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Two-loop hard-thermal-loop thermodynamics with quarks
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We calculate the quark contribution to the free energy of a hot quark-gluon plasma to two-loop order using
hard-thermal-loogHTL) perturbation theory. All ultraviolet divergences can be absorbed into renormalizations
of the vacuum energy and the HTL quark and gluon mass parameters. The quark and gluon HTL mass
parameters are determined self-consistently by a variational prescription. Combining the quark contribution
with the two-loop HTL perturbation theory free energy for pure glue we obtain the total two-loop QCD free
energy. Comparisons are made with lattice estimates of the free enerdly=fd? and with exact numerical
results obtained in the large; limit.
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. INTRODUCTION 15 5
.7'-2:_?(1+1_2Nf), (3)
The current generation of relativistic heavy-ion collision
experiments should exceed the energy density necessary for
the formation of a quark-gluon plasma. It is therefore neces- 32
sary to have a quantitative theoretical framework which can F,=30 1+ —Nf) , (4)
be used to calculate the properties of a quark-gluon plasma. 6
The usual line of reasoning is that since QCD is asymptoti-
cally free, its running coupling constaat becomes weaker )
as the temperature increases and therefore the behavior of F4a=237.2+ 15.9M¢—0.413\
hadronic matter at sufficiently high temperature should be 13 1 1
. . ag
calculable using perturbative methods. Unfortunately, a + _5( 1+ —Nf) log —| 1+ —Nf”
straightforward perturbative expansion in powersxgfdoes 2 6 ™ 6
not seem to be of any quantitative use even at temperatures 165 5 2 “
many orders of magnitude higher than those achievable in - —(1+ —Nf) 1- —Nf>log—, (5
heavy-ion collisions. 8 12 33 2T
The problem can be seen by looking at the perturbative
expansion of the free energ¥ of a quark-gluon plasma, 1 "
whose Weak-couplanS/(zexpanS|on has been calculated com- Fe=—| 1+ —Nf) [799.2+21.96\lf+1.926\|§]
pletely through orden? [1-3]: 6
2 312 2 495( 1 )( 2 H
P 8iT4 .7:0+.7:2$+,7:3(a—s) ‘7, %> + > 1+ 6Nf 1 33Nf |0927TT, (6)
45 T T T

5/2
+ Fs +O(a§|og ag) |, ) whereu is the renormalization scale,= ag(u) is the run-
ning coupling constant in the modified minimal subtraction

_ (MS) scheme, and we have 9dt=3. The coefficient of
with allog ag has recently been computdd]; however, since
there are unknown perturbative and non-perturbative contri-
butions atO(ag), we do not include terms higher than
0(a>? in Eq. ().

In Fig. 1, the free energy witN;=2 is shown as a func-
tion of the temperatur@/Awys. In the plot we have scaled
*Present address: Nordita, Blegdamsvej 17, DK-2100 Copenthe free energy by the free energy of an ideal gas of quarks

hagen, Denmark. and gluons which for arbitraril, and Ny is

Fo=1 2:LN 2
0=1+ 35Nt (2
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T ' ' tations as ordinary lattice gauge theory: it can be applied
N \ _ only to static quantities and only at small baryon number

k densities. Unlike in ordinary lattice gauge theory, light dy-
namical quarks do not require any additional computer
power, because they only enter through the perturbatively
calculated coefficients in the effective Lagrangian. This
method has been applied to the Debye screening mass for
QCD[10] as well as the pressuf8].

There are some proposals for reorganizing perturbation
theory in QCD that are essentially just mathematical manipu-
lations of the weak coupling expansion. The methods include
______ -~ B Pade approximateq 11], Borel resummatiorj12], and self-
Llo, Do D2 Mo similar approximateg13]. These methods are used to con-
struct more stable sequences of successive approximations
that agree with the weak-coupling expansion when expanded
in powers of ag. These methods can only be applied to
quantities for which several orders in the weak-coupling ex-

FIG. 1. The perturbative free energy of QCD fd¢=2 mass- pansion are known, so they are limited in practice to the
less quarks as a function dT/A(ZM—S). The weak-coupling expan- thermodynamic functions.
sions through orders, 22, «?, and 2 are shown as bands ~ One promising approach for reorganizing perturbation
that correspond to varying the renormalization sqalby a factor  theory in thermal QCD is to use a variational framework.
of 2 around 2rT. Also shown is a lattice estimate by Karsch et al. The free energyF is expressed as the variational minimum
[7] for the free energy. The band indicates the estimated systematigf g thermodynamic potentiaﬂz(T,as;mz) that depends on
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error of their result which is reported as (£5)%. one or more variational parameters that we denote collec-
tively by m?:
2 7
Fgea= — —=T4 N2= 1+ NN (7) 2
ideal 45 € 4 ¢t FT,ag) =Q(T,as;m )|m/am2:o- (8
The weak-coupling expansions through ordegs 2%, o2, A particularly compelling variational formulation is the

and o> are shown as bands that correspond to varying thé-derivable approximationin which the complete propaga-
renormalization scaley, by a factor of 2 around the central tor is used as an infinite set of variational parameféry.
value u=27T. As successive terms in the weak-coupling The ®-derivable thermodynamic potenti&} is the two-
expansion are added, the predictions change wildly and thearticle-irreducible2P]) effective action, the sum of all dia-
sensitivity to the renormalization scale grows. It is clear thagrams that are 2PI with respect to the complete propagator
a reorganization of the perturbation series is essential if pef-15]. Then-loop ®-derivable approximations, in whidf is
turbative calculations are to be of any quantitative use athe sum of 2PI diagrams with up toloops, form a system-
temperatures accessible in heavy-ion collisions. atically improvable sequence of variational approximations.
The free energy can also be calculated nonperturbativelyntil recently, ®-derivable approximations have proved to
using lattice gauge theof]. The thermodynamic functions be intractable for relativistic field theories except for simple
for pure-glue QCD have been calculated with high precisiorcases in which the self-energy is momentum independent.
by Boyd et al.[6]. There have also been calculations which However, there has been some recent progress in solving the
include dynamical quarkg?7,8]. In Fig. 1 we have included 3-loop ®-derivable approximation for scalar field theories.
the latest lattice estimate of Karsch et Ef] for the free  Braaten and Petitgirard have developed an analytic method
energy forN;=2 flavors of light quarks. The band indicates for solving the 3-loop®d-derivable approximation for the
the estimated systematic error of their result which is remasslessp? field theory[16]. van Hees and Knoll have de-
ported as (1% 5)%. Note that the quarks in the simulations veloped numerical methods for solving the 3-loop
do have non-zero masses and that extrapolation to zero quadik-derivable approximation for the massivé field theory
mass would require significant computing time. As a resul{17]. They also investigated renormalization issues associ-
of the difficulty associated with the inclusion of light and ated with the®-derivable approximation. These issues have
massless dynamical quarks on the lattice, it is therefore deecently been studied in detail by Blaizot, lancu, and Reinosa
sirable to have analytic methods which can be used to est[18].
mate the thermodynamic functions. The application of thed-derivable approximation to
The only rigorous method available for reorganizing per-QCD was first discussed by Freedman and McLefrEd].
turbation theory in thermal QCD dimensional reductiono ~ One problem with this approach is that the thermodynamic
an effective 3-dimensional field theof®,10]. The coeffi- potential() is gauge dependent, and so are the resulting ther-
cients of the terms in the effective Lagrangian are calculatedhodynamic functions. The gauge dependence is the same
using perturbation theory, but calculations within the effec-order in ag as the truncation error when evaluated off the
tive field theory are carried out nonperturbatively using lat-stationary point and twice the order in, when evaluated at
tice gauge theory. Dimensional reduction has the same limithe stationary poinit20]. However, the most serious problem
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is that even the application of 2-loagp-derivable approxi- dynamic functions of QCD to next-to-leading order in

mation to gauge theories has proved to be intractable. HTLpt including the contributions from quark and quark-
The 2-loop®-derivable approximation for QCD has been gluon interaction diagrams. _
used as the starting point fdrard-thermal-loop (HTL) re- We begin with a brief summary of HTL perturbation

summationsof the entropy by Blaizot, lancu, and Rebhan theory including quarks in Sec. II. In Sec. lll, we give the
[21] and of the pressure by Peshigg]. The thermodynamic ~€xpressions for the one-loop and two-loop diagrams for the
potential(2, .o, is @ functional of the complete gluon propa- thermodynamic potent|_al. In Sec. IV, we reduce those dia-
gatorD,,,(P). However, in order to make the problem trac- grams to s_calar sum mtegrals.. We are unable to compute
table the authors in Reff21] and[22] were forced to make thosg sum integrals exacily, so in _S_ec. V we evaluate ther_n by
a variational ansatz for the exact gluon propagator whicﬁre‘it_'l_ngmg an(/ijqkasO_(g) qlllJetmtltlestﬁn;j expﬁgd tthem Itn
they took as the HTL gluon propagator in the infrared and! D 5 andmg/ 1, keeping all terms that contribute up to

. . . . 0(g). The diagrams are combined in Sec. VIl to obtain the
with a next-to-leading order corrected mass in the uItraone}. . .

inal result for the two-loop thermodynamic potential up to

with an aribitrary momentum scale separating the two mo—o(g5)_ In Sec. VIII, we present our numerical results for the

mentum regions. Using this z_;msatz they .Were able to C_alcuﬁee energy of QCD at leading and next-to-leading order in
late the QCD thermodynamic functions; however, a f'rSt'HTLpt. In Sec. IX we evaluate the free energy in the laxge

principles calculation of the corrections to their results forj; it \where exact numerical results have been obtained
gauge theories would require the inclusion of exact verticegzg 34.

as well as exact propagators thus making the problem intrac- Tnere are several appendixes that contain technical details
table. of the calculations. In Appendix A, we give the Feynman
The difficulties in calculating quantities using rules for HTL perturbation theory in Minkowski space to
®-derivable approximations in gauge theories motivates theacilitate the application of this formalism to signatures of
use of simpler variational approximations. One such strategshe quark-gluon plasma. The most difficult aspect of these
that involves a single variational parametehas been called calculations was the evaluation of the sum integrals obtained
optimized perturbation theor}23], variational perturbation  from the expansion imp /T andm,/T. We give the results
theory[24], or thelinear § expansior 25]. This strategy was for these sum integrals in Appendix B. The evaluation of
applied to the thermodynamics of the massless field  some difficult thermal integrals that were required to obtain
theory by Karsch, Patkos, and Petreczky under the nami&e sum integrals is described in Appendix C.
screened perturbation theof®26]. The method has also been
applied to spontaneously broken field theories at finite tem- [l. HTL PERTURBATION THEORY
peraturg 27]. The calculations of the thermodynamics of the
masslessp* field theory using screened perturbation theory
have been extended to 3 loo28]. The calculations can be

The Lagrangian density that generates the perturbative ex-
pansion for QCD can be expressed in the form

greatly simplified by using a double expansion in powers of 1 o

the coupling constant ana/T [29]. Loco=— ETr(GWG“”HilM“DMWr Lgi+ Lghost
HTL perturbation theoryHTLpt) is an adaptation of this

strategy to thermal QCIP30]. The exactly solvable theory +ALqgep- 9

used as the starting point is one whose propagators are the

HTL quark and gluon propagators. The variational mass paThe gauge potential iAM=Azta, with generatorg? of the
rametersn, andm, are identified with the Debye screening fundamental representation of SUl{) normalized so that
mass and the induced quark mass. The one-loop free enerdyt®°=5°"/2. The field strength tensor i€,,=d,A,

in HTLpt was calculated for QCD in Ref30] and for QCD  —d,A,—ig[A,,A,]. In the quark term there is an implicit
with massless quarks in RgB1]. At this order, the param- sum over theN; quark flavors andD ,=d,—igA, is the
etersm, and m, could not be determined variationally, so covariant derivative for the fundamental representation. The

their perturbative limits were used. The resulting thermody-9h0St termZgp,s depends on the choice of the gauge-fixing
namic functions had errors of orders, but the terms of term Ly Two choices for the gauge-fixing term that depend
312 20N an arbitrary gauge parametgare the general covariant

order a5 © associated with Debye screening were correct. dth | Coulomb )
two-loop calculation is required to reduce the errors to ordePauge and the general Coulomb gauge:
2
ag. 1
In.a previous paper we calculated the thermodynamic .Cgf:——Tr[((?”A,L)Z] covariant (10)
functions of pure-glue QCD to next-to-leading order in €

HTLpt [32]. In that paper we showed that it was possible to

renormahze the resultlng' expressmns'for the thermodynamic _ ETr[(V~A)2] Coulomb. (11)
potential at next-to-leading order using only vacuum and £

mass counterterms and we also showed that the corrections

to the thermodynamic functions in going from leading-orderlt is also convenient to introduce various invariants associ-
to next-to-leading order were small down to temperatures oated with the representations of the $lJJ gauge group.
the order of 10s. In this paper we calculate the thermo- Denoting the generators of the adjoint representation as
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(F?)Pc=—ifabcand generators of the fundamental represeninduced finite temperature quark mass. HTLpt is defined by
tation asT? we define the following group theory factors: treatings as a formal expansion parameter.
The HTL perturbation expansion generates ultraviolet di-
[FCFC]ab:fadCfde:C 5ab . . .
AC vergences. In QCD perturbation theory, renormalizability
TrFapP—g, 53b constrains the ultraviolet divergences to have a form that can
r ~ a0 be canceled by the counterterm Lagranglafiocp. We will
S2a—( demonstrate that renormalized perturbation theory can be
— YA . . .
implemented by including a counterterm Lagrangiaf, 1.

aTay  _ - among the interaction terms in E(L4). There is no proof
[T3T?];; =cg6
i “FOij> . A )
that the HTL perturbation expansion is renormalizable, so the
TrTaTP=5:6%", general structure of the ultraviolet divergences is not known;
however, it was shown in our previous pajp@g] that it was
S'=dp=spd/Ck . (12 possible to renormalize the next-to-leading order HTLpt pre-
diction for the free energy of pure-glue QCD using only a
With the standard normalization, vacuum counterterm and Debye mass counterterm. Here we
o show that when quarks are included it is also possible to
Ca=sa=Nc, renormalize the resulting expressions using only vacuum,
9 Debye mass, and quark mass counterterms.
dA: NC_ 1,

The leading term in the delta expansion of the vacuum
energy, &, countertermA&, was deduced in Ref30] by
calculating the free energy to leading order dn The &,
countertermA &, must therefore have the form

ce=(Ng—1)/(2N,),

S,:=Nf/2,

de=NN;. (13

. o AEy= L2+0(5as) (1-5)2md . (16)
The perturbative expansion in powers @fgenerates ultra- 128m“€

violet divergences. The renormalizability of perturbative
QCD guarantees that all divergences in physical quantities
can be removed by renormalization of the coupling constanto calculate the free energy to next-to-leading ordes,ime
as=g?/4m. There is no need for wave function renormaliza-need the counterterm&, to order s and the counterterms
tion, because physical quantities are independent of the nogm2 and Amf‘ to order 5. We will show that there is a
malization of the field. There is also no need for renormal-gnrivial cancellation of the ultraviolet divergences if the
ization of the gauge parameter, because physical quantitifsss counterterms have the form
are independent of the gauge parameter.
Hard-thermal-loop perturbation theory is a reorganization
of the perturbation series for thermal QCD. The Lagrangian

S ) ag [11
density is written as Amd=— 3775_ZCA_SF m2, (17)
L=(Lqcot Luu)lg—yagT AL - (14
The HTL improvement term is , ag [9 d, ,
Amg= - 3me8 cp Mg - (18)

1 2
Ly =— 5(1_ o)mpTr

ayB
ol 22
(y-D)?/,
u Physical observables are calculated in HTLpt by expanding
+(1— 5)im§¢y“<y—D> o, (15) them in powers ob, t_runca_tlng at some spem_ﬂed order, and
y-©ly then settingd=1. This defines a reorganization of the per-

_ _ _ _ o turbation series in which the effects of thg and mé terms
where in the first ternD , is the covariant derivative in the in gq. (15) are included to all orders but then systematically
adjoint representation, in the second tébrpis the covariant  syptracted out at higher orders in perturbation theory by the
derivative in the fundamental representatigi=(1y) is a 5m2D and 5m§ terms in Eq.(15). If we sets=1, the La-
|Ight-|lke fOUF-Ve?tOf, anc(- e >y represents the average over grangian (14) reduces to the QCD Lagrangiag)_ If the
the directions ofy. The term(15) has the form of the effec- expansion in§ could be calculated to all orders, all depen-
tive Lagrangian that would be induced by a rotationally in-dence onmp and m, should disappear when we sét1.
variant ensemble of colored sources with infinitely high mo-However, any truncation of the expansiondrproduces re-
mentum. The parameten, can be identified with the Debye sults that depend omp and m,. Some prescription is re-
screening mass and the parametgrcan be identified as the quired to determinen, andm, as a function ofl and a.
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A0RR 00 0002020, l
Fa= 5 $p (0= Dlogl - Ar(P)] +log A (P},
- & (21
F F F The transverse and longitudinal HTL propagatargP) and
g 3¢ 4g A, (P) are given in Eqs(A51) and(A52). The quark contri-
bution is
Q @ @:::? ]-"q=—i{P}log defP—=(P)], (22
F F F

3ag dag where 3(P) is the HTL fermion self-energy. The leading

order counterterm &, was determined in Ref30]:

q
T4 da 4
‘\~_’/ A080=mmD. (23
F F F

gh get get The thermodynamic potential at next-to-leading order in

FIG. 2. Diagrams contributing through NLO in HTLpt. Shaded HTL perturbation theory can be written as
circles indicate dressed HTL propagators and vertices.

