum vacua ofCP1 model ~Fig. 1, the right lower
corner!.

There are two features of theDm50 kinks that we can
establish on general grounds. First, their BPS saturated
ture and Eqs.~4.25! and ~4.26! tell us that the kink mass is
equal to@20#
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Mk5
1

p
uD^z22C̄RCL&u5

2

p
LCP(1) . ~5.1!

Second, the size of the kink~in thez direction! is of the order
;LCP(1)

21 .
This means that the SU~2! monopole, although classicall

massless and infinitely spread in the limitDm→0, in fact
acquires a small but finite mass and finite size due to n
perturbative effects on the string world sheet. In this sect
we give a detailed quantitative evidence in favor of our ide
tification of the SU~2! monopole as theCP1 model kink. We
start with the quasiclassical limit of nonzeroDm considered
by Tong @6# and then eventually arrive at the quantum lim
Dm→0.

A. Microscopic theory: First-order master equations

In this section we derive the first-order equations for the1
4

BPS junction of the~1,0! and ~0,1! strings in the quasiclas
sical limit

LCP(1)!m!g2Aj, m5Dm. ~5.2!

In this limit m is small enough so we can use our effecti
low-energy description in terms of theCP1 model~with the
twisted mass!. On the other hand,m is much larger than the
scale ofCP1 model, so the latter is in the weak couplin
regime which allows one to apply the quasiclassical tre
ment.

The geometry of our junction is shown on Fig. 2~b!. Both
strings are stretched along thez axis. We assume that th
monopole sits near the origin, the~0,1! string is at negativez,
while the~1,0! string is at positivez. The perpendicular plane
is parametrized byx1 andx2. What is sought for is a static
solution of the BPS equations, with all relevant fields d
pending only onx1 , x2 andz.

Ignoring the time variable we can represent the ene
functional of our theory~3.3! as follows~Bogomolny repre-
sentation@42#!:

E5E d3xH F 1

A2g2

F3*
a1

g2

2A2
~ w̄AtawA!1

1

g2
D3aaG 2

1F 1

A2g1

F3* 1
g1

2A2
~ uwAu222j!1

1

g1
]3aG 2

1
1

g2
2U 1

A2
~F1*

a1 iF 2*
a!1~D11 iD 2!aaU2

1
1

g1
2U 1

A2
~F1* 1 iF 2* !1~]11 i ]2!aU2

1u¹1wA1 i¹2wAu2

1U¹3wA1
1

A2
~aata1a1A2mA!wAU2J ~5.3!

plus surface terms. Following our conventions we assu
the quark masses to be real, implying that the vacuum
4-17
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pectation values of the adjoint scalar fields are real too.
surface terms mentioned above are

Esurface5jE d3xF3* 1A2jE d2x^a&U
z52`

z5`

2A2
^a3&

g2
2 E dSnFn*

3 , ~5.4!

where the integral in the last term runs over a large tw
dimensional sphere atxW2→`. The first term on the right-
hand side is related to strings, the second to domain w
and the third to monopoles~string junctions!.

The Bogomolny representation~5.3! leads us to the fol-
lowing first-order equations:

F1* 1 iF 2* 1A2~]11 i ]2!a50,

F1*
a1 iF 2*

a1A2~D11 iD 2!aa50,

F3* 1
g1

2

2
~ uwAu222j!1A2]3a50,

F3*
a1

g2
2

2
~ w̄AtawA!1A2D3aa50,

¹3wA52
1

A2
~aata1a1A2mA!wA,

~¹11 i¹2!wA50. ~5.5!

These are ourmaster equations. Once these equations a
satisfied the energy of the BPS object is given by Eq.~5.4!.

Let us discuss the central charges~the surface terms! of
the string, domain wall and monopole in more detail. Say
the string case, the three-dimensional integral in the fi
term in Eq.~5.4! gives the length of the string times its flux
In the wall case, the two-dimensional integral in the seco
term in ~5.4! gives the area of the wall times its tensio
Finally, in the monopole case the integral in the last term
Eq. ~5.4! gives the magnetic-field flux. This means that t
first-order master equations~5.5! can be used to stud
strings, domain walls, monopoles and all their possible ju
tions.

It is instructive to check that the wall, the string and t
monopole solutions, separately, satisfy these equations.
the domain wall this check was done in@2# where we used
these equations to study the string-wall junctions. Let us c
sider the string solution. Then the scalar fieldsa andaa are
given by their VEVs. The gauge flux is directed along thez
axis, so thatF1* 5F2* 5F1*

a5F2*
a50. All fields depend only

on the perpendicular coordinatesx1 andx2. As a result, the
first two equations and the fifth one in~5.5! are trivially
satisfied. The third and the fourth equations reduce to
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first two equations in Eq.~3.15!. The last equation in~5.5!
reduces to the last equation in~3.15!.

Now, turn to the monopole solution. The ’t Hooft
Polyakov monopole equations@19# arise from those in Eq.
~5.5! in the limit j50. Then all quark fields vanish, and Eq
~5.5! reduces to the standard first-order equations for
BPS ’t Hooft-Polyakov monopole,

Fk*
a1A2Dka

a50. ~5.6!

The U~1! scalar fielda is given by its VEV while the U~1!
gauge field vanishes.

Now, Eq.~5.4! shows that the central charge of the SU~2!
monopole is determined bŷa3& which is proportional to the
quark mass difference. Thus, for the monopole on the C
lomb branch~i.e., with j vanishing! Eq. ~5.4! yields

Mm5
4pm

g2
2

. ~5.7!

This coincides, of course, with the Seiberg–Witten res
@11# in the weak coupling limit. As we will see shortly, th
same expression continues to hold even ifm!Aj ~provided
that m is still much larger thanL). An explanation will be
given in Sec. VII.

