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Two-loop hard-thermal-loop thermodynamics with quarks
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We calculate the quark contribution to the free energy of a hot quark-gluon plasma to two-loop order using
hard-thermal-loop~HTL! perturbation theory. All ultraviolet divergences can be absorbed into renormalizations
of the vacuum energy and the HTL quark and gluon mass parameters. The quark and gluon HTL mass
parameters are determined self-consistently by a variational prescription. Combining the quark contribution
with the two-loop HTL perturbation theory free energy for pure glue we obtain the total two-loop QCD free
energy. Comparisons are made with lattice estimates of the free energy forNf52 and with exact numerical
results obtained in the large-Nf limit.
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I. INTRODUCTION

The current generation of relativistic heavy-ion collisio
experiments should exceed the energy density necessar
the formation of a quark-gluon plasma. It is therefore nec
sary to have a quantitative theoretical framework which c
be used to calculate the properties of a quark-gluon plas
The usual line of reasoning is that since QCD is asympt
cally free, its running coupling constantas becomes weake
as the temperature increases and therefore the behavi
hadronic matter at sufficiently high temperature should
calculable using perturbative methods. Unfortunately,
straightforward perturbative expansion in powers ofas does
not seem to be of any quantitative use even at temperat
many orders of magnitude higher than those achievabl
heavy-ion collisions.

The problem can be seen by looking at the perturba
expansion of the free energyF of a quark-gluon plasma
whose weak-coupling expansion has been calculated c
pletely through orderas
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wherem is the renormalization scale,as5as(m) is the run-
ning coupling constant in the modified minimal subtracti
(MS) scheme, and we have setNc53. The coefficient of
as

3logas has recently been computed@4#; however, since
there are unknown perturbative and non-perturbative con
butions at O(as

3), we do not include terms higher tha
O(as

5/2) in Eq. ~1!.
In Fig. 1, the free energy withNf52 is shown as a func-

tion of the temperatureT/LMS. In the plot we have scaled
the free energy by the free energy of an ideal gas of qua
and gluons which for arbitraryNc andNf is
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Fideal52
p2

45
T4S Nc

2211
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NcNf D . ~7!

The weak-coupling expansions through ordersas , as
3/2, as

2 ,
andas

5/2 are shown as bands that correspond to varying
renormalization scale,m, by a factor of 2 around the centra
value m52pT. As successive terms in the weak-coupli
expansion are added, the predictions change wildly and
sensitivity to the renormalization scale grows. It is clear t
a reorganization of the perturbation series is essential if
turbative calculations are to be of any quantitative use
temperatures accessible in heavy-ion collisions.

The free energy can also be calculated nonperturbati
using lattice gauge theory@5#. The thermodynamic function
for pure-glue QCD have been calculated with high precis
by Boyd et al.@6#. There have also been calculations whi
include dynamical quarks@7,8#. In Fig. 1 we have included
the latest lattice estimate of Karsch et al.@7# for the free
energy forNf52 flavors of light quarks. The band indicate
the estimated systematic error of their result which is
ported as (1565)%. Note that the quarks in the simulation
do have non-zero masses and that extrapolation to zero q
mass would require significant computing time. As a res
of the difficulty associated with the inclusion of light an
massless dynamical quarks on the lattice, it is therefore
sirable to have analytic methods which can be used to e
mate the thermodynamic functions.

The only rigorous method available for reorganizing p
turbation theory in thermal QCD isdimensional reductionto
an effective 3-dimensional field theory@9,10#. The coeffi-
cients of the terms in the effective Lagrangian are calcula
using perturbation theory, but calculations within the effe
tive field theory are carried out nonperturbatively using l
tice gauge theory. Dimensional reduction has the same l

FIG. 1. The perturbative free energy of QCD forNf52 mass-
less quarks as a function ofT/L (MS) . The weak-coupling expan
sions through ordersas , as

3/2, as
2 , and as

5/2 are shown as band
that correspond to varying the renormalization scalem by a factor
of 2 around 2pT. Also shown is a lattice estimate by Karsch et
@7# for the free energy. The band indicates the estimated system
error of their result which is reported as (1565)%.
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tations as ordinary lattice gauge theory: it can be app
only to static quantities and only at small baryon numb
densities. Unlike in ordinary lattice gauge theory, light d
namical quarks do not require any additional compu
power, because they only enter through the perturbativ
calculated coefficients in the effective Lagrangian. Th
method has been applied to the Debye screening mass
QCD @10# as well as the pressure@9#.

There are some proposals for reorganizing perturba
theory in QCD that are essentially just mathematical mani
lations of the weak coupling expansion. The methods inclu
Padéapproximates@11#, Borel resummation@12#, and self-
similar approximates@13#. These methods are used to co
struct more stable sequences of successive approxima
that agree with the weak-coupling expansion when expan
in powers of as . These methods can only be applied
quantities for which several orders in the weak-coupling
pansion are known, so they are limited in practice to
thermodynamic functions.

One promising approach for reorganizing perturbat
theory in thermal QCD is to use a variational framewo
The free energyF is expressed as the variational minimu
of a thermodynamic potentialV(T,as ;m2) that depends on
one or more variational parameters that we denote col
tively by m2:

F~T,as!5V~T,as ;m2!u]V/]m250 . ~8!

A particularly compelling variational formulation is th
F-derivable approximation, in which the complete propaga
tor is used as an infinite set of variational parameters@14#.
The F-derivable thermodynamic potentialV is the two-
particle-irreducible~2PI! effective action, the sum of all dia
grams that are 2PI with respect to the complete propag
@15#. Then-loop F-derivable approximations, in whichV is
the sum of 2PI diagrams with up ton loops, form a system-
atically improvable sequence of variational approximatio
Until recently, F-derivable approximations have proved
be intractable for relativistic field theories except for simp
cases in which the self-energy is momentum independ
However, there has been some recent progress in solving
3-loop F-derivable approximation for scalar field theorie
Braaten and Petitgirard have developed an analytic met
for solving the 3-loopF-derivable approximation for the
masslessf4 field theory@16#. van Hees and Knoll have de
veloped numerical methods for solving the 3-loo
F-derivable approximation for the massivef4 field theory
@17#. They also investigated renormalization issues ass
ated with theF-derivable approximation. These issues ha
recently been studied in detail by Blaizot, Iancu, and Rein
@18#.

The application of theF-derivable approximation to
QCD was first discussed by Freedman and McLerran@19#.
One problem with this approach is that the thermodynam
potentialV is gauge dependent, and so are the resulting t
modynamic functions. The gauge dependence is the s
order in as as the truncation error when evaluated off t
stationary point and twice the order inas when evaluated a
the stationary point@20#. However, the most serious proble

tic
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is that even the application of 2-loopF-derivable approxi-
mation to gauge theories has proved to be intractable.

The 2-loopF-derivable approximation for QCD has bee
used as the starting point forhard-thermal-loop (HTL) re-
summationsof the entropy by Blaizot, Iancu, and Rebha
@21# and of the pressure by Peshier@22#. The thermodynamic
potentialV2-loop is a functional of the complete gluon prop
gatorDmn(P). However, in order to make the problem tra
table the authors in Refs.@21# and@22# were forced to make
a variational ansatz for the exact gluon propagator wh
they took as the HTL gluon propagator in the infrared a
with a next-to-leading order corrected mass in the ultravio
with an aribitrary momentum scale separating the two m
mentum regions. Using this ansatz they were able to ca
late the QCD thermodynamic functions; however, a fir
principles calculation of the corrections to their results
gauge theories would require the inclusion of exact verti
as well as exact propagators thus making the problem int
table.

The difficulties in calculating quantities usin
F-derivable approximations in gauge theories motivates
use of simpler variational approximations. One such strat
that involves a single variational parameterm has been called
optimized perturbation theory@23#, variational perturbation
theory@24#, or thelinear d expansion@25#. This strategy was
applied to the thermodynamics of the masslessf4 field
theory by Karsch, Patkos, and Petreczky under the n
screened perturbation theory@26#. The method has also bee
applied to spontaneously broken field theories at finite te
perature@27#. The calculations of the thermodynamics of t
masslessf4 field theory using screened perturbation theo
have been extended to 3 loops@28#. The calculations can be
greatly simplified by using a double expansion in powers
the coupling constant andm/T @29#.

HTL perturbation theory~HTLpt! is an adaptation of this
strategy to thermal QCD@30#. The exactly solvable theory
used as the starting point is one whose propagators are
HTL quark and gluon propagators. The variational mass
rametersmD andmq are identified with the Debye screenin
mass and the induced quark mass. The one-loop free en
in HTLpt was calculated for QCD in Ref.@30# and for QCD
with massless quarks in Ref.@31#. At this order, the param
etersmD and mq could not be determined variationally, s
their perturbative limits were used. The resulting thermo
namic functions had errors of orderas , but the terms of
order as

3/2 associated with Debye screening were correct
two-loop calculation is required to reduce the errors to or
as

2 .
In a previous paper we calculated the thermodyna

functions of pure-glue QCD to next-to-leading order
HTLpt @32#. In that paper we showed that it was possible
renormalize the resulting expressions for the thermodyna
potential at next-to-leading order using only vacuum a
mass counterterms and we also showed that the correc
to the thermodynamic functions in going from leading-ord
to next-to-leading order were small down to temperatures
the order of 10LMS. In this paper we calculate the therm
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dynamic functions of QCD to next-to-leading order
HTLpt including the contributions from quark and quar
gluon interaction diagrams.

We begin with a brief summary of HTL perturbatio
theory including quarks in Sec. II. In Sec. III, we give th
expressions for the one-loop and two-loop diagrams for
thermodynamic potential. In Sec. IV, we reduce those d
grams to scalar sum integrals. We are unable to comp
those sum integrals exactly, so in Sec. V we evaluate them
treatingmD andmq asO(g) quantities and expand them i
mD /T and mq /T, keeping all terms that contribute up t
O(g5). The diagrams are combined in Sec. VII to obtain t
final result for the two-loop thermodynamic potential up
O(g5). In Sec. VIII, we present our numerical results for th
free energy of QCD at leading and next-to-leading order
HTLpt. In Sec. IX we evaluate the free energy in the largeNf
limit where exact numerical results have been obtain
@33,34#.

There are several appendixes that contain technical de
of the calculations. In Appendix A, we give the Feynm
rules for HTL perturbation theory in Minkowski space
facilitate the application of this formalism to signatures
the quark-gluon plasma. The most difficult aspect of the
calculations was the evaluation of the sum integrals obtai
from the expansion inmD /T andmq /T. We give the results
for these sum integrals in Appendix B. The evaluation
some difficult thermal integrals that were required to obt
the sum integrals is described in Appendix C.

II. HTL PERTURBATION THEORY

The Lagrangian density that generates the perturbative
pansion for QCD can be expressed in the form

LQCD52
1

2
Tr~GmnGmn!1 i c̄gmDmc1Lgf1Lghost

1DLQCD. ~9!

The gauge potential isAm5Am
a ta, with generatorsta of the

fundamental representation of SU(Nc) normalized so that
Tr tatb5dab/2. The field strength tensor isGmn5]mAn

2]nAm2 ig@Am ,An#. In the quark term there is an implici
sum over theNf quark flavors andDm5]m2 igAm is the
covariant derivative for the fundamental representation. T
ghost termLghost depends on the choice of the gauge-fixi
termLgf . Two choices for the gauge-fixing term that depe
on an arbitrary gauge parameterj are the general covarian
gauge and the general Coulomb gauge:

Lgf52
1

j
Tr@~]mAm!2# covariant ~10!

52
1

j
Tr@~¹•A!2# Coulomb. ~11!

It is also convenient to introduce various invariants asso
ated with the representations of the SU(Nc) gauge group.
Denoting the generators of the adjoint representation
1-3
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(Fa)bc52 i f abc and generators of the fundamental repres
tation asTa we define the following group theory factors:

@FcFc#ab5 f adcf bdc5cAdab,

Tr FaFb5sAdab,

daa5dA ,

@TaTa# i j 5cFd i j ,

Tr TaTb5sFdab,

d i i 5dF5sFdA /cF . ~12!

With the standard normalization,

cA5sA5Nc ,

dA5Nc
221,

cF5~Nc
221!/~2Nc!,

sF5Nf /2,

dF5NcNf . ~13!

The perturbative expansion in powers ofg generates ultra-
violet divergences. The renormalizability of perturbati
QCD guarantees that all divergences in physical quant
can be removed by renormalization of the coupling cons
as5g2/4p. There is no need for wave function renormaliz
tion, because physical quantities are independent of the
malization of the field. There is also no need for renorm
ization of the gauge parameter, because physical quan
are independent of the gauge parameter.

Hard-thermal-loop perturbation theory is a reorganizat
of the perturbation series for thermal QCD. The Lagrang
density is written as

L5~LQCD1LHTL!ug→Adg1DLHTL . ~14!

The HTL improvement term is

LHTL52
1

2
~12d!mD

2 TrS GmaK yayb

~y•D !2L
y

Gb
mD

1~12d!imq
2c̄gmK ym

y•D L
y

c, ~15!

where in the first termDm is the covariant derivative in the
adjoint representation, in the second termDm is the covariant
derivative in the fundamental representation,ym5(1,ŷ) is a
light-like four-vector, and̂ •••&y represents the average ov
the directions ofŷ. The term~15! has the form of the effec
tive Lagrangian that would be induced by a rotationally
variant ensemble of colored sources with infinitely high m
mentum. The parametermD can be identified with the Deby
screening mass and the parametermq can be identified as the
04500
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induced finite temperature quark mass. HTLpt is defined
treatingd as a formal expansion parameter.

The HTL perturbation expansion generates ultraviolet
vergences. In QCD perturbation theory, renormalizabi
constrains the ultraviolet divergences to have a form that
be canceled by the counterterm LagrangianDLQCD. We will
demonstrate that renormalized perturbation theory can
implemented by including a counterterm LagrangianDLHTL

among the interaction terms in Eq.~14!. There is no proof
that the HTL perturbation expansion is renormalizable, so
general structure of the ultraviolet divergences is not know
however, it was shown in our previous paper@32# that it was
possible to renormalize the next-to-leading order HTLpt p
diction for the free energy of pure-glue QCD using only
vacuum counterterm and Debye mass counterterm. Here
show that when quarks are included it is also possible
renormalize the resulting expressions using only vacuu
Debye mass, and quark mass counterterms.

The leading term in the delta expansion of the vacu
energy,E0, countertermDE0 was deduced in Ref.@30# by
calculating the free energy to leading order ind. The E0

countertermDE0 must therefore have the form

DE05S dA

128p2e
1O~das! D ~12d!2mD

4 . ~16!

To calculate the free energy to next-to-leading order ind, we
need the countertermDE0 to orderd and the counterterms
DmD

2 and Dmq
2 to order d. We will show that there is a

nontrivial cancellation of the ultraviolet divergences if th
mass counterterms have the form

DmD
2 52

as

3peF11

4
cA2sFGmD

2 , ~17!

Dmq
252

as

3peF9

8

dA

cA
Gmq

2 . ~18!

