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Deriving formulations for numerical computation of binary neutron stars in quasicircular orbits
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Two relations, the virial relatioM 5p = Mk and the first law in the forndM 5py = 2 8J, should be satisfied
by a solution and a sequence of solutions describing binary compact objects in quasiequilibrium circular orbits.
Here,M spm » Mk, J, andQ are the Arnowitt-Deser-Misnd ADM) mass, Komar mass, angular momentum,
and orbital angular velocity, respectivel§.denotes an Eulerian variation. These two conditions restrict the
allowed formulations that we may adopt. First, we derive relations betWégs, and My and between
M pw @and Q2 6J for general asymptotically flat spacetimes. Then, to obtain solutions that satisfy the virial
relation and sequences of solutions that satisfy the first law at least approximately, we propose a formulation
for computation of quasiequilibrium binary neutron stars in general relativity. In contrast to previous ap-
proaches in which a part of the Einstein equation is solved, in the new formulation, the full Einstein equation
is solved with maximal slicing and in a transverse gauge for the conformal three-metric. Helical symmetry is
imposed in the near zone, while in the distant zone, a waveless condition is assumed. We expect the solutions
obtained in this formulation to be excellent quasiequilibria as well as initial data for numerical simulations of
binary neutron star mergers.
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[. INTRODUCTION general relativistic for the initial value problem. However, it
is only an approximateuasiequilibriumsolution for com-

A detailed theoretical understanding of evolution of closepact binaries, since conformally nonflat parts of the three-
binary neutron stars is one of the most important goals irmetric are not vanishing for the quasiequilibrium binaries.
general relativity, since they are promising sources of graviThus, such approximation produces a systematic error of
tational waves for laser interferometric gravitational wavemagnitude~ (M/a)? for the solution of quasiequilibrium
detectors such as LIGO, TAMA, GEO, and VIRGQ,2]. configurationg4]. The systematic error is also included in
For the inspiral phase in which the orbital separatéors  gravitational waves computed from the conformal flat data of
much larger than the radilR of a neutron star, the orbital the quasiequilibrium binary4,12] and in the numerical re-
velocity is much smaller than the speed of light, and finite-sults of fully general relativistic simulations started from ini-
size effects of neutron stars may be ignored. Thus, a postial conditions of the conformally flat quasiequilibiia].
Newtonian study together with the point particle approxima-  Formulations for computation of binary compact objects
tion is appropriate[3]. For a/R=4, however, the post- i quasiequilibrium circular orbits with a conformally nonflat
Newtonian.and poin'g partic!e approximgtions break downiree-metric have been proposed by several autters,
and nur_nerlcal study_ls required to take into account the efRefs.[13—18,4). A promising approach to this problem is to
fect of t|d_al_ deformation of each star and full effects of gen-,<sume a helical Killing symmetry for the spacetiih@, 18.
eral relativity. The procedure to be adopted for such closqen this case, however, the solution contains standing gravita-

orbits up to the merger i6) to compute a quasiequilibrium . . .
circular orbit at a distant orbit wita<4R anda=10M for tlona! waves in _the_ whole spacetime and ttlze averaged energy
density of gravitational waves falls off as = wherer de-

which the ratio of a radial approaching velocity to the orbital ; . T i
one will be small(less than 19[4], and then(ii) to perform notes a radial coordinate, resulting in an asymptotically non-
’ flat spacetime. Thus, the solution obtained in such a formu-

a numerical relativity simulation adopting a distant quasi- . = Lo .
equilibrium with a=10M as the initial conditior{5,6]. In lation is not physical in the distant wave zone, although the

this paper, we focus on the formulation for computation ofSClution in the near zone and in a local wave zone would
the quasiequilibrium in circular orbits. descnb.e a realistic spacetime of binary compact object§.