We pause here to make a remark on the literature.
Abelian version of the first-order equations~5.5! were de-
rived in Ref. @1# where they were used to find the14 BPS
saturated solution for the wall-string junction. A subset
non-Abelian equations~5.5! in the SU(2)3U(1) theory was
derived in @6# with the purpose of studying the junction o
two elementary strings~‘‘a confined monopole’’! at Dm
Þ0. We extensively exploit this construction too, as a ref
ence point, while our main interest is the limitDm50. Non-
Abelian equations~5.5! were derived and extensively used
the recent analysis@2# of the wall-string junctions for non-
Abelian strings ending on a stack of domain walls.

B. The string junction solution for AjšµšL

Now we apply our master equations in order to find t
junction of the~0,1! and~1,0! strings via the (1,21) mono-
pole ~see Fig. 1, the left lower corner! in the quasiclassica
limit. We will show that the solution of the BPS equation
~5.5! of the four-dimensional microscopic theory is dete
mined by the kink solution in the two-dimensional sigm
model ~4.34!.

To this end we will look for the solution of equations~5.5!
in the following ansatz. Assume that the solution for t
string junction is given, to the leading order inm/Aj, by the
same string configuration~3.33!, and ~4.29! which we dealt
with previously, in Sec. IV C~in the casemÞ0),
4-18
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F5US f1~r ! 0

0 f2~r !
DU21

5
1

2
~f11f2!1na

ta

2
~f12f2!,

Ai
a~x!5na« i j

xj

r 2
f 3~r !,

Ai~x!5« i j

xj

r 2
f ~r !,

A3
a52«abcnb~]3nc!r~r !, A0

a50,

aa52
m

A2
@da3~12r!1nan3r#, a52A2m,

~5.8!

with na slowly-varying functions ofz, to be determined be
low, replacing the constant moduli vectornW . The ansatz for
the gauge potentialsA3

a andA0
a follows from Eqs.~4.1! and

~4.4!. As we have the~0,1! string atz→2`, the function
na(z) satisfies the boundary condition

na~2`!5~0,0,21!, ~5.9!

while

na~`!5~0,0,1!. ~5.10!

The latter condition ensures that we have the~1,0! string at
z→`. The ansatz~5.8! corresponds to the non-Abelia
string in which the vectorna slowly rotates from~5.9! at z
→2` to ~5.10! at z→`. Now we will show that the repre
sentation~5.8! solves the master equations~5.5! provided the
functionsna(z) are chosen in a special way.

Note that the first equation in~5.5! is trivially satisfied
because the fielda is constant andF1* 5F2* 50. The last
equation reduces to the first two equations in~3.19! because
it does not contain derivatives with respect toz and, there-
fore, is satisfied for arbitrary functionsna(z). The same re-
mark applies also to the third equation in Eq.~5.5!, which
reduces to the third equation in~3.19!.

Now let us consider the fifth equation in Eq.~5.5!. Sub-
stituting~5.8! in this equation and using expression~4.11! for
r we find that this equation is satisfied providedna(z) are
chosen to be the solutions of the equation

]3na5m~da32nan3!. ~5.11!

This equation, written in the holomorphic representation
discussed in Sec. V C.

By the same token, we can consider the second equa
in ~5.5!. Upon substituting there the ansatz~5.8!, it reduces
to Eq. ~5.11! too. Finally, consider the fourth equation
~5.5!. One can see that in fact it contains an expansion in
parameterm2/j. This means that the solution we have ju
built is not exact; it has corrections of the order ofO(m2/j).
04500
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To the leading order in this parameter the fourth equation
~5.5! reduces to the last equation in~3.19!. In principle, one
could go beyond the leading order. Solving the fourth eq
tion in ~5.5! in the next-to-leading order would allow one t
determineO(m2/j) corrections to our solution~3.19!. This
goes beyond the scope of our current investigation.

Let us dwell on the meaning of Eq.~5.11!. This equation
is nothing but the equation for the kink in theCP1 model
~4.34!. A thorough analysis of theCP1-model kinks will be
carried out in Sec. V C. Here we will limit ourselves to th
Bogomolny completion of this model. The energy function
can be rewritten as

E5
b

2E dz$u]zn
a2m~da32nan3!u212m]zn

3%.

~5.12!

The above representation implies the first-order equa
~5.11! for the BPS saturated kink. It also yields 2bm for the
kink mass.

Thus, we have demonstrated that the junction solution
the ~0,1! and~1,0! strings is given by the non-Abelian strin
with a slowly varying orientation vectorna. The variation of
na is described in terms of the kink solution of the~111!-
dimensionalCP1 model with the twisted mass. This wa
expected.

In conclusion, we would like to match the masses of t
four-dimensional monopole and two-dimensional kink. T
string mass and that of the string junction is given by the fi
and last terms in the surface energy~5.4! ~the second term
vanishes!. The first term obviously reduces to

M string52pjL, ~5.13!

i.e., proportional to the total string lengthL. Note that both
the ~0,1! and~1,0! strings have the same tension~3.14!. The
third term should give the mass of the (1,21) monopole.
The surface integral in this term reduces to the flux of
~1,0! string atz→` minus the flux of the~0,1! string atz
→2`. TheF* 3 flux of the ~1,0! string is 2p while theF* 3

flux of the~0,1! string is22p. Thus, taking into account Eq
~3.5!, we get

Mm5
4p

g2
2

m. ~5.14!