Physical observables are calculated in HTLpt by expand
them in powers ofd, truncating at some specified order, a
then settingd51. This defines a reorganization of the pe
turbation series in which the effects of themD

2 andmq
2 terms

in Eq. ~15! are included to all orders but then systematica
subtracted out at higher orders in perturbation theory by
dmD

2 and dmq
2 terms in Eq.~15!. If we set d51, the La-

grangian~14! reduces to the QCD Lagrangian~9!. If the
expansion ind could be calculated to all orders, all depe
dence onmD and mq should disappear when we setd51.
However, any truncation of the expansion ind produces re-
sults that depend onmD and mq . Some prescription is re
quired to determinemD andmq as a function ofT andas .
1-4
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We choose to treat both as variational parameters that sh
be determined by minimizing the free energy. If we den
the free energy truncated at some order ind by
V(T,as ,mD ,mq ,d), our prescription is

]

]mD
V~T,as ,mD ,mq ,d51!50,

]

]mq
V~T,as ,mD ,mq ,d51!50. ~19!

SinceV(T,as ,mD ,mq ,d51) is a function of the variationa
parametersmD andmq , we will refer to it as thethermody-
namic potential. We will refer to the variational equation
~19! as thegap equations. The free energyF is obtained by
evaluating the thermodynamic potential at the solution to
gap equations~19!. Other thermodynamic functions can the
be obtained by taking appropriate derivatives ofF with re-
spect toT.

III. DIAGRAMS FOR THE THERMODYNAMIC
POTENTIAL

The thermodynamic potential at leading order in HTL p
turbation theory~see Fig. 2! for an SU(Nc) gauge theory
with Nf massless quarks is

VLO5dAFg1dFFq1D0E0 , ~20!

whereFg is the contribution from each of the color states
the gluon:

FIG. 2. Diagrams contributing through NLO in HTLpt. Shade
circles indicate dressed HTL propagators and vertices.
04500
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f

Fg52
1

2 XP
$~d21!log@2DT~P!#1 logDL~P!%.

~21!

The transverse and longitudinal HTL propagatorsDT(P) and
DL(P) are given in Eqs.~A51! and~A52!. The quark contri-
bution is

Fq52X $P%
log det@P” 2S~P!#, ~22!

where S(P) is the HTL fermion self-energy. The leadin
order countertermD0E0 was determined in Ref.@30#:

D0E05
dA

128p2e
mD

4 . ~23!

The thermodynamic potential at next-to-leading order
HTL perturbation theory can be written as

VNLO5VLO1dA@F3g1F4g1Fgh1Fgct#

1dAsF@F3qg1F4qg#1dfFqct1D1E0

1D1mD
2 ]

]mD
2 VLO1D1mq

2 ]

]mq
2 VLO , ~24!

whereD1E0, D1mD
2 , andD1mq

2 are the terms of orderd in the
vacuum energy density and mass counterterms. The co
butions from the two-loop diagrams with the three-gluon a
four-gluon vertices are

F3g5
cA

12
g2
XPQ

Gmlr~P,Q,R!Gnst~P,Q,R!Dmn~P!

3Dls~Q!Drt~R!, ~25!

F4g5
cA

8
g2
XPQ

Gmn,ls~P,2P,Q,2Q!

3Dmn~P!Dls~Q!, ~26!

whereR52Q2P.
The contribution from the ghost diagram depends on

choice of gauge. The expressions in the covariant and C
lomb gauges are
1-5
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Fgh5
cA

2
g2
XPQ

1

Q2

1

R2 QmRnDmn~P! covariant ~27!

5
cA

2
g2
XPQ

1

q2

1

r 2~Qm2Q•nnm!~Rn2R•nnn!

3Dmn~P! Coulomb. ~28!

The contribution from the HTL gluon counterterm diagram

Fgct5
1

2 XP
Pmn~P!Dmn~P!. ~29!

The contributions from the two-loop diagrams with th
quark-gluon three and four vertices are given by

F3qg5
1

2
g2
XP$Q%

Tr@Gm~P,Q,R!S~Q!Gn~P,Q,R!S~R!#

3Dmn~P!, ~30!

F4qg5
1

2
g2
XP$Q%

Tr@Gmn~P,2P,Q,Q!S~Q!#Dmn~P!,

~31!

where Tr implies taking the trace overg matrices. The con-
tribution from the HTL quark counterterm is

Fqct52X $P%
Tr@S~P!S~P!#. ~32!

Provided that HTL perturbation theory is renormalizable,
ultraviolet divergences at any order ind can be canceled by
renormalizations of the vacuum energy densityE0, the HTL
mass parametersmD

2 andmq
2 , and the coupling constantas .

Renormalization of the coupling constant does not enter u
orderd2. We will calculate the thermodynamic potential as
double expansion in powers ofmD /T and mq /T, andg in-
cluding all terms through fifth order. Thedas term in DE0
does not contribute until sixth order in this expansion, so
term of orderd in DE0 can be obtained simply by expandin
Eq. ~23! to first order ind:

D1E052
dA

64p2e
mD

4 . ~33!
04500
e

til

e

The remaining ultraviolet divergences must be removed
renormalization of the mass parametersmD andmq . We will
show below that, at orderd, all remaining divergences ca
be removed by the quark and Debye mass counterterms.
provides nontrivial evidence for the renormalizability
HTL perturbation theory at this order ind.

The sum of the 3-gluon, 4-gluon, and ghost contributio
is gauge invariant. By using the Ward identities, one c
easily show that the sum of these three diagrams is inde
dent of the gauge parameterj. With more effort, one can
show the equivalence of the covariant gauge expression
j50 and the Coulomb gauge expression withj50. In a
similar manner, it can be shown that the sum of Eqs.~30! and
~31! is independent ofj within the class of covariant and
Coloumb gauges, as well as the equivalence of the two w
j50.

IV. REDUCTION TO SCALAR SUM INTEGRALS

The first step in calculating the quark contribution to t
free energy is to reduce the sum of the diagrams to sc
sum integrals. The leading-order quark contribution can
rewritten as

Fq522X $P%
log P222X $P%

logFAS
22A0

2

P2 G , ~34!

where

A0~P!5 iP02
mq

2

iP0
TP , ~35!

AS~P!5upu1
mq

2

upu @12TP#. ~36!

The HTL quark counterterm can be rewritten as

Fqct524X $P%

P21mq
2

AS
22A0

2 . ~37!

We proceed to simplify the sum of Eqs.~30! and ~31! in
Landau gauge. Using the Ward identities~A45! and ~A48!
the sum of Eqs.~30! and ~31! becomes
al
F3qg14qg5
1

2
g2
XP$Q%

$DX~P!Tr@G00S~Q!#2DT~P!Tr@GmS~Q!GmS~R8!#1DX~P!Tr@G0S~Q!G0S~R8!#%, ~38!

whereS is the quark propagator,DT is the transverse gluon propagator,DX is a combination of the transverse and longitudin
gluon propagators defined in~A27!, andR85Q2P.

Performing the traces ofg matrices gives
1-6
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F3qg14qg52g2
XP$Q%

1

AS
2~Q!2A0

2~Q!H 2~d21!DT~P!
q̂• r̂AS~Q!AS~R!2A0~Q!A0~R!

AS
2~R!2A0

2~R!

22DX~P!
A0~Q!A0~R!1AS~Q!AS~R!q̂• r̂

AS
2~R!2A0

2~R!
24mq

2DX~P!K A0~Q!2As~Q!q̂• ŷ

~P•Y!22~Q•Y!2

1

~Q•Y!L
ŷ

1
8mq

2DT~P!

AS
2~R!2A0

2~R!
K @A0~Q!2AS~Q!q̂• ŷ#@A0~R!2AS~R! r̂• ŷ#

~Q•Y!~R•Y!
L

ŷ

1
4mq

2DX~P!

AS
2~R!2A0

2~R!
K 2A0~R!AS~Q!q̂• ŷ2A0~Q!A0~R!2AS~Q!AS~R!q̂• r̂

~Q•Y!~R•Y!
L

ŷ
J 1O~g2mq

4!, ~39!

whereA0 andAS are defined in Eqs.~A40! and ~A41!, respectively.
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V. HIGH-TEMPERATURE EXPANSION

The free energy has been reduced to scalar sum integ
If we tried to evaluate the 2-loop HTL free energy exact
there are terms that could at best be reduced
5-dimensional integrals which would have to be evalua
numerically. We will therefore evaluate the sum integrals
proximately by expanding them in powers ofmD /T and
mq /T. We will carry out the expansion to high enough ord
to include all terms through orderg5 if mD andmq are taken
to be of orderg.

The free energy can be divided into contributions fro
hard and soft momenta. We proceed to calculate the h
hard and hard-soft contributions. There is no soft-soft con
bution since one of the momenta in the loop is always f
mionic and therefore hard.

A. One-loop sum integrals

The one-loop sum integrals include the leading quark c
tribution ~22! and the HTL quark counterterm~32!. The lead-
ing order free energy must be expanded to ordermq

4 to
include all terms through orderg5 if mq is taken to be of
orderg.

1. Hard contributions

The hard contribution from the LO gluon term~21! was
given in @32# and reads

F g
(h)52

p2

45
T41

1

24F11S 212
z8~21!

z~21! D eG S m

4pTD 2e

mD
2 T2

2
1

128p2S 1

e
2712g1

2p2

3 D S m

4pTD 2e

mD
4 . ~40!

The hard contribution from the HTL counterterm~29! was
given in @32# and reads

F gct
(h)52

1

24
mD

2 T21
1

64p2S 1

e
2712g1

2p2

3 D S m

4pTD 2e

mD
4 .

~41!
04500
ls.
,
to
d
-

r

d-
i-
r-

-

The sum integrals overP involve two momentum scalesmq
and T. Since P05(2n11)pT, the momentum is always
hard. We can therefore expand in powers ofmq

2 . To second
order inmq

2 , we obtain

F q
(h)522X $P%

log P224mq
2
X $P%

1

P2

12mq
4
X $P%F 2

P4 2
1

p2P2 1
2

p2P2TP2
1

p2P0
2 ~TP!2G .

~42!

Note that the functionTP cancels from themq
2 term. The

values of the sum integrals are given in Appendix B. Inse
ing those expressions, the hard quark contributions to
free energy reduce to

F q
(h)52

7p2

180
T41

1

6 F11S 222 log 212
z8~21!

z~21! D eG
3S m

4pTD 2e

mq
2T21

1

12p2~p226!mq
4 . ~43!

Note that this contribution is finite and so the leading ord
countertermD0E0 is the same as in the pure-glue case. T
HTL quark counterterm is given in Eq.~37!. Expanding this
term to second order inmq

2 yields

F qct
(h)54mq

2
X $P%

1

P224mq
4
X $P%F 2

P4 2
1

p2P2

1
2

p2P2TP2
1

p2P0
2 ~TP!2G . ~44!

The values of the sum integrals are given in Appendix
Inserting those expressions, the hard contributions to
HTL quark counterterm reduce to

F qct
(h)52

1

6
mq

2T22
1

6p2~p226!mq
4 . ~45!
1-7
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Note that the first term in Eq.~45! cancels the order-e0 term
in coefficient ofmq

2 in Eq. ~43!.

2. Soft contributions

The soft contribution comes from theP050 term in the
sum integral. At soft momentumP5(0,p), the HTL self-
energy functions reduce toPT(P)50 andPL(P)5mD

2 . The
transverse term vanishes in dimensional regularization
cause there is no momentum scale in the integral ovep.
Thus the soft contribution comes from the longitudinal te
only.

The soft contribution to the leading order free energy~21!
was given in Ref.@32# and reads

F g
(s)52

1

12p F11
8

3
eG S m

2mD
D 2e

mD
3 T. ~46!

The soft contribution to the HTL gluon counterterm~29! was
given in Ref.@32# and reads

F gct
(s) 5

1

8p
mD

3 T. ~47!

There is no soft contribution from the leading-order qua
term ~34! or from the HTL quark counterterm~37!.

B. Two-loop sum integrals

The sum of the two-loop sum integrals is given in E
~38!. Since these integrals have an explicit factor ofg2, we
e
-

04500
e-

.

need only to expand the sum integrals to ordermq
2mD /T3

andmD
3 /T3 to include all terms through orderg5.

The sum integrals involve two momentum scalesmq ,mD

andT. In order to expand them in powers of these scales,
separate them into contributions from hard loop mome
and soft loop momenta. This gives two separate regi
which we will denote~hh! and ~hs!. In the ~hh! region, all
three momentaP, Q, andR are hard. In the~hs! region, two
of the three momenta are hard and the other soft.

1. Contributions from the (hh) region

For hard momenta, the self-energies are suppresse
mD

2 /T2 or mq
2/T2 relative to the propagators, so we can e

pand in powers ofPT , PL , andS.
The ~hh! contribution from Eqs.~25!–~27! was given in

Ref. @32# and reads

F3g14g1gh
(hh) 5

p2

12

cAas

3p
T4

2
7

96F1

e
14.621G cAas

3p S m

4pTD 4e

mD
2 T2.

~48!

The ~hh! contribution from Eqs.~30! and~31! can be written
as
F3qg14qg
(hh) 5~d21!g2FX $PQ%

1

P2Q22XP$Q%

2

P2Q2G12mD
2 g2
XP$Q%F 1

p2P2Q2TP1
1

~P2!2Q2 2
d22

d21

1

p2P2Q2G
1mD

2 g2
X $PQ%Fd11

d21

1

P2Q2r 22
4d

d21

q2

P2Q2r 4 2
2d

d21

P•Q

P2Q2r 4GTR

1mD
2 g2
X $PQ%F32d

d21

1

P2Q2R2 1
2d

d21

P•Q

P2Q2r 4 2
d12

d21

1

P2Q2r 21
4d

d21

q2

P2Q2r 4 2
4

d21

q2

P2Q2r 2R2G
12mq

2g2~d21!X $PQ%F 1

P2Q0
2Q2 1

p22r 2

P2q2Q0
2R2GTQ12mq

2g2~d21!XP$Q%F 2

P2~Q2!2 2
1

P2Q0
2Q2TQG

12mq
2g2~d21!X $PQ%Fd13

d21

1

P2Q2R22
2

P2~Q2!2 1
r 22p2

q2P2Q2R2G . ~49!

Using the expressions for the sum integrals in Appendix B, this reduces to

F3qg14qg5
5p2

72

as

p
T42

1

72F1

e
11.2963G as

p S m

4pTD 4e

mD
2 T21

1

8F1

e
18.96751G as

p S m

4pTD 4e

mq
2T2. ~50!
in
2. (hs) contribution

In the ~hs! region, the momentumP is soft. The momenta
Q and R are always hard. The function that multiplies th
soft propagatorDT(0,p) or DX(0,p) can be expanded in pow
ers of the soft momentump. In the case ofDT(0,p), the
resulting integrals overp have no scale and they vanish
dimensional regularization. The integration measure*p

scales likemD
3 , the soft propagatorDX(0,p) scales like
1-8
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1/mD
2 , and every power ofp in the numerator scales lik

mD .
The ~hs! contribution from Eqs.~25!–~27! was given in

Ref. @32# and reads

F3g14g1gh
(hs) 52

p

2

cAas

3p
mDT32

11

32p S 1

e
1

27

11
12g D

3
cAas

3p S m

4pTD 2eS m

2mD
D 2e

mD
3 T. ~51!

The only terms that contribute through orderg2mD
3 T and

mq
2mDg3T from Eqs.~30! and ~31! are

F3qg14qg
(hs) 5g2TE

p

1

p21mD
2 X $Q%F 2

Q2 2
4q2

~Q2!2G
12mD

2 g2TE
p

1

p21mD
2 X $Q%F 1

~Q2!2

2~31d!
2

d

q2

~Q2!3 1
8

d

q4

~Q2!4G
24mq

2g2TE
p

1

p21mD
2 X $Q%F 3

~Q2!2 2
4q2

~Q2!3

2
4

~Q2!2TQ2
2

Q2 K 1

~Q•Y!2L
ŷ
G . ~52!