We choose to treat both as variational parameters that should Ono=Q ot dal Fagt Fagt Fgnt Fycd
be determined by minimizing the free energy. If we denote
the free energy truncated at some order & by T AaSEl Faqq t Fagel + diFgert Aabo

Q(T,as,mp,mg, 6), our prescription is d d
’ +Alm2D_&m% QLO"_AlmSﬁ_rnsQLOy (24

Jd
—Q(T,as,mp,my,6=1)=0,

IMp whereA £y, A;m3, andA;m? are the terms of ordef in the

p vacuum energy density and mass counterterms. The contri-
—Q(T,as,Mp, My, 8=1)=0. (19)  butions from the two-loop diagrams with the three-gluon and
Img four-gluon vertices are

SinceQ(T,as,mp,my,6=1) is a function of the variational

parametersn, andmg, we will refer to it as thethermody-

namic potential We will refer to the variational equations e

(19 as thegap equationsThe free energy is obtained by Fag= 1—292 F,Ql"f‘“’(P,Q,R)l“”‘”(P,Q,R)A’“’(P)
evaluating the thermodynamic potential at the solution to the

gap equation$l9). Other thermodynamic functions can then X AMN(Q)AP(R), (25)
be obtained by taking appropriate derivatives7ofvith re-
spect toT.
I1l. DIAGRAMS FOR THE THERMODYNAMIC Ca
— 2 V,\o _ —
POTENTIAL Fag=g 9 dupol “7(P,—P.Q,—Q)
The thermodynamic potential at leading order in HTL per- v o
turbation theory(see Fig. 2 for an SU(N,) gauge theory XAF(P)AM(Q), (26)
with N¢ massless quarks is
Qo= daFy+ deFo+ Ao, (200 whereR=-Q—P.

The contribution from the ghost diagram depends on the
where 7y is the contribution from each of the color states of choice of gauge. The expressions in the covariant and Cou-
the gluon: lomb gauges are
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Ca 11 _ The remaining ultraviolet divergences must be removed by
Fgn=59 PAQ2 Rz QRVAXY(P) covariant  (27)  renormalization of the mass parametays andm, . We will
show below that, at orde#, all remaining divergences can
Ca 11 be removed by the quark and Debye mass counterterms. This
= 7gz$ POGZ r—z(Q“—Q-nnﬂ)(RV— R-nn") provides nontrivial evidence for the renormalizability of
q HTL perturbation theory at this order if.
X A*"(P)  Coulomb. (28 The sum of the 3-gluon, 4-gluon, and ghost contributions
is gauge invariant. By using the Ward identities, one can
The contribution from the HTL gluon counterterm diagram is easily show that the sum of these three diagrams is indepen-
1 dent of the gauge parametér With more effort, one can
_= v v show the equivalence of the covariant gauge expression with
Foet 2 iPH (P)AZ(P). 29 £=0 and the Coulomb gauge expression witk0. In a
o _ ) similar manner, it can be shown that the sum of Eg86) and
The contributions from the two-loop diagrams with the (31) js independent o within the class of covariant and
quark-gluon three and four vertices are given by Coloumb gauges, as well as the equivalence of the two with
£=0.

1
Faqg= Egzi b0y TMI*(P.Q.RIS(Q)I(P,Q,R)S(R)] IV. REDUCTION TO SCALAR SUM INTEGRALS

The first step in calculating the quark contribution to the
free energy is to reduce the sum of the diagrams to scalar
sum integrals. The leading-order quark contribution can be
rewritten as

XA*(P), (30

1
f4Qg: Egzi P{Q}Tr[l—‘#”( P! - P,Q,Q)S(Q)]A:U«V( P),

@31 AS-Aj
o , _ Fq= —Zi log P2—2$ log ———/|, (34
where Tr implies taking the trace overmatrices. The con- {P} P} P
tribution from the HTL quark counterterm is
where
Foom~ 3o TIS(P)S(P)]. (32 e
Ao(P)=iPo—5-Tp, (35
Provided that HTL perturbation theory is renormalizable, the 0
ultraviolet divergences at any order éhcan be canceled by
renormalizations of the vacuum energy dengigy the HTL m2
2 2 :
mass parameters, andmg, and the coupling constamt;. Ag(P)=|p|+ —[1-Tp]. (36)
Renormalization of the coupling constant does not enter until Ipl
order 5%. We will calculate the thermodynamic potential as a )
double expansion in powers afip /T andm, /T, andg in- The HTL quark counterterm can be rewritten as
cluding all terms through fifth order. Théag term in A&,
does not contribute until sixth order in this expansion, so the s 5
term of orderé in A&, can be obtained simply by expanding Foo— _4i P+ mq 37)
Eq. (23) to first order ins: act {PIAS—A]’

We proceed to simplify the sum of Eq&30) and (31) in
da (33) Landau gauge. Using the Ward identities45) and (A48)

A1bo=~ 64m2e 0 the sum of Eqs(30) and(31) becomes

1
-7:3qg+4qg:§gzi oo Ax(P)TIIYS(Q)] = Ar(P)TT#S(Q)I“S(R") ]+ Ax(P)TIS(QIS(R") 1}, (38)

whereSis the quark propagatoA is the transverse gluon propagatag is a combination of the transverse and longitudinal
gluon propagators defined {#h27), andR'=Q—P.
Performing the traces of matrices gives
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1 rAS(QAS(R) —Ao(Q)Ao(R)
— _n2
Faqg+aqg= —9 $P{Q}A§(Q)—AS(Q)I2(d 1)AT(P) (R) AZ 2(R)
- A QAR +ASQASR)G-T AfQ)-A(Qg-y 1
28x(P) A%(R)—A](R) 4quX(P)< (P-Y)2—(Q-Y)? (Q-Y)>9

8%MW)C%@%%@WW%m%%mﬁﬂ>

ALR)—A5(R) (Q-Y)(R-Y) ;
) I BN
Ag(n;;ﬁ_ﬁ;)m < 2A(R)AS(Q)Q- y—(g?(g)(';?(;) —As(Q)As(R)q- r> J +0(g’my), (39
whereA, andAg are defined in Eq9A40) and (A41), respectively.
|
V. HIGH-TEMPERATURE EXPANSION The sum integrals oveP involve two momentum scales,

. nd T. Since Py=(2n+1)#T, the momentum is always

The free energy has been reduced to scalar sum mtegraﬁ

If we tried to evaluate the 2-loop HTL free energy exactly, ard. We can therefore expand in poweremjf To second

there are terms that could at best be reduced t§"der inmg, we obtain

5-dimensional integrals which would have to be evaluated

numerically. We will therefore evaluate the sum integrals ap- ]:(h)_ Zi: log P2—4m i —

proximately by expanding them in powers ofy /T and P} {PIP

mg/T. We will carry out the expansion to high enough order 2

to mclude all terms through ordep if mp and m, are taken +2m $ b {

to be of orderm. P} P
The free energy can be divided into contributions from (42)

hard and soft momenta. We proceed to calculate the hard-

hard and hard-soft contributions. There is no soft-soft contriNote that the functiorZ, cancels from themq term. The

bution since one of the momenta in the loop is always fervalues of the sum integrals are given in Appendix B. Insert-

mionic and therefore hard. ing those expressions, the hard quark contributions to the

free energy reduce to

2P2 + 2P27'P 2F,(g)(7—p)2

A. One-loop sum integrals

™ {'(~-1)
The one-loop sum integrals include the leading quark con- ffqh)= - ﬁ)T‘“r 6l 1T 2—-2log2+2———~+ (=1 )
tribution (22) and the HTL quark counterter(82). The lead-
ing order free energy must be expanded to ordiér to wo\2%€ _— 1 ) 4
include all terms through ordeg® if m, is taken to be of N aaT mg T+ EZ(T’ —6)mg. (43
orderg.
o Note that this contribution is finite and so the leading order
1. Hard contributions countertermA &, is the same as in the pure-glue case. The
The hard contribution from the LO gluon ter(@1) was HTL quark counterterm is given in E¢37). Expanding this
given in[32] and reads term to second order imé yields
1 {'(=1) w2 (h) zi 1 4$ L
(h— _ 4, 212 = I D
i 5T Faltt 2+2; {(=1) H(MT) moT o™ AMaduippz™ MMaduip) pi ~ 7p2
i 2772)(—“ )25 4. (40 2ot
- ——7+2y+ — mg . + 44
12877'2 € Y 3 AT D p2P2 P pzpo( P) ( )

The hard contribution from the HTL counterterf®9) was  The values of the sum integrals are given in Appendix B.
given in[32] and reads Inserting those expressions, the hard contributions to the
HTL quark counterterm reduce to

1 1 2w\ [ w \%€
F=——maT?+ —=T+2y+ — || —=| mp
get™ — 4" T G2 3 |\angT) ™ m_ L., 1o,y
(41) Foct= quT 6772(77 6)my. (45
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Note that the first term in Eq45) cancels the ordet? term  need only to expand the sum integrals to ordo‘-é:mD/T3

in coefficient ofmj in Eq. (43). andm3/ T2 to include all terms through ordey®.
o The sum integrals involve two momentum scates, mp
2. Soft contributions andT. In order to expand them in powers of these scales, we

The soft contribution comes from tHe,=0 term in the separate them into contributions from hard loop momenta
sum integral. At soft momenturP=(0,p), the HTL self- and soft loop momenta. This gives two separate regions
energy functions reduce fd+(P)=0 andII, (P)=m3. The  which we will denote(hh) and (hs). In the (hh) region, all
transverse term vanishes in dimensional regularization behree moment#®, Q, andR are hard. In théhs) region, two
cause there is no momentum scale in the integral gver of the three momenta are hard and the other soft.

Thus the soft contribution comes from the longitudinal term

only. 1. Contributions from the (hh) region
The soft contribution to the leading order free enegy) For hard momenta, the self-energies are suppressed by
was given in Ref[32] and reads mg/T? or mZ/T? relative to the propagators, so we can ex-
1 8 |2 pand in powers ofl;, II, , andX.
]—"(S)— - — 1+ 3€ ( ) m3DT. (46) The (hh) contribution from Eqs(25)—(27) was given in
127 2m Ref.[32] and reads

The soft contribution to the HTL gluon countertef@®) was
given in Ref.[32] and reads

L hh) h_77_2 Ca®s 4
3g+4g+gh—
Fl=——m3T. (47) 12 3m
8 4e
A L e B et
There is no soft contribution from the leading-order quark 96|e 3w \4nT Do

term (34) or from the HTL quark counterterr{87). (48)

B. Two-loop sum integrals

The sum of the two-loop sum integrals is given in Eq. The (hh) contribution from Eqs(30) and(31) can be written
(39). Since these integrals have an explicit factorgéf we  as

2 2
+2mpg i‘ P{Q}

1 T 1 d—2 1
p2P2Q? pT (P2)2Q2 ~ d—1 p?P2Q?

1 2
fg?“g)ﬂqg:<d‘1)gz[${po}pz—y‘$p{cg}pz—qz

d+1 4d @ 2d P-Q
+m092$ 2572 274 22,4
{PQ} d— 1PQ d—1 P°Qr* d—1 P°Q“r
3-d 1 2d P.Q d+2 1 4d @ 4 q?
+m292$ + - - -
b {PQl{d—1 P2Q?R? " d—1 P?Q%* d—1P?Q%? d—-1P?Q%* d—1 P?Q%°R?
+2m2g¥(d 1}2 R il il PPN 1}2 L T
MO fuieol P0RQ7 RRePQgRR| T AT Y dera) P77 T PP
o2 1 i d+3 2 r2—p? 49
+ m ( ) PO d—1 P2Q2R2 PZ(Q2)2+ 9?P2Q7%R2 | (49)
Using the expressions for the sum integrals in Appendix B, this reduces to
57TCL/S411 ,u,452211 as,u,4€22
Faagraas= 75 — T 72[ +1. 296% (4 T) mpT2+ 5 - +8.96751 —| . —| mT?. (50)
|
2. (hs) contribution ers of the soft momenturp. In the case ofA{(0,p), the

In the (hs) region, the momenturR is soft. The momenta resulting integrals ovep have no scale and they vanish in
Q andR are always hard. The function that multiplies the dimensional regulanzatlon The integration measyig
soft propagatoA+(0,p) or Ay(0,p) can be expanded in pow- scales like mD, the soft propagatoiAy(0,p) scales like
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1/m%, and every power op in the numerator scales like
mp .
The (hs) contribution from Eqs(25—(27) was given in
Ref.[32] and reads

hs) _ T Caas s 111 27
39%ag+0h= T 3, Mol T g | et T2y
2¢ 2€
CAaS M M 3
3 (4WT) (ZmD) mpT. (5D

The only terms that contribute through ordﬁm%T and
m;mpg®T from Egs.(30) and(31) are

2 4P }
Q@ (@’

1
hs) — 2
Fiig- 409~ ij pZ+m3 i{Q}

+2m2|392TJ %$ [%
p P2+mp THA(Q%)

2 > 8 ¢*
IR ICERAET RS
. 1 3 B 402
‘”“quTJp PP+ m} Lol @
4 2 1
@ @l 52

In the terms that are already of orc@%m%T, we can seR
=—Q. In the terms of ordeg?mpT2, we must expand the
integrand to second order m After averaging over angles

PHYSICAL REVIEW D 70, 045001 (2004

VI. HTL-IMPROVED THERMODYNAMICS

The free energy at second order in HTL perturbation
theory defines a functiofi)(T,as,mp,my,6=1). We will
refer to this function as the thermodynamic potential. To ob-
tain the free energ¥ (T) as a function of the temperature,
we need to specify a prescription for the mass paranmeger
as a function ofT and «s.