Note that, although we discuss the monopole in the confi
ment phase atuDmu!Aj ~which is a junction of two strings
in this phase!, nevertheless, in terms of them andg2

2 depen-
dence its mass coincides with the result~5.7! for the uncon-
fined monopole on the Coulomb branch~i.e., atj50). There
is no change in the monopole mass formula in the first th
cases in Fig. 1. This is no accident—there is a deep theo
ical reason explaining the validity of the unified formula.
change occurs only in passing to the highly quantum reg
depicted in the right lower corner of Fig. 1. We will discu
this regime shortly, see Eq.~5.18!, while more details will be
given in Sec. VII.
4-19
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Now let us compare~5.14! with the kink mass in the
effectiveCP1 model on the string world sheet. As was me
tioned, the surface term in Eq.~5.12! gives

M kink52bm5
m

p
ln

m

L2D
, ~5.15!

where in the second equality we used Eq.~4.22! to expressb
in terms of the dynamical scale parameter. Two remarks
in order here. First, expressing the two-dimensional coup
constantb in terms of coupling constant of the microscop
theory, see Eq.~4.13!, we obtain

M kink5
4p

g2
2

m, ~5.16!

thus verifying that the four-dimensional calculation ofMm
and the two-dimensional calculation ofM kink yield the same,

Mm5M kink . ~5.17!

Needless to say, this is in full accordance with the phys
picture that emerged from our analysis, that the tw
dimensionalCP1 model is nothing but the macroscopic d
scription of the confined monopoles occurring in the fo
dimensional microscopic Yang–Mills theory.

Technically the coincidence of the monopole and ki
masses is based on the fact that the integral in the defin
~4.9! of the sigma-model couplingb is unity.

The second remark concerns the second equality in
~5.15!. In fact, using this form, one can get@4# a unified
formula for M kink ~and, hence, forMm) describing the last
two regimes in Fig. 1. To this end one replaces the logarit

ln
m

L2D
→U12 ln

Am214LCP(1)
2 1m

Am214LCP(1)
2 2m

2A11
4LCP(1)

2

m2 U .
~5.18!

In the quasiclassical regimem/L@1 the right-hand side and
left-hand side coincide providedL2D5eLCP(1) . If, on the
other hand,m→0, combining Eqs.~5.15! and ~5.18! we ar-
rive at Eq.~5.1! for the kink mass. Using our identification o
the four-dimensional monopole as a two-dimensional k
we then get the confined monopole mass,

Mm5
2

p
LCP(1) , ~5.19!

in the limit m→0.

C. More on kinks in the CP1 model with the twisted mass

Identification of the confined monopoles in four dime
sions with the two-dimensional kinks yields an immedia
bonus: all we know of theCP1-model kinks can be re
phrased in terms of the confined monopoles. The goal of
section is to briefly reviewCP1-model kinks, with an eye on
the parallel with the confined monopoles. Introductory d
on theCP1 model can be found in Secs. IV B and IV C. W
will heavily rely on the results of Refs.@4,20#. The reader
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familiar with these results can proceed directly to Sec. V
Among other topics, we will dwell on the role of theu term
and on ‘‘dyonic’’ kinks which are counterparts of ‘‘dyonic’
confined monopoles of the microscopic theory.

1. The u term

So far we chosem to be real, and putu50. Both require-
ments can and must be relaxed. Let us parametrizem as

m5umueiv. ~5.20!

The chiral anomaly implies that neitherv not u are sepa-
rately observable. The physically observable phase comb
tion is

ueff5u12v. ~5.21!

Correspondingly, we can always eliminateu by including it
in the definition of the phase ofm. Alternatively, we can
always definem to be real and positive, at a price of shiftin
the original u by an appropriate amount, according to E
~5.21!. Note thatu is defined mod 2pk wherek is an integer.

2. Superalgebra at µÅ0

In the CP1 model with the twisted mass

$QLQ̄R%52 imqU(1)2mE dz]zh1
1

pE dz]z~z22C̄RCL!,

$QRQ̄L%5 i m̄qU(1)2m̄E dz]zh1
1

pE dz]z~z22C̄LCR!,

~5.22!

whereqU(1) is the conserved U~1! charge,

qU(1)[E dzJ U(1)
0 ,

J U(1)
m 5GS w̄i ]Jmw1C̄gmC22

ww̄

z
C̄gmC D ,

~5.23!

and

h52
2

g0
2

1

z
, ~5.24!

where g0
2 is the bare coupling constant of theCP1 model

~i.e., normalized at an ultraviolet scaleMUV). The super-
charges are normalized in such a way@see Eq.~4.26!# that
the kink mass equals the absolute value of the expecta
value of the right-hand side. Ifm is real,

qU(1)5
ueff

2p
, ~5.25!

and, quasiclassically,
4-20
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M kink5UmS 2

g0
2

2
1

2p
ln

MUV
2

m2
1 i

ueff

2p D U . ~5.26!

At ueff50 Eqs.~5.26! and ~5.15! are identical.

3. Kinks in the quasiclassical limit

In the quasiclassical limit~5.2! the physical meaning o
the kink is absolutely transparent. It is the tunneling traj
tory from the north pole@the ~1,0! string# to the south pole
@the ~0,1! string#. The BPS equation in the holomorphic re
resentation reads

]zw̄52mw̄ or ]zw52mw, ~5.27!

to be compared with Eq.~5.11!. Herem is assumed real an
positive, see Sec. V C 1.

The BPS equation~5.27! has a number of peculiarities
the most important of which is its complexification, i.e., t
fact that Eq.~5.27! is holomorphic inw. The solution of this
equation is, of course, trivial, and can be written as

w~z!5e2m(z2z0)2 ia. ~5.28!

Herez0 is the kink center whilea is an arbitrary phase. In
fact, these two parameters enter only in the combina
mz02 ia. As was noted, the notion of the kink center ge
complexified. The physical meaning of the modulusa is
obvious: there is a continuous family of solitons interpol
ing between the north and south poles of the target sp
sphere. This is due to U~1! symmetry. The soliton trajectory
can follow any meridian~Fig. 9!. As we will see shortly,
there are two fermion counterparts ofz0 anda, which will
be referred to ash and h̄.