In the terms that are already of orderg2mD
3 T, we can setR

52Q. In the terms of orderg2mDT3, we must expand the
integrand to second order inp. After averaging over angle
of p, the linear terms inp vanish and quadratic terms of th
form pipj are replaced byp2d i j /d. We can setp252mD

2 ,
because any factor proportional top21mD

2 will cancel the
denominator of the integral overp, leaving an integral with
no scale. This gives

F3qg14qg
(hs) 52

1

6
asmDT31

as

24p2F1

e
1112g14 log 2G

3S m

4pTD 2eS m

2mD
D 2e

mD
3 T2

as

2p2 mq
2mDT.

~53!

3. „ss… contributions

The (ss) contribution from Eqs.~25!–~27! was given in
Ref. @32# and reads

F3g14g1gh
(ss) 5

3

16F1

e
13GcAas

3p S m

2mD
D 4e

mD
2 T2. ~54!

There is no (ss) contribution from the diagrams involving
fermions.
04500
VI. HTL-IMPROVED THERMODYNAMICS

The free energy at second order in HTL perturbati
theory defines a functionV(T,as ,mD ,mq ,d51). We will
refer to this function as the thermodynamic potential. To o
tain the free energyF(T) as a function of the temperature
we need to specify a prescription for the mass parametermD
as a function ofT andas .

VII. THERMODYNAMIC POTENTIAL

In this section, we calculate the thermodynamic poten
V(T,as ,mD ,mq ,d51) explicitly, first to leading order in
the d expansion and then to next-to-leading order.

A. Leading order

The complete expression for the leading order thermo
namic potential is the sum of the contributions from 1-lo
diagrams and the leading term~23! in the vacuum energy
counterterm. The contributions from the 1-loop diagrams,
cluding all terms through orderg5, is the sum of Eqs.~40!,
~43!, and~46!,

V1-loop52dA

p2T4

45 H 11
7

4

dF

dA
2

15

2
m̂D

2 230
dF

dA
m̂q

2130m̂D
3

1
45

8
S 1

e
12 log

m̂

2
2712g1

2p2

3
D m̂D

4

260
dF

dA
~p226!m̂q

4J , ~55!

wherem̂D , m̂q and m̂ are dimensionless variables:

m̂D5
mD

2pT
, ~56!

m̂q5
mq

2pT
, ~57!

m̂5
m

2pT
. ~58!

Adding the counterterm~23!, we obtain the thermodynami
potential at leading order in the delta expansion:

VLO52dA

p2T4

45 H 11
7

4

dF

dA
2

15

2
m̂D

2 230
dF

dA
m̂q

2130m̂D
3

1
45

4
S log

m̂

2
2

7

2
1g1

p2

3
D m̂D

4 260
dF

dA
~p226!m̂q

4J .

~59!
contri-
ion from
B. Next-to-leading order

The complete expression for the next-to-leading order correction to the thermodynamic potential is the sum of the
butions from all 2-loop diagrams, the quark and gluon counterterms, and renormalization counterterms. The contribut
1-9
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the 2-loop diagrams, including all terms though orderg5, is the sum of Eqs.~48!, ~50!, ~51!, ~53!, and~54! multiplied by the
appropriate group structure constants listed in Eq.~24!:

V2-loop52dA

p2T4

45

as

p H 2
5

4 S cA1
5

2
sFD115~cA1sF!m̂D2

55

8
F S cA2

4

11
sFD S 1

e
14 log

m̂

2
D

2cAS 72

11
logm̂D21.96869D20.4714sFGm̂D

2 2
45

2
sFF1

e
14 log

m̂

2
18.96751Gm̂q

21180sFm̂Dm̂q
2

1
165

4
F S cA2

4

11
sFD S 1

e
14 log

m̂

2
22 logm̂DD 1cAS 27

11
12g D2

4

11
sF~112g14 log 2!Gm̂D

3 J . ~60!

The HTL gluon counterterm is the sum of Eqs.~41! and ~47!:

Vgct52dA

p2T4

45 H 15

2
m̂D

2 245m̂D
3 2

45

4
S 1

e
12 log

m̂

2
2712g1

2p2

3
D m̂D

4 J . ~61!

The HTL quark counterterm is given by Eq.~45!:

Vqct52dF

p2T4

45
$30m̂q

21120~p226!m̂q
4%. ~62!

The ultraviolet divergences that remain after these 3 terms are added can be removed by renormalization of the vacuu
densityE0 and the HTL mass parametersmD andmq. The renormalization contributions at first order ind are

DV5D1E01D1mD
2 ]

]mD
2 VLO1D1mq

2 ]

]mq
2 VLO . ~63!

Using the results listed in Eqs.~17!, ~18!, and~33! the complete contribution from the counterterm at first order ind is

DV52dA

p2T4

45 H 45

4e
m̂D

4 1
as

p
F55

8 S cA2
4

11
sFD S 1

e
12 log

m̂

2
12

z8~21!

z~21!
12D m̂D

2

2
165

4 S cA2
4

11
sFD S 1

e
12 log

m̂

2
22 logm̂D12D m̂D

3 1
45

2
sFS 1

e
1212 log

m̂

2
22 log 212

z8~21!

z~21!
D m̂q

2G J . ~64!

Adding the contributions from the two-loop diagrams in Eq.~60!, the HTL gluon and quark counterterms in Eqs.~61! and~62!,
the contribution from vacuum and mass renormalizations in Eq.~64!, and the leading order thermodynamic potential in E
~59! we obtain the complete expression for the QCD thermodynamic potential at next-to-leading order~NLO! in HTLpt:

VNLO52dA

p2T4

45 H 11
7

4

dF

dA
215m̂D

3 2
45

4
S log

m̂

2
ˆ2

7

2
1g1

p2

3
D m̂D

4 160
dF

dA
~p226!m̂q

41
as

p
F2

5

4 S cA1
5

2
sFD

115~cA1sF!m̂D2
55

4 H cAS log
m̂

2
2

36

11
logm̂D22.001D 2

4

11
sFS log

m̂

2
22.337D J m̂D

2 245sFS log
m̂

2
12.192D m̂q

2

1
165

2 H cAS log
m̂

2
1

5

22
1g D 2

4

11
sFS log

m̂

2
2

1

2
1g12 log 2D J m̂D

3 1180sFm̂Dm̂q
2G J . ~65!
o
th
C. Gap equation

The quark and gluon mass parameters,mq and mD , are
determined variationally by requiring that the derivative
VNLO with respect to each parameter taken holding the o
constant vanish:
04500
f
er

]

]mq
VNLO~T,as ,mD ,mq!50, ~66!

]

]mD
VNLO~T,as ,mD ,mq!50. ~67!
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The first equation above results in the following equation
mq :

8
dF

dA
~p226!m̂q

25
assF

p
F3S log

m̂

2
12.192D 212m̂DG .

~68!

In the limit of smallas the above gap equation does not go
the perturbative limit for the quark mass which ism̂q,pert

2

5cFas/8p. The fact thatmq does not go to the perturbativ
value in the smallas limit is due to the fact that the pertur
bative limit of the quark gap equation results from term
which are O(as

2) and these terms are not included co
pletely at NLO in HTLpt. One might hope that going to th
next order in HTLpt would cure this problem; however, th
will in fact not happen since the fermion sector is infrar
safe and therefore only even powers ofm̂q will appear at
each order. At NNLO all terms contributing atO(as

2) at

NLO will be replaced by explicit powers ofas and all m̂q

dependence will be pushed up toO(as
3). This behavior will

persist at all orders in HTLpt so that at any order the we
coupling limit of the gap equation quark mass will be sc
dependent. In order to circumvent this problem we can c
sider other possible prescriptions for choosingm̂q which in-
clude requiring thatm̂q be equal to its perturbative value fo
all as or requiring thatm̂q be proportional tom̂D with the
proportionality constant fixed in the weak-coupling limit.

Performing the derivative with respect tomD while hold-
ing mq fixed results in the following gap equation formD :

45m̂D
2 F11S log

m̂

2
2

7

2
1g1

p2

3 D m̂DG
5

a

pH 15~cA1sF!2
55

2
FcAS log

m̂

2
2

36

11
logm̂D

23.637D 2
4

11
sFS log

m̂

2
22.337D Gm̂D

1
495

2
FcAS log

m̂

2
1

5

22
1g D

2
4

11
sFS log

m̂

2
2

1

2
1g12 log 2D Gm̂D

2 1180sFm̂q
2J .

~69!

The last term in Eq.~69! proportional tom̂q
2 can be written in

terms ofm̂D using Eq.~68!. In Fig. 3 we plot the solutions to
the gap equations formD andmq for Nc53 andNf52. The
solution formD goes to the perturbative value in the limit o
small as , decreases below the perturbative value asas in-
creases, and becomes larger than the perturbative valu
as;0.11. The solution formq does not go to the perturbativ
value in the limit of smallas and is instead scale depende
even at lowest order as discussed above. Asas increases the
04500
r

-

-

-

at

t

value ofmq remains very flat regardless of the scale, cha
ing significantly only nearas;0.10.

VIII. FREE ENERGY

The free energy is obtained by evaluating the leading
next-to-leading order thermodynamic potentials, Eqs.~59!
and ~65!, at the solution to the gap equations~68! and ~69!.
In Fig. 4 we plot the leading and next-to-leading ord
HTLpt predictions for the free energy of QCD withNc53
andNf52. We have studied the alternative prescriptions
the quark mass discussed in the previous section and
that the NLO free energy obtained using these prescripti
is numerically indistinguishable from that obtained using t
quark gap equations. As can be seen from this figure
corrections in going from LO to NLO are small over th
entire temperature range, especially when compared to
vergence of the perturbative result. Additionally, the sc

FIG. 3. Numerical solution of gap equations for~a! mD , Eq.
~69!, and~b! mq , Eq.~68!, as a function ofas(2pT) for Nc53 and
Nf53. The shaded band corresponds to varying the renorma
tion scalem by a factor of 2 aroundm52pT.
1-11
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variation of the NLO HTLpt result for the free energy
much smaller than the LO showing that the partial resumm
tion of the scale dependent logarithms reduces the s
variation of the final results significantly.

However, as was the case in pure-glue QCD@32#, the
results seem to lie significantly above the lattice data wh
are available below 5LMS. There are several reasons f
why HTLpt might fail to describe the lattice data in th
temperature range. One is that the hard modes are no
summed properly within HTLpt and that a description usi
a F-derivable approach which explicitly separates the h
and soft modes as done in Ref.@21# is better. A second is tha
HTLpt discards some important physics like topologic
modes or theZN symmetry of QCD near the phase transitio

A third possibility is that the expansion inmD /T and
mq /T breaks down at these temperatures. Numerica
mD /T;1.2 andmq /T;0.5 at 5LMS and mD /T;1.6 and
mq /T;0.6 at 2LMS, which casts doubt on the applicabilit
of the expansion in this temperature range. However, in
case of pure glue we have been able to compare the
HTLpt result expanded toO(m̂D

6 ) with the nontruncated LO

expression which is accurate to all orders inm̂D and find that
the expansions converge very rapidly. Numerically we fi
that atmD /T55 truncations of the LO order result accura
to m̂D

4 and m̂D
6 reproduce the exact result to 5% and 0.2

respectively. There have also been studies of the converg
of the mass expansions of the three-loop free energy f
massless scalar field theory using screened perturba
theory @29# and theF-derivable approach@16# which dem-
onstrated that mass expansions also converge very rapid
NLO and NNLO. This gives us some confidence that
truncated NLO solutions are numerically reliable.

We have also shown in Fig. 5 the NLO HTLpt results f
the pressure forNf5$0,2,4% as a function ofT/LMS. From

FIG. 4. LO and NLO HTLpt predictions for the free energy
QCD with Nc53 andNf52 together with the perturbative predic
tion accurate tog5. The shaded bands correspond to varying
renormalization scalem by a factor of 2 aroundm52pT. Also
shown is a lattice estimate by Karsch et al.@7# for the free energy.
The band indicates the estimated systematic error of their re
which is reported as (1565)%.
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this figure we see that within HTLpt the addition of fermion
increases the pressure at fixedT/LMS. Note thatLMS de-
pends onNf so that when plotted in terms of an absolu
scale the various curves shown in this figure will be sligh
shifted with respect to one another.

IX. LARGE Nf

In the limit that Nf is taken large while holdingg2Nf

fixed it is possible to solve for theO(Nf
0) contribution to the

free energy exactly@33,34#. In Fig. 6 we plot the NLO
HTLpt prediction for theO(Nf

0) contribution to the free en-
ergy along with the numerical result of Ref.@34# and the
perturbative prediction which is accurate toO(as

5/2). In Fig.
7 we plot the NLO HTLpt prediction formD in the largeNf
limit and the exact numerical result@35#. The HTLpt predic-
tions for both the free energy and the Debye mass seem
diverge from the exact result aroundgeff;2 regardless of the
scale which is chosen; however, for both quantities, choos
the scale to bem5mDR5pe2gT seems to provide a reason
able reproduction of the exact results. This result is com
rable to the performance of theF-derivable approach in the
largeNf limit @36#.

X. CONCLUSIONS

In this paper we have extended our previous HTLpt c
culation of the thermodynamic functions in pure-glue QC
to include the contribution ofNf massless quarks. We hav
presented results for the leading- and next-to-leading-o
HTLpt predictions for the QCD free energy for arbitraryNf .
Using the NLO HTLpt expression for the thermodynam
potential we were able to find variational solutions for bo
the quark and gluon mass parameters, allowing a fi
principles prediction of the QCD free energy. As in the ca
of pure glue we find that the NLO HTLpt prediction lie
significantly above the available lattice data below 5LMS;
however, the problem of oscillation of successive appro

e

ult

FIG. 5. NLO HTLpt prediction for the free energy of QCD wit
Nc53 andNf5$0,2,4%. The shaded bands correspond to varyi
the renormalization scalem by a factor of 2 aroundm52pT.
1-12
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mations and large scale dependence of the perturbative
sults is eliminated by using this reorganization.

The failure of HTLpt to describe the lattice data in th
region could be attributed to the failure of the expans
performed inm̂D and m̂q ; however, a study of the conve
gence of the truncated LO expressions to a numerical ev
ation of the exact LO expression shows that these expans
converge very rapidly. Therefore, we are steered towards
conclusion that a systematic description of QCD thermo
namics using HTLpt is not appropriate below 5LMS. The
F-derivable approach seems to agree better with the la
data in this range, so perhaps HTLpt is not resumming
hard modes properly and an explicit separation of hard
soft scales is required. However, we should point out t

FIG. 6. NLO HTLpt prediction for theO(Nf
0) contribution to

the free energy, the numerical result of Ref.@34#, and the perturba-
tive prediction accurate tog5 as a function of geff(mDR)
5Asfg(mDR)52pAsfas(mDR) wheremDR5pe2gT. Dots indicate
the point at which there is no longer a real-valued solution to
gap equation formD . In ~a! the renormalization scalem is varied by
a factor of e aroundmDR . In ~b! the renormalization scalem is
varied by a factor of 2 around 2pT. In both ~a! and~b! the pertur-
bativeg5 result is evaluated at the central scale.
04500
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some authors believe that a description of QCD thermo
namics near the phase transition in terms of Polyakov lo
is necessary@37#.