VII. THERMODYNAMIC POTENTIAL

In this section, we calculate the thermodynamic potential
O(T,as,mp,my,6=1) explicitly, first to leading order in
the § expansion and then to next-to-leading order.

A. Leading order

The complete expression for the leading order thermody-
namic potential is the sum of the contributions from 1-loop
diagrams and the leading ter(@3) in the vacuum energy
counterterm. The contributions from the 1-loop diagrams, in-
cluding all terms through ordeg®, is the sum of Eqs(40),
(43), and(46),

of p, the linear terms imp vanish and quadratic terms of the wherem,, r’hq and z are dimensionless variables:

form p'p/ are replaced byp?s'/d. We can sep?=—m3,
because any factor proportional p3-+ m2D will cancel the
denominator of the integral ovgy, leaving an integral with
no scale. This gives

1 @
hs) - —a’stT3+ _S

1
Sag+4q0~ " g 24W2;+1+2y+4log2

2e 2e
x(%) (%) m3T— Za?smngT.
(53
3. (s9) contributions
The (ss) contribution from Eqs(25)—(27) was given in
Ref.[32] and reads

1

S9) 3 _
€

39+49+gh:E

4de
CAaS M 212

3. (ZmD) mpT<. (54
There is no §s) contribution from the diagrams involving
fermions.

mT4  Tde 15., _dr., .,
Ql—loop:_dA4_5 1+Zd—A—?mD—30(ﬂmq+30mD
4501, " o 2m? .,
+§ Z+ OgE— + ’y+T mp
de 2 4
—60 (7 —6)m,, (55
da
- mp
Mp=>—3 (56)
A mg
M= 57 (57)
A M
K= omT: (58)

Adding the counterterni23), we obtain the thermodynamic

potential at leading order in the delta expansion:

QL o=—d T +7dF Lo 30d—F”2+3oﬁ13
Lo— AT 45 4d, 2" gM D
450 o 7 2

gk = L T it — 60X (2 gy
4109 7 2T YT g Mo O T a -

(59

B. Next-to-leading order

The complete expression for the next-to-leading order correction to the thermodynamic potential is the sum of the contri-
butions from all 2-loop diagrams, the quark and gluon counterterms, and renormalization counterterms. The contribution from
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the 2-loop diagrams, including all terms though ord@r is the sum of Eqs(48), (50), (51), (53), and(54) multiplied by the
appropriate group structure constants listed in @24):

T ag| 5 5 . 55 4 1 f
QZ-|OOp=_dAT? _Z CA+ ESF +15(CA+SF)mD—§ CA 11 +4|Og
2 o -2 1 'ZL =2 ~n2
—Ca 1—1Iog mp—1.96869 —0.4714, mD—?sF E+4Iog§+8.9675 mg+ 180sgmpmy
10 ! l4|’;2|“ L 2 (1424 410g2) | 60
+ (| €am 7SF || g T4 1095 —2logmp | +Ca| 77 +27 —1—13F( +2y+4log2) mp. (60)
The HTL gluon counterterm is the sum of E¢41) and (47):
mT4 15, ., 1 7 27\ .,
Qgct:_dA 45 ZmD 45I'T1D—Z +2|Og 7+2’y+T mp (. (61)
The HTL quark counterterm is given by E@5):
w7 2 4
Qo= —dg— 5 {30m +120( 7 —6)m} (62

The ultraviolet divergences that remain after these 3 terms are added can be removed by renormalization of the vacuum energy
density&, and the HTL mass parametarg, andmy. The renormalization contributions at first orderdrare

d d
AQ:A1€0+A1m%RQLo'f‘Almga_rnéQLo. (63)

Using the results listed in Eq§l7), (18), and(33) the complete contribution from the counterterm at first ordef is

A= —a, T 145 T > a0 | LRy ’1+2§'(_1)+2 2
TTOATgE 2T |8 | AT 1R\ e e e Ty o) Mo
165 nu) | LY Z 2 logmp+2 | m3 + — 1+2+2| / 2logos 2t Y 64
~ | Cam 17SF - 0g> —2logmp mp+ S 0g5—2log =1 m . (649

Adding the contributions from the two-loop diagrams in E&f), the HTL gluon and quark counterterms in E(&l) and(62),
the contribution from vacuum and mass renormalizations in(&4j, and the leading order thermodynamic potential in Eq.
(59) we obtain the complete expression for the QCD thermodynamic potential at next-to-leadingNdr@grin HTLpt:

T LTk = 45( o 7 w?

4dA 3 mD+60—(w —6)m +—

5 5
- Z CA+ ESF

. 55 ” 4 A ”
+15(cA+sF)mD—Z[cA(Iog% 11Iong 2001) 1lsF<I092 2337)}mD 45sF(Iogz+2192)

L “, 5 Ay o1 +2log 2| | m3+180sempm? 65
- Ca og§+2—2+ 115F 092 2+y og mp FMpMg | (- (65)
|
C. Gap equation J
RQNLO(TvaS!mD vmq)201 (66)
The quark and gluon mass parameteng,and mp, are q
determined variationally by requiring that the derivative of 3
QLo With respect to each parameter taken holding the other —— Qo T, as,mp ,my) =0. (67)
constant vanish: Jmp a
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The first equation above results in the following equation for

1.2

PHYSICAL REVIEW D 70, 045001 (2004

Mg
. L1
d|: ) aSSF M ~
— (m°— = —+2. - .
8dA(7r 6)mg - 3 Iog2 2.192| —12mp -
(68 X
g
S
In the limit of smallag the above gap equation does not go to ° 09
the perturbative limit for the quark mass which ﬁ&éypen
=Cpag/8m. The fact thaim, does not go to the perturbative 08 |
value in the smalkg limit is due to the fact that the pertur-
bative limit of the quark gap equation results from terms a7 .
which are O(aﬁ) and these terms are not included com- '
pletely at NLO in HTLpt. One might hope that going to the
next order in HTLpt would cure this problem; however, this P T S T T T T TS
will in fact not happen since the fermion sector is infrared ) a.(2nT)
safe and therefore only even powers mg will appear at °
each order. At NNLO all terms contributing &@(«?) at il ' ' ' ' ' ' "]
NLO will be replaced by explicit powers atg and allmq '
dependence will be pushed up(ﬂiag). This behavior will 12 b i
persist at all orders in HTLpt so that at any order the weak-
coupling limit of the gap equation quark mass will be scale 1
dependent. In order to circumvent this problem we can con- ~&
sider other possible prescriptions for Choosmgwhlch in- E 0.8 .
clude requiring thatAnq be equal to its perturbative value for E
all @ or requiring thatm, be proportional tany with the oer |
proportionality constant fixed in the weak-coupling limit. sl |
Performing the derivative with respect o, while hold- '
ing m, fixed results in the following gap equation fory : oz | i
-5 a7 72\ . L . L. - = . - s
45mD 1+ |0g5— E + 'y+ ? mp 10 10 10 10 10 10° 107 10
(b) o,(2nT)
55 w 36 , , ,
15(cA+s,:)— Ca Iog2 11Iog mD FIG. 3. Numerical solution of gap equations f@ mp, Eq.
(69), and(b) my, Eq.(68), as a function ofrg(27T) for N;=3 and
4 ~ N;=3. The shaded band corresponds to varying the renormaliza-
-3 637) SF Iog -2 337) tion scaleu by a factor of 2 aroungk=27T.
2
495 g value ofm, remains very flat regardless of the scale, chang-
M ing significantly only neaws~0.10.
+— 5 cA<Iogz+22 s
4 ( o1 ) J VIIl. FREE ENERGY
—Sg| lo ——+ +2log 2| |m3+180s:m
T 115997 4 g D F The free energy is obtained by evaluating the leading and
(69) next-to-leading order thermodynamic potentials, ES)

The last term in Eq(69) proportional toﬁf1 can be written in

terms ofmp using Eq.(68). In Fig. 3 we plot the solutions to
the gap equations fan, andm, for N.=3 andN;=2. The
solution formp goes to the perturbative value in the limit of
small a5, decreases below the perturbative valuengsn-

and (65), at the solution to the gap equatiof&8) and (69).

In Fig. 4 we plot the leading and next-to-leading order
HTLpt predictions for the free energy of QCD with.=3
andN;=2. We have studied the alternative prescriptions for
the quark mass discussed in the previous section and find
that the NLO free energy obtained using these prescriptions
is numerically indistinguishable from that obtained using the

creases, and becomes larger than the perturbative value qiark gap equations. As can be seen from this figure the

as~0.11. The solution fom, does not go to the perturbative

corrections in going from LO to NLO are small over the

value in the limit of smalleg and is instead scale dependent entire temperature range, especially when compared to con-

even at lowest order as discussed aboveaddmcreases the

vergence of the perturbative result. Additionally, the scale
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FIG. 4. LO and NLO HTLpt predictions for the free energy of N '_:lsG 5'dml‘9 I(-)I'I;Lz)t p_lr_ﬁdictihondfodr tt?e Zee energy OLQCD Wit.h
QCD with N.=3 andN;=2 together with the perturbative predic- hc_ an If'_{' 2.4 | E S a; € aPZS corresr?g _l'fo varying
tion accurate tay®. The shaded bands correspond to varying thet e renormalization scalg by a factor of 2 aroung=27T.

renormalization scale. by a factor of 2 aroundu=2=T. Also o o . )
shown is a lattice estimate by Karsch et[@] for the free energy. this figure we see that within HTLpt the addition of fermions

The band indicates the estimated systematic error of their resuificreases the pressure at fix@lAys. Note thatAys de-
which is reported as (155)%. pends onN; so that when plotted in terms of an absolute

o . scale the various curves shown in this figure will be slightly
variation of the NLO HTLpt result for the free energy is ghifted with respect to one another.

much smaller than the LO showing that the partial resumma-
tion of the scale dependent logarithms reduces the scale
variation of the final results significantly. IX. LARGE N
However, as was the case in pure-glue QE2], the |, yhe |imit that N, is taken large while holding®N;
results seem to lie significantly above the lattice data WhIC}’fixed it is possible to solve for th@(N?) contribution to the

are available below Aws. There are several reasons for free energy exactly33,34. In Fig. 6 we plot the NLO

why HTLpt might fail to _descrlbe the lattice data in this HTLpt prediction for theO(N?) contribution to the free en-
temperature range. One is that the hard modes are not re-

summed properly within HTLpt and that a description usingergy along with t.he numgrlce_ll result of RE{Bs,A'] and t_he
a ®-derivable approach which explicitly separates the har erturbative prediction which 'S a_ccurate(t_téas ). In Fig.
and soft modes as done in RE21] is better. A second is that . we plot the NLO HTLpt_predlctlon fom, in the IargeNf
HTLpt discards some important physics like topologicall'm't and the exact numerical res(iB5]. The HTLpt predic-

modes or the&Zy, symmetry of QCD near the phase transition.gpns forf bothtr;[he freet enerlgt:]y and thfZDebyedrFass ?fﬁm to
A third possibility is that the expansion imy/T and iverge from the exact result arouggy—~ 2 regardiess of the

my/T breaks down at these temperatures. Numericallyscale which is chosen; however, for both quantities, choosing

me/T~1.2 andm./T~0.5 at 5\c= and M~ /T~1.6 and the scale to bet= upg=me™ *T seems to provide a reason-
mle~0.6 at mM—Z, which casts '\éllcs)ubt on ?he applicability able reproduction of the exact results. This result is compa-
of the expansion in this temperature range. However, in th able to the performance of thie-derivable approach in the

case of pure glue we have been able to compare the L rgeNy limit [36]
HTLpt result expanded t®(mg) with the nontruncated LO
expression which is accurate to all ordersyig and find that X. CONCLUSIONS

the expansions converge very rapidly. Numerically we find | this paper we have extended our previous HTLpt cal-
thaE atmD /-!:25 truncations of the LO order result accurate culation of the thermodynamic functions in pure_g|ue QCD
to mg, andmg reproduce the exact result to 5% and 0.2%,to include the contribution oN; massless quarks. We have
respectively. There have also been studies of the convergenpeesented results for the leading- and next-to-leading-order
of the mass expansions of the three-loop free energy for BITLpt predictions for the QCD free energy for arbitraxy .
massless scalar field theory using screened perturbatiddsing the NLO HTLpt expression for the thermodynamic
theory[29] and the®-derivable approachl6] which dem-  potential we were able to find variational solutions for both
onstrated that mass expansions also converge very rapidly tite quark and gluon mass parameters, allowing a first-
NLO and NNLO. This gives us some confidence that theprinciples prediction of the QCD free energy. As in the case
truncated NLO solutions are numerically reliable. of pure glue we find that the NLO HTLpt prediction lies
We have also shown in Fig. 5 the NLO HTLpt results for significantly above the available lattice data belowys;
the pressure foN;={0,2,4} as a function off/Ays. From  however, the problem of oscillation of successive approxi-
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FIG. 6. NLO HTLpt prediction for theO(N?) contribution to o . o
the free energy, the numerical result of Ré4], and the perturba- FIG. 7. NLO HTLpt prediction fomy, in the largeN; limit and
tive prediction accurate tog® as a function of ger(upR) the exact numerical resulf35] as a function of ger(xpR)
=5¢9(pr) = 27 /Stas( pr) Whereupr=7e~ ’T. Dots indicate = \/S—fg(M_DR)_ZZWVSfas_(MDR)_ where upg=me ’T. In (a) the
the point at which there is no longer a real-valued solution to thg®normalization scalg. is varied by a factor ot aroundupg. In
gap equation fomg, . In (a) the renormalization scale is varied by (b) the renormalization scalg is varied by a factor of 2 around
a factor ofe around upg. In (b) the renormalization scalg is 2mT.
varied by a factor of 2 around72T. In both(a) and(b) the pertur-
bative g® result is evaluated at the central scale. some authors believe that a description of QCD thermody-

namics near the phase transition in terms of Polyakov loops

mations and large scale dependence of the perturbative rgs necessary37].
sults is eliminated by using this reorganization. We have also compared the NLO HTLpt free energy and

The failure of HTLpt to describe the lattice data in this Debye mass with exact results which are available in the
region could be attributed to the failure of the expansionlarge N; limit. This comparison shows that, in the lartg
performed inmp andm,; however, a study of the conver- limit, NLO HTLpt agrees with the exact result only out to
gence of the truncated LO expressions to a numerical eval@es~2 and has large scale dependence after this point. The
ation of the exact LO expression shows that these expansiogrge scale dependence is not surprising given the fact that in
converge very rapidly. Therefore, we are steered towards thiée largeNs limit the running of the coupling constant is
conclusion that a systematic description of QCD thermodydriven by the presence of the Landau singularity and even
namics using HTLpt is not appropriate belowAfs. The  the exact results are sensitive to this beyapg~5. The
®-derivable approach seems to agree better with the latticeoor performance of NLO HTLpt, however, is comparable to
data in this range, so perhaps HTLpt is not resumming th&ecent largeN; predictions within theb-derivable approach.
hard modes properly and an explicit separation of hard and’he failure of both approaches to agree better with the exact
soft scales is required. However, we should point out thatesult for large values o is an indication that a descrip-
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tion of strongly coupled QCD thermodynamics solely in I, (p)=—-1%p), (A7)
terms of HTL quasiparticles is perhaps inappropriate. How-

ever, it is possible that the physics of laiye-QCD is so  wherep is the unit vector in the direction gf. In terms of
different from that of QCD with a small number of flavors these functions, the self-energy tensor is

that it cannot serve as a definitive testing ground for the

applicability of the quasiparticle approach to the physical , 1 ,
case[38]. " (p)=—I(p) Tp"— n_SHL(p)Lg , (A8)
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APPENDIX A: HTL FEYNMAN RULES The four-vectomy is