FIG. 9. The soliton solution family. The collective coordinatea
in Eq. ~5.28! spans the interval 0<a<2p. For givena the soliton
trajectory on the target space sphere follows a meridian, so
whena varies from 0 to 2p all meridians are covered.
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4. Quantization of the bosonic moduli

To carry out conventional quasiclassical quantization w
as usual, assume the moduliz0 and a in Eq. ~5.28! to be
~weakly! time-dependent, substitute~5.28! in the bosonic La-
grangian~4.36!, integrate overz and thus derive a quantum
mechanical Lagrangian describing moduli dynamics. In t
way we obtain

LQM52M kink1
M kink

2
ż0

21
b

m
ȧ22

ueff

2p
ȧ. ~5.29!

The variablea is compact. The canonic momentumpa con-
jugate toa must be defined as

pa5
2b

m
ȧ2

ueff

2p
→2 i

d

da
. ~5.30!

With these definitions

qU(1)5
ueff

2p
1pa , ~5.31!

while the Hamiltonian

H5M kink1
m

4b S ueff

2p D 2

1O~pa ,pa
2 !. ~5.32!

For the BPS statepa50, and Eqs.~5.31! and ~5.32! are
consistent with Eq.~5.26!. In fact, they describe a whole
tower of BPS kinks sinceueff is defined modulo 2pk with
integerk. The states withqU(1)Þ0 are ‘‘dyonic’’ kinks. They
have a nonvanishing charge with respect to the global U~1!
symmetry present in theCP~1! model with the twisted mass

5. Switching on fermion moduli

The equations for the fermion zero modes of the kink

]zCL2
2

z
~w̄]zw!CL1

12w̄w

z
mCR50,

]zCR2
2

z
~w̄]zw!CR2

12w̄w

z
mCL50,

~5.33!

plus similar equations forC̄. It is not difficult to find nor-
malizable solutions to these equations, either directly or
ing supersymmetry,

S CR

CL
D 5hS m

2b D 1/2S 2 i

1 D e2m(z2z0) ~5.34!

and

S C̄R

C̄L
D 5h̄S m

2b D 1/2S i

1D e2m(z2z0), ~5.35!

at
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where the numerical prefactors are introduced to ens
proper normalization of the quantum-mechanical Lagra
ian.

Now, to perform quasiclassical quantization the fermi
moduli h, h̄ are assumed to be time-dependent, and we
rive their quantum mechanics starting from the original L
grangian~4.18! and ~4.37!,

LQM8 5 i h̄ḣ, ~5.36!

implying the anticommutation relations

$h̄h%51, $h̄h̄%50, $hh%50, ~5.37!

which tell us that the wave function istwo-component~i.e.,
the kink supermultiplet is two-dimensional!. One can imple-
ment Eq. ~5.37! by choosing, e.g.,h̄5s1, h5s2. The
eigenstates then will be of the typeu↑& and u↓&.

Upon quantization of the fermion moduli one finds th
the U~1! charge of the BPS kink states gets a fractional sh

ueff

2p
→ ueff

2p
6

1

2
, ~5.38!

where the plus or minus signs correspond tou↑& and u↓&,
respectively. This fractional shift is due to fact that there
two fermion zero modes, and is conceptually similar to
well-known charge fractionalization phenomenon@43#.

6. Exact solution

The above features of the BPS kinks in theCP1 model
are concisely summarized by the exact expression for
corresponding central charge@cf. Eq. ~5.22!#

Z2D5 imq1mDT ~5.39!

obtained in Ref.@4# exploiting methods similar to those o
Seiberg and Witten@11#. HereT is the topological charge o
the kink under consideration. In this work

T51, ~5.40!

while the parameterq in Eq. ~5.39! is

q50, 61, 62, . . . . ~5.41!

The quantitymD is introduced in analogy withaD of Ref.
@11#,

mD5
m

p F1

2
ln

m1Am214LCP(1)
2 e2 iu

m2Am214LCP(1)
2 e2 iu

2A11
4LCP(1)

2 e2 iu

m2 G , ~5.42!

wherem is now assumed to be complex, as in Eq.~5.20!.
The two-dimensional central charge is normalized in suc
way thatM kink5uZ2Du.
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Note that the integer parameterq in Eq. ~5.39! is not the
physical U~1! charge. The latter is related toq as follows~at
T51):

qU(1)5q1Im
mD

m
. ~5.43!

The limit umu/LCP(1)→` corresponds to the quasiclassic
domain, while corrections of the type (LCP(1) /m)2k are in-
duced by instantons.

7. Multiplicity

The two-dimensionalCP1 model hasN52 supersymme-
try; correspondingly, each shortened supermultiplet is tw
dimensional. In fact, one can introduce a fermion parity@20#,
and each shortened supermultiplet has one plus and one
nus state with respect to this parity. The question to be
dressed below is whether one has an extra degene
and—if yes—how many degenerate two-dimensional sup
multiplets one has for given values of parameters. We w
limit ourselves toT51, but the value ofqU(1) can be arbi-
trary.

Let us start from the quasiclassical limitm@LCP(1) as-
suming m to be real. Of course, atmÞ0, the results are
u-dependent. Let us consider a general case,uÞ0. Then, for
each value of the soliton mass determined from Eqs.~5.39!
and ~5.42! we have one two-dimensional supermultiple
There is a whole tower ofT51 solitons corresponding to
q5k. In this tower a single two-dimensional supermultipl
is the lightest.

Now, if u50 ~or 62p, 64p, etc.!, we get a special
case, because in this case the states with distinctk conspire.
For each given value of the mass from Eqs.~5.39! and~5.42!
we have two degenerate two-dimensional supermultiplet

One can readily rephrase these statements allowing
self to travel in the complexm plane. The above degenerac
will hold providedueff50.