We have also compared the NLO HTLpt free energy a
Debye mass with exact results which are available in
large Nf limit. This comparison shows that, in the largeNf
limit, NLO HTLpt agrees with the exact result only out t
geff;2 and has large scale dependence after this point.
large scale dependence is not surprising given the fact th
the largeNf limit the running of the coupling constant i
driven by the presence of the Landau singularity and e
the exact results are sensitive to this beyondgeff;5. The
poor performance of NLO HTLpt, however, is comparable
recent largeNf predictions within theF-derivable approach
The failure of both approaches to agree better with the ex
result for large values ofgeff is an indication that a descrip

e

FIG. 7. NLO HTLpt prediction formD in the largeNf limit and
the exact numerical result@35# as a function of geff(mDR)
5Asfg(mDR)52pAsfas(mDR) where mDR5pe2gT. In ~a! the
renormalization scalem is varied by a factor ofe aroundmDR . In
~b! the renormalization scalem is varied by a factor of 2 around
2pT.
1-13
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tion of strongly coupled QCD thermodynamics solely
terms of HTL quasiparticles is perhaps inappropriate. Ho
ever, it is possible that the physics of large-Nf QCD is so
different from that of QCD with a small number of flavo
that it cannot serve as a definitive testing ground for
applicability of the quasiparticle approach to the physi
case@38#.
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APPENDIX A: HTL FEYNMAN RULES

In this appendix, we present Feynman rules for HTL p
turbation theory in QCD. We give explicit expressions f
the propagators and for the quark-gluon 3 and 4 vertices.
Feynman rules are given in Minkowski space to facilita
applications to real-time processes. A Minkowski moment
is denotedp5(p0 ,p), and the inner product isp•q5p0q0
2p•q. The vector that specifies the thermal rest frame in
5(1,0).

1. Gluon self-energy

The HTL gluon self-energy tensor for a gluon of mome
tum p is

Pmn~p!5mD
2 @T mn~p,2p!2nmnn#. ~A1!

The tensorT mn(p,q), which is defined only for momenta
that satisfyp1q50, is

T mn~p,2p!5 K ymyn
p•n

p•yL
ŷ

. ~A2!

The angular brackets indicate averaging over the spatia
rections of the light-like vectory5(1,ŷ). The tensorT mn is
symmetric inm andn and satisfies the ‘‘Ward identity’’

pmT mn~p,2p!5p•nnn. ~A3!

The self-energy tensorPmn is therefore also symmetric inm
andn and satisfies

pmPmn~p!50, ~A4!

gmnPmn~p!52mD
2 . ~A5!

The gluon self-energy tensor can be expressed in term
two scalar functions, the transverse and longitudinal s
energiesPT andPL , defined by

PT~p!5
1

d21
~d i j 2 p̂i p̂ j !P i j ~p!, ~A6!
04500
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f-

PL~p!52P00~p!, ~A7!

wherep̂ is the unit vector in the direction ofp. In terms of
these functions, the self-energy tensor is

Pmn~p!52PT~p!Tp
mn2

1

np
2 PL~p!Lp

mn , ~A8!

where the tensorsTp andLp are

Tp
mn5gmn2

pmpn

p2
2

np
mnp

n

np
2

, ~A9!

Lp
mn5

np
mnp

n

np
2

. ~A10!

The four-vectornp
m is

np
m5nm2

n•p

p2 pm ~A11!

and satisfiesp•np50 and np
2512(n•p)2/p2. Equation

~A5! reduces to the identity

~d21!PT~p!1
1

np
2 PL~p!5mD

2 . ~A12!

We can express both self-energy functions in terms of
function T 00 defined by Eq.~A2!:

PT~p!5
mD

2

~d21!np
2 @T 00~p,2p!211np

2#, ~A13!

PL~p!5mD
2 @12T 00~p,2p!#. ~A14!

In the tensorT mn(p,2p) defined in Eq.~A2!, the angular
brackets indicate the angular average over the unit vectoŷ.
In almost all previous work, the angular average in Eq.~A2!
has been taken ind53 dimensions. For consistency o
higher order radiative corrections, it is essential to take
angular average ind5322e dimensions and analytically
continue tod53 only after all poles ine have been canceled
Expressing the angular average as an integral over the co
of an angle, the expression for the 00 component of the
sor is

T 00~p,2p!5
w~e!

2 E
21

1

dc~12c2!2e
p0

p02upuc
,

~A15!

where the weight functionw(e) is

w~e!5
G~222e!

G2~12e!
22e5

GS 3

2
2e D

GS 3

2DG~12e!

. ~A16!
1-14
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The integral in Eq.~A15! must be defined so that it is ana
lytic at p05`. It then has a branch cut running fromp0
52upu to p051upu. If we take the limite→0, it reduces to

T 00~p,2p!5
p0

2upu
log

p01upu
p02upu

, ~A17!

which is the expression that appears in the usual HTL s
energy functions.

The Feynman rule for the gluon propagator is

idabDmn~p!, ~A18!

where the gluon propagator tensorDmn depends on the
choice of gauge fixing. We consider two possibilities th
introduce an arbitrary gauge parameterj: general covariant
gauge and general Coulomb gauge. In both cases, the inv
propagator reduces in the limitj→` to

D`
21~p!mn52p2gmn1pmpn2Pmn~p!. ~A19!

This can also be written

D`
21~p!mn52

1

DT~p!
Tp

mn1
1

np
2DL~p!

Lp
mn , ~A20!

whereDT andDL are the transverse and longitudinal prop
gators:

DT~p!5
1

p22PT~p!
, ~A21!

DL~p!5
1

2np
2p21PL~p!

. ~A22!

The inverse propagator for generalj is

D21~p!mn5D`
21~p!mn2

1

j
pmpn covariant ~A23!

5D`
21~p!mn2

1

j
~pm2p•nnm!

3~pn2p•nnn! Coulomb. ~A24!

The propagators obtained by inverting the tensors in E
~A24! and ~A23! are

Dmn~p!52DT~p!Tp
mn1DL~p!np

mnp
n2j

pmpn

~p2!2
covariant

~A25!

52DT~p!Tp
mn1DL~p!nmnn2j

pmpn

~np
2p2!2

Coulomb. ~A26!

It is convenient to define the following combination
propagators:
04500
f-

t

rse

-

s.

DX~p!5DL~p!1
1

np
2 DT~p!. ~A27!

Using Eqs.~A12!, ~A21!, and~A22!, it can be expressed in
the alternative form

DX~p!5@mD
2 2dPT~p!#DL~p!DT~p!, ~A28!

which shows that it vanishes in the limitmD→0. In the
covariant gauge, the propagator tensor can be written

Dmn~p!5@2DT~p!gmn1DX~p!nmnn#

2
n•p

p2 DX~p!~pmnn1nmpn!

1FDT~p!1
~n•p!2

p2 DX~p!2
j

p2Gpmpn

p2 .

~A29!

This decomposition of the propagator into three terms
proved to be particularly convenient for explicit calculation
For example, the first term satisfies the identity

@2DT~p!gmn1DX~p!nmnn#D`
21~p!nl

5gm
l2

pmpl

p2 1
n•p

np
2p2

DX~p!

DL~p!
pmnp

l . ~A30!

2. Quark self-energy

The HTL self-energy of a quark with momentump is
given by

S~P!5mq
2T”~p!, ~A31!

where

T m~p!5 K ym

p•yL
ŷ

. ~A32!

Expressing the angular average as an integral over the co
of an angle, the expression is

T m~p!5
w~e!

2 E
21

1

dc~12c2!2e
ym

p02upuc
. ~A33!

The integral in Eq.~A33! must be defined so that it is ana
lytic at p05`. It then has a branch cut running from
p052upu to p051upu. In three dimensions, this reduces

S~P!5
mq

2

2upu
g0log

p01upu
p02upz

1
mq

2

upu
g•p̂S 12

p0

2upu
log

p01upu
p02upu D . ~A34!
1-15
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3. Quark propagator

The Feynman rule for the quark propagator is

idabS~p!. ~A35!

The quark propagator can be written as

S~p!5
1

p”2S~p!
, ~A36!

where the quark self-energy is given by Eq.~A31!. The in-
verse quark propagator can be written as

S21~p!5p”2S~p!. ~A37!

This can be written as

S21~p!5A” ~p!, ~A38!

where we have organizedA0(p) andAS(p) into

Am~p!5„A0~p!,AS~p!p̂…. ~A39!

The functionsA0(p) andAS(p) are defined

A0~p!5p02
mq

2

p0
Tp , ~A40!

AS~p!5upu1
mq

2

upu @12Tp#. ~A41!

4. Quark-gluon vertex

The quark-gluon vertex with outgoing gluon momentu
p, incoming fermion momentumq, and outgoing quark mo
mentumr, Lorentz indexm and color indexa is

Ga
m~p,q,r !5gta@gm2mq

2T̃m~p,q,r !#. ~A42!

The tensor in the HTL correction term is only defined f
p2q1r 50:

T̃m~p,q,r !5 K ymS y”

q•yr•yD L
ŷ

. ~A43!

This tensor is even under the permutation ofq and r. It
satisfies the ‘‘Ward identity’’

pmT̃ m~p,q,r !5T̃ m~q!2T̃ m~r !. ~A44!

The quark-gluon vertex therefore satisfies the Ward iden

pmGm~p,q,r !5S21~q!2S21~r !. ~A45!

5. Quark-gluon four-vertex

We define the quark-gluon four-point vertex with outg
ing gluon momentap andq, incoming fermion momentumr,
and outgoing fermion momentums. Generally this vertex has
both adjoint and fundamental indices; however, for this c
04500
y

l-

culation we will only need the quark-gluon four-point verte
traced over the adjoint color indices. In this case,

dabGabi j
mn ~p,q,r ,s!52g2mq

2cFd i j T̃ mn~p,q,r ,s!

[g2cFd i j G
mn, ~A46!

wherecF5(Nc
221)/(2Nc). There is no tree-level term. Th

tensor in the HTL correction term is only defined forp1q
2r 1s50:

T̃mn~p,q,r ,s!5 K ymynS 1

r •y
1

1

s•yD
3

y”

@~r 2p!•y#@~s1p!•y#L . ~A47!

This tensor is symmetric inm andn and is traceless. It sat
isfies the Ward identity

pmGmn~p,q,r ,s!5Gn~q,r 2p,s!2Gn~q,r ,s1p!.
~A48!

6. HTL quark counterterm

The Feynman rule for the insertion of an HTL qua
counterterm into a quark propagator is

idabS~p!, ~A49!

where S(p) is the HTL quark self-energy given in Eq
~A39!.

7. Imaginary-time formalism

In the imaginary-time formalism, Minkoswski energie
have discrete imaginary valuesp05 i (2pnT) and integrals
over Minkowski space are replaced by sum integrals o
Euclidean vectors (2pnT,p). We will use the notationP
5(P0 ,p) for Euclidean momenta. The magnitude of the sp
tial momentum will be denotedp5upu, and should not be
confused with a Minkowski vector. The inner product of tw
Euclidean vectors isP•Q5P0Q01p•q. The vector that
specifies the thermal rest frame remainsn5(1,0).

The Feynman rules for Minkowski space given above c
be easily adapted to Euclidean space. The Euclidean te
in a given Feynman rule is obtained from the correspond
Minkowski tensor with raised indices by replacing ea
Minkowski energyp0 by iP0, whereP0 is the corresponding
Euclidean energy, and multiplying by2 i for every 0 index.
This prescription transformsp5(p0 ,p) into P5(P0 ,p),
gmn into 2dmn, and p•q into 2P•Q. The effect on the
HTL tensors defined in Eqs.~A2!, ~A43!, and ~A47! is
equivalent to substitutingp•n→2P•N whereN5(2 i ,0),
p•y→2P•Y whereY5(2 i ,ŷ), andym→Ym. For example,
the Euclidean tensor corresponding to Eq.~A2! is

T mn~P,2P!5 K YmYn
P•N

P•YL . ~A50!
1-16
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The average is taken over the directions of the unit vectoŷ.
Alternatively, one can calculate a diagram by using

Feynman rules for Minkowski momenta, reducing the e
pressions for diagrams to scalars, and then make the ap
priate substitutions, such asp2→2P2, p•q→2P•Q, and
n•p→ in•P. For example, the propagator functions~A21!
and ~A22! become

DT~P!5
21

P21PT~P!
, ~A51!

DL~P!5
1

p21PL~P!
. ~A52!

The expressions for the HTL self-energy functionsPT(P)
and PL(P) are given by Eqs.~A13! and ~A14! with np

2 re-
placed bynP

2 5p2/P2 andT 00(p,2p) replaced by

TP5
w~e!

2 E
21

1

dc~12c2!2e
iP0

iP02pc
. ~A53!

Note that this function differs by a sign from the 00 comp
nent of the Euclidean tensor corresponding to Eq.~A2!:

T 00~P,2P!52T 00~p,2p!up0→ iP0
52TP . ~A54!

A more convenient form for calculating sum integrals th
involve the functionTP is

TP5K P0
2

P0
21p2c2L

c

, ~A55!

where the angular brackets represent an average overc de-
fined by

^ f ~c!&c[w~e!E
0

1

dc~12c2!2e f ~c! ~A56!

andw(e) is given in Eq.~A16!.

APPENDIX B: SUM INTEGRALS

In the imaginary-time formalism for thermal field theor
the 4-momentumP5(P0 ,p) is Euclidean with P25P0

2

1p2. The Euclidean energyp0 has discrete values:P0
52npT for bosons andP05(2n11)pT for fermions,
wheren is an integer. Loop diagrams involve sums overP0
and integrals overp. With dimensional regularization, th
integral is generalized tod5322e spatial dimensions. We
define the dimensionally regularized sum integral by

XP
[S egm2

4p D e

T (
P052npT

E d322ep

~2p!322e
, ~B1!

X $P%
[S egm2

4p D e

T (
P05(2n11)pT

E d322ep

~2p!322e
, ~B2!
04500
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where 322e is the dimension of space andm is an arbitrary
momentum scale. The factor (eg/4p)e is introduced so that,
after minimal subtraction of the poles ine due to ultraviolet
divergences,m coincides with the renormalization scale
the MS renormalization scheme.

1. One-loop sum integrals

The simple one-loop sum integrals required in our cal
lations can be derived from the formulas

XP

p2m

~P2!n
5S m

4pTD 2e 2G~ 3
2 1m2e!G~n2 3

2 2m1e!

G~n!G~222e!

3G~12e!z~2n22m2312e!

3eegT412m22n~2p!112m22n, ~B3!

X $P%

p2m

~P2!n
5~22n22m2d21!XP

p2m

~P2!n
. ~B4!

The specific bosonic one-loop sum integrals needed are

XP

1

P25
T2

12S m

4pTD 2eF11S 212
z8~21!

z~21! D e

1S 41
p2

4
14

z8~21!

z~21!
12

z9~21!

z~21! D e2G ,
~B5!

XP

p2

~P2!25
1

8
T2, ~B6!

XP

1

~P2!25
1

~4p!2S m

4pTD 2eF1

e
12g1S p2

4
24g1D eG ,

~B7!

XP

1

p2P25
1

~4p!2 S m

4pTD 2e

2F1

e
12g12

1S 414g1
p2

4
24g1D eG . ~B8!

The specific fermionic one-loop sum integrals needed ar

X E
$P%

log P25
7p2

360
T4, ~B9!
1-17
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X $P%

1

P252
T2

24S m

4pTD 2eF11S 222 log 2

12
z8~21!

z~21! D e

1S 41
p2

4
24 log 222 log22

14~12 log 2!
z8~21!

z~21!
12

z9~21!

z~21! D e2G ,
~B10!

X $P%

1

~P2!25
1

~4p!2S m

4pTD 2eF1

e
12g14 log 2G ,

~B11!