In this appendix, we present Feynman rules for HTL per- n-p

turbation theory in QCD. We give explicit expressions for ng=n#——5-p~ (A11)

the propagators and for the quark-gluon 3 and 4 vertices. The P

Feynman rules are given in Minkowski space to facilitategq satisfiesp-n,=0 and n2=1—(n-p)¥p2. Equation
applications to real-time processes. A Minkowski momentumaAs) reduces to tﬁe identity P

is denotedp=(pq,p). and the inner product ip- q=pyQo

—p-q. The vector that specifies the thermal rest frama is 1 5
=(10). (d=DH(p)+ Tl (p)=m}.  (A12)
P
1. Gluon self-energy We can express both self-energy functions in terms of the
The HTL gluon self-energy tensor for a gluon of momen-function 7% defined by Eq(A2):
tumpis )
__ Mo 700 2

11#"(p)=mp[ 7**(p,— p) —n*n"]. (A1) ()= gzl TP o) = 1eml (ALY
The tensor7*”(p,q), which is defined only for momenta o 0
that Satisfyp+q:0, is HL(p)_mD[l_TO (pa_p)] (A14)

, pen In the tensor7*"(p, — p) defined in Eq(A2), the anguJar
7" (p,—p)={y"y ﬂ o (A2) brackets indicate the angular average over the unit vector
y

In almost all previous work, the angular average in &%)

The angular brackets indicate averaging over the spatial dhas been taken iml=3 dimensions. For consistency of
rections of the light-like vectoy=(1y). The tensorT*” is higher order radiative corrections, it is essential to take the

symmetric inu and v and satisfies the “Ward identity” angular average iml=3-2¢ dimensions and analytically
continue tod =3 only after all poles ire have been canceled.
p, T (p,—p)=p-nn’. (A3) Expressing the angular average as an integral over the cosine
of an angle, the expression for the 00 component of the ten-
The self-energy tensdi#” is therefore also symmetric in sor is
and v and satisfies

w(e) [t _ Po
0, _ _A2\—e__"Y
p I1*"(p)=0, (A4) TP —p)= 5 f_ldc(l c) po—|plc’
Al15
0, 1#(p) =~ 3. (A5) (ALS
The gluon self-energy tensor can be expressed in terms (\)/¥here the weight functiomv(e) is
two scalar functions, the transverse and longitudinal self- 3
energiedI; andIlI, , defined by Tre-20, F(E_ e) e
T W= T21-% ~ /3 (AL6)
Me(p)= g=7(8"=p'PHI1" (p), (A6) I5/ra-e
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The integral in Eq(A15) must be defined so that it is ana-
lytic at pp=c. It then has a branch cut running fropy
=—|p| to po=+|p|. If we take the limite— 0, it reduces to

Po  Potlpl

T%p,—p)= 5o log
(P.=P) 210l *po—1p]

which is the expression that appears in the usual HTL self-

energy functions.
The Feynman rule for the gluon propagator is

i5%°A ,,(p), (A18)

where the gluon propagator tensdr,, depends on the
choice of gauge fixing. We consider two possibilities that
introduce an arbitrary gauge paramefergeneral covariant
gauge and general Coulomb gauge. In both cases, the inverse

propagator reduces in the limt—o to

ALY prr=—p*g"+prp —T1#"(p).  (A19)
This can also be written
A Y (p)rr=— T4 4 LA, (A20
P P e A%
whereA; andA| are the transverse and longitudinal propa-
gators:
A = , A21
7(p) 27 —TIy(p) (A21)
A(p)= (A22)

—nop?+1I (p)’

The inverse propagator for genegals

1
Afl(p)“”=A;1(p)’”—Ep“p” covariant (A23)

—A"1 ,uv_l "_p.nn*
AL7(p) g(p p-nn¥)

X(p”—=p-nn”) Coulomb. (A24)

The propagators obtained by inverting the tensors in Egs.

(A24) and (A23) are

MV
A¥(p)= —AT(p)Tf)‘”+AL(p)nfjng—g(p ZF;Z covariant
p
(A25)
I—AT(D)T’SWAL(D)H“W—gﬂ
(n2p?)?
Coulomb. (A26)

It is convenient to define the following combination of

propagators:

(A7)
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1
Ax(P)=AL(P)+ —Ar(p). (A27)
p

Using Eqgs.(A12), (A21), and(A22), it can be expressed in
the alternative form

Ax(p)=[m3—dIl(p)]AL(P)A+(p),  (A28)

which shows that it vanishes in the limihy—0. In the
covariant gauge, the propagator tensor can be written

A¥"(p)=[—Ax(p)g*"+Ax(p)n*n”]

n-p
~pZ Ax(P)(pn"+np)

(n-p)? ¢ prp”
+|A +——A - =|—.
T(p) p2 x(P) p2 p2

(A29)

This decomposition of the propagator into three terms has
proved to be particularly convenient for explicit calculations.
For example, the first term satisfies the identity

[—Ar(P)g,,+Ax(p)n,n, AL (p)™

v PuPM np Ax(p)
— + ng.
p” ' nZp? A(p) DA

=9, (A30)
2. Quark self-energy

The HTL self-energy of a quark with momentumis
given by

3 (P)=m:T(p), (A31)
where
v
T*(p)= <ﬁ>9. (A32)

Expressing the angular average as an integral over the cosine
of an angle, the expression is

M

Po—Iplc’

T“(p)z@ﬁlldc(l—&)‘E

(A33)

The integral in Eq(A33) must be defined so that it is ana-
lytic at pp=c0. It then has a branch cut running from
Po=—|p| to po=+|p|. In three dimensions, this reduces to

mZ Po+p
S(P)= o8 jog R P!
(P)= 21 70108 5 =)
mj; p +|p|
g - 0 PoT [P
+—v-p|1-— s=log——|. A34
ol 7 PLE 2] ey AY
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3. Quark propagator culation we will only need the quark-gluon four-point vertex
The Feynman rule for the quark propagator is traced over the adjoint color indices. In this case,
152°S(p). (A35) ST (P01 ,8) = — g"Mice 5, T7(p,q,1S)
The quark propagator can be written as EQZCF%F’”, (A46)
S(p)= —<—, (A36) wherecF=(N§—1)/(2NC). There is no tree-level term. The
p—=(p) tensor in the HTL correction term is only defined fot-q

where the quark self-energy is given by EA31). The in- “rts=0

verse quark propagator can be written as 1 1
STPPRE PV ESEY

S Hp)=p—3(p). (A37) ry sy
This can be written as y >
X . (A47
B [—pylisep v/ A4
S H(p)=Alp), (A38)
) ] This tensor is symmetric iw and v and is traceless. It sat-
where we have organizedl,(p) andAs(p) into isfies the Ward identity
AL(P)=(Ao(P),As(P)P). (A39) p L (p,a,r,8)=T"(q,r—p,s)—I"(q,r,s+p).
A48
The functionsAy(p) and Ag(p) are defined (A48)
mg 6. HTL quark counterterm
Ao(P)=Po~ ETP (A40) The Feynman rule for the insertion of an HTL quark
counterterm into a quark propagator is
2
m .
Ag(p)=|p|+ ﬁ[l—’fp]. (A41) 1525 (p), (A49)
where X (p) is the HTL quark self-energy given in Eq.
4. Quark-gluon vertex (A39).

The quark-gluon vertex with outgoing gluon momentum
p, incoming fermion momenturg, and outgoing quark mo- 7. Imaginary-time formalism

mentumr, Lorentz indexu and color indexa is In the imaginary-time formalism, Minkoswski energies

have discrete imaginary valugg=i(27nT) and integrals
over Minkowski space are replaced by sum integrals over
Euclidean vectors (2nT,p). We will use the notatiorP
=(Py,p) for Euclidean momenta. The magnitude of the spa-
tial momentum will be denotegp=|p|, and should not be
y confused with a Minkowski vector. The inner product of two
)> . (A43) Euclidean vectors isP-Q=PyQy+p-g. The vector that
aYrYITy specifies the thermal rest frame remains (1,0).

The Feynman rules for Minkowski space given above can
be easily adapted to Euclidean space. The Euclidean tensor
in a given Feynman rule is obtained from the corresponding
Minkowski tensor with raised indices by replacing each
Minkowski energyp, by iPg, whereP, is the corresponding
Euclidean energy, and multiplying byi for every 0 index.

YThis prescription transform®=(pg,p) into P=(Pq,p),

P ] g*” into —&*”, andp-q into —P-Q. The effect on the
PLI*(P,q,r)=S"*(a) =S *(r). (A45) HTL tensors defined in EqsiA2), (A43), and (A47) is
equivalent to substitutingg-n— —P-N whereN=(—i,0),
p-y— —P-Y whereY=(—i,y), andy*— Y*. For example,

We define the quark-gluon four-point vertex with outgo- the Euclidean tensor corresponding to E&2) is
ing gluon momentg andg, incoming fermion momentum
and outgoing fermion momentusnGenerally this vertex has
both adjoint and fundamental indices; however, for this cal-

I4(p,q.n) =gt y*—m;7*(p.a.,r)].  (A42)

The tensor in the HTL correction term is only defined for
p—q+r=0:

7"(p,q,r)=<y“(

This tensor is even under the permutationcpand r. It
satisfies the “Ward identity”

P, TH(p,q,r)=TH(q)—THr). (A44)

The quark-gluon vertex therefore satisfies the Ward identit

5. Quark-gluon four-vertex

T*'(P,—P)= yeyro N (A50)
’ P-Y/
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The average is taken over the directions of the unit vegtor Where 3-2e is the dimension of space andis an arbitrary
Alternatively, one can calculate a diagram by using themomentum scale. The factoe/4)“ is introduced so that,

Feynman rules for Minkowski momenta, reducing the ex-after minimal subtraction of the poles indue to ultraviolet

pressions for diagrams to scalars, and then make the apprdivergencesu coincides with the renormalization scale of

priate substitutions, such g&— — P2 p-qg——P-Q, and
n-p—in-P. For example, the propagator functiofs21)
and(A22) become

-1

A(P)= P2+ I1+(P)’ (AS1)

A(P)= (A52)

p?+II(P)’

the MS renormalization scheme.

1. One-loop sum integrals

The simple one-loop sum integrals required in our calcu-
lations can be derived from the formulas

The expressions for the HTL self-energy functidﬂs,(P)
andII, (P) are given by Egs(A13) and (A14) with n e-
placed byn2=p?/P? and 7%(p, —p) replaced by
_W( E) 1 2 e | PO
Tpo= Jildc(l—c ) iPo—pc’

Note that this function differs by a sign from the 00 compo-
nent of the Euclidean tensor corresponding to B&®):

(A53) o2m

T%P,=P)=—=T%p,—P)p,-ip,=—Zp. (A54)

A more convenient form for calculating sum integrals that

% (;;22”)“”:

1P} (p 2)n_

w \2€2T(3 +m—e)l'(n— 3 —m+e)
4WT) T(MT(2—2¢)

XT(1—€){(2n—2m—3+2¢)

XeeyT4+2m—2r‘l(2,n.)1+2m—2n, (BS)

( 2n 2m—d_ ) (84)

P (P2)n

The specific bosonic one-loop sum integrals needed are

2 2e
involve the functionZ is 1 T w {'(= )
P2 12041 |1T\2T 20—y
Pa
Tp=<ﬁ> ; (A55) 7wt (-1 (”(—1)) }
P2+ pZc +|4+—+4 +2 €?
° c 4 - -
where the angular brackets represent an average wger (B5)
fined by
f fld 1-c?)~<f (AS6) p° 1
C))c=W c(1—c?) “f(c =72
(f(e))e=w(e) | de(1—c*) f(c) ip(?? 5T (B6)
andw(e) is given in Eq.(A16).
1 1 / n 2e 772
APPENDIX B: SUM INTEGRALS ip(Pz)f (@m)2 anT 2yt 4
In the imaginary-time formalism for thermal field theory, (B7)
the 4-momentumP=(Py,p) is Euclidean with P2=PS
+p?. The Euclidean energy, has discrete valuesP, 5
=2n=7T for bosons andP,=(2n+1)xT for fermions, i 1 1 M 62 1+2 o
wheren is an integer. Loop diagrams involve sums ofgr PP?P?  (4m)?\ 47T e <7
and integrals ovep. With dimensional regularization, the 5
integral is generalized td=3—2¢ spatial dimensions. We T
define the dimensionally regularized sum integral by Tl Atart 4 Ari)e|- (B8)
i (ey’MZ)E E d3—26p
= T _— B1 - L ) .
P 4o Py ThaT f (2m)% 2 (B The specific fermionic one-loop sum integrals needed are
d3725p
= _, B2 2__ " T4
i{P} ( 4o PO:(2n+l)TrT f (2m)3 2 (B2) $ jp}logP 360T (B9)
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i}l—ﬁ“zelzzlz 147)= 1 o(2 B1
PPZ- T 24 2T +{2—-2log ((1+2)=—+y=7z+t0(Z). (B17)
{'(-1) .
+2ﬁ € 2. One-loop HTL sum integrals
5 We also need some more difficult one-loop sum integrals
. ) X ) .
+las T_4 log 2— 2 log?2 that involve the HTL function defined in EGA33).
The specific bosonic sum integrals needed are
=1 "= 1) 2¢
+4(1-log 2) +2 i 11 [
(1) (=1 PpJp—(M)Z 7 D +2y+2|0g2
(B10) (B18)
2e
1 / n 2e 1 i 1 T 1 / M )
{P}(P2)2:(477)2\477T) Z+27+4'°g4’ PPPET (Am)\ 4arT
(B11) 1 2
X|2log2 = +2y|+2logf2+ —|,
P 2¢ € 3
i{P}(P 16(47TT) (B19)
1|2 21092025 1) $17:1/“2631+2+1
+ §— 0Qg 2+ (—1) P(P2)2 P (477)2\4771- 2l e Y .
B20
(B12) (820
The specific fermionic sum integrals needed are
1 [ 231 2
= ——+2y—= 1 [ w1
{PHP?)3 424T)4 73 - i
(P (4m*\am ¢ PIPH2PT (am2 anT) 2/ 27T
+4 log 2|, (B13
+4 log 2|, (B21)
$ p4 B 5T2( m 2e 2 / w 2e 1
PIP?3  64\4nT #1p2P2 P~ am2 2| [1092 ¢ T2
14 {'(-1) 2
(B14)
ORI B
i / w“ 2eg[q 16 {P}PZPé P_(411')2\471'T EZ"‘ (v
PP (am2 4aT| 82 15 L 2
+2IogZ);+T+4I0922
+4 log 2|, (B15)
+8vylog2— 4)/1} , (B23)
j]l—l/”hzlzz 410g2
PIpPP2 (dm)2 anT| | cTEYTAl” i: 1 A PEER
®ip2P2 P " ame | aaT) 10922y
+| 448 log 2+ 4 log?2
, +5 log?2 |, (B24)
a
+4y(1+2log2)+ 7—4”)5 . (B16)
e el v
pLp2 2/ T 2 D Y
The errors are all of one order higher érthan the smallest FIPTLQ-Y) c (4m)"\ 4T €
term shown. The numbey; is the first Stieltjies gamma con-
stant defined by the equation +4log 2|. (B25)
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The errors are all of order

It is straightforward to calculate the sum integréB1)—
(B24) using the representatidA55) of the functionZp . For
example, the sum integréB18) can be written

1 1 P3
R I

where the angular brackets denote an average oasrde-

fined in Eq.(A56):
p2C2
1<ﬁ_> .
C

(B26)

1 1
im0 |

The first term in the square brackets vanishes with dimen-
sional regularization, while after rescaling the momentum by %

p— p/c, the second term reads

1 1
$ PE%: _ <C1+26>C$ pW'

Evaluating the average ovey using the expressiofB8) for
the sum integral, and expanding in powersepfwe obtain

(B28)

PHYSICAL REVIEW D 70, 045001 (2004

Bt sl -3

PAIP2Q%* (4m)2\4xT) | 36
X 1—6y+6—i((:f))}, (B34)

p2 B T2 / m )46( ) 1
(POPPZQPRE (4m?2 47T) |\72)|€ 79007
(B35)

i rZ B T2 m )46( 1)

{PAIq?P?Q%R? (4m)%\4nT) | 18

1

Z+8.142%, (B36)

whereR=—(P+Q) andr=|p+q|. The corrections are all
of ordere. To motivate the integration formula we will use
to evaluate the two-loop sum integrals, we first present the
analogous integration formula for one-loop sum integrals. In
a one-loop sum integral, the sum oWy can be replaced by

the result(B18). Following the same strategy, all the sum g contour integral imy=—iPy:

integrals(B21)—(B24) can be reduced to linear combinations

of simple sum integrals with coefficients that are averages

overc. The only difficult integral is the double average over

c that arises from Eq.B24):

< C%+ 2e__ CéJrZE

> > =2log2+2(log?2—2 log 2)e.