What happens when one travels from the domain of la
umu to that of smallumu? If m50 we know, e.g., from the
mirror representation~4.39!, that there are two degenera
two-dimensional supermultiplets, corresponding to the CF
index52. Of course, atm50 there is nou dependence, and
two BPS supermultiplets—those with$q,T% charges~0,1!
and ~1,1!—are degenerate. Away from the pointm50 the
masses of these states are no longer equal; there are
singular points with one of the two states becoming mass
at each. The region containing the pointm50 is separated
from the quasiclassical region of largem by an infinite fam-
ily of curves of the marginal stability~CMS! on which the
infinite number of other BPS states, visible quasiclassica
decay. Thus, the infinite tower of the$q,T% BPS states exist-
ing in the quasiclassical domain degenerates in just
stable BPS states in the vicinity ofm50.

The CFIV index for the BPS states in question is indep
dent ofD andF terms but does depend, generally speaki
on twistedF terms, and the twisted mass parameterm, in
particular. The CFIV index can change discontinuously
one crosses a CMS. For more details, see, e.g., the last
4-22
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in Ref. @41# @in particular, Eq.~2.9!# although this work does
not allow for the possibility of a global Noether charge su
asqU(1) .

In the four-dimensionalN52 SUSY theories on the Cou
lomb branch it turned out possible@44# to find all CMS ex-
plicitly by a careful study of the phase of the exact cent
charges. Since the latter are fully equivalent@4# to a central
charge in the two-dimensional sigma model, a similar ana
sis should go through in theCP1 model as well, see also Se
VII.

D. Implications for confined monopoles

Since, as we have proven, theCP1 model presents the
macroscopic description of solitons in our four-dimensio
microscopic model, all results regarding the BPS kinks su
marized in Sec. V C can be immediately translated in sta
ments regarding the confined monopoles—1

4 BPS states in
N52 four-dimensional Yang–Mills theory.

If uDmu@L, our microscopic model has an infinite tow
of ‘‘dyonic’’ confined monopoles. In addition to the topolog
cal chargeT these BPS states carry a Noether U~1! charge.
This U~1! charge has nothing to do with the electric char
of the Julia–Zee dyons@45#. The latter is associated with th
gauge U~1! symmetry which remains unbroken in th
’t Hooft–Polyakov theory. In our theory the gauge symme
is completely broken; there are no long-range forces. It
global U~1! symmetry that survives. The ‘‘dyonic’’ confine
monopoles are charged with respect to this global U~1!.
Their masses are given by Eqs.~5.39! and ~5.42!, with T
51 andq5k, see also~5.43!. Generally speaking, the ‘‘dy
onic’’ confined monopoles carry irrational U~1! charges.
Thus, in the presence of theu term, they experience the sam
charge ‘‘irrationalization’’ @46# as the ’t Hooft–Polyakov
monopoles~the Witten phenomenon!.15

Needless to say, the dyonic confined monopoles do
exist without the non-Abelian strings attached to them. T
latter carry a non-Abelian magnetic flux. The elementary
citations of these strings carry integerqU(1)Þ0 butT50. As
uDmu decreases, the dyonic confined monopoles become
stable, as one passes through a family of CMS. Eventu
only two monopole supermultiplets survive as stable1

4 BPS
saturated states. AtDm50 they are degenerate, which r
flects the global SU~2! symmetry of the microscopic mode

At DmÞ0 the nontopological~i.e., T50 and qU(1)5
61) excitations of the string are BPS states with massm
confined to the string. They can be interpreted as follo
Inside the string the squark profiles vanish, effectively brin
ing us towards the Coulomb branch (j50) where theW
bosons and quarks would become BPS saturated states
bulk. As a matter of fact, on the Coulomb branch theW
boson and off-diagonal quark mass would just equalm.
Hence, theT50 BPS excitation of the string is a wave o
such W bosons/quarks propagating along the string. O
could call it a ‘‘confinedW boson/quark.’’ It is localized in
the perpendicular but not in the transverse direction. Wha

15For semi-integerqU(1) there is an additional mass degenerac
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important is that it has no connection with the bulk Hig
phaseW bosons which are not BPS and much heavier th
m. Neither of these nontopological excitations have conn
tion with the bulk quarks in our microscopic model whic
are not BPS saturated, too.

VI. ANOMALY: MATCHING THE CENTRAL CHARGES

If m50, which will be assumed in this section, theCP1

model runs into strong coupling and its physics is determin
by quantum effects. In particular, atm50 the vacuum expec
tation value ^a3&50; the strings become genuinely no
Abelian.

There are no massless states in theCP1 model atm50.
In particular, the kink mass is of the order ofLCP(1) , as it is
clear, e.g., from the mirror description of the model~4.39!.
On the other hand, in this limit both the last term in~5.4! and
the surface term in~5.12! vanish for the monopole and kin
masses, respectively. This puzzle is solved by the follow
observation: anomalous terms in the central charges of b
four- and two-dimensional SUSY algebras emerge. Bel
we discuss the relation between the central charge anom
in the microscopic and macroscopic theories.

In the microscopic theory the central charge associa
with the monopole has the following general form:

$Qa
f Qb

g%5«ab« f g2Z4D , ~6.1!

where Z4D is an SU(2)R singlet. It is most convenient to
write Z4D as a topological charge~i.e., the integral over a
topological density!,

Z4D5E d3xz0~x!. ~6.2!