So far, the quasiequilibrium states of binary neutron stars In this paper, we consider general relativistic formulations
have been widely computed in the so-called conformal flatfor computation of the quasiequilibrium circular orbits as-
ness approximatior(or Isenberg-Wilson-Mathews formal- suming that the spacetime is asymptotically flat. First, we
ism) [7—11], in which the conformal three-metric is assumedrequire that the following two conditions should be satisfied
to be flat. The solution in this formulation satisfies the con-for a solution and a sequence of the solutions of quasiequi-
straint equations of general relativity and, hence, it is fullylibrium states:
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(1) A quasiequilibrium solution that is stationary in the abstract, whilei,j,k, ... are concrete, associated with a
corotating frame should satisfy a virial relation associatecchart{x'}. If Sis a 2-surface in a 3-spa and e, is the
with the equality volume form on3, associated with a 3-metrig,,, we write

dS,=€,,dSS for S a surface of constantr, dS,
Mapm =Mk, 1D —vryd?x.
of the Arnowitt-Deser-Misne(ADM ) and Komar masses de-
fined in Sec. lll. Il. FORMULATION
(2) Binary compact objects inspiral adiabatically as a re- A. 3+1 formalism

sult of gravitational wave emission, conserving baryon mass, LetS. be a family of like h f labeled b
entropy, and vorticity. Thus, along a sequence of quasiequi- i N ft ?. amalr_mtyi;)bspace Ite fy||3§rtsur aces, 1a e;e y
librium solutions, the first law should be satisfied. Here, the? "M® gnc lort. 1-¢ ¢ aveclor fie aransverseE_q or

first law is written in the form which t*V,t=1, and denote byr and 8% a nonvanishing

lapse and a shift vector, respectively, with

M aon = £26J, 2 t¥=an®+B%  B°n,=0. 2.0
where M ppy and 8J are infinitesimal differences of the Then
ADM mass and angular momentum along a quasiequilibriu '
sequence, anf) is an orbital angular velocity.

in a chart{t,x'}, we havet®=4,, and the metric
nbag: Yap— NaNg has the form

— _ ,2A4+2 . i i j j
These two conditions are likely to be satisfied for binary ds’ ardtt+ y;(dx+Fdn(dx+pidy. (2.9

neutron stars in nature. Thus, we should adopt a formulatioy;ih 5 spatial covariant derivativb, compatible with the

tha_t provides a s_c_JIution and a sequence of the solutions th%batial metricy,, the extrinsic curvature ck, is given by
satisfy two conditions at least approximately.

Based on this motivation, in this paper, we first derive 1
relations for the differencesMapy— My and SMapy Kab==5EnYar=5_ (~tYaptDafpt DpBa), (2.3
—Q 467, in arbitrary asymptotic flat spacetimes. The condi-
tion that the differences vanish can be used to restrict formuyhere y,, and d,y,, are the pullbacks t&, of Yap and
lations that we can adopt. Using these conditions, sever@tyaﬁ_
possible candidates for the formulations emerge. Among |n the canonical formulation of general relativif9],

them, we propose a formulation in which helical symmetry isyab, 7 « and B2 are regarded as independent gravita-
imposed only in the near zone instead of in the whole spaceiong| field variables, wherer®® is defined by

time. Specifically, we impose a mixed condition; a helical

symmetry condition in the near zone and a waveless condi- mabi= — (K2P— 420K \[y. (2.9

tion in the distant zone. To fix the gauge, we adopt the maxi-

mal slicing condition and a transverse gauge condition foA perfect fluid is described by a stress-energy tensor

the upper component of the conformal three-metric. In this

case, all components of the Einstein equation reduce to el- T*f=(e+p)uu’+pg*’, (2.9

liptic equations as in the post-Newtonian approximation. N ) )

This implies that no standing waves appear in the wave zondvhereu®, p, ande are the fluid four-velocity, pressure, and
although in the near zone, gravitational-wave-like compo-¢"€r9y density, respectively. The pressure and the energy

nents are present. We expect the solutions obtained in th@€nSity are assumed to satisfy an equation of state of the
formulation to be excellent quasiequilibria as well as initial M

data for numerical simulations of binary neutron star merg-
ers. Y 9 p=p(p,s), e=€(p,s), (2.6