(B29)

3. Simple two-loop sum integrals

The simple two-loop sum integrals that are needed are

1
i{PQ} p2o7R2~ O (B30)
ool -5
PAIP2Q%r2 (4m)2\4nT) | 6
1 {'(=1)
X E+4_2|092+4ﬂ}’
(B31)
i‘ q2_T2/,u)4f 1)1 11
PAIP2QX? (4m2axT) | 12| 3
{'(=1)
+2vy—2log2+ ZW}’ (B32)
q2 B T2 / m 46( )
{pQ}PZQZrZRZ_(4ﬂ_)2\4ﬂ_T) ~ 75 ;—7.00 ,
(B33)

Lorer= im [ 5% (F-ipop)
n—0"

—F(0,p)]e”on(py), (B37)

wheren(p) = 1/(e#Po—1) is the Bose-Einstein thermal dis-
tribution and the contour runs from o to +o above the
real axis and from+o to —o below the real axis. This
formula can be expressed in a more convenient form by col-
lapsing the contour onto the real axis and separating out
those terms with the exponential convergence facttm,|).

The remaining terms run along contours frome*ig to 0

and have the convergence factt’o. This allows the con-
tours to be deformed so that they run from O-té> along

the imaginaryp, axis, which corresponds to real values of
Po=—ipg. Assuming thatF(—ipg,p) is a real function

of pg, i.e. that it satisfied(—ipg ,p)=F(—ipo,p)*, the
resulting formula for the sum integral is

iPF(PFJ F(P)+f €(Po)n(|Po)2 IMF(—ipo+e,p),
P p
(B39)

wheree(pg) is the sign ofpy. The first integral on the right
side is over the d+1)-dimensional Euclidean vectd?
=(Pg,p) and the second is over tha{ 1)-dimensional
Minkowskian vectomp=(pg,p)-

The two-loop sum integrals can be evaluated by using a
generalization of the one-loop formu(B38):
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i{PQ}F(P)G(Q)H(R)Z LQF(P)G(Q)H(R)— jpf(po)nF(|po|)2 Im F(—ipo+8,p)ReJQG(Q)H(R)

P0=7ip0+a

—fpe<po>np<|p0|)2lmG(—ipo+s,p>RefQH<Q>F<R>

Po=—ipgte

+f e(po>n5<|pol>2lmH(—ipo+e,p>Ref F(QIG(R)
p Q

Po=—ipgte

+ fpf(po)np(|po|)2 ImMF(—ipo+e,p) qu(QO)nF(MoDZ |mG(_iQO+8,Q)R9H(R)|Ro=i(po+q0)+s

- fpf(po)np(|po|)2 IMG(—ipo+e,p) qu(QO)nB(MoDZ ImH(—iqe+e,q)ReF(R)

Ro=i(ppt+dg) +e

- pr(po)n3(|po|)2 ImH(—ipo+e,p) Jqf(QO)nF(MoDZ ImMF(—igo+e,q)ReG(R) . (B39)

Ro=i(pp+dg) +e

This formula can be derived in 3 steps. First, express the sum 1 - 1
over P, as the sum of two contour integrals oygy; one that i{PQ}W - _Zf Ne(|pol)278(po—p )f Q2
encloses the real axis Ipp=0 and another that encloses the P N

line Impy=—1Imqy. Second, express the sum owgyas a

contour integral that encloses the reglaxis. The resulting +f ne(|pol) 27 8(p2— p?)

terms can be combined into the expressiB89). The inte- p

grals of the imaginary parts that enter into our calculation
can be reduced to

1
% | neahzmaag-a=.  ®42
q

1 ; The delta functions can be used to evaluate the integrals
— —ipo+
Jpe(po)n(|p0|)2 M52 b~ o Hf( IPot&.p) over p, andqo. The integral oveR is given in Eq.(C111)
° ° up to corrections of orde#. This reduces the sum integral to
n(p) 1 .
_priz f(+ip+e,p), (B40) $ 1 a4 “+4
PQP2Q%2  (4mF e
n
| —210g2 M2€f F(p)p_2€
fe(po)n(lpol)ZlmTp f(—ipo+e,p) p P
P Py=—ipgte
0 0

. (B43)

+J Ne(P)ne(q) 1
Pq pq r

1
== fppn(mg 2 (e3P (ip+e,ple))e.
- The momentum integrals are evaluated in E@33) and
(B41) (C4). Keeping all terms that contribute through or@&r we
get the resul{B31). The sum integralB32) can be evaluated
in the same way:

The latter equation is obtained by inserting the expression 5
(A55) for 7p, using Eq.(B40), and then making the change a _ 2 H—Z log 2 Mzsj Ne(p) p2e
of variablep— p/c to put the thermal integral into a standard PAIP?Qr* (4w € p P
form. 2

As a simple illustration, we apply the formul®39) to +f Ne(P)Ne(q) q_4. (B44)
the sum integra(B31). The nonvanishing terms are pq pq r
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The sum integra(B34) can be reduced to a linear combina- P-Q T2 wo\%€ 1\ 1
tion of Egs.(B31) and(B32) by expressing the numerator in ${pQ}Pz 27 /R= 4 2(4 T) (‘ —) 2
the form P-Q=P,Qo+ (r?—p?—qg?)/2 and noting that the QT (4m)= 4ar %
PoQo term vanishes upon summing oveg or Q. (-1)\1
The sum integralB33) is a little more difficult. After +|4log2+4——r+ (=1 - +69.17
applying the formulaB39) and using the delta functions to
integrate ovepy, o, andr,, it can be reduced to (B49)
i 2 :an(p) q2 ‘ r2_p2 B T2 m 461 1
PAP?QY?R® Jp p Jop®QR?|TTP (PUPZPQERZR” ~ (am?|anT) B2 212V
_an(p)f 1 (q2+ pz) L10 2+2§’(—1)) 1
I 3997 (C)
2,.2_A2_ (2
+f Ne(PINe(Q) p* "~ p" 4 +46.875%. (B50)
pa  PQ  r° A(p,q.r)
ne(p)n 2
—J M(Ez The errors are all of orde¢. To calculate the sum integral
Pa P q (B47), we begin by using the representatioh55) of the
r2\ r2—p2—g? function Tg:
—z) N (B4Y)
q°/ A(p.q.r)
% vaprar Fopigr
whereA(p,q,r) is the triangle function that is negative when {PQIP2Q%r2 R 44{PQiP2Q?r?
p, g, andr are the lengths of 3 sides of a triangle: )
c
A(p,g,r)=p*+ g+ 14— 2(p%g?+ g2+ r2p?). {F’Q}PZQZ<RZJrlr “c? > '

(B46) (B51)
After using Eqs(C117—(C119 to integrate oveR, the first

term on the right side of EqB45) is evaluated using Eq. The first sum integral on the right hand side is given by Eq.
(C3). The 2-loop thermal integrals on the right side of Eq.(B31). To evaluate the second sum integral, we apply the
(B45) are given in Egs(C8)—(C11). Adding together all the sum integral formuldB39):

terms, we get the final resulB33). The sum integraléB35)

and(B36) are evaluated in a similar manner.

1
POIP2O2(R2 1 1262)
4. Two-loop HTL sum integrals PAPTQ(Ro+rc?)
We also need some more difficult two-loop sum integrals _ _f ne(p) f 1
that involve the functiongp defined in Eq.(A33): b oQ?(R5+r?c?) b ips
0=~ €
1 L 46( 1
T.= - — “3+2¢ [ M8(P) 1
{pQ}222R 2 ) +c J— ————b (i
PQ%r (4m)\ 4nT 48 o P JoQZREP (PR

X ;12+ 2+12I092+4§§((__11))> +f NE(PINE(a) | rPc—p?—g?
nq pq A(p+ie,q,rc)
x%+136.36%, (B47) _2073”1 Ne(p)Ng(q) . r2—p2—q?
pa  PQ A(ptie,q.re)’
q2 (B52)
i{PQ}PZQZr“TR (4m)% 4’7TT> ( ) (

(-1 1 wherer.=|p+g/c|. In the terms on the right side with a
+52log 2+ 4 ) Z single thermal integral, the appropriate averages owéithe
{=1) /e integrals ovelQ are given in Eqs(C115 and(C123.
The subsequent integrals oerare special cases of Egs.
+446.43%, (B48)  (C3) and(C4):
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1
(1)46(5)25 {(—1+4e)
3) {(—1)

J ng(p)p~ 1~ 2e=2%
" <u445

2

-
X(&7u?)(4nT) 4

1 (B53)

fpnp(p)p126:[1—2”“f]fpns(p)p“f-
(B54)
This yields

Ne(p) f 1< c?
_Zf Re| (50722
p P QQ7\ Ro+rece/

ne(p) _1+2f 1
+ | ——(c ‘| =252
fp p < QQR
L 6—12l0g2
w7\ 47| agl |67 12100

(1)
D

PO:7ip+s

P%(—ip,pIC)>c

(B55)

1
—+70.12%.
€

2

q
${PQ}P2Q2r2(RS+ r2c?)

p?+q°

PHYSICAL REVIEW D70, 045001 (2004

For the two terms in Eq(B51) with a double thermal inte-
gral, the averages weighted loy are given in Eqs(C17)
and(C21). Adding them to Eq(B55), the final result is

$ 1 CZ B T2 m )45 1 5
PAP?Q?\RG+r%c?[ — (4m)?|4nT €

5’(—1))1
(-1

1
48

—12log2—-4

€

+ 51.930%. (B56)

Inserting this into Eq(B51), we obtain the final resu(B47).
The sum integral(B48) is evaluated in a similar way to
Eq. (B47). Using the representatidi55) for 7z, we get

2 2
N S | o
{PQIP2Qr 4 R 4 {PQ}p?Q%r?

i q2 C2
PRIP?Q%r? \ Rg+rc?/

(B57)

The first sum integral on the right hand side is given by Eq.
(B32). To evaluate the second sum integral, we apply the
sum integral formulgdB39):

_ Ne(P)
__fp p ReJqurz(Rg+r202)

ng(p) q°
+C—1+2EJ_ —zj
p P P QQ°R

Po=—ip+e P—(—ip,p/c)
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(B58)

pq q

In the terms on the right side with a single thermal integral, the weighted averages @ivitre integrals ovef) are given in
Egs.(C12)), (C126, and(C127): After using Eq.(B54) to evaluate the thermal integral, we obtain

—f”F(p)Re p+g*/ ¢
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€

(B59)

For the two terms in EqB58) with a double thermal integral, the averages weighted®gre given in Eqs(C19), (C23),

and(C24). Adding them to Eq(B59), the final result is

Ly

q2 CZ
j:{PQ}PZQZrZ < R3+ r2c2> C: (4m)%\ 47T

)1 (118 )
=gl 2 T—52I092—4§(_1) ~+91.002.

J'(-1)1

(B60)

To evaluate Eq(B49), we use the expressiaqis5) for 7y and the identityP- Q= (R?>— P2—Q?)/2 to write it in the form
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$ P-QT_i: P.Q 1}:1712 1
1POIPZQE T IR upoip2atrd duipp? durpi R 2(C)edupoiprr2

1 2(1-¢c? B61
2 APQP?Q?\ R2+12c2 N (BOD

The sum integrals in the first 3 terms on the right side of B6.1) are given in Eqs(B10), (B18), (B31), and(B34). The last

sum integral before the average weightedctig given in Eq.(B52). The average weighted lf is given in Eq.(B56). The
average weighted by* can be computed in the same way. In the integrand of the single thermal integral, the weighted
averages ovec of the integrals oveR are given in Eqs(C116 and (C125: After using Eq.(B54) to evaluate the thermal
integral, we obtain

ne(p) f 1/ ¢ an(p) 1
_ZJ Re > + | == C1+25f
p p Q62< R0+r202 c p p QQ R
Po=—ip+e
B TZ m 4e 7
~(4m)?\ 4nT

17278 Iog 2
For the two terms with a double thermal integral, the averages weightetidng given in Eqs(C18) and(C22). Adding them
to Eq.(B62), we obtain

PH(—ip,p/c)>C

1
—+0. 215% (B62)
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We finally need to evaluate EGB50). Applying Eq.(B39) gives

ne(p) [ Ne(p) p*—q?
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+f nB(p)nF(q) e<r -p? ri-p’-¢’ 1+25>
P Ap+iedro) .
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In the terms on the right side, with a single thermal factor, the weighted average is given(G1R2§. After using Eq.

(B54) to evaluate the thermal integral, we obtain
J» p2 q2 B T2 71_2 B65
Q¥ A(R3+r2c?)|  (4m)?| 24/ (865

fpnsép) N fpnpép)

The terms with two thermal factors are given in E@320), (C25 and(C26). Adding them to Eq(B65), we finally obtain Eq.
(B50).

APPENDIX C: INTEGRALS

Dimensional regularization can be used to regularize both the ultraviolet divergences and infrared divergences in
3-dimensional integrals over momenta. The spatial dimension is generalided3e 2e dimensions. Integrals are evaluated
at a value ofd for which they converge and then analytically continuedito3. We use the integration measure

B e'yMZ € d3725p
fpz 477) f (2m)3-2¢ (D

045001-23



ANDERSEN, PETITGIRARD, AND STRICKLAND PHYSICAL REVIEW D70, 045001 (2004

1. Three-dimensional integrals
We require one integral that does not involve the Bose-Einstein distribution function. The momentum scale in this integral
is set by the massm=mp . The one-loop integral is

1 B m ( L )26
Jpaz_'_—mz——m ﬁ [1+2€]. (C2

The error is one order higher inthan the smallest term shown.