In the model at hand

zm5
1

2
«mnrs]nS i

g2
2

aaFrs
a 1

i

g1
2

aFrs

1
c

4p2
@l f a

a ~sr!aȧ~ s̄s!ȧbla fb

12g2
2c̃Aa~sr!aȧ~ s̄s!ȧbcAb# D , ~6.3!

where c is a numerical coefficient which can be obtain
from a one-loop calculation in theN52 regularized SU(2)
3U(1) gauge theory which is our microscopic model. T
operator in the square brackets represents the anomaly,
c vanishes at the tree level. Note that the general structur
the operator in the square brackets is unambiguously fixed
dimensional arguments, the Lorentz symmetry and ot
4-23
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symmetries of the microscopic theory. It is only the coe
cient c which is unknown. The anomalous term plays a c
cial role in the Higgs phase.16

It is quite difficult to calculatec directly because to this
end one needs an explicitN52 ultraviolet regularization of
the four-dimensional theory. Although this is doable, the
rect calculation has not been completed yet. However,
can findc indirectly, by comparing the expressions for th
masses of the BPS saturated confined monopole, on the
hand, and the BPS saturated kink in theCP(1) on the other
hand. More precisely, we will compare the correspond
central charges in the microscopic and macroscopic theo

The mass of the monopole in terms of the central cha
is given by

Mm5A2uZ4Du. ~6.4!

In the limit m50 the classical term inuZ4Du vanishes, and
the central charge is determined by the last anomalous
in Eq. ~6.3!. Now our task is to project it onto the macro
scopic theory. Substituting the superorientational ferm
zero modes of the string~4.49! in the square brackets in Eq
~6.3! we get

Z4D52
c

2pE dz]z~x1
ax2

a2 i«abcnax1
bx2

c!

3E
0

`

rdr H S d

dr
r~r ! D 2

1
1

r 2
f 3

2~12r!2

1g2
2F1

2
r2~f1

21f2
2!1~12r!~f12f2!2G J .

~6.5!

Here we recognize the same normalization integral wh
emerges in Sec. IV A. Keeping in mind thatI 51 we arrive
at

Z4D52
c

2pE dz]z~x1
ax2

a2 i«abcnax1
bx2

c!. ~6.6!

Rewriting the bifermion operator in~6.6! in the holomorphic
representation@35#,

x1
ax2

a2 i«abcnax1
bx2

c52
4

~11uwu2!2
C̄LCR , ~6.7!

and substituting it in~6.6! we finally get

16A similar ~albeit distinct! effect exists on the Coulomb branch
The relationship between the ’t Hooft–Polyakov monopole m
and theN52 central charge is analyzed in the recent publicat
@21#, which identifies an anomaly in the central charge explainin
constant~i.e., nonlogarithmic! term in the monopole mass on th
Coulomb branch. The result of Ref.@21# is in agreement with the
Seiberg–Witten formula for the monopole mass.
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Z4D5
2c

p E dz]zS 1

z2
C̄LCRD . ~6.8!

The right-hand side of this equation reproduces the tw
dimensional anomaly~4.26! provided that the coefficient

c5
1

2A2
. ~6.9!

The four-dimensional central charge~6.8! with the coeffi-
cientc given by~6.9! leads to the result~5.19! for the mono-
pole mass in the limitDm50, provided we use the values o
the fermion condensate~4.27! in the two vacua~at z56`)
of the CP1 model.

VII. 2D SIGMA-MODEL KINK AND 4D SEIBERG –WITTEN
EXACT SOLUTION

Why is the ’t Hooft–Polyakov monopole mass~i.e., on
the Coulomb branch atj50) given by the same formula
~5.7! as the mass~5.14! of the strongly confined large-j
monopole@subject to condition~5.2!#? This fact was noted in
Sec. V B. Now we will explain the reason lying behind th
observation.En route, we will explain another striking ob-
servation made in Ref.@4#. A remarkably close parallel be
tween the four-dimensional Yang–Mills theory withNf52
and the two-dimensionalCP1 model was noted, at an obse
vational level, by virtue of comparison of the correspondi
central charges. The observation was made on the Coul
branch of the Seiberg–Witten theory, with unconfin
’t Hooft–Polyakov-like monopoles/dyons. Valuable as it
the parallel was quite puzzling since the solution of theCP1

model seemed to have no physics connection to the Seib
Witten solution. The latter gives the mass of the unconfin
monopole in the Coulomb phase atj50 while the CP1

model emerges only in the Higgs phase of the microsco
theory.

Physics lying behind the above remarkable parallel w
be revealed here. First and foremost, the previous study
vealed the fact that theCP1 model is a macroscopic descrip
tion of the four-dimensional Yang–Mills theory withNf52
in the Higgs phase. This establishes a direct correspond
between theCP1 model and our microscopic model atumu
!j. Needless to say, the correspondence covers the ce
charges, CMS, dyonic excitations, andall other featuresof
the two theories in 4D and 2D, respectively.

Now we will show that in the BPS sector~andonly in this
sector! the correspondence extends further, since the par
eterj, in fact, cannot enter relevant formulas. Therefore, o
can varyj at will, in particular, making it less thanumu or
even tending to zero, whereCP1 is no more the macroscopi
model for our microscopic theory. Nevertheless, the para
expressions for the central charges and other BPS data in
and 2D, trivially established atumu!j, will continue to hold
even on the Coulomb branch. The ‘‘strange coincidence’’
observed in Sec. V B is no accident. We deal here with
exact relation which stays valid including both perturbati
and nonperturbative corrections.
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Physically the monopole in the Coulomb phase is v
different from the one in the confinement phase, see Fig
In the Coulomb phase it is a ’t Hooft–Polyakov monopo
while in the confinement phase it becomes related to a ju
tion of two non-Abelian strings. Still, let us show that th
masses of these two objects are given by the same ex
sion,

Mm
Coulomb5Mm

confinement, ~7.1!

provided thatDm and the gauge couplings are kept fixe
The superscripts refer to the Coulomb and monopo
confining phases, respectively.