The paper is_organized as follpyvs_. In Sec. I, we descr_ib‘:\’/vherep is the baryon mass density aathe entropy per unit
the basic equations for quasiequilibria. In Sec. Ill, we denveDaryon Mass.

a relation betweem/IADM and My for arbi'trary formulation In calculating the variation of the Lagrangian following
anq c_Ianfy the_gondmon for the formulation that its solution g th procedure, a perfect-fluid spacetime is specified by the
satisfies the virial relatioM xpm =My . In Sec. IV, we de-  c5ngnical variables, the lapse and the shift, that together de-

rive a relation for the differenc&iM apy —26J, and clarify  gqribe the metric, and by Lagrangian variables for the fluid,
the conditions on the formulation for which a sequence of

solutions satisfies the first law. In Sec. V, we propose formu- Q(\):=[ yap(X), 72\ ),a()), BA(N),u*(N),p(N),S(\)].
lations whose solutions and sequences of solutions approxi-
mately satisfy the virial relation and the first law. Section VI The difference between two nearby solutions can be treated
is devoted to a summary. in either of two ways. Changes in the metric variables will be
Throughout this paper, we use geometrical units vdth written as Eulerian variations, denoted by the Eulerian
=1=c. Spacetime indices are Greek, spatial indices Latinchange is the difference between corresponding quantities in
and the metric signature is + + +. Readers familiar with the two solutions at a fixed point in spacetime. Changes in
abstract indices can regard indices early in the alphabet dhiid variables will be written as Lagrangian variations. In-
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troducing a Lagrangian displacement vector figlt one
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Hi=—2(G*P—8mT*#)n,ngy=He+ 16mpy,

defines the Lagrangian change in any fluid variable as the

change with respect to a frame draggedéy Formally the

Lagrangian changAQ in a quantityQ is then related to the

Eulerian chang&Q by

AQ=68Q+£,Q. 2.7)

The description of fluid perturbation in terms of a Lagrang-

Jy, (2.19

1 ab 1 2
=— R—; TapT "~ 5 —16mpy

C%=—2(G™—8aTF) 3, ny\y=Ca— 16wy

= —2(Dym®+8mj2\y), (2.16

ian displacement” has a gauge freedom associated with awhereR is the Ricci scalar with respect tg,,. The density

class of trivial displacements that yield no Eulerian change irga s the surface term of the Lagrangian density.
the fluid variables. We use this freedom to choose a gauge in ’

which £':= £2V,t=0, following Refs.[20,21].
The Einstein-Hilbert action

S= J L£d*x, (2.8
with the Lagrangian density
1
L= —4R—e> V=0, (2.9
167

takes, in terms of Hamiltonian metric variables, the form
16mL =m0, yap— aHg— BaC &+ Da( —2D%ayy
—2BP7%, + Brmr) — dym—16mer/—g,  (2.10
where “R is the Ricci scalar,

Hei=—2G*n,ngy, C%::—ZG“ﬁyaanB\/_,(z "

andG“# is the Einstein tensor.
The variation in the Lagrangian density is given by

h 1
8L=—pTy—gAs— —A(pu'N—g)+ —| — SaH
u 167

2a
- 5Baca+ 57Tab{ JtYab—DaBp—DpBa— \/_—y( Tah

1
-5 mm) ] ~ 8yan(G*P—87S™)a\y

~ 1
—£,VgT =g+ D0y = 1o— (87 yap)