X $P%

p2

~P2!252
T2

16S m

4pTD 2e

3F11S 4

3
22 log 212

z8~21!

z~21! D eG ,
~B12!

X $P%

p2

~P2!35
1

~4p!2S m

4pTD 2e 3

4F1

e
12g2

2

3

14 log 2G , ~B13!

X $P%

p4

~P2!352
5T2

64 S m

4pTD 2e

3F11S 14

15
22 log 212

z8~21!

z~21! D eG ,
~B14!

X $P%

p4

~P2!45
1

~4p!2S m

4pTD 2e 5

8F1

e
12g2

16

15

14 log 2G , ~B15!

X $P%

1

p2P25
1

~4p!2S m

4pTD 2e

2F1

e
1212g14 log 2

1S 418 log 214 log22

14g~112 log 2!1
p2

4
24g1D eG . ~B16!

The errors are all of one order higher ine than the smalles
term shown. The numberg1 is the first Stieltjes gamma con
stant defined by the equation
04500
z~11z!5
1

z
1g2g1z1O~z2!. ~B17!

2. One-loop HTL sum integrals

We also need some more difficult one-loop sum integr
that involve the HTL function defined in Eq.~A33!.

The specific bosonic sum integrals needed are

XP

1

p4TP5
1

~4p!2S m

4pTD 2e

~21!F1

e
12g12 log 2G ,

~B18!

XP

1

p2P2TP5
1

~4p!2S m

4pTD 2e

3F2 log 2S 1

e
12g D12 log221

p2

3 G ,
~B19!

XP

1

~P2!2TP5
1

~4p!2S m

4pTD 2e 1

2F1

e
12g11G .

~B20!

The specific fermionic sum integrals needed are

X $P%

1

~P2!2TP5
1

~4p!2S m

4pTD 2e 1

2F1

e
12g11

14 log 2G , ~B21!

X $P%

1

p2P2TP5
2

~4p!2S m

4pTD 2eF log 2S 1

e
12g D

15 log221
p2

6 G , ~B22!

X $P%

1

P2P0
2TP5

1

~4p!2S m

4pTD 2eF 1

e212~g

12 log 2!
1

e
1

p2

4
14 log22

18g log 224g1G , ~B23!

X $P%

1

p2P0
2 ~TP!25

4

~4p!2 S m

4pTD 2eF log 2S 1

e
12g D

15 log22G , ~B24!

X $P%

1

P2 K 1

~Q•Y!2L
c

5
1

~4p!2 S m

4pTD 2e

~21!F1

e
2112g

14 log 2G . ~B25!
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The errors are all of ordere
It is straightforward to calculate the sum integrals~B21!–

~B24! using the representation~A55! of the functionTP . For
example, the sum integral~B18! can be written

XP

1

p4TP5XP

1

p4K P0
2

P0
21p2c2L

c

, ~B26!

where the angular brackets denote an average overc as de-
fined in Eq.~A56!:

XP

1

p4TP5XP

1

p4F12K p2c2

P0
21p2c2L

c
G . ~B27!

The first term in the square brackets vanishes with dim
sional regularization, while after rescaling the momentum
p→p/c, the second term reads

XP

1

p4TP52^c112e&cXP

1

p2P2 . ~B28!

Evaluating the average overc, using the expression~B8! for
the sum integral, and expanding in powers ofe, we obtain
the result~B18!. Following the same strategy, all the su
integrals~B21!–~B24! can be reduced to linear combinatio
of simple sum integrals with coefficients that are avera
over c. The only difficult integral is the double average ov
c that arises from Eq.~B24!:

K c1
112e2c2

112e

c1
22c2

2 L
c1 ,c2

52 log 212~ log2222 log 2!e.

~B29!

3. Simple two-loop sum integrals

The simple two-loop sum integrals that are needed ar

X $PQ%

1

P2Q2R250, ~B30!

X $PQ%

1

P2Q2r 25
T2

~4p!2S m

4pTD 4eS 2
1

6D
3F1

e
1422 log 214

z8~21!

z~21! G ,
~B31!

X $PQ%

q2

P2Q2r 45
T2

~4p!2S m

4pTD 4eS 2
1

12D F1

e
1

11

3

12g22 log 212
z8~21!

z~21! G , ~B32!

X $PQ%

q2

P2Q2r 2R25
T2

~4p!2S m

4pTD 4eS 2
1

72D F1

e
27.002G ,

~B33!
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X $PQ%

P•Q

P2Q2r 45
T2

~4p!2S m

4pTD 4eS 2
1

36D
3F126g16

z8~21!

z~21! G , ~B34!

X $PQ%

p2

q2P2Q2R25
T2

~4p!2S m

4pTD 4eS 5

72D F1

e
19.5667G ,

~B35!

X $PQ%

r 2

q2P2Q2R25
T2

~4p!2S m

4pTD 4eS 2
1

18D
3F1

e
18.1420G , ~B36!

whereR52(P1Q) and r 5up1qu. The corrections are al
of ordere. To motivate the integration formula we will us
to evaluate the two-loop sum integrals, we first present
analogous integration formula for one-loop sum integrals
a one-loop sum integral, the sum overP0 can be replaced by
a contour integral inp052 iP0:

XP
F~P!5 lim

h→01

E dp0

2p i Ep
@F~2 ip0 ,p!

2F~0,p!#ehp0n~p0!, ~B37!

wheren(p0)51/(ebp021) is the Bose-Einstein thermal dis
tribution and the contour runs from2` to 1` above the
real axis and from1` to 2` below the real axis. This
formula can be expressed in a more convenient form by
lapsing the contour onto the real axis and separating
those terms with the exponential convergence factorn(up0u).
The remaining terms run along contours from2`6 i« to 0
and have the convergence factorehp0. This allows the con-
tours to be deformed so that they run from 0 to6 i` along
the imaginaryp0 axis, which corresponds to real values
P052 ip0. Assuming thatF(2 ip0 ,p) is a real function
of p0, i.e. that it satisfiesF(2 ip0* ,p)5F(2 ip0 ,p)* , the
resulting formula for the sum integral is

XP
F~P!5E

P
F~P!1E

p
e~p0!n~ up0u!2 ImF~2 ip01«,p!,

~B38!

wheree(p0) is the sign ofp0. The first integral on the right
side is over the (d11)-dimensional Euclidean vectorP
5(P0 ,p) and the second is over the (d11)-dimensional
Minkowskian vectorp5(p0 ,p).

The two-loop sum integrals can be evaluated by usin
generalization of the one-loop formula~B38!:
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X $PQ%
F~P!G~Q!H~R!5E

PQ
F~P!G~Q!H~R!2E

p
e~p0!nF~ up0u!2 ImF~2 ip01«,p!ReE

Q
G~Q!H~R!U

P052 ip01«

2E
p
e~p0!nF~ up0u)2 ImG~2 ip01«,p!ReE

Q
H~Q!F~R!U

P052 ip01«

1E
p
e~p0!nB~ up0u!2 ImH~2 ip01«,p!ReE

Q
F~Q!G~R!U

P052 ip01«

1E
p
e~p0!nF~ up0u)2 ImF~2 ip01«,p!E

q
e~q0!nF~ uq0u)2 ImG~2 iq01«,q!ReH~R!uR05 i (p01q0)1«

2E
p
e~p0!nF~ up0u!2 ImG~2 ip01«,p!E

q
e~q0!nB~ uq0u!2 ImH~2 iq01«,q!ReF~R!U

R05 i (p01q0)1«

2E
p
e~p0!nB~ up0u!2 ImH~2 ip01«,p!E

q
e~q0!nF~ uq0u!2 ImF~2 iq01«,q!ReG~R!U

R05 i (p01q0)1«

. ~B39!
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This formula can be derived in 3 steps. First, express the
overP0 as the sum of two contour integrals overp0, one that
encloses the real axis Imp050 and another that encloses th
line Im p052Im q0. Second, express the sum overq0 as a
contour integral that encloses the real-q0 axis. The resulting
terms can be combined into the expression~B39!. The inte-
grals of the imaginary parts that enter into our calculat
can be reduced to

E
p
e~p0!n(up0u)2 Im

1

P2U
P052 ip01«

f ~2 ip01«,p!

5E
p

n~p!

p

1

2 (
6

f ~6 ip1«,p!, ~B40!

E
p
e~p0!n~ up0u!2 ImTPU

P052 ip01«

f ~2 ip01«,p!

52E
p
pn~p!

1

2 (
6

^c2312e f ~6 ip1«,p/c!&c .

~B41!

The latter equation is obtained by inserting the express
~A55! for TP , using Eq.~B40!, and then making the chang
of variablep→p/c to put the thermal integral into a standa
form.

As a simple illustration, we apply the formula~B39! to
the sum integral~B31!. The nonvanishing terms are
04500
m

n

n

X $PQ%

1

P2Q2r 2 522E
p
nF~ up0u!2pd~p0

22p2!E
Q

1

Q2r 2

1E
p
nF~ up0u!2pd~p0

22p2!

3E
q
nF~ uq0u!2pd~q0

22q2!
1

r 2 . ~B42!

The delta functions can be used to evaluate the integ
over p0 andq0. The integral overQ is given in Eq.~C111!
up to corrections of ordere. This reduces the sum integral t

X $PQ%

1

P2Q2r 2 52
4

~4p!2F1

e
14

22 log 2Gm2eE
p

nF~p!

p
p22e

1E
pq

nF~p!nF~q!

pq

1

r 2 . ~B43!

The momentum integrals are evaluated in Eqs.~C3! and
~C4!. Keeping all terms that contribute through ordere0, we
get the result~B31!. The sum integral~B32! can be evaluated
in the same way:

X $PQ%

q2

P2Q2r 4 52
2

~4p!2F1

e
22 log 2Gm2eE

p

nF~p!

p
p22e

1E
pq

nF~p!nF~q!

pq

q2

r 4 . ~B44!
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The sum integral~B34! can be reduced to a linear combin
tion of Eqs.~B31! and~B32! by expressing the numerator i
the form P•Q5P0Q01(r 22p22q2)/2 and noting that the
P0Q0 term vanishes upon summing overP0 or Q0.

The sum integral~B33! is a little more difficult. After
applying the formula~B39! and using the delta functions t
integrate overp0 , q0, andr 0, it can be reduced to

X $PQ%

q2

P2Q2r 2R25E
p

nB~p!

p E
Q

q2

p2Q2R2 UP52 ip

2E
p

nF~p!

p E
Q

1

Q2R2S q2

r 2 1
p2

q2DU
P52 ip

1E
pq

nF~p!nF~q!

pq

p2

r 2

r 22p22q2

D~p,q,r !

2E
pq

nF~p!nB~q!

pq S p2

q2

1
r 2

q2D r 22p22q2

D~p,q,r !
, ~B45!

whereD(p,q,r ) is the triangle function that is negative whe
p, q, andr are the lengths of 3 sides of a triangle:

D~p,q,r !5p41q41r 422~p2q21q2r 21r 2p2!.
~B46!

After using Eqs.~C117!–~C119! to integrate overQ, the first
term on the right side of Eq.~B45! is evaluated using Eq
~C3!. The 2-loop thermal integrals on the right side of E
~B45! are given in Eqs.~C8!–~C11!. Adding together all the
terms, we get the final result~B33!. The sum integrals~B35!
and ~B36! are evaluated in a similar manner.

4. Two-loop HTL sum integrals

We also need some more difficult two-loop sum integr
that involve the functionsTP defined in Eq.~A33!:

X $PQ%

1

P2Q2r 2TR5
T2

~4p!2S m

4pTD 4eS 2
1

48D
3F 1

e2 1S 2112 log 214
z8~21!

z~21! D
3

1

e
1136.362G , ~B47!

X $PQ%

q2

P2Q2r 4TR5
T2

~4p!2S m

4pTD 4eS 2
1

576D F 1

e2 1S 26

3

152 log 214
z8~21!

z~21! D 1

e

1446.438G , ~B48!
04500
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X $PQ%

P•Q

P2Q2r 4TR5
T2

~4p!2 S m

4pTD 4eS 2
1

96D F 1

e2

1S 4 log 214
z8~21!

z~21! D1

e
169.174G ,

~B49!

X $PQ%

r 22p2

P2q2Q0
2R2TQ52

T2

~4p!2 S m

4pTD 4e 1

8 F 1

e2 1S 212g

1
10

3
log 212

z8~21!

z~21! D 1

e

146.8757G . ~B50!

The errors are all of ordere. To calculate the sum integra
~B47!, we begin by using the representation~A55! of the
function TR :

X $PQ%

1

P2Q2r 2TR5X $PQ%

1

P2Q2r 2

2X $PQ%

1

P2Q2 K c2

R0
21r 2c2L

c

.

~B51!

The first sum integral on the right hand side is given by E
~B31!. To evaluate the second sum integral, we apply
sum integral formula~B39!:

X $PQ%

1

P2Q2~R0
21r 2c2!

52E
p

nF~p!

p
2 ReE

Q

1

Q2~R0
21r 2c2!

U
P052 ip1«

1c2312eE
p

nB~p!

p E
Q

1

Q2R2P→~2 ip,p/c!

1E
pq

nF~p!nF~q!

pq
Re

r 2c22p22q2

D~p1 i«,q,rc !

22c2312eE
pq

nF~p!nB~q!

pq
Re

r c
22p22q2

D~p1 i«,q,r c!
,

~B52!

where r c5up1q/cu. In the terms on the right side with
single thermal integral, the appropriate averages overc of the
integrals overQ are given in Eqs.~C115! and ~C123!.

The subsequent integrals overp are special cases of Eqs
~C3! and ~C4!:
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E
p
nB~p!p2122e528e

~1!24eS 1

2D
2e

~1!22eS 3

2D
2e

z~2114e!

z~21!

3~egm2!e~4pT!24e
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12
, ~B53!

E
p
nF~p!p2122e5@1222114e#E

p
nB~p!p2122e.

~B54!

This yields

22E
p

nF~p!

p
ReE

Q

1

Q2 K c2

R0
21r 2c2L

c
U

P052 ip1«

1E
p

nB~p!

p K c2112eE
Q

1

Q2R2 U
P→(2 ip,p/c)

L
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~4p!2 S m

4pTD 4e 1

48F 1

e2 2S 6212 log 2
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z8~21!

z~21! D 1

e
170.122G . ~B55!
04500
For the two terms in Eq.~B51! with a double thermal inte-
gral, the averages weighted byc2 are given in Eqs.~C17!
and ~C21!. Adding them to Eq.~B55!, the final result is

X $PQ%

1

P2Q2 K c2

R0
21r 2c2L

c

5
T2

~4p!2 S m

4pTD 4eS 1

48D F 1

e22S 6

212 log 224
z8~21!

z~21! D1

e

151.9307G . ~B56!

Inserting this into Eq.~B51!, we obtain the final result~B47!.
The sum integral~B48! is evaluated in a similar way to

Eq. ~B47!. Using the representation~A55! for TR , we get

X $PQ%

q2

P2Q2r 4TR5X $PQ%

q2

P2Q2r 4

2X $PQ%

q2

P2Q2r 2 K c2

R0
21r 2c2L

c

.

~B57!

The first sum integral on the right hand side is given by E
~B32!. To evaluate the second sum integral, we apply
sum integral formula~B39!:
X $PQ%

q2

P2Q2r 2~R0
21r 2c2!

52E
p

nF~p!

p
ReE
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pq
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pq
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pq

p21r c
2

q2 Re
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22p22q2

D~p1 i«,q,r c!
.

~B58!