2. Thermal integrals

The thermal integrals involve the Fermi-Dirac distributiog(p) = 1/(eP+1). The one-loop integrals can all be obtained
from the general formula

ne(p) da (4 _ o—1-2a+2e {(24+2a—2¢) [(2+2a—26)I(3) Y 2\eT2+2a—2¢
fp—p p2e=(1-2 e g T (€3
The simple two-loop thermal integrals are
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J ng(P)NE(Q) Q_2_ T ( s )46<£) 1-6v—1210 2+6§,(_1)+3l 134 (C7
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We also need some more complicated 2-loop thermal integrals that involve the triangle function defineB#a6Eq.
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ne(p) ng(a@)  p* TP [ p \F[10[1 {'(-1)
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ne(p) ng(q)  p*  T? ( p )4( 75(3))[1 2 {'(-3) é’(3)}
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e P a4 Apan (4m?|4nT) | 98/| & [ ) (€16

The most difficult thermal integrals to evaluate involve both the triangle function and the HTL average definedAB@q.
There are 2 sets of these integrals. The first set is

ne(PINE() 2r2c2—p2—q2> 7 .
qu pqg R€<C A(p+ie,qg,rc) c_ (477_)2[1-458><10 1, (C17)

Ne(P)Ne(Q) r’c?—p?-g®\  T? _
qu—pq Re<c4A(p+i8,q’rC)>c— GnlL 771510 2], (C18
NE(P)NE(q) T?
quF—Fq e<— 2 p+|5 0 rqc)> (47T)2[—1.1578><10‘2], (C19
ng(p) Ne(a) _ /p?—q® réc®—p?—q? T?
qu T Re< - A(p+ie,q,rc)>:(477)2[0'178”' (€20

The second set of these integrals involve the variapte|p+q/c|:

ne(PINg(Q) _ [ ., Te—pP—? > T
qu oe} Re<c A(p+ie,qre)/, (477)2[0-19673, (C21)

nF(p)nB q) e< Lin > -,
Y € 4.8368< 10 Cc22
qu A(p+|8qrc) 2[ ] ( )
F(p)ng(q) p Lioe )46
qu pq q2 Re< A(p+|s q, rc) (477 96 e+7'770 ’ (C23
nF(p)nB(q) T e e M )4611 8|og2
qu e< o? A(ptis,a.ro)/ (477 288 77969 (29
ne(p) nF(p> re— 1oz T2 1 (-1
qu > 2 A(p+|6qr —2(477 2+ 2+2y+2|ogZ+2§( 5 —+4031
(C2H
ne(p) Ne(p) e<r§—p2 ri-p?-o® | > T (1 (-1 %
R : c1t2¢) =— 2+2y+4log2+2 —+52.953.
qu P q 0> A(p+ieq,re) . (am?12 (AR I TES T
(C26

The simplest way to evaluate integrals like E(G34)—(C7) whose integrands factor into separate functionp, @f, andr is
to Fourier transform to coordinate space where they reduce to an integral over a single coétdinate
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J f(p)g(a)h(r)= f T(RIG(RN(R). (C27)
pg R

The Fourier transform is
?(R)zjeip'Rf(p), (C28
p

and the dimensionally regularized coordinate integral is

e? 2\ —€
L=( 4’; ) f 43 2R, (C29
The Fourier transforms we need are
_ 1 l“(%+a_e) 2 3+2a—2€
2agipR— _—_ —(e” 2)5 — , (C30
e e

n(p) 2aqip-R_ 1 1 2 5(2)1/2_6 ” at+1l/2—e
Jpr epR—EF(%)(em) R Jodpp2 Y n(p) Iz (PR). (C3D

If « is an even integer, the Fourier transfo(@31) is particularly simple in the limid— 3:

Ne(p) ip-R_ 1
fp—p ePR= | 5 —cschx ), (C32
Ne(P) 5 op_ TT° 1 1
fPTp T cschix+ Ecschx 3/ (C33

wherex=7RT.

We can use these simple expressions only if the integral over the coorBimateq. (C27) converges fod= 3. Otherwise,
we must first make subtractions on the integrand to make the integral convergent.

The integralg§C4)—(C7) can be evaluated directly by applying the Fourier transform forf@®) in the limit e—~0. The
integrals(C8)—(C10 can be evaluated by first averaging over angles. The triangle function can be expressed as

A(p,q,r)=—4p?g*(1-cos9), (C34)

whered is the angle betweep andq. For example, the angle average for EQ9) is

ré w(e)f+1 (p?+9°+2pgx)?
—_— =——— dx(1—x?) 1€ . C3
<A(p,q,r>>5,a g ), P P (€39

After integrating overx and inserting the result into E¢C8), the integral reduces to

f ne(p) ne(q)  r? ne(p) ne(q)(1-2€ p? 7_663) (C36)
pa

= + :
P d o’A(par) Jpg P g | 8 g* 8e ¢

The integrals ovep andq factor into separate integrals that can be evaluated usingCBj.After averaging over angles, the
integrals(C9) and(C10) reduce to

Ne(P) Ne(Q) re ~1-2e(ne(p) (ne(q) 1
qu P g A(par) A4e fp p fq q g2 (C37)

J ne(p) ne(q)  p* _1—26J ne(p) ZJ ne(q) 1
Pq P ¢ 9 9

P d g°A(p,a,r) 8e P q*

0 (C38
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The integral(C11) can be evaluated by using the identity

p2+q? 11 +1—26 1 39
rA(p,q,r) ‘3.;1_2 r b4 8e p°g° (€39

The identity can be proved by expressing the angular averages in terms of integrals over the cosine of the anglp bativeen
g as in Eq.(C39), and then integrating by parts. Inserting the ident®9) into Eq. (C11), the integral reduces to

f ne(p) ne(a) pA(p*+9%) 1 [ ne(p) ne(q) p? 1- ZEJ np(p)fnp q) 1 (€40
o]

P q rA(pan 2l p g

The integral in the first term on the right is given in EG5), while the second term can be evaluated using(ES).

The integral(C17) can be evaluated directly in three dimensions by first averagingosadx, and then integrating the
resulting functions numerically over andg.

To evaluate the weighted averages ov@f the thermal integrals in Eq$C18—(C20), we first isolate the divergent parts,
which come from the regiop—qg—0. We write the product of thermal functions in the form

s?n2(s)|  s?nZ(s)
np<p>np<q>=(np<p>np<q>— qu + qu , (C4Y)

wheres= (p+q)/2. In the difference term, the HTL average oeaand the angular average over p- g can be calculated in
three dimensions:

rec?—p’-g° > 2(p°+9*) 1 ptq  (3p°+0*)(p*+3q?)
Rel c* . = + ) - log(p/q), C42
e< A(p+is,are)/ .~ 3(p°—a)2 " 12pq O[p—q] 6(p*—q°)° o(p/a) (¢42
R c?ZOIZ rzcz_pz_q2> = 9 [Z—Elog|p2_q2|—p2+qzlog P4 Pt Iog(p/q)}
r? A(ptie,qre)/ - 3(p?—g?)?" 2 pq 4pq lp—dl p’-d’
(C43
2 2 2 2
p°—q® r’c®—p°—q 1 p+q p —ql}
R . = —(p?+g?lo —2pqlo : C44
e< ré A(p+le,q,rc)>c,x apapr-qp)| (P A9 2palog (€49
The remaining 2-dimensional integral oygrandq can then be evaluated numerically:
ne(P)Ne(q)  S?nE(s) e< —-p’—q > T
- Rel c* . = 8.980x 10 %], c4
qu( pq p’g’ A(p+ie,qare)/ @meL ] (49
Ne(P)NE(Q) szn?:(S)) 9 e< r’c?—p?-q? > T?
- —Re| ¢? . = 7.792x10 %], C46)
qu( Pq p°g® |/ r? A(p+is,a,re)/ (@m?L ] (46
ng(p) Ne(Q) szns(s)np(s)> e<|02—qz rzcz—pz—q2> T?
_ _ = 0.17811. C4
Jpq( P q p°a’ r*  A(p+ieq.rc)/ (@mel 1 (c47

The integrals involving thaﬁ(s) term in Eq.(C41) are divergent, so the HTL average owaaind the angular average over
X= ﬁ)E{ must be calculated in-32¢ dimensions. The first step in the calculation of tifés) term is to change variables from

p andq to s=(p+q)/2, B=4pa/(p+q)?, andx=p-q:

r'(3)
I'(3—e
X (f(sy,5_,r)+f(s_,5,,1))y, (C48

f ?(TS)f( )= > (e"u?)*

2
] f dss*nZ(s)s? Jld,B,B‘zf(l—ﬁ)‘l’2

wheres.,. =g[1++1— 3] andr =s[4—2,8(1—x)]1’2. The 2 terms inside the average oxezome from the regionp>q and
p<gq, respectively. The integral overis easily evaluated:
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fdssl_4fn,2:(s)=f‘(2—4e)[—(1—24f)§(1—4e)+(1—2_1+4€)§(2—4e)]T2_45, (C49
0
fdssl*“fnp(s)ng(s):2*2+4fr(2—4e)§(2—4e)T2*4f. (C50)
0

It remains only to evaluate the averages ovandx and the integral oveg.
The first step in the calculation of thé(s) term of Eq.(C18) is to decompose the integrand into 2 terms:

r2(:2_pZ_qZ 1 1
A(p+is,q,rc):_§§i: (p+ie*xq)2—r2c? (C5D
The weighted averages oveigives a hypergeometric function
c* B 3 1 _ 51 r2 5o
(ptiexq)®—r?c®/ = (3—2€)(5-2¢) (p+ie*q)® | I ¢ (p+iexq)?)” (C52

In the +q case of Eq(C52), theie prescription is unnecessary. The argument of the hypergeometric function can be written
1- By, wherey=(1—Xx)/2. After using a transformation formula to change the argumepltowe can evaluate the angular
average ovek to obtain hypergeometric functions with argumghtFor example, the average oweof Eq. (C52) is

g!l - 5—-2¢
Floo =~ —_—|F B

where @), is Pochhammer’s symbol which is defined in EG146. Integrating ove3, we obtain hypergeometric functions
with argument 1:

r2

(p+0)2

. (C53

( 1-¢32,1

(DD 22) 2(3) _EF(l—Ze,g—e
2—2¢1+€

(1)-e(2) -3 2—3e

2 1 —2e/q _ _1/2< C4 > :_i(l)s(z)—Ze (1)—26(1)—6 1_26!1_61211
° fodﬁﬂ WD =) T 8T WL ()i D, | §-2e2-2¢04¢]
1) _3d1) 53) —36,1-2¢,3 —
() sl 23 EF(l del-2e 61)]_ 54
(2)736(2)736 2 _36’2_36
Expanding in powers o€, we obtain
2 [t —2¢ —112 c* m
S fo dgB “¢(1—-pB) <W>m=ﬁ(l+lo.840&). (C55

In the —q case of Eq(C52), the argument of the hypergeometric functions can be writteng%)/(1—B=ie), where
y=(1—x)/2 and the prescriptions-ie and —ie correspond to the regions>q and p<q, respectively. These regions
correspond to the two terms inside the average ovém Eq. (C48). In order to obtain an analytic result in terms of
hypergeometric functions, it is necessary to integrate gvieefore averaging ovet. The integrals oveB can be evaluated by
first using a transformation formula to change the argument of the hypergeometric functig(fio—y)/(1— ) and then
using the integration formuléC153 to obtain hypergeometric functions with argumewntsr 1—y:
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—2e(1 _ @\—3/2 ! S dBB “«(1—-B8)" -
fod,BB (1-8) F(%—e 1—,8+is> . BB “(1-p) (pric—q? 1%
| 3-2e(1) 5 (1-2e1 1t oa (12__62’1‘126’1 1)
T € (%)_2 1+€ -y 46(%)725 elte
1 (2)_0D)u(3)_, [2—€ei-2¢1
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T ) YR MY C(1)-dDdB) -z | F2e5te
ol @d D)D)
iTe 5 _ —€ _
+ 26(1_36)e (1)6(2)*6(1 Y) F 86(1 36) (1)—6(2)—36
1—¢€,1— 3¢, % —€
_ 3¢ 3 _ X .
X 1=3€3 6y, (C56) ( 2—3€,2— 3¢ 1) (€57
2—3e
After averaging ovek, we obtain hypergeometric functions Expanding in powers oé and then taking the real parts, we
with argument 1: obtain
|
R Zfld “2¢(1-p) V2 < L 1+1.1051&
€s B ﬂB ( B) (p+i8_q)2_r202 . - 72 ( +1. )

(C58

To evaluate the subtraction in the integf@46), we use the identity®=(r?+q?—p2—2p-q)/2. The integral withg?
—p? in the numerator is purely imaginary. Thus the real part of the integral can be expressed as

SZnZ s 2 r2C2_ 2_ 2 SZnZ s 1 3 r202_ 2_ (2
e e e e (cs9
pg P7Q° T A(ptie,qre)/ . Jpg P7G° |2 2 A(p+ie,q,re)/
The first term in Eq(C59) is decomposed into 2 terms:
r2C2_p2_q2 1 1
A(p+is,q,rc):_§§ (p+isxq)?—ric? (C60
The weighted averages oveigive hypergeometric functions
c? 1 1 - 31 r2 o1
(ptiexq)?~r%c?/ 3-2e(ptiexq)?® |§—¢|(prierq)?)’ (CeD
c* B 3 1 - 51 r2 oo
(ptiexq)®—roc®/ ~ (3—2€)(5—2¢) (p+iexq)® | I—¢| (p+ic*q)?) (C62

In the +q case of Eq(C61), theie prescription is unnecessary. The argument of the hypergeometric function can be written
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1- By, wherey=(1—Xx)/2. After using a transformation formula to change the argumepltowe can evaluate the angular
average ovek to obtain hypergeometric functions with argumghtFor example, the average owepf Eq. (C6)) is

3
31
7 — €

where @), is Pochhammer’s symbol which is defined in EG146. Integrating ovel3, we obtain hypergeometric functions
with argument 1:

1-¢31
2—2¢€,l+e€

B (1)5(1)—25(2)—25(%)75 e (1—26, % —€

(p+q)° (1)-(2)_3, 2—-3e

BH (C63

_ 3—2¢ .
2€

X

@ [faprra-p | G
0 (p+a)*—r?c?/

__i(l)e(z)—Ze (1)—26(1)—6 = 1_2611_61211
S ode (Do [(D)0d2)odD), | 32627261t €

_W-adD-2d)-c (1-3el-2e3-¢ 54
(%)*36(2)*36 % _3612_36 .
Expanding in powers o€, we obtain
3 Y c? ™
S fodﬁﬁ (1_B) m Cx_ﬂ—’_O(E). (C65)

In the —q case of Eq(C61), the argument of the hypergeometric functions can be written §%)/(1— B=*ie), where
y=(1-x)/2 and the prescriptions-ie and —ie correspond to the regions>q and p<q, respectively. These regions
correspond to the two terms inside the average ovém Eq. (C48). In order to obtain an analytic result in terms of
hypergeometric functions, it is necessary to integrate gvieefore averaging ovet The integrals oveB can be evaluated by
first using a transformation formula to change the argument of the hypergeometric functio(fio—y)/(1— ) and then
using the integration formuléC153 to obtain hypergeometric functions with argumentsr 1—y:

! ~2e(1 _ 3\-3/2 21| 1-py
Joms o]
~ 3—2€(1) o (1—26,1 B )_3_26(1)5 T 1-2¢1 B
IR I e e e
3 ime 5 . 1-3¢,3 —¢
T 2e(1-30) ¢ (De(3)-(1-y) F( 93¢ Y)- (C66)

After averaging ovek, we obtain hypergeometric functions with argument 1:
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1 c?
2 —2€(1 _ —1/2
s Jodﬂﬁ (1-5) <(p+i8_Q)2_r202>C'X
1 (1) 2¢ ( —€,1-2¢,1 )_ 1 (2)—25(1)6(%)—6F %_61%_26111
Ae(d) | 22elre T 26 (1) (1)) e | 32eibe
1 (2) 2d1) 2D e(3) e _[1-€1-3¢, 2 —
N aime 2 2 2 1-¢€1-3¢, 5 61. (c67)
8e(1—3e¢) (1)_2)_4 2—3€,2— 3¢
Expanding in powers o& and then taking the real parts, we obtain
R 2f1d ~2¢(1— )12 ¢ __T o 69
e | 4BE > (1-B) A T —greeE] ~ 28t Oe (C68)