+a(jat™\ ), (2.12

whereT is the temperatureh is the enthalpy defined bl
:=(e+p)/p, and

Gab=:Ga'B'yaa’yﬁb and S2P:= Taﬁyaa'be. (2.13
With definitions
PH= T“Bnanﬁ and ja:= _Taﬁyaanﬁ’ (214)

we set

- 1|1 .
0= | == 28(D%a\y) + (B yncdm*+ mp?
TINY

—2m%,8B°)}+ (24— 2Py (aD}p 8ycq

—Dpadycd | +ale+p)g?é®— B2,  (2.17)
whereq?®:=(g*#+u“uf) y,2y,".
Independently  varying the  metric  variables,
{Sa,5B2,8yap,6m}, gives the field equations,
H=0, C,=0, andG*-87S**=0, (2.18

and the relation,

2a 1
3tYab—DaBb—DpBa— \/_;<7Tab_ E'}’abﬂ') =0. (2.19

Equation(2.19 is consistent with the definition of2" [cf.
Eqg. (2.9)].

When the field equations are satisfied, the Bianchi identity
impliesVBT“B= 0. The variation of the action with respect to
the (spatia) Lagrangian displacement vector is the spatial
projection of this relation, the relativistic Euler equation,

(2.20

For an isentropic fluid, conservation of baryon mass and en-
tropy are given by

£.pV—9)=0 and £,5=0.

Equations(2.21) and(2.20 together impIyVBTaﬁzo.

It is often convenient to rewrite the above set of basic
equations in terms of the conformally related spatial metric
Yab and the trace-free part of the extrinsic curvatég,,
defined by

Y2 Vs T*=0.

(2.20)

;’ab’: ¢_4'Yabr (2.22

A=y (2.23

1
Kap— § YauK |,

where ¢ is a conformal factor and:=K,,y*". Here, we
may impose the conditionyy:=det(y,,)=det(7.,)=: 7.
where 7,, is a flat 3-metric. In the following, indices of
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variables with a tilde, such a#,,, A%°, B,, and B2

(=9, are raised and lowered by, andy?°, respectively.
The Hamiltonian constraint{=0 and the momentum

constraintC,=0 are written in terms oK ,:

R— K, K3+ K?=16mpy, (2.24

(2.295

With the conformal transformatiof2.22) and (2.23, Egs.
(2.24 and(2.25 are rewritten in the form

e s U
gR—2mpny— 5

DK, — D K=81j,.

Ay= ( AgpAtP— KZ), (2.26

= 6Rb 2 o= -
Dp(#°A a)_gl/’ D.K=8mj,¢". (2.27
Here,R, D,, andA are the Ricci scalar, the covariant de-

rivative, and the Laplacian with respectigy,, respectively.
The evolution equations foy,, andK,, are

JtYab= —2aK T DaBpt+ DpBa, (2.28

K ap= aRap— D Dpa+ a(KKyp— 2KachC)
+ (Dbﬁc) Kca+ (DaBC)ch+ ( DcKab)BC

1
—8ma| Sypt E)’ab(PH_ScC) : (2.29

whereR,,, is the Ricci tensor with respect tg,, .
Contractingy?® with Egs.(2.28 and(2.29 and using Eq.
(2.24), one obtains

8tlﬂ=%(—aK+ D 8%, (2.30

K=K, K®P—Aa+4ma(py+S,0)+B29.K, (2.3)

whereA=D_,D?. To write the evolution equation ¢ in the
form of Eq.(2.31), we use the Hamiltonian constraint equa-
tion (2.24).

In the following, we choose the maximal time slicing con-

whereF2:=

PHYSICAL REVIEW D 70, 044044 (2004

~ ~ ~ o~ o~ o~ 2~ ~ ~
3t Yab= —2aAzp+ Dafp+DpBa— §7ach:8C1

(2.39
- .
IAap= ‘//74 a’( Rap— ?VabR) - ( D.Dpa
e . momew
- ?VachDca) - 2“Aalcp‘bc+ DaIBCAcb
+ BbBCAAca_ §5cﬁcz‘ab+:805c"&ab
-4 1. c
—8mal ¢ "Sp— §'yabsc . (2.39
Now, R,y is split,