In the terms on the right side with a single thermal integral, the weighted averages overc of the integrals overQ are given in
Eqs.~C121!, ~C126!, and~C127!: After using Eq.~B54! to evaluate the thermal integral, we obtain

2E
p

nF~p!

p
ReE

Q

p21q2

Q2r 2 K c2

R0
21r 2c2L

c
U

P052 ip1«

1E
p
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1

p2 K c112eE
Q
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P→(2 ip,p/c)

L
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5
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~4p!2 S m

4pTD 4eS 1

576D F 1

e22S 34

3
236 log 224

z8~21!

z~21! D1

e
1229.354G . ~B59!

For the two terms in Eq.~B58! with a double thermal integral, the averages weighted byc2 are given in Eqs.~C19!, ~C23!,
and ~C24!. Adding them to Eq.~B59!, the final result is

X $PQ%

q2

P2Q2r 2 K c2

R0
21r 2c2L

c

5
T2

~4p!2S m

4pTD 4eS 1

576D F 1

e2 2S 118

3
252 log 224

z8~21!

z~21! D 1

e
191.002G . ~B60!

To evaluate Eq.~B49!, we use the expression~A55! for TR and the identityP•Q5(R22P22Q2)/2 to write it in the form
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X $PQ%

P•Q

P2Q2r 4TR5X $PQ%

P•Q

P2Q2r 42X $P%

1

P2 XR

1

r 4TR2
1

2
^c2&cX $PQ%
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P2Q2r 2
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2 X $PQ%
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P2Q2K c2~12c2!

R0
21r 2c2 L

c

. ~B61!

The sum integrals in the first 3 terms on the right side of Eq.~B61! are given in Eqs.~B10!, ~B18!, ~B31!, and~B34!. The last
sum integral before the average weighted byc is given in Eq.~B52!. The average weighted byc2 is given in Eq.~B56!. The
average weighted byc4 can be computed in the same way. In the integrand of the single thermal integral, the we
averages overc of the integrals overQ are given in Eqs.~C116! and ~C125!: After using Eq.~B54! to evaluate the therma
integral, we obtain
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For the two terms with a double thermal integral, the averages weighted byc4 are given in Eqs.~C18! and~C22!. Adding them
to Eq. ~B62!, we obtain
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We finally need to evaluate Eq.~B50!. Applying Eq. ~B39! gives
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. ~B64!

In the terms on the right side, with a single thermal factor, the weighted average is given in Eq.~C128!. After using Eq.
~B54! to evaluate the thermal integral, we obtain

F E
p

nB~p!

p
1E

p

nF~p!

p G E
Q
K p22q2

Q2r 2~R0
21r 2c2!L

c

5
T2

~4p!2 S p2

24D . ~B65!

The terms with two thermal factors are given in Eqs.~C20!, ~C25! and~C26!. Adding them to Eq.~B65!, we finally obtain Eq.
~B50!.

APPENDIX C: INTEGRALS

Dimensional regularization can be used to regularize both the ultraviolet divergences and infrared diverge
3-dimensional integrals over momenta. The spatial dimension is generalized tod5322e dimensions. Integrals are evaluate
at a value ofd for which they converge and then analytically continued tod53. We use the integration measure

E
p
[S egm2

4p D eE d322ep

~2p!322e
. ~C1!
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1. Three-dimensional integrals

We require one integral that does not involve the Bose-Einstein distribution function. The momentum scale in this
is set by the massm5mD . The one-loop integral is

E
p

1

p21m2 52
m

4p S m

2mD 2e

@112e#. ~C2!

The error is one order higher ine than the smallest term shown.

2. Thermal integrals

The thermal integrals involve the Fermi-Dirac distributionnF(p)51/(ebp11). The one-loop integrals can all be obtain
from the general formula
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p
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The simple two-loop thermal integrals are
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We also need some more complicated 2-loop thermal integrals that involve the triangle function defined in Eq.~B46!:
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The most difficult thermal integrals to evaluate involve both the triangle function and the HTL average defined in Eq.~A56!.
There are 2 sets of these integrals. The first set is
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The second set of these integrals involve the variabler c5up1q/cu:
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The simplest way to evaluate integrals like Eqs.~C4!–~C7! whose integrands factor into separate functions ofp, q, andr is
to Fourier transform to coordinate space where they reduce to an integral over a single coordinateR:
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E
pq

f ~p!g~q!h~r !5E
R

f̃ ~R!g̃~R!h̃~R!. ~C27!

The Fourier transform is

f̃ ~R!5E
p
eip•Rf ~p!, ~C28!

and the dimensionally regularized coordinate integral is

E
R

5S egm2

4p D 2eE d322eR. ~C29!

The Fourier transforms we need are

E
p
p2aeip•R5

1
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2 1a2e!
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2 !G~2a!
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RD 312a22e

, ~C30!
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G~ 1
2 !

~egm2!eS 2

RD 1/22eE
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`
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If a is an even integer, the Fourier transform~C31! is particularly simple in the limitd→3:

E
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2
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1

x3D , ~C33!

wherex5pRT.
We can use these simple expressions only if the integral over the coordinateR in Eq. ~C27! converges ford53. Otherwise,

we must first make subtractions on the integrand to make the integral convergent.
The integrals~C4!–~C7! can be evaluated directly by applying the Fourier transform formula~C27! in the limit e→0. The

integrals~C8!–~C10! can be evaluated by first averaging over angles. The triangle function can be expressed as

D~p,q,r !524p2q2~12cos2u!, ~C34!

whereu is the angle betweenp andq. For example, the angle average for Eq.~C8! is

K r 4
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p̂•q̂

52
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8 E
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dx~12x2!212e
~p21q212pqx!2

p2q2 . ~C35!

After integrating overx and inserting the result into Eq.~C8!, the integral reduces to
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The integrals overp andq factor into separate integrals that can be evaluated using Eq.~C3!. After averaging over angles, th
integrals~C9! and ~C10! reduce to

E
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The integral~C11! can be evaluated by using the identity

K p21q2

r 2D~p,q,r !L
p̂•q̂

5
1

2e K 1

r 4L
p̂•q̂

1
122e

8e

1

p2q2 . ~C39!

The identity can be proved by expressing the angular averages in terms of integrals over the cosine of the angle betwp and
q as in Eq.~C35!, and then integrating by parts. Inserting the identity~C39! into Eq. ~C11!, the integral reduces to

E
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q
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p E
q

nF~q!

q

1

q2 . ~C40!

The integral in the first term on the right is given in Eq.~C5!, while the second term can be evaluated using Eq.~C3!.
The integral~C17! can be evaluated directly in three dimensions by first averaging overc andx, and then integrating the

resulting functions numerically overp andq.
To evaluate the weighted averages overc of the thermal integrals in Eqs.~C18!–~C20!, we first isolate the divergent parts

which come from the regionp2q→0. We write the product of thermal functions in the form

nF~p!nF~q!5S nF~p!nF~q!2
s2nF

2~s!

pq D 1
s2nF

2~s!

pq
, ~C41!

wheres5(p1q)/2. In the difference term, the HTL average overc and the angular average overx5p̂•q̂ can be calculated in
three dimensions:

ReK c4
r 2c22p22q2
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2~p21q2!

3~p22q2!2 1
1

12pq
log

p1q

up2qu
2

~3p21q2!~p213q2!
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~C43!
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22pq log

up22q2u
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The remaining 2-dimensional integral overp andq can then be evaluated numerically:
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5
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~4p!2 @0.17811#. ~C47!

The integrals involving thenF
2(s) term in Eq.~C41! are divergent, so the HTL average overc and the angular average ove

x5p̂•q̂ must be calculated in 322e dimensions. The first step in the calculation of then2(s) term is to change variables from
p andq to s5(p1q)/2, b54pq/(p1q)2, andx5p̂•q̂:

E
pq

s2nF
2~s!

p2q2 f ~p,q,r !5
64

~4p!4 F ~egm2!e
G~ 3

2 !

G~ 3
2 2e!

G 2

E
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`

dss124enF
2~s!s2E

0

1

dbb22e~12b!21/2

3^ f ~s1 ,s2 ,r !1 f ~s2 ,s1 ,r !&x , ~C48!

wheres65s@16A12b# andr 5s@422b(12x)#1/2. The 2 terms inside the average overx come from the regionsp.q and
p,q, respectively. The integral overs is easily evaluated:
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E
0

`

dss124enF
2~s!5G~224e!@2~1224e!z~124e!1~1222114e!z~224e!#T224e, ~C49!

E
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`

dss124enF~s!nB~s!522214eG~224e!z~224e!T224e. ~C50!

It remains only to evaluate the averages overc andx and the integral overb.
The first step in the calculation of thenF

2(s) term of Eq.~C18! is to decompose the integrand into 2 terms:

r 2c22p22q2

D~p1 i«,q,rc !
52

1

2 (
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1

~p1 i«6q!22r 2c2 . ~C51!

The weighted averages overc gives a hypergeometric function

K c4

~p1 i«6q!22r 2c2L
c

5
3

~322e!~522e!

1

~p1 i«6q!2FS 5
2 ,1

7
2 2e

U r 2

~p1 i«6q!2D . ~C52!

In the 1q case of Eq.~C52!, the i« prescription is unnecessary. The argument of the hypergeometric function can be w
12by, wherey5(12x)/2. After using a transformation formula to change the argument toby, we can evaluate the angula
average overx to obtain hypergeometric functions with argumentb. For example, the average overx of Eq. ~C52! is

K FS 5
2 ,1

7
2 2e

U r 2

~p1q!2D L
x

52
522e

2e
FFS 12e, 5
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222e,11e
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5
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b2eFS 122e, 5

2 2e

223e
Ub D G , ~C53!

where (a)b is Pochhammer’s symbol which is defined in Eq.~C146!. Integrating overb, we obtain hypergeometric function
with argument 1:

s2E
0

1

dbb22e~12b!21/2K c4

~p1q!22r 2c2L
c,x

52
1

4e

~1!e~2!22e
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~ 5
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~1!23e~1!22e~
5
2 !2e

~ 5
2 !23e~2!23e

FS 123e,122e, 5
2 2e

5
2 23e,223e

U1D G . ~C54!

Expanding in powers ofe, we obtain

s2E
0

1

dbb22e~12b!21/2K c4

~p1q!22r 2c2L
c,x

5
p2

72
~1110.8408e!. ~C55!

In the 2q case of Eq.~C52!, the argument of the hypergeometric functions can be written (12by)/(12b6 i«), where
y5(12x)/2 and the prescriptions1 i« and 2 i« correspond to the regionsp.q and p,q, respectively. These region
correspond to the two terms inside the average overx in Eq. ~C48!. In order to obtain an analytic result in terms
hypergeometric functions, it is necessary to integrate overb before averaging overx. The integrals overb can be evaluated by
first using a transformation formula to change the argument of the hypergeometric function to2b(12y)/(12b) and then
using the integration formula~C153! to obtain hypergeometric functions with argumentsy or 12y:
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After averaging overx, we obtain hypergeometric function
with argument 1:
04500
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Expanding in powers ofe and then taking the real parts, w
obtain
ritten
Res2E
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dbb22e~12b!21/2K c4
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52
121p2
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To evaluate the subtraction in the integral~C46!, we use the identityq25(r 21q22p222p•q)/2. The integral withq2

2p2 in the numerator is purely imaginary. Thus the real part of the integral can be expressed as

E
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. ~C59!

The first term in Eq.~C59! is decomposed into 2 terms:

r 2c22p22q2

D~p1 i«,q,rc !
52

1

2 (
6

1
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The weighted averages overc give hypergeometric functions
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In the 1q case of Eq.~C61!, the i« prescription is unnecessary. The argument of the hypergeometric function can be w
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12by, wherey5(12x)/2. After using a transformation formula to change the argument toby, we can evaluate the angula
average overx to obtain hypergeometric functions with argumentb. For example, the average overx of Eq. ~C61! is

K FS 3
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5
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x

52
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2 2e

223e
Ub D G , ~C63!

where (a)b is Pochhammer’s symbol which is defined in Eq.~C146!. Integrating overb, we obtain hypergeometric function
with argument 1:
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Expanding in powers ofe, we obtain
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5
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24
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In the 2q case of Eq.~C61!, the argument of the hypergeometric functions can be written (12by)/(12b6 i«), where
y5(12x)/2 and the prescriptions1 i« and 2 i« correspond to the regionsp.q and p,q, respectively. These region
correspond to the two terms inside the average overx in Eq. ~C48!. In order to obtain an analytic result in terms
hypergeometric functions, it is necessary to integrate overb before averaging overx. The integrals overb can be evaluated by
first using a transformation formula to change the argument of the hypergeometric function to2b(12y)/(12b) and then
using the integration formula~C153! to obtain hypergeometric functions with argumentsy or 12y:
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After averaging overx, we obtain hypergeometric functions with argument 1:
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Expanding in powers ofe and then taking the real parts, we obtain
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Inserting the sum of the integrals~C65! and ~C68! into the thermal integral~C48!, we obtain
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It remains only to evaluate the integral in Eq.~C59! with p•q in the numerator. We begin by using the identity
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In the first term on the right side, the average overc is a simple multiplicative factor:̂c2&c51/(322e). The average overx
gives hypergeometric functions of argumentb:

K p•q

r 2 L
x

5
1

8
bFFS 12e,1

322e Ub D2FS 22e,1
322e Ub D G . ~C71!

The integral overb gives hypergeometric functions of argument 1:

s2E
0

1

dbb22e~12b!21/2
p21q2

~p22q2!2 K p•q

r 2 L
x

52
1

8

~2!22e

~ 3
2 !22e

FFS 222e,12e,1
3
2 22e,322eU1D 2FS 222e,22e,1

3
2 22e,322eU1D G

1
1

12

~3!22e

~ 5
2 !22e

FFS 12e,1
5
2 22eU1D 2FS 22e,1

5
2 22eU1D G . ~C72!

Expanding in powers ofe, we obtain

s2E
0

1

dbb22e~12b!21/2
p21q2

~p22q2!2 K p•q

r 2 L
x

52
p2

16
1O~e!. ~C73!

In the second term of Eq.~C70!, the average overc is given by Eq.~C62!. In the 1q term, the average overx5p̂•q̂ is
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K xFS 1,5
2

7
2 2e

U r 2

~p1q!2D L
x

5
522e

4e FFS 22e,1,52
322e,11e

Ub D 2FS 12e,1,52
322e,11e

Ub D G
1

5

4e
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7
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~1!2e~3!23e
b2eFFS 122e, 5

2 2e

323e
Ub D 2

122e

12e
FS 222e, 5

2 2e

323e
Ub D G .

~C74!

Integrating overb, we obtain hypergeometric functions of argument 1:

E
0

1

dbb22e~12b!21/2K p•qc4

~p1q!22r 2c2L
c,x

5
1

4e~322e!

~2!22e

~ 5
2 !22e

FFS 222e,22e,1,52
5
2 22e,322e,11e

U1D 2FS 222e,12e,1,52
5
2 22e,322e,11e

U1D G1
1

6e~223e!

3
~1!e~1!22e~3!22e~

3
2 !2e

~1!2e~
5
2 !23e

FFS 223e,122e, 5
2 2e

5
2 23e,323e

U1D 2
122e

12e
FS 223e,222e, 5

2 2e
5
2 23e,323e

U1D G . ~C75!

Expanding in powers ofe, we obtain

E
0

1

dbb22e~12b!21/2K p•qc4

~p1q!22r 2c2L
c,x

5
p226

18
. ~C76!