Our point is that the mass of the monopole cannot dep
on the FI parameterj. Start from the monopole in the Cou
lomb phase atj50. Its mass is given by the exact Seiberg
Witten formula@12#

Mm
Coulomb5A2UaD

3 S a352
m

A2
D U

5Ump ln
m

L
1m(

k51

`

ckS L

m D 2kU, ~7.2!

whereaD
3 is the dual Seiberg–Witten potential for the SU~2!

gauge subgroup, and we take into account that forNf52 the
first coefficient of theb function is 2. Herea352m/A2 is
the argument ofaD

3 , the logarithmic term takes into accou
the one-loop result~3.8! for the SU~2! gauge coupling at the
scalem, while the power series is the expansion in instant
induced corrections.

Now, if we introduce a small FI parameterjÞ0 in the
theory, on dimensional grounds, we could expect in Eq.~7.2!
corrections to the monopole mass in powers ofAj/L and/or
Aj/m. These corrections areforbiddenby the U(1)R charges.
Namely, the U(1)R charges ofL andm5Dm are equal to 2
@and so is the U(1)R charge of the central charge under co
sideration# while j has a vanishing U(1)R charge. For con-
venience, the U(1)R charges of different fields and param
eters of the microscopic theory are collected in Table
Thus, neither (Aj/L)k nor (Aj/m)k can appear.

By the same token, we could start from the confin
monopole at largej, and study the dependence of the mon
pole~string junction! mass as a function ofj as we reducej.
Again, the above arguments based on the U(1)R charges tell
us that corrections in powers ofL/Aj andm/Aj cannot ap-
pear. This leads us to Eq.~7.1!.

Another way to arrive at the same conclusion is to o
serve that the mass of the monopole is determined by
central charge~6.2!. This central charge is a holomorph

TABLE II. The U(1)R charges of fields and parameters of t
microscopic theory.

Field/parameter a aa la q ca mA L j
U(1)R charge 2 2 1 0 21 2 2 0
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quantity and, thus, cannot depend on the FI parametej
which is not holomorphic~it is a component of the SU(2)R
triplet @23#!.

Now recall that the mass of the monopole in the confin
ment phase is given by the kink mass in theN52CP1

model, see~5.17!. Thus, we obtain

Mm
Coulomb↔Mm

confinement↔M kink . ~7.3!

In particular, at the one-loop level, the kink mass is given
Eq. ~5.15!. This leads to the relationL2D5L between the
2D and 4D dynamical scales which we noted earlier a
‘‘strange coincidence,’’ see Eq.~4.23!. Now we know the
physical reason behind it. A puzzling question immediat
coming to one’s mind is what would happen with more qua
flavors. One may suspect that adding extra quark flavor
our microscopic theory~i.e., more than two! will change its
renormalization-group flow while the renormalization-gro
flow in the macroscopic model seemingly remains the sa
which would certainly destroy the correspondence. This c
clusion is wrong because, with more than two flavors in
microscopic theory, the strings that form in the microsco
theory become semilocal@47#. Semilocal strings have addi
tional zero modes associated with the change in their tra
verse size. Thus, the moduli space of these strings chan
and is no longer given by theCP1 model @5#. The macro-
scopic model is just different.

Summarizing, the exact expression for the BPS k
masses in the 2D sigma model is given byuZ2Du, see Eqs.
~5.39! and~5.42!. These are also the expressions for the c
fined monopoles~and dyonic monopoles! in the 4D Yang–
Mills theory, and, in view of the above, the expressions c
inciding with the SU~2! Seiberg–Witten monopole/dyo
solution on the Coulomb branch at the particular pointa3

52m/A2. Although we do not discuss it in the present p
per, the above relation can be generalized~cf. @4,48#! to theo-
ries with the SU(N)3U(1) gauge group andNf5N flavors
on the four-dimensional side, andCP(N21) sigma models on
the two-dimensional side. This is because the effect
world-sheet theory for non-Abelian strings inN52 QCD
with the SU(N)3U(1) gauge group andNf5N flavors is the
CP(N21) sigma model@5,3#. We are planning to return to thi
issue elsewhere.

VIII. CONCLUSIONS

In this paper we studied various dynamical regimes as
ciated with the confined monopoles that occur on the Hig
branch ofN52 two-flavor QCD. The focus of our conside
ation is the quasiclassical treatment of the string junctions
the domain

L!uDmu!Aj.

The BPS sector is fully solvable. The confined monop
carries two elementary strings attached to it, and can
viewed as a string junction. We derived a complete set of
first-order master equations, and found their solutions co
sponding to1

2 and 1
4 BPS saturation. The string junction is1

4

BPS. We obtained the orientational and superorientatio
4-25
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zero modes, introduced the corresponding moduli~quasi-
moduli! and developed a macroscopic description of strin
and their junctions based on two-dimensionalCP1 model
with a twisted mass related~equal! to the difference of the
mass parameters of two flavors in our microscopic theo
The masses and other characteristics of the confined m
poles are matched with those of theCP1-model kinks. The
matching reveals, in particular, the occurrence of an anom
in the monopole central charge in 4D Yang–Mills theory.

Building on the established identification of the micr
scopic and microscopic models, we expand in two cruc
directions. We study what becomes of the confined monop
in the bona fidenon-Abelian limitDm→0 where the global
SU~2! symmetry is restored. To this end we considered s
monopoles~classically they would become massless and
finitely spread! as quantum states interpolating between t
vacua of theCP1 model with vanishing twisted mass. This
a highly quantum regime, whose solution is known, howev
e.g., from the mirror description of theCP1 model. The clas-
sical would-be explosion never happens. Instead, the mo
pole becomes stabilized by nonperturbative dynamics in
effective 2D sigma model on the string world sheet. T
monopole, aka theCP1-model kink, acquires a nonvanishin
mass of the order ofL and a finite size of the order ofL21.