Rap= Rab+ Rabv (2.39

whereR,,, is the Ricci tensor with respect tg,, and

2. -
— —DaDpi—

Rgllb: ¢

2~ -~ 6. -
Z'}’abA‘ﬂ"' FDa‘ﬁDb‘ﬂ

2. - -
- ?')’achlr//DC'J’- (2.37)

R,p, is then written in the form

_ (0) (0)
Rab:_[ %D (D ¢ ¥ap—

(0) (0)

b(;’ach) -D

© _ O _
—(D¢yag)D b'yCd+ 2Fccc,ab

a(:“}’ch C)

(0) (0)
—(D c')’bd) D a'}’

—2C3,Cdl

(0)

1 (0 0
b( ')’ach) -D

5[—Ahg-D

a(;’bc ]+ R

ab s
(2.38

) _

Dpy?°
(0)

(0)
(0) (0)

dition K=0=a,K. With this condition, Eq(2.31) reduces to  With 7.5, and A =»°D D 4. R} is the collection of the

an elliptic equation for,

Aa=a~A‘ab'Aab+47Ta(pH+Saa), (2.32

nonlinear terms ifh,;, and defined by

(0) (0) (0) (0)

R = — [f 4D D ghap+ (D hpg) D oY

where we keep spatial indices abstract until fixing the spatial

gauge condition. Using E@2.26), this equation is rewritten

~ 7 o 3
A =2may(pu+ 25, + g ey oA+ %‘/’R
2.33

Using EQgs.(2.28), (2.29, (2.30, and (2.31), the evolution
equations fory,, andA,, are

(0) (0)
( D had) D de] + I:Ccc ab™ chCad (2 39)

Here,h,, andf2° are introduced, respectively, by

F]ab:=:;’ab_ Nap and 'fab:;’ab_ 77ab- (2.40

CSp andC, ,p, are defined by

044044-4

D , is the covariant derivative associated



DERIVING FORMULATIONS FOR NUMERICA. . .. PHYSICAL REVIEW D 70, 044044 (2004

Sed (0 o) _ o) _ For corotational flowu®=u'k® (that is,v“=0) or irrota-
gb:ZT( D ahpgt+ Dphag— D ghap) tional flow hu,=V,®, where® is a velocity potential, one

can obtain a first integral of the Euler equation that is useful

and for computing quasiequilibrium configurations. For corota-
tional flow, the velocity field becomes trivial and the first

Cd,ab’=;’cdcgb: (2.41) @ntegral i§ 'Fhe statement that the injection energy is constant
in the fluid:
0) = = ~
andC¢y= D ¢(N ¥/ n)/Nyl =0, wheny= 7. h

— =const. (2.49
B. Basic equations for quasiequilibria .

Compact binary systems in quasiequilibrium circular or-For irrotational flow, one thermodynamic variable and a ve-
bits evolve toward merger due to gravitational radiation redocity potential are governed by two equatidi2?],
action. Since the emission time scale of gravitational waves
is longer than the orbital period even just before the merger,
we may expect that the fluid and field variables near the
support of fluid sourcdor inside the light cylinderin the
frame rotating with the same angular velocity as the orbital h
motion are approximately unchanged along a direction of a £,&+ — =const, (2.51
helical vector u

ap
Dal -

(D3P —hu'w?) |=0, (2.50

k*=t*+ Q0 ¢?, (2.42 derived from Eqgs(2.43 and (2.44), respectively. Here, the
Lie derivative with respect to the spatial veciot, £,, is
where ¢ is a spatial vector field that generates a family ofdefined onX; with a relation
closed circular curves oB,, andQ denotes the orbital an-
gular velocity. ue
First, we derive hydrodynamic equations to describe bi- vi= 73(7‘“’“) = FDaCD—wa, (2.52
nary neutron stars in quasiequilibrium circular orbits. The u u
baryon mass conservation law Eg.21) and the Euler equa-

tion (2.20) are written where w® is a rotational shift vector defined by“=p3

+Q¢“.
t T Note that the symmetry of the spacetime with respect to
Eira(pU'V=0)=0, 243 the helical vectok® has not been imposed yet. Thus, the Lie
derivatives of the fluid quantities alorlg’ may not vanish,
=0. (2.44) e.g., £p#0, £,u,#0, £,04#0, and £S,,#0. The values
of these quantities depend on the formulation for gravita-
tional fields that we choose below; their magnitude measures
Then, we impose the conditions that the Lie derivativesthe deviation from the helical symmetry.