In the2q term in the integral of the second term of Eq.~C70!, we integrate overb before averaging overx. The integral over
b can be expressed in terms of hypergeometric functions of type2F1:

s2E
0

1

dbb22e~12b!21/2
4p•q

~p2q!2 K c4

~p1 i«2q!22r 2c2L
c

52
1

2~322e!e

~2!22e

~ 1
2 !22e

~122y!FS 222e,1
11e U12yD2

1

4~322e!e

~1!e

~2 1
2 !e

~122y!~12y!23/2FS 1
2 22e,1

2 1
2 1e

U12yD

1
1

8~223e!e
e7 ipe~1!e~

3
2 !2e~122y!~12y!2eFS 223e, 5

2 2e

323e
UyD . ~C77!

The phase in the last term ise2 ipe for the f (s1 ,s2 ,r ) term of Eq.~C48!, which comes from thep.q region of the integral,
andeipe for the f (s2 ,s1 ,r ) term, which comes from thep,q region. The average overx5p̂•q̂ can be expressed in terms o
hypergeometric functions of type3F2 evaluated at 1:
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s2E
0

1

dbb22e~12b!21/2K 4p•q

~p2q!2

c4

~p1 i«2q!22r 2c2L
c,x

5
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4~322e!e

~2!22e

~ 1
2 !22e
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3
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2 22e,1
3
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112e
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2 2e, 1
2 22e,1

3
2 22e,2 1

2 1e
U1D G

1
1

16~223e!e
e7 ipe
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3
2 !2e

~1!2e~3!23e

3FFS 12e,223e, 5
2 2e

323e,323e
U1D 2

12e
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FS 22e,223e, 5

2 2e

323e,323e
U1D G . ~C78!

The expansion of the real part of the integral in powers ofe is

s2E
0

1

dbb22e~12b!21/2ReK 4p•q

~p2q!2

c4

~p1 i«2q!22r 2c2L
c,x

5
92p2

18
1O~e!. ~C79!

Inserting Eqs.~C73!, ~C76!, and~C79! into the thermal integral of Eq.~C70!, we obtain

E
pq

s2nF
2~s!

p2q2

p•q

r 2
ReK c2

r 2c22p22q2

D~p1 i«,q,rc !L
c

5
T2

~4p!2

p221

6p2 Fp2

12
2 log 2G . ~C80!

Inserting this along with Eq.~C69! into Eq. ~C59!, we obtain

E
pq

s2nF
2~s!

p2r 2 ReK c2
r 2c22p22q2

D~p1 i«,q,rc !L
c

5
T2

~4p!2

12p2

6p2 Fp2

12
2 log 2G . ~C81!

Adding this integral to the subtracted integral in Eq.~C46!, we obtain the final result in Eq.~C19!. The subtracted integra
appearing in Eq.~C47! vanishes due to antisymmetry of the integrand. Thus the final result~C20! is given by Eq.~C47!.

The integrals~C21! and ~C22! can be computed directly in three dimensions, as described above. The integrals~C23!–
~C26! are divergent and require subtractions to remove the divergences. We first isolate the divergent part which come
regionq→0. We need one subtraction

nB~q!5S nB~q!2
T

q
1

1

2D1
T

q
2

1

2
. ~C82!

In the integral~C24!, it is convenient to first use the identityr c
25p212p•q/c1q2/c2 to expand it into 3 integrals, two o

which are Eqs.~C21! and ~C23!. In the third integral, the subtraction~C82! is needed to remove the divergences.
For the convergent terms, the HTL average overc and the angular average overx5p̂•q̂ can be calculated in thre

dimensions:

ReK c
r c

22p22q2

D~p1 i«,q,r c!
L

c,x

5
1

6~4p22q2!
1

q2~4p213q2!

3~4p22q2!3 log
2p

q
1

~p1q!~4p212pq1q2!

12pq~2p1q!3 log
p1q

p

2
~p2q!~4p222pq1q2!

12pq~2p2q!3 log
up2qu

p
, ~C83!
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ReK p̂•q̂
r c

22p22q2

D~p1 i«,q,r c!
L

c,x

5
1

6pq
2

q~12p22q2!

6p~4p22q2!2 log
4p

q
1

~p1q!~2p222pq2q2!

12p2q~2p1q!2 log
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4p

1
~p2q!~2p212pq2q2!

12p2q~2p2q!2 log
up2qu

4p
, ~C84!

ReK r c
22p2

q2

r c
22p22q2

D~p1 i e,q,r c!
c212

1

q2 c211
log 2

q2 L
c,x

5
1

4pq2 Fq log
p1q

up2qu
1p log

up22q2u
p2 G . ~C85!

The remaining 2-dimensional integral overp andq can then be evaluated numerically:

E
pq

nF~p!

p S nB~q!

q
2

T

q2 1
1

2qD p2

q2 ReK c
r c

22p22q2

D~p1 i«,q,r c!
L

c

5
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~4p!2@1.48031022#, ~C86!

E
pq
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q
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T
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22p22q2

D~p1 i«,q,r c!
L

c

5
T2

~4p!2 @22.83231023#, ~C87!

E
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p

nF~q!

q
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22p2

q2
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D~p1 i e,q,r c!
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1

q2 c211
log 2
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c

5
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~4p!2 @4.13431022#, ~C88!

E
pq

nB~p!

p

nF~q!

q
ReK r c

22p2

q2

r c
22p22q2

D~p1 i e,q,r c!
c212

1

q2 c211
log 2

q2 L
c

5
T2

~4p!2 @2.53031021#. ~C89!

The integrals involving the terms subtracted fromn(q) in Eq. ~C82! are divergent, so the HTL average overc and the angular
average overx5p̂•q̂ must be calculated in 322e dimensions. The first step in the calculation of the subtracted terms
replace the average overc of the integral overq by an average overc andx:

E
q

1

qn K f ~c!
r c

22p22q2

D~p1 i«,q,r c!
L

c

5~21!n21
1

8p2e

~1!2e~1!22e

~ 3
2 !2e

~egm2!e~2p!12n22e

3K f ~c!c32n22e~12c2!n2212e(
6

~x7c2 i«!12n22eL
c,x

. ~C90!

The integral overp can now be evaluated easily using either Eq.~B54! or

E
p
nF~p!p2222e5

1

2p2

~1!24e

~ 3
2 !2e

~1224e!z~124e!~egm2!eT124e. ~C91!

It remains only to calculate the averages overc andx. The averages overx give 2F1 hypergeometric functions with argumen
@(17c)/22 i«#21:
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^~x7c2 i«!2n22e&x5~17c!2n22eFS 12e,n12e
222e U@~17c!/22 i«#21D , ~C92!

^x~x7c2 i«!2n22e&x5
1

2
~17c!2n22eFFS 12e,n12e

322e U@~17c!/22 i«#21D
2FS 22e,n12e

322e U@~17c!/22 i«#21D G . ~C93!

Using a transformation formula, the arguments can be changed to (17c)/22 i«. If the expressions~C92! and ~C93! are
averaged overc with a weight that is an even function ofc, the1 and2 terms combine to give3F2 hypergeometric functions
with argument 1. For example,

K ~12c2!2e(
6

~x7c2 i«!2122eL
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3e
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Upon expanding the hypergeometric functions in powers ofe and taking the real parts, we obtain

ReK ~12c2!2e(
6

~x7c2 i«!2122eL
c,x

5p2@2e12~12 log 2!e2#, ~C95!
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2

9
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6
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5p2F2
8

3
e2G , ~C97!

ReK x~12c2!112e(
6

~x7c2 i«!2222eL
c,x

5p2F2
2

3
e1

2

9
~126 log 2!e2G . ~C98!

If the expressions~C92! and~C93! are averaged overc with a weight that is an odd function ofc, they reduce to integrals
of 2F1 hypergeometric functions with argumenty. For example,

K c~12c2!112e(
6

~x7c2 i«!2222eL
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~2!22e~
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e2ipe
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The resulting expansions for the real parts of the averages overc andx are

ReK c~12c2!112e(
6

~x7c2 i«!2222eL
c,x

5211
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3
e, ~C100!
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Multiplying each of these expansions by the appropriate factors from the integral overq in Eq. ~C90! and the integral overp
in Eq. ~C91! or ~B54!, we obtain

E
pq

nF~p!
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q3 ReK c112e
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E
pq

nF~p!

p

p2
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L

c
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Adding Eq.~C103! to the subtracted integral~C86! we obtain the final result in Eq.~C23!. Combining Eq.~C87! with Eqs.
~C104! and ~C105!, we obtain
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The integral~C24! is obtained from Eqs.~C21!, ~C23! and~C106!. Finally consider Eqs.~C25! and~C26!. In order to evaluate
them we need two subtractions for each integral:
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The subtractions can be evaluated directly in three dimensions and the results are given in Eqs.~C88! and~C89! The integrals
~C25! and~C26! are then given by the sum of the difference terms~C88! and~C89! and the subtraction terms~C107!–~C110!.

3. Four-dimensional integrals

In the sum-integral formula~B39!, the second term on the right side involves an integral over 4-dimensional Eucl
momenta. The integrands are functions of the integration variableQ andR52(P1Q). The simplest integrals to evaluate a
those whose integrands are independent ofP0:

E
Q

1

Q2r 25
1

~4p!2 m2ep22e2F1

e
1422 log 2G , ~C111!

E
Q
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E
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045001-36



TWO-LOOP HARD-THERMAL-LOOP THERMODYNAMICS . . . PHYSICAL REVIEW D 70, 045001 ~2004!
Another simple integral that is needed depends only onP25P0
21p2:

E
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Q2R2 5
1

~4p!2 ~egm2!e~P2!2e
1

e

~1!e~1!2e~1!2e

~2!22e
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where (a)b is Pochhammer’s symbol which is defined in Eq.~C146!. We need the following weighted averages overc of this
function evaluated atP5(2 ip,p/c):
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e
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The remaining integrals are functions ofP0 that must be analytically continued to the pointP052 ip1«. Several of these
integrals are straightforward to evaluate:
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We also need a weighted average overc of the integral in Eq.~C117! evaluated atP5(2 ip,p/c). The integral itself is
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The weighted averages are
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The most difficult 4-dimensional integrals to evaluate involve an HTL average of an integral with denominatorR0
21r 2c2:
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K E
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q22p2

Q2r 2~R0
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5
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~4p!2 m2ep22eF2
p2

3 G . ~C128!

The analytic continuation toP052 ip1« is implied in these integrals and in all the 4-dimensional integrals in the remai
of this subsection.

We proceed to describe the evaluation of the integrals~C123! and ~C125!. The integral overQ0 can be evaluated by
introducing a Feynman parameter to combineQ2 andR0

21r 2c2 into a single denominator:
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5
1

4E0

1

dxE
r
@~12x1xc2!r 212~12x!r•p1~12x!2p22 i«#23/2, ~C129!

where we have carried out the analytic continuation toP052 ip1«. Integrating overr and then over the Feynman paramet
we get a2F1 hypergeometric function with argument 12c2:

E
Q

1

Q2~R0
21r 2c2!

5
1

~4p!2~egm2!ep22e
~1!e

e
eipe

~1!22e~1!2e

~2!23e
~12c2!2eFS 3

2 22e,12e

223e
U12c2D . ~C130!

The subsequent weighted averages overc give 3F2 hypergeometric functions with argument 1:

E
Q

1

Q2 K c2

R0
21r 2c2L

c

5
1

~4p!2 ~egm2!ep22e
~1!e

e

1

3
eipe

~ 3
2 !2e~1!22e~1!22e

~ 5
2 !22e~2!23e

FS 122e, 3
2 22e,12e

5
2 22e,223e

U1D , ~C131!

E
Q

1

Q2 K c2~12c2!

R0
21r 2c2 L

c

5
1

~4p!2 ~egm2!ep22e
~1!e

e

2

15
eipe

~ 3
2 !2e~1!22e~2!22e

~ 7
2 !22e~2!23e

FS 222e 3
2 22e,12e

7
2 22e,223e

U1D .

~C132!

After expanding in powers ofe, the real part is Eq.~C125!.
The integral~C126! has a factor of 1/r 2 in the integrand. After using Eq.~C129!, it is convenient to use a second Feynm

parameter to combine (12x1xc2)r 2 with the other denominator before integrating overr :

E
Q

1

Q2r 2~R0
21r 2c2!

5
3

8E0

1

dx~12x1xc2!E
0

1

dyy1/2E
r
@~12x1xc2!r 212y~12x!r•p1y~12x!2p22 i«#25/2.

~C133!

After integrating overr and theny, we obtain2F1 hypergeometric functions with argumentsx(12c2). The integral overx
gives a 2F1 hypergeometric function with argument 12c2:

E
Q

1

Q2r 2~R0
21r 2c2!

5
1

~4p!2 ~egm2!ep2222e
~1!e

e H ~2 1
2 !2e~1!2e

~ 1
2 !22e

2
3

2~112e!
eipe

~1!22e~1!2e

~1!23e
~12c2!2eFS 1

2 22e,2e

23e
U12c2D J .

~C134!
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After averaging overc, we get hypergeometric functions with argument 1:
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Q

1

Q2r 2 K c2
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21r 2c2L

c

5
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~4p!2 ~egm2!ep2222e
~1!e

e H 1

322e
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2
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~ 5
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5
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U1D J , ~C135!

E
Q

1

Q2r 2 K 1

R0
21r 2c2L

c

5
1

~4p!2 ~egm2!ep2222e
~1!e

e H ~2 1
2 !2e~

3
2 !2e

~ 1
2 !22e

2
1

2
eipe

~1!22e
2 ~1!2e

~ 3
2 !22e~1!23e

FS 122e, 1
2 22e,2e

3
2 22e,23e

U1D J . ~C136!

After expanding in powers ofe the real part is Eq.~C126!.
To evaluate the integral~C28!, it is convenient to first express it as the sum of 3 integrals by expanding the factor ofq2 in

the numerator asq25p212p•r1r 2:

E
Q

q2

Q2r 2~R0
21r 2c2!

5E
Q
S p2

r 2 12
p•r

r 2
11D 1

Q2~R0
21r 2c2!

. ~C137!

To evaluate the integral withp•r in the numerator, we first combine the denominators using Feynman parameters as
~C133!. After integrating overr and theny, we obtain2F1 hypergeometric functions with argumentsx(12c2). The integral
over x gives 2F1 hypergeometric functions with arguments 12c2:

E
Q

p•r

Q2r 2~R0
21r 2c2!

5
1

~4p!2 ~egm2!ep22e
~1!e

2e2 H 2
~ 3

2 !2e~1!2e

~ 3
2 !22e

1eipe
~1!22e~1!2e

~1!23e
~12c2!2eFS 3

2 22e,2e

123e
U12c2D J .

~C138!

After averaging overc, we get a hypergeometric function with argument 1:

E
Q

p•r

Q2r 2 K c2

R0
21r 2c2L

c

5
1

~4p!2 ~egm2!ep22e
~1!e

2e2 H 2
1

322e

~ 3
2 !2e~1!2e

~ 3
2 !22e

1
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3
eipe

~ 3
2 !2e~1!22e~1!22e

~ 5
2 !22e~1!23e

FS 122e, 3
2 22e,2e

5
2 22e,123e

U1D J . ~C139!

After expanding in powers ofe, the real part is
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ReE
Q

p•r

Q2r 2 K c2

R0
21r 2c2L

c

5
1

~4p!2 m2ep22eF211 log 2

3e
2

20

9
1

14

9
log 22

2

3
log221

p2

36G . ~C140!