Inserting the sum of the integral€65) and (C68) into the thermal integralC48), we obtain

S nF(s) r2c2—p2—q2>
Re c?——+———) =0(e). C69
qu p2q? Ap+iegre)/ O (69

It remains only to evaluate the integral in E@59 with p-qg in the numerator. We begin by using the identity

g r2c2—p?— g2 2, o2 : 1 1 -qc*
gParempoat) e (pa) g 2/ P . (€70
r2 A(p+ie,q,re) (p*—q°+ie) r2 2% (ptie*q) \(p+|8iQ)2—f2C2
cx X C,X

In the first term on the right side, the average owés a simple multiplicative factor(c?).=1/(3—2¢). The average ovex
gives hypergeometric functions of argumeht

p-q _1 1-¢,1 2—¢€,1
Tz | TP Fla-2¢/f) Fla—2¢8) | (cry
X
The integral oveB gives hypergeometric functions of argument 1:
2492 1(2)_ 2—2e¢,1—¢,1 2—2€,2—¢,1
fd,B,BZEl B)”Zp q pq _ 1(2)a - 1) —F” 1
(p°—q°)? 8 (3)_,, 3—2€,3—2¢ 5—2€,3—2¢
1 (3)_5 1-¢1 2—¢,1
1_2(3)—25 F e 1|-F 5_oe 1. (C72
Expanding in powers o€, we obtain
p’+9° pq w’
deB 2(1-B)" 1’2( )2 =~ 15 TO(e). (C73
X

In the second term of EqC70), the average ovet is given by Eq.(C62). In the +q term, the average over=p-q is
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5 r? _5-2¢ - 2—¢€13
el (p+q)*  4de 3—2¢,1+€
X

5 (1)6(1)*25(3)*25(%)*6 {F( 1—2e€, 2 —€

_ 1—6,1,2
3—2¢,1+€

B B

)_ 1-2e (2—26,§—e

o]

4e (1)_(3)_3 3—3e 1-e 3—3e
(C74
Integrating overB, we obtain hypergeometric functions of argument 1:
1 . C4
|Cassza-p A —2E
0 (p+q)?-r?c?/
1 (2)_p 2—2€6,2—€,15 1k 2—2e1-€13 1 1
= - +——
4€(3-2¢€) (3) ,.| \3—2€3-2¢1+e 5 —2€3-2¢l+e 6e(2—3e)
(1)e(l)f 5(3)7 5(§)fe 2_3611_2615_6 1-2 2_36,2_26,5_6
% 2 26\ 2 = ; 2 B GF ; 2 1 (C75
(D)_o(3)_3. 5 —3€,3— 3¢ 1-€ 5 —3€,3— 3¢
Expanding in powers o€, we obtain
1 p-qc* -6
dBB~2«(1-pB) V2 = : C76
JO BB AR ] T8 (C76)

In the —q term in the integral of the second term of EG.70), we integrate oveB before averaging ove« The integral over
B can be expressed in terms of hypergeometric functions of j{fje

2 [* C2erq 12 2P0 < c >
s fodﬂﬁ (1-p8) (—q) (pric—q2_r%c? i
1 (2) -2 2-2¢,1 1 (D 1-2e1
:_2(3—26)6(%)_26(1_2y)F( 1+e ‘1_ ) 4(3-2e)€ (— 1), (1-2y)(1-y)~ 3/2F( Le 1—y)

2—3¢,3—¢
3—3e

9””(1)5(3)5(1—2)/)(1—)/)EF( Y)- (C77

N 1
8(2—3¢)e

The phase in the last termés '™ for the f(s, ,s_ ,r) term of EQ.(C48), which comes from the>q region of the integral,

ande' 7€ for the f(s_ ,s, ,r) term, which comes from the<<q region. The average over p q can be expressed in terms of
hypergeometric functions of typgF, evaluated at 1:
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. 4
& foldﬁ/azf(l—ﬁ)l’2< P - >

(p—q)? (ptie—qg)*—r?c?

1 (2) 5, 1-€2—2¢1
3—2¢,1+€

=4(3—26)6(%)726 3—2¢,1+€

)_F(z—e,z—ze,l ” 1 (D32~ 2)—

- (3-20)€ (1)_ (- 1) U)o
]

X

F(—%—e,%—Ze,l

3 1
5 —2€,— 5 te

1+2e 3—€,3—2¢1
+ Fl h
2(1-¢€) 5—2¢,— 5 te

1 _.ﬂ_E(1)5(2)—26(2)—25(3)—5

+1

T I82-3e)e° (1) o(3) 2
1—€
Y12k

The expansion of the real part of the integral in powerg @

1—€,2— 3¢, g —€
3—3¢,3—3e

2—€,2—3€, g —€
3—3¢6,3— 3¢

X|F

1) } . (C79

Lo - 4p-q c* _9-7°
Szfod'B’B 2¢(1—B) 1/2R6<(p_q)2(p+is—q)2—r2c2>c T +0O(e). (C79

Inserting Eqs(C73), (C76), and(C79 into the thermal integral of EC70), we obtain

s2n2 s) p- r2c2—p2— g2 T2 2_ [ 72
f 2F(2 p-q 2 .p q _ . iy : [W——IogZ_ 80
pg PQ°  r? A(p+ie,qrec)/  (4m)° 67" [12
Inserting this along with Eq(C69) into Eq. (C59), we obtain
s?nZ(s r2c2—p2—g2 T2 11— 72[ 72
f ES) o e ) T2 o [”——mgz | con
pg PT A(p+ie,qre)/, (4m)® 6m* |12

Adding this integral to the subtracted integral in EG46), we obtain the final result in EC19. The subtracted integral
appearing in Eq(C47) vanishes due to antisymmetry of the integrand. Thus the final ré320) is given by Eq.(C47).

The integrals(C21) and (C22 can be computed directly in three dimensions, as described above. The int€fals
(C26) are divergent and require subtractions to remove the divergences. We first isolate the divergent part which come from the
regionq— 0. We need one subtraction

T 1 T 1
nB(Q):(nB(Q)— a+ E) + q 2 (C82

In the integral(C24), it is convenient to first use the identitﬁ=p2+ 2p-g/c+g?/c? to expand it into 3 integrals, two of
which are Eqs(C21) and(C23). In the third integral, the subtractidi€82) is needed to remove the divergences.

For the convergent terms, the HTL average oweand the angular average overp-q can be calculated in three
dimensions:

Re<c re—p*—q’ > _ 1 q@p3aY) 20 (pra)4p’t2patq’)  ptd
A(p+ie,qro)/ ., 6(4p°—0%)  3(4p*—g)° "7 q 12pq(2p+q)° p
(p—q)(4p°—2pq+q®)  |p—q
- lo , C83
12pazp-a° ¢ p (€83
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N e 1 q(12p®-q®)  4p (p+a)(2p®-2pg—q?)  p+q
Rel p-q : = - 7——2.2100—+ ) 7 log
A(ptie,q.re)/ ., 6pd  6p(4p°—Q) q 12p“q(2p+q) 4p
(p—a)(2p*+2pg—q?) |p—q|

lo , C84
12p*q(2p—q)* 9 ap (C84

r2—p? r2—p?—¢? 1 log 2
S SN
a° A(ptieq.re) q a° /.4

G| 91995 g P '°g|p2r;q2|} (c89

The remaining 2-dimensional integral oyeiand g can then be evaluated numerically:
[ e st ara) et 010 o
R T
qunpép) m((qq) e<r§;2p2 A;gpl?z’—qi)c_l_ %C_1+ '<3q122>: (41—72)2[4-13‘b< 102 38
qunBF(JIO) nF;q) RE< r§;2p2 A;ﬁp;ﬁ)z—qq:c) 1 %C_1+ |°qi22>cz (A,TTZ)Z[Z'%@( 1071, (C89)

The integrals involving the terms subtracted frafg) in Eq. (C82) are divergent, so the HTL average oweaind the angular

average ovex=fJ‘€| must be calculated in-32e dimensions. The first step in the calculation of the subtracted terms is to
replace the average overof the integral oveig by an average over andx:

22 2
J1< s, >:<—1>”‘1 el e 20 2pyon2e

—\ f(c) ————
qq" ()A(p-l—ls,q,rc) 87 (3_,

><<f(c)cs‘“‘ZE(l—cz)“‘“zeE (x¥c—ig)t "2} | (C90)

c,X

The integral ovep can now be evaluated easily using either EBp4) or

1 ()4
fnp(p)szfzfzﬁ :
p

™ (3)-.

(1—2%)7(1—4e)(eTu?)cTL 4, (C9D

It remains only to calculate the averages ov@ndx. The averages overgive ,F; hypergeometric functions with argument
[(1Fc)2—is] L
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—€,N+2¢

((x:c—is)—“—26>x:(1:c)—“—26|:(1 2 9e [(1:c)/2—i8]—1), (C92

1—€,n+2¢

(x(xIc—is)‘”‘25>x=%(110)‘”‘2{F( 3 0. [(110)/2—is]‘1)

[(1:c)/2—is]1”. (C93

2—e,n+2e
Pl 3-26

Using a transformation formula, the arguments can be changed¥a)(2—is. If the expressiongC92 and (C93 are
averaged ovet with a weight that is an even function ofthe + and — terms combine to givgF, hypergeometric functions
with argument 1. For example,

Y

2 - 1 g —€ : € —2€ - L€,
e e+ ) A1 2030

(1)22)-. | 2—€1-3€
iome (1) -3d(1)e _[1+€,1+2¢€,4e
ret (1)-4(2) 2 (2+2€,1+3e 1)} (C99

Upon expanding the hypergeometric functions in powers ahd taking the real parts, we obtain

Re<(1—c2)262 (x:c—ie)—1—2€> =7 —e+2(1-log2)€?], (C95
o 1 2
Re<c2(1—c2)262 (xTc—ig) L 2f> =72 —§e+§(2—3|092)62 (C96)
_ [ 8
Re<(1—c2)2*262 (XIC—|8)325> =7 —3¢€, (C97)
2 2
Re<x(1—c2)1+262 (xIC—ie)225> = 72 —§e+§(1—6|0g2)62 (C98)

C,X

If the expression$C92) and(C93) are averaged overwith a weight that is an odd function af they reduce to integrals
of ,F, hypergeometric functions with argumentFor example,
4

|

—€,€

(2)— E(g)—é H €
2e\ 2 _2e—|7re( )3 dyy—ZE(l y1+e|1 2y|F( 3.

_ ~A2\1+2€ Tc—i —2—2¢ —
<C(1 ML (xFesie) > D). 22

8 i )36

2ime

T3(1+30° (1) .

2+2¢,1+4€
+e€ 1+e€ !
fd yre1-y)ti-2ylF ( 24 3¢

(C99
The resulting expansions for the real parts of the averagesooardx are
14(1-log 2
Re<c(1—cz)1+252 (x:c—is)—2—26> =—1+ %a (C100
= c,X

_ 2(1—log2) a2

_ ~2\2€ — —-1-2e¢ _ _ 2 _

Re<xc(1 c9) ;(x+c ie) >CX — 3 + 39 9IogZ Iog 2+ 18l €
’ (C101
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Multiplying each of these expansions by the appropriate factors from the integrafjaveétq. (C90) and the integral ovep
in Eq. (C91) or (B54), we obtain

(C102

n 2 ri—p?—gq? T2 e 1\[1 2 4 —
f F(p)p_sR RTE il 2( 2 ) (__) 1 |92+4§( )}
pa PG A(p+ie,are)/ . (4m)°\4nT 48/ | €

37 3° (=1
2_ 242
qunp(p) p4Re< 12 e PP0 > (e, (C103

P q A(p+ie,qre/,
F(p) p-q re=p’=a” \ T2 [ w1 14 LD
qu P Re< A<p+is,q,rc>>c‘<4w>2\4ﬂ) (‘3_6”(1 0g2) ;3 ~41og2 e 1))
7T2
+ 15/ (C104
£(p) p-q ri—pz—q2>_ T ( 1 )
qu b o Re< Mprie.qro/. (4m?| 6992 (C109

Adding Eq.(C103 to the subtracted integr&C86) we obtain the final result in E4C23). Combining Eq.(C87) with Egs.
(C104 and(C105, we obtain

f ne(P)ne(q) mRe< o2 re—p°—o? > v ( " )
pa PO g2 A(ptie,a,re)/, (4m)?\4aT
The integral(C24) is obtained from Eqg.C21), (C23) and(C106. Finally consider Eq9.C25 and(C26). In order to evaluate
them we need two subtractions for each integral:

—log 2)
75 i 15.256 (C106

n n 1 T2 de 1\l1 "(—=1
qu Fép) o &&= G 45T) (_1_2 E+2+2'092+27+2§5<(—1))}’ (10
n ) n 1 T2 4e 1 1 —
qu FF()IO Fc(1q) ?<C71+25>C: (4_77)2(%) (—ﬂ 27 2+27+4I092+2§§(( 1)) —+53. 106% (C108
1 T2 4e 1\[1 1
Jpq”BF()p) Ne(9) A= (%) (_6 6+2+4|ogz+2y+2i,(( 1))} (C109
(=11

2+2y+6log2+2

1
=+ ~+69. 709% (C110

f Na(P) Ne(@) 1) yip _ T° (L)“f(_i
W P q P T Gn2aaT | T 1)

The subtractions can be evaluated directly in three dimensions and the results are giver{@88gmnd (C89 The integrals
(C25 and(C26) are then given by the sum of the difference tei@88) and(C89 and the subtraction terni€107—(C110.