7aa£ k+v(hua)+ Da

ut

alongk® vanish: We turn to the formulation for the gravitational fields of
binary systems in quasicircular orbits. Here, we do not as-
£ (pu'y—g)=0, (2495  sume a global helical symmetry for the whole spacetime.

. First, we defineu?®:= 9,2 and regard it as an input quan-

Ya £x(hu,)=0. (246 tity: It is determined when we impose a certain condition

betweeny?” on two spatial hypersurfaces of infinitesimal
time difference, following the concept of a thin sandwich
ut=ul(k*+ov®). (2.47  formalism proposed by York23]. In this section, we con-
tinue the calculation without fixing the condition faf® ex-
From conditions(2.45 and (2.46), the relation £(ja\7) cept for a requirement
=0 also follows. In the above, we assumed isentropic flow, -
which leads to the local first law of thermodynamics, uP=0,y**=0(r 3), (2.53

Here, a spatial velocity vectar® is introduced by

1 in a far zone (>27Q"1). This condition guarantees the
;Vap:Vah. (2.48 asymptotic flatness of the system on a slicg but breaks

the helical symmetry fop?” in the far zone. The lower com-
Equation(2.48 also implies that a one-parameter equation ofponent of the time derivative is defined by
state may be chosen. We thus have four independent vari-
ables for the fluid, three for the fluid velocity, and one ther- Uabi= — YacYpdu®C. (2.54
modynamic variable, governed by four equatig@<t3 and
(2.44. We also define
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9 A neous equations for the metric and the fluid on a sligés
0 api= A (2.59 ¢

2 b then similar to the equations for the initial value problem
since the equations for the metric variables are elliptic.

To solve the equations fdr,;,,, we need to fix the spatial
gauge. The simplest choice is a transverse gddg€or a
generalized Dirac gauge in the terminology of Rf5)),
satisfying

whereAab:: YA, . Later, we will impose a condition on
Uap-

Bonazzolaet al. [15] propose a “gravito-inelastic ap-
proximation” in which they seti?®=0, while ,A%® is free.
On the other hand, Scfea and Gopakumal16] propose a
minimal no-radiation approximation, in which the
transverse—trace-free part 6f72° is restricted. We deter-
mine the conditions in the more rigid way: Our conditions

for u?® termined from th i tthatthe . . . L =
or u™" andu 5, are determined from the requirement tha el\N|thth|sch0|ce,theequatmnsfhrj andR are significantly

quasiequilibrium solution and its sequence satisfy the viria lified. which its in th tor for the I ¢
relation and first law at least approximately. This subject will>'™P" '_e ! w '(f .resu s 'r‘ € operg or for the finear grms
be discussed in Secs. Il and IV. of h;; in its elliptic equation becoming the flat Laplacian.

Equation(2.34 is regarded as the equation for determin- Furthermore, the behavior of the source terms of the elliptic

0 _
F2=D,y*"=0. (2.59

ing A,p,, namely,

~ ~ o~ o~ o~ 2. - ~
2aAap=DaBp+DpBa— §7ach,30_ Uap- (2.56

Then, substituting Eq.2.56) into Eq. (2.27), we obtain

B 4 LR B EbL B Tby B I
ABat §Danﬁ +R,p8°+D"In || DbBat DaBy
2o ool @ 6vhe ;
—3%abPcp —ﬁDc(a JPYPCU,) = 16T aj, .