Combining this with Eqs.~C123! and ~C125!, we obtain the integral~C127!.
To evaluate the integral~C128!, we first express the numerator as a sum of two integrals whose averages hav

calculated:

K E
Q

q22p2

Q2r 2~R0
21r 2c2!L

x

5K E
Q
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Q2r 2~R0
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~4p!2 ~egm2!ep22e
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e H 2
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e

~ 3
2 !2e~1!2e
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2 !22e

1eipe
~1!2e~1!22e

~1!23e

3
1

e
~12c2!2eFS 2e, 3

2 22e

123e
U12c2D 1eipe

~1!2e~1!22e

~2!23e
~12c2!2eFS 12e, 3

2 22e

223e
U12c2D J .

~C141!

The two hypergeometric functions are now combined into a single hypergeometric functions, which yields

K E
Q

2p•r1r 2

Q2r 2~R0
21r 2c2!

L
x

5
1

~4p!2 ~egm2!ep22e
~1!e

e2 H 2
~ 3

2 !2e~1!2e

~ 3
2 !22e

1eipe
~1!2e~2!22e

~2!23e
~12c2!2eFS 2e, 3

2 22e

223e
U12c2D J . ~C142!
at

ries
Averaging overc yields

K E
Q

2p•r1r 2

Q2r 2~R0
21r 2c2!

L
c,x

5
1

~4p!2~egm2!ep22e
1

e2

~1!e~1!2e~
3
2 !2e

~ 3
2 !22e

3F211eipe
~1!22e

~1!2e
2 G . ~C143!

Expansion in powers ofe, yields Eq.~C128!.

4. Hypergeometric functions

The generalized hypergeometric function of typepFq is
an analytic function of one variable withp1q parameters. In
our case, the parameters are functions ofe, so the list of
parameters sometimes gets lengthy and the standard not
for these functions becomes cumbersome. We therefore
troduce a more concise notation
04500
ion
in-

FS a1 ,a2 , . . . ,ap

b1 , . . . ,bq
UzD

[ pFq~a1 ,a2 , . . . ,ap ;b1 , . . . ,bq ;z!.

~C144!

The generalized hypergeometric function has a power se
representation

FS a1 ,a2 , . . . ,ap

b1 , . . . ,bq
UzD5 (

n50

`
~a1!n~a2!n•••~ap!n

~b1!n•••~bq!nn!
zn,

~C145!

where (a)b is Pochhammer’s symbol:

~a!b5
G~a1b!

G~a!
. ~C146!

The power series converges foruzu,1. For z51, it con-
verges if Res.0, where

s5 (
i 51

p21

b i2(
i 51

p

a i . ~C147!
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The hypergeometric function of typep11Fq11 has an inte-
gral representation in terms of the hypergeometric funct
of type pFq :

E
0

1

dttn21~12t !m21FS a1 ,a2 , . . . ,ap

b1 , . . . ,bq
UtzD

5
G~m!G~n!

G~m1n!
FS a1 ,a2 , . . . ,ap ,n

b1 , . . . ,bq ,m1nUzD . ~C148!

If a hypergeometric function has an upper and a lower
rameter that are equal, both parameters can be deleted:

FS a1 ,a2 , . . . ,ap ,n
b1 , . . . ,bq ,n UzD5FS a1 ,a2 , . . . ,ap

b1 , . . . ,bq
UzD .

~C149!

The simplest hypergeometric function is the one
type1F0. It can be expressed in an analytic form:

1F0~a;;z!5~12z!2a. ~C150!

The next simplest hypergeometric functions are those of t
2F1. They satisfy transformation formulas that allow an2F1
with argumentz to be expressed in terms of an2F1 with
argumentz/(z21) or as a sum of two2F1’s with arguments
12z or 1/z or 1/(12z). The hypergeometric functions o
type 2F1 with argumentz51 can be evaluated analyticall
in terms of gamma functions:

FS a1 ,a2

b1
U1D5

G~b1!G~b12a12a2!

G~b12a1!G~b12a2!
. ~C151!

The hypergeometric function of type3F2 with argumentz
51 can be expressed as a3F2 with argumentz51 and
different parameters@39#:

FS a1 ,a2 ,a3

b1 ,b2
U1D

5
G~b1!G~b2!G~s!

G~a11s!G~a21s!G~a3!
FS b12a3 ,b22a3 ,s

a11s,a21s U1D ,

~C152!

wheres5b11b22a12a22a3. If all the parameters of a
3F2 are integers and half-odd integers, this identity can
used to obtain equal numbers of half-odd integers among
upper and lower parameters. If the parameters of a3F2 re-
duce to integers and half-odd integers in the limite→0, the
use of this identity simplifies the expansion of the hyperg
metric functions in powers ofe.

The most important integration formulas involving2F1
hypergeometric functions is Eq.~C148! with p52 and q
51. Another useful integration formula is
04500
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E
0

1

dttn21~12t !m21FS a1 ,a2

b1
U t

12t
zD

5
G~m!G~n!

G~m1n!
FS a1 ,a2 ,n

b1,12mU2zD
1

G~a11m!G~a21m!G~b1!G~2m!

G~a1!G~a2!G~b11m!
~2z!m

3FS a11m,a21m,n1m
b11m,11m U2zD . ~C153!

This is derived by first inserting the integral representat
for 2F1 in Eq. ~C148! with integration variablet8 and then
evaluating the integral overt to get a 2F1 with argument 1
1t8z. After using a transformation formula to change t
argument to2t8z, the remaining integrals overt8 are evalu-
ated using Eq.~C148! to get 3F2’s with arguments2z.

For the calculation of two-loop thermal integrals invol
ing HTL averages, we require the expansion in powers oe
for hypergeometric functions of typepFp21 with argument 1
and parameters that are linear ine. If the power series rep-
resentation~C145! of the hypergeometric function is conve
gent atz51 for e50, this can be accomplished simply b
expanding the summand in powers ofe and then evaluating
the sums. If the power series is divergent, we must m
subtractions on the sum before expanding in powers oe.
The convergence properties of the power series atz51 is
determined by the variables defined in Eq.~C147!. If s
.0, the power series converges. Ifs→0 in the limit e
→0, only one subtraction is necessary to make the sum c
vergent:

FS a1 ,a2 , . . . ,ap

b1 , . . . ,bp21
U1D5

G~b1!•••G~bp21!

G~a1!G~a2!•••G~ap!
z~s11!

1 (
n50

` S ~a1!n~a2!n•••~ap!n

~b1!n•••~bq!nn!

2
G~b1!•••G~bp21!

G~a1!G~a2!•••G~ap!
~n

11!2s21D . ~C154!

If s→21 in the limit e→0, two subtractions are necessa
to make the sum convergent:

FS a1 ,a2 , . . . ,ap

b1 , . . . ,bp21
U1D

5
G~b1!•••G~bp21!

G~a1!G~a2!•••G~ap!
@z~s11!1tz~s12!#

1 (
n50

` S ~a1!n~a2!n•••~ap!n

~b1!n•••~bq!nn!

2
G~b1!•••G~bp21!

G~a1!G~a2!•••G~ap!

3@~n11!2s211t~n11!2s22# D , ~C155!
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wheret is given by

t5(
i 51

p
~a i21!~a i22!

2
2 (

i 51

p21
~b i21!~b i22!

2
. ~C156!

The expansion of apFp21 hypergeometric function in
powers ofe is particularly simple if in the limite→0 all its
parameters are integers or half-odd integers, with equal n
bers of half-odd integers among the upper and lower par
eters. If the power series representation for such a hyper
metric function is expanded in powers ofe, the terms in the
summand will be rational functions ofn, possibly multiplied
by factors of the polylogarithm functionc(n1a) or its de-
rivatives. The terms in the sums can often be simplified
using the obvious identity
04500
-
-

o-

y

(
n50

`

@ f ~n!2 f ~n1k!#5 (
i 50

k21

f ~ i !. ~C157!

The sums overn of rational functions ofn can be evaluated
by applying the partial fraction decomposition and then
ing identities such as

(
n50

` S 1

n1a
2

1

n1bD5c~b!2c~a!, ~C158!

(
n50

`
1

~n1a!25c8~a!. ~C159!

The sums of polygamma functions ofn11 or n1 1
2 divided

by n11 or n1 1
2 can be evaluated using
(
n50

` S c~n11!

n11
2

log~n11!

n11 D52
1

2
g22

p2

12
2g1 , ~C160!

(
n50

` S c~n11!

n1 1
2

2
log~n11!

n11 D 52
1

2
~g12 log 2!21

p2

12
2g1 , ~C161!

(
n50

` S c~n1 1
2 !

n11
2

log~n11!

n11
D 52

1

2
g224 log 212 log222

p2

12
2g1 , ~C162!

(
n50

` S c~n1 1
2 !

n1 1
2

2
log~n11!

n11 D 52
1

2
~g12 log 2!22

p2

4
2g1 , ~C163!

whereg1 is Stieltje’s first gamma constant defined in Eq.~B17!. The sums of polygamma functions ofn11 or n1 1
2 can be

evaluated using

(
n50

` S c~n11!2 log~n11!1
1

2~n11! D5
1

2
1

1

2
g2

1

2
log~2p!, ~C164!
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n50

` S c~n1 1
2 !2 log~n11!1

1

n11D5
1

2
g2 log 22

1

2
log~2p!. ~C165!

We also need the expansions ine of some integrals of2F1 hypergeometric functions ofy that have a factor ofu122yu. For
example, the following 2 integrals are needed to obtain Eq.~C100!:

E
0

1

dyy22e~12y!11eu122yuFS 12e,e
23e UyD5

1

6
1S 2

9
1

4

9
log 2D e, ~C166!

E
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1

dyy11e~12y!11eu122yuFS 212e,11e
213e UyD5
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4
1S 7

12
1

2

3
log 2D e. ~C167!

These integrals can be evaluated by expressing them in the form
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E
0

1

dyyn21~12y!m21u122yuFS a1 ,a2

b1
UyD5E

0

1

dyyn21~12y!m21~2y21!FS a1 ,a2

b1
UyD

12E
0

1/2

dyyn21~12y!m21~122y!FS a1 ,a2

b1
UyD . ~C168!

The evaluation of the first integral on the right side gives3F2 hypergeometric functions with argument 1. The integrals fr
0 to 1

2 can be evaluated by expanding the power series representation~C145! of the hypergeometric function in powers ofe.
The resulting series can be summed analytically and then the integral overy can be evaluated.
u-

-
,

s,

t.

ett.

nd,

tter
@1# P. Arnold and C.X. Zhai, Phys. Rev. D50, 7603 ~1994!; 51,
1906 ~1995!.

@2# C.X. Zhai and B. Kastening, Phys. Rev. D52, 7232~1995!.
@3# E. Braaten and A. Nieto, Phys. Rev. Lett.76, 1417 ~1996!;

Phys. Rev. D53, 3421~1996!.
@4# K. Kajantie, M. Laine, K. Rummukainen, and Y. Schro¨der,

Phys. Rev. D67, 105008~2003!.
@5# F. Karsch, Lect. Notes Phys.583, 209 ~2002!.
@6# G. Boyd et al., Phys. Rev. Lett.75, 4169~1995!; Nucl. Phys.

B469, 419 ~1996!.
@7# F. Karsch, E. Laermann, and A. Peikert, Phys. Lett. B396, 210

~2000!.
@8# S. Gottliebet al., Phys. Rev. D55, 6852 ~1997!; C. Bernard

et al., ibid. 55, 6861~1997!; J. Engelset al., Phys. Lett. B396,
210 ~1997!; A. Ali Khan et al., Phys. Rev. D64, 074510
~2001!.

@9# K. Kajantie, M. Laine, K. Rummukainen, and Y. Schro¨der,
Phys. Rev. Lett.86, 10 ~2001!.

@10# K. Kajantie, M. Laine, J. Peisa, A. Rajantie, and K. Rumm
kainen, Phys. Rev. Lett.79, 3130~1997!.

@11# T. Hatsuda, Phys. Rev. D56, 8111~1997!; B. Kastening,ibid.
56, 8107~1997!.

@12# R.R. Parwani, Phys. Rev. D63, 054014~2001!; 64, 025002
~2001!.

@13# V.I. Yukalov and E.P. Yukalova, in ‘‘Relativistic Nuclear Phys
ics and QCD,’’ edited by A.M. Baldin and V.V. Burov, Vol. 2
p. 238–245, hep-ph/0010028.

@14# J.M. Luttinger and J.C. Ward, Phys. Rev.118, 1417~1960!; G.
Baym, ibid. 127, 1391~1962!.

@15# J.M. Cornwall, R. Jackiw, and E. Tomboulis, Phys. Rev. D10,
2428 ~1974!.

@16# E. Braaten and E. Petitgirard, Phys. Rev. D65, 041701~R!
~2002!; 65, 085039~2002!.

@17# H. van Hees and J. Knoll, Phys. Rev. D65, 025010~2002!; 65,
105005~2002!; 66, 025028~2002!.

@18# J.P. Blaizot, E. Iancu, and U. Reinosa, Phys. Lett. B568, 160
~2003!.
04500
@19# B.A. Freedman and L.D. McLerran, Phys. Rev. D16, 1169
~1977!.

@20# A. Arrizabalaga and J. Smit, Phys. Rev. D66, 065014~2002!.
@21# J.P. Blaizot, E. Iancu, and A. Rebhan, Phys. Rev. Lett.83, 2906

~1999!; Phys. Lett. B 470, 181 ~1999!; Phys. Rev. D63,
065003~2001!.

@22# A. Peshier, Phys. Rev. D63, 105004~2001!.
@23# P.M. Stevenson, Phys. Rev. D23, 2916~1981!.
@24# H. Kleinert, Path Integrals in Quantum Mechanics, Statistic

and Polymer Physics, 2nd ed.~World Scientific, Singapore,
1995!; A.N. Sisakian, I.L. Solovtsov, and O. Shevchenko, In
J. Mod. Phys. A9, 1929 ~1994!; W. Janke and H. Kleinert,
Phys. Rev. Lett.75, 2787~1995!.

@25# A. Duncan and M. Moshe, Phys. Lett. B215, 352 ~1988!; A.
Duncan, Phys. Rev. D47, 2560~1993!.

@26# F. Karsch, A. Patkos, and P. Petreczky, Phys. Lett. B401, 69
~1997!.

@27# S. Chiku and T. Hatsuda, Phys. Rev. D58, 076001~1998!.
@28# J.O. Andersen, E. Braaten, and M. Strickland, Phys. Rev. D63,

105008~2001!.
@29# J.O. Andersen and M. Strickland, Phys. Rev. D64, 105012

~2001!.
@30# J.O. Andersen, E. Braaten, and M. Strickland, Phys. Rev. L

83, 2139~1999!; Phys. Rev. D61, 014017~2000!.
@31# J.O. Andersen, E. Braaten, and M. Strickland, Phys. Rev. D61,

074016~2000!.
@32# J.O. Andersen, E. Braaten, E. Petitgirard, and M. Strickla

Phys. Rev. D66, 085016~2002!.
@33# G.D. Moore, J. High Energy Phys.10, 055 ~2002!.
@34# A. Ipp, G.D. Moore, and A. Rebhan, J. High Energy Phys.01,

037 ~2003!.
@35# A. Rebhan~private communication!.
@36# A. Rebhan, Proceedings of Strong and Electroweak Ma

~SEWM 2002!, Heidelberg, Germany~2002!, hep-ph/0301130.
@37# R. Pisarski, Phys. Rev. D62, 111501~R! ~2000!.
@38# A. Peshier, J. High Energy Phys.01, 040 ~2003!.
@39# W. Bühring, SIAM J. Math. Anal.18, 1227~1987!.
1-43