3. Four-dimensional integrals

In the sum-integral formul&B39), the second term on the right side involves an integral over 4-dimensional Euclidean
momenta. The integrands are functions of the integration var@leEledR= — (P+ Q). The simplest integrals to evaluate are
those whose integrands are independer® f

1
f QZ 2= (4 )ZIU’ p_262 Z+4_2 |ng ’ (Cll:D
1 1
J' Q2 1= (471_)21“ p 262 E+1_2|ng ’ (Clla
j ot (477)2#« PpTE2(=2)[1+(~2-2log De]. (C113
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Another simple integral that is needed depends onlyPén PO+ p?:

1(1)5(1) -

I (C114

1
f Q2R2 (477)2(67 z)e(PZ) €=

where @), is Pochhammer’s symbol which is defined in EG146. We need the following weighted averages ovef this
function evaluated aP=(—ip,p/c):

1 1 1[1 2log2 372
—1+2¢ —2e€ - -
<c jQ R . p/c)> (477)2,41, p Lz + . +2 log?2+ 7 } (C115
1 1 11
c“zfj *25 +2 log 2|. c11
< 0 Q2R2 b ippl) (477)2M p g ( 6

The remaining integrals are functions Bf, that must be analytically continued to the polRy= —ip+¢. Several of these
integrals are straightforward to evaluate:

f :
o, (C117
2p2
Q QR
0 p
f—qz _ b 1) 212092 10 o 10g 2+ 2 o2 s c11
QQZrZRzp_fip_(Afﬂ')z pi(— )?+ . +10-2log2+2log2— 12 | (C118
f ! I P 2—-2log?2 C11
Qersz o _ip_(47T)ZIu’ p z_ - Og . ( 9
-

We also need a weighted average owaf the integral in Eq(C117 evaluated aP=(—ip,p/c). The integral itself is

2
q De1(1)-o(1)- ( 1 ~ _
— ey 2\en2—2€>" "€ +CZ c 2+2¢ 1_02 € C12
Jo e oo AR PTG L 52 (=) (€120
The weighted averages are
2 2
q 1 _1[1 2(10+3log2) 4 40 37
c1+2€f 5> >= Suip? ¢ —l 5+ ——————+ —+ —log2+2log?2+ —|, (C12)
< o Q°R P (—ip.plc) (4) 48| € 3e 9 3 4
q? 1 1[1 2|ogz 372
o-1oze f i > L jpeprac i) 1 21002 5 000 3T (C122
< Q QR Yo ippre) (4)° 16 e 4

The most difficult 4-dimensional integrals to evaluate involve an HTL average of an integral with denorﬁiﬁﬁhogrcz:

Rf (S ) =t e 2d 272192 o ieg2rdtoge- T c12
o @\Re+r2e?) ~@mt P T e egeralogeT o) (C123
Rf 1 /c’(1-c?) 1 e 1 1+2o 6 loq 2 c1o
eQ6Z R2+r2c2| (4m)2H P 3|e "3 °lo9e) (C124
Rj L L pep2q 2781002 52 o dlo2 Wz c12

oo @\ R “lamt P T ae g 2luztalfz 5 (129

RJ ! ¢ _ L eprad U1 1+4+2| 2 C12

®lo @@\ ReTrE?| T amz P a)| <3t 392 (C125
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RJ q° c? . _26'13—16I092+29 19I 2+8| 25 4,
lo @\ Re+r2e?) T (am? P T 12 9 189977309
(C129
q2_p2 _ 1 2€ —25> 7T2
<fQ QZrZ(R(2)+r202)>C_ (477)21“ p i 3| (0128

The analytic continuation t8y= —ip+¢ is implied in these integrals and in all the 4-dimensional integrals in the remainder
of this subsection.

We proceed to describe the evaluation of the integf@%23 and (C125. The integral overQ, can be evaluated by
introducing a Feynman parameter to comb@®eand R(%Jrrzc2 into a single denominator:

1 _1 ! 2\, 2 22 —3/2
fQW—Zdeﬁ[(l—ch)r +2(1=x)r-p+(1—x)p—ie] \ (C129

where we have carried out the analytic continuatioR$e= —ip + ¢. Integrating over and then over the Feynman parameter,
we get a,F; hypergeometric function with argument-t?:

3 _2el-e

1 1 (1)€ni7re(1)_25(1)_6 A2\ —€ 2
= (1=¢9 F( 2—3e¢

— (aY,; 2)€n—2€
JQ QRZH 126D (Am2 & H)P T (2)_s

1- cz) . (C130

The subsequent weighted averages avgive ;F, hypergeometric functions with argument 1:

1/ ¢ 1 pe2eWel (D adD)ze_[1-2¢,3 —2e1-¢
@\RE 7] T amz @HP 3° 5 Flos
Q ot e AT € (3)-2d2) 3. $—2€,2-3¢

1) ,  (C13)

)
After expanding in powers of, the real part is Eq(C125.

The integral(C126 has a factor of 1 in the integrand. After using EGC129, it is convenient to use a second Feynman
parameter to combine (Ax+xc?)r? with the other denominator before integrating over

fQi<cz(1—cz)> :(4;2(@“2)6‘)_25(1)5gem(%)_e(1>_ze<2>_2€F(2—2e%—26,1—6

Qz R(2)+r2(;2 . e 15 (%)—25(2)—35 %—26,2—35

(C132

1 311 1
- - _= _ 2 2 _ 2\, 2 . W22 i 7-5/2
fQ Q2r2(R3+r2c2) 8f0 dx(1—x+xc )J’0 dyy! fr[(l X+XC)re+2y(1—x)r-p+y(l—x)p—ie] >~

(C133

After integrating over and theny, we obtaigF, hypergeometric functions with argument6l—c?). The integral ovex
gives a,F; hypergeometric function with argument-?:

1
Jo g
%—26,—6
—3e

Lo JED D 3 (D),
€ (3) 0. 2(1+2¢)" (1) 3,

(1—c2)—fF(

)

(C139

1 2
=(47)2(ey,u )p
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After averaging ovec, we get hypergeometric functions with argument 1:

1/ ¢\ 1 e ] 1 (=) D),
fQ Q2r2<R§+r202>C_ (47T)2(ey'u )P € 13—26 (%)—25
(_%)75(1)725(2)725 1_261%_261_6 )
— |Te 1 ’ C13
2 (2)725(1)736 ( %_261_36 } ( 5
1 1\ 1 e o (D=5 3
fo Q2r2<RS+r2c2>C_(4w)2(em)p | ().
2 _ 1 _ _
e W% (17265 —26—¢] || 136
(%)—26(1)—36 %_261_35

After expanding in powers of the real part is Eq(C126.
To evaluate the integraC28), it is convenient to first express it as the sum of 3 integrals by expanding the faajéiirof

the numerator ag®=p?+2p-r+r?:

p?2  _p-r

S+ +1 (C139
r r

q? _f
fQ QFARs+r%c?) g QXRy+r%c?)”

To evaluate the integral with-r in the numerator, we first combine the denominators using Feynman parameters as in Eq.
(C133. After integrating over and theny, we obtain,F; hypergeometric functions with argument&l —c?). The integral

over x gives ,F; hypergeometric functions with arguments- &2:
1- cz> } .

3 _

L. _<%>41)E+em<1>_25(1>_5(1_02)EF(Z 2€,~¢

p-r 1
= e? 2\€
Jo QriRgrrey) (am e M RE [T (D)-ae 1-3¢
(C138
After averaging ovec, we get a hypergeometric function with argument 1:
p-r c? 1 ,e 725(1)51 1 (D)D)
2, .20/ — 2(e7n)°p 7] T a_
Q Qu2\RG+r’c?|  (4m) 251 3-2¢ (3 ,.
1 ()-dD)adll)pe [1-2€,3 —2¢,—€
4 Ceimel? 2 ad= S 1], (C139
3 (g)—Zs(l)—Be 5_26’1_36

After expanding in powers of, the real part is
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2

2 s
log 2— §Iogzz+ = (C140

Re 36"

p-r< c? > 1, ,[-1+log2 20 14

= __+_
o Q2 \RE+r7c?| ~(am2t P 3e 9" 9

Combining this with Eqs(C123 and(C125, we obtain the integralC127.
To evaluate the integralC128, we first express the numerator as a sum of two integrals whose averages have been
calculated:

92— p? B f 2p-r+r? 1 ()" (D _1(%)—5(1)—5+ei“(1)75(1)726
o Q%r2(R5+r2c?) X_ Q Q%r2(R3+r2c?) X_ (am2 & H P € € (3 2 (1)-3e
1 _ —€ 2 -2¢ (D) (1) _ l—¢, 2 —2¢
T (1 _r2\—€ 12 _ A2 ime _ A2\ —€ 12 _ A2
><€(1 c) F( 1- 3¢ 1-c°|+e T2 e (1—c9) F( 2 3¢ 1-c )]
(€141

The two hypergeometric functions are now combined into a single hypergeometric functions, which yields

f 2p-r+r?
Q Q%r2(R3+r2c?) )

1 D B . (1)_(2)_y e 32
=(4w)2(em2)fp26(7{— 2(3) ime )(2)(3) =(1-¢?) EF( N 61—&)]. (C142
2)-2¢ o€
I

Averaging overc yields (ava'Za o )

Bir By |
Ep q(al,az, . ,ap;ﬁl, P ,,Bq,Z)
2p-r+r? (C144

fqm N

The generalized hypergeometric function has a power series
1 . 1 (1)(1)_(3)_. representation

=am2 e )p 2 3.,
2/-2e @y,ay, ... ,ap (a1)n(az)n- - '(CVp)nZn
(1), Bi - Bq o (Bn Byl
—1+¢ M(lTl . (C143 (C145

)

4

X

where @), is Pochhammer’s symbol:

Expansion in powers of, yields Eq.(C128.
I'(a+b)

W. (C146

(a)p=
4. Hypergeometric functions

The generalized hypergeometric function of tygle, is ~ The power series converges frl <1. Forz=1, it con-
an analytic function of one variable wigh+ q parameters. In  verges if Res>0, where
our case, the parameters are functionsepfso the list of
parameters sometimes gets lengthy and the standard notation p-1 P
for these functions b.ecomes _cumbersome. We therefore in- S= E Bi_E a;. (C147)
troduce a more concise notation i=1 i=1
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The hypergeometric function of typg,;F,., has an inte- oo o[ anan) t
gral representation in terms of the hypergeometric function f dtt" H(1—-t)* F( B, —1_t2>
of type ,Fy: 0
_Hwre) (aww _Z)
fldtt”l(l—t)ullz(alﬁ'az’ . 'ﬁ’a" tz) L(ptv) 1 Buln
0 bl Flag+p)l(ax+ @) (BT (—p) (—2)*
FwI(v)_[aq,az, ... ap,v I'(a)(a)(B1+p)
=7 z|. (C148
F(u+tv) B, Bg.uty o+t w, v+
(| At ezt M_Z)_ (153
Bt w1+ p

If a hypergeometric function has an upper and a lower payjs i derived by first inserting the integral representation

for ,F4 in Eq. (C148 with integration variableg’ and then

@z, ..,V ) evaluating the integral ovdrto get a,F; with argument 1

Bl’ e ,Bq,V

Ap,qp, ... ,ap

F Bi, - Bq

rameter that are equal, both parameters can be deleted:
z)zF : +1t'z. After using a transformation formula to change the
(C149 argument to—t’z, the remaining integrals ovef are evalu-
ated using Eq(C148 to get 5F,'s with arguments-z.
For the calculation of two-loop thermal integrals involv-
The simplest hypergeometric function is the one ofing HTL averages, we require the expansion in powers of

type,Fy. It can be expressed in an analytic form: for hypergeometric functions of typgF,,_, with argument 1
and parameters that are lineardnIf the power series rep-
Fola:z)=(1—-2)"¢. (C150 resentation(C145 of the hypergeometric function is conver-

gent atz=1 for e=0, this can be accomplished simply by

expanding the summand in powersefnd then evaluating
The next simplest hypergeometric functions are those of typehe sums. If the power series is divergent, we must make
oF1. They satisfy transformation formulas that allow g subtractions on the sum before expanding in powers.of
with argumentz to be expressed in terms of afr; with  The convergence properties of the power series=at is
argumentz/(z—1) or as a sum of twgF,’s with arguments  determined by the variable defined in Eq.(C147. If s
1—-z or 1z or 1/(1—2). The hypergeometric functions of >0, the power series converges. 4f+0 in the limit €
type ,F, with argumentz=1 can be evaluated analytically —0, only one subtraction is necessary to make the sum con-

in terms of gamma functions: vergent:
ay,ay, ... ,ap LB T(Bp-1)
ay,ay |\ T(BIT(B1— a1~ ay) F Bis . Bo " T(a )F(a)-'-F(a)g(S—’—l)
F( B1 1)_ F(B1—a)l(B1—az)’ (153 ' " ' ’ P

n 2 ((al)n(az)n' : '(ap)n

The hypergeometric function of typgF, with argumentz i=0 | (Ba)n+~(Bg)an!

=1 can be expressed as &, with argumentz=1 and r T

different parameterg39]: _ A (Bp-1)
I'(ay)l'(az)- - T(ap)

(n

ay,0,03 -s—1
= 1 +1) ) (C159
( ﬁlrﬂ2 )
B B If s——1 in the limit e—0, two subtractions are necessary
__ TBIT(BIT(S) g[Prmas B as,s 1) to make the sum convergent:
F(a1+S)F(a2+S)F(a3) a'1+S,a2+S oo o
1:&2, « o oy p
(c152 F Bis - Bp-1 1
r o T(B

wheres= B+ Bo— a;— a,— a3. If all the parameters of a = (B1) (Bp-1) [L(s+1)+ti(s+2)]
sF, are integers and half-odd integers, this identity can be I'(ayl(az)- - -I'(ap)
used to obtain equal numbers of half-odd integers among the = (a)n(an)n - (ag)
upper and lower parameters. If the parameters gF a re- +> L 72/n ‘i n
duce to integers and half-odd integers in the ligit 0, the =0\ (B (Bg)nn!

use of this identity simplifies the expansion of the hypergeo-
metric functions in powers of.

U(B1)---T'(Bp-1)

The most important integration formulas involvingr, I'(ay)l(@z)- - -I'(ap)
hypergeometric functions is EqC148 with p=2 andq
=1. Another useful integration formula is X[(n+1)"S 1+t(n+1)"57?]], (C15H
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% k=1

> [f(n)—f(n+k)]=2,o f(i). (C157

wheret is given by

p

(ai=1)(aj— (Bl 1)(,3| 2)

- 2 2 E ) (C156 The sums oven of rational functions oh can be evaluated
by applying the partial fraction decomposition and then us-

The expansion of gF, ; hypergeometric function in ing identities such as

powers ofe is particularly simple if in the limite—0 all its o 1

parameters are integers or half-odd integers, with equal num- — =y(b)—y(a), (C158
bers of half-odd integers among the upper and lower param- n+a n+b

eters. If the power series representation for such a hypergeo- "

metric function is expanded in powers ef the terms in the 2 1 Ci5
summand will be rational functions of possibly multiplied n+a)7 ¥'(a). ( 9

by factors of the polylogarithm functio(n+a) or its de-
rivatives. The terms in the sums can often be simplified byThe sums of polygamma functions of-1 orn+ 3 divided

using the obvious identity by n+1 orn+ 3 can be evaluated using
|
" [¢(n+1) log(n+1) 1, a
ngo n+tl  n+1 T2 T e (€160
Z [#(n+1) log(n+1) ,
zo nti  ntl ———(v+2l092) METIREY (Cc169)
S [#nt3) logn+1)| 1 2
nzo 1 i1 |- 37 4lg2+2logf2— 15—, (C162
“ [ #(n+3) log(n+1) 1 ) 2
2, nr1 ne1 |- glvr2leedtm oy (C163

wherey, is Stieltje’s first gamma constant defined in F§17). The sums of polygamma functions of-1 orn+3 can be
evaluated using

o

1 1,

EO( $(n+1) |og(n+1)+—2(n+1) PRELe 2|0g(27r) (C164
. 1) 1 1

go (w(n+ 2)—log(n+1)+ 1) = 3 v~ log2-Slog(2m). (C165

We also need the expansionsdrof some integrals ofF; hypergeometric functions of that have a factor ofL—2y|. For
example, the following 2 integrals are needed to obtain(E400:

—€,€ 1 2 4
fdyy 2e(1—y)tte|1— 2y|F( 3. y)=€+ §+§Iog2)e, (C166
1 2+2e€l+e€ 1 7
+erq1 __\\1telq__ ! — -
Jo dyy " é(1-y)** 91 2y|F( 24 3e y) 2T\ 3 Iog 2) 3 (C167)

These integrals can be evaluated by expressing them in the form
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1,0

1
[Fayysa-yta-2yie|
0 1

1/2
+2f dyy”_l(l—Y)“_l(l—ZY)F( 81

— ! v—21rq _ -1 _ (
y) J;dyy (1-y)* H(2y—1F By

PHYSICAL REVIEW D 70, 045001 (2004

/

aq,0)

aq,0)

y). (C168

0

The evaluation of the first integral on the right side giy€s hypergeometric functions with argument 1. The integrals from
0 to 3 can be evaluated by expanding the power series represent@id® of the hypergeometric function in powers af
The resulting series can be summed analytically and then the integral caer be evaluated.
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