Another direction is the small-j domain. If Dm is kept
fixed, whilej decreases, we move towards a weaker confi
ment, eventually ending up on the Coulomb branch~i.e., j
50) where the Seiberg–Witten exact solution applies. Ne
less to say, in this limit theCP1 model is irrelevant to the
macroscopic description. In the Coulomb phase the SU~2!
gauge subgroup gets broken down to U~1! @11#, but the re-
sidual U~1! is not broken if N52 is maintained. The break
ing of U~1! occurs only if an explicit breaking ofN52 is
introduced ‘‘by hand,’’ and strings which develop in this ca
are Abelian ~Abrikosov–Nielsen–Olesen! strings. The
monopole never becomesbona fidenon-Abelian, although it
acquires a mass given by the Seiberg–Witten formula. Ph
ics of the Coulomb phase has nothing to do with that of
CP1 model. And, nevertheless, as was observed in Ref.@4#,
the BPS spectrum of theCP1 model is in one-to-one corre
spondence with the exact Seiberg–Witten solution.

The puzzle is solved by the following observation. Phy
ics of our microscopic model in the Higgs phase,jÞ0, is
perfectly similar to that of theCP1 model. More precisely,
the BPS sectors can be mapped one onto another. On
other hand, holomorphic nature of the central charges
clude them from developing aj dependence. Therefore, BP
data in the Higgs phase are related to those in the Coul
phase.

Needless to say, of more practical interest is condensa
of non-Abelian monopoles which must be responsible
non-Abelian confinement of quarks—a phenomenon dua
the one studied in this paper, where confined are non-Abe
monopoles, while quarks condense. We are not sure ho
dualize our results. One way to approach this problem
reduction of the quark mass parametersm1,2. If they get
sufficiently small, below the Argyres–Douglas point@49#,
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the quarks acquire magnetic quantum numbers@44# and their
condensation should trigger confinement of color-elec
charges.

Note added. David Tong has just informed us that he
finalizing a paper, a sequel to his inspiring publication@6#,
which has an overlap with the results reported here.

Note added in proof
After this paper was submitted~and accepted! for publi-

cation in Physical Review D, we became aware of some n
circumstances. First, string junctions in the Yang-Mill
Higgs system were considered~in a nonsupersymmetric con
text! in the 1980’s. In a model with the SU~2!→U~1!→Z2
symmetry breaking pattern it was found@50# that there exist
two distinct~degenerate! strings, each carrying 2p/e units of
the magnetic flux. Although these strings had no orien
tional moduli, they did support kinks interpolating betwe
them, which were called ‘‘monopole beads’’ by the autho
Topological arguments were presented@50# proving the sta-
bility of such field configurations. Further analysis was c
ried out in Ref.@51# where it was shown that, in fact, man
popular models of the typeG→H→Z2 do not support stable
monopole beads. Non-translational zero modes of stri
were discussed in a U~1!3U~1! model @52,53# and later, in
more contrived models, in@54# ~the latter paper is entitled
‘‘Zero Modes of Non-Abelian Vortices’’!. Kibble and Hind-
marsh’s results were generalized to cover various ga
groups in@55–57,16#. In various models the monopole an
vortex fluxes were shown@55–57,16# to match each other, so
that monopoles can be confined by one or several string
various kinds that get attached to monopoles in the Hi
phase.

It is worth emphasizing that, along with apparent simila
ties of which we will say later, there are drastic distinctio
between the ‘‘non-Abelian strings’’ we consider here and
strings that were discussed in the 1980’s. In particular,
example treated in Ref.@54#, the gauge group is not com
pletely broken in the vacuum, and, therefore, there are m
less gauge fields in the bulk. If the unbroken generator a
nontrivially on the string flux~which is proportional to a
broken generator! then it can and does create zero mod
Some divergence problems ensue.

In contrast, in our case the gauge group is complet
broken~up to a discrete subgroupZ2!. The theory in the bulk
is fully Higgsed. The unbroken group SU~2!C1F, a combina-
tion of the gauge and flavor groups, is global. There are
massless fields in the bulk.

We could model the example considered in@54# if we
gauge our unbroken global symmetry SU~2!C1F with respect
to yet anotherad hocgauge fieldBm.

Some technical points first introduced in Ref.@54# are
close to constructions exploited in our papers@1,2,27# and
the present paper. In particular, generationk50,3 compo-
nents of the gauge potential upon switching on thet,z de-
pendence of the moduli, determined by an extra profile fu
tion r @see Eq.~4.1!# was first implemented in@54#.

We are very grateful to Mark Hindmarsh and M.A.C
Kneipp for pointing out to us the above publications whic
unfortunately, escaped our attention.
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NON-ABELIAN STRING JUNCTIONS AS CONFINED . . . PHYSICAL REVIEW D70, 045004 ~2004!
We use this opportunity to add that the Hanany-Tong
per mentioned in our Note added~above!, was posted on 15
March @58#. Another relevant development was reported in
publication of Isozumiet al. @59# which was posted on 14
May. The authors obtained a general solution of 1/4 B
equations similar to those we have derived and discusse
the bulk of the paper~see also our previous works@1,2#!.
Their construction is applicable in the strong coupling lim
in U(N) gauge theories with the number of fundamental h
permultiplets exceedingN. In fact, due to this reason the
strings are ‘‘semilocal strings.’’ In this case one has Hig
branches instead of isolated vacua, as is the case in
analysis. When one goes to the strong coupling limit,
model effectively reduces to a sigma model on the Hig
branch. Strings become instantons lifted in 4D~semilocal
g,

d
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strings!. In this case, solving the first order equations see
to be an easier task than in ours. This paves the way to a
analytical solution.
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