(2.57

This elliptic equation determinq~8a.

Regarding 5, as an input quantity, the evolution equation

for A,, may be rewritten as an elliptic equation flog, ,

(0)

3 1(0) 1(0)
A hab: 2

RYo~ 5D a(Fyeh) = 5D 6(F¥ca) +Rip

. 1 .
- ?'}’abR_ Z D.Dpa— ?YabAa’

e 2%
_4¢4AacAbC+ T( DchAcb+ DbIBCAac

e
Sap— ?')’abscC

2 ~ ~
- §DC,8°Aab+ BCDCAab) — 167

(2.58

Together with the above equations fog, and 3, , the ellip-
tic equations(2.26 and (2.33 are solved fory and y
= af, respectively.

equations for¢ and y for r>27Q"! have suitable
asymptotic behavior, becaus@=0(r3) and, henceR
=0(r 4. Thus, the source terms of elliptic equations for
andy areO(r ~%) in the present gauge. This implies that we
can numerically solve these equations without serious diffi-
culties.

As a result of the present choice of gauge conditions, the
asymptotic behavior as—~ of the geometric variables is
[24]

M
=1+ —5 0 +0(r ), (2.60
M
a=1--"+0(r"?), (2.61
k - 2l tivirk “k
B :_4?(6Zk|r +3Z|]I’ r'r —Z”I’
+8Z°r) +0(r %), (2.62
’Eij:O(r*l), O')k’ﬁij:O(riz), (9k(9|Flij:O(r73),
(2.63
A 1 1% ~1%i
Aij:_F[Gzij—Z&jZkk—BZ”r r'—6zr'r
+48;Zyr*r' +(5Zyrr' - Z,) (5, —3r'r))
—12AZpS M+ ZAST ) + U 1+ O(r Y, (2.64

where M p,py @and M denote the ADM mass and Komar
mass(see Sec. I), rk=x"/r, and z,, and Z;® are time-
dependent symmetric and antisymmetric moments, respec-
tively. Equation(2.64 implies that the total linear momen-

To summarize, the Einstein equations are rewritten as fou!m ©of the system is implicitly assumed to be zero, as

elliptic equationg2.26), (2.33, (2.57), and(2.58 for ¢, x,

B2, andh,,, with u’=4,%2" and v 4= 3,A,,, Which are
regarded as input quantities that satisfy a certain ansatz. The
asymptotic behavior ofi*® and v, is chosen to preclude
standing waves in the far zonex>27Q 1. The simulta-

Here
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J’ = lim J
*® rowd S
with S; a sphere of constamt The antisymmetric moment

can be related to the angular momentum of the system as
(2.66) timelike Killing vector, Beig[28] and Ashtekar and Magnon-

' Ashtekar[29] prove the equalityM =M py. We obtain
where ¢y is the completely antisymmetric symbol. In the here more general asymptotic conditions sufficient for equal-
Newtonian limit, ity in the following way (patterned in part on Beig’s work

Suppose that the metric has the fo(n2), with!
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and thus, we reach the familiar forf27]

1
MK=ELDaadSa. (3.4

For a stationary spacetime, wilff* the asymptotically
ZCS: —Jj€jur

Kyl o Iy kyq3 dly
Zy= | p(v™ X' +0v'x)d*x= dat (2.67 Yij = 77ij+hij , (3.5
hij:O(ril), th”-:O(rfglz), DkD|hij:0(r72),
Zi= f p(v*X'—v'x ) d%x, (2.69 (3.6

and suppose that the lapse, shift, and extrinsic curvature sat-
wherel;; is the quadrupole moment;; in Eq. (2.64 is a  isfy
symmetric trace-free moment determined by the asymptotic
behavior ofuj; . Cll Cll
A solution to the simultaneous equations derived here sat- a=1-—+o(r 1), g,a=—+o(r 2,
isfies the constraint equations of the Einstein equation. In r r?
this sense, it can be referred to as a fully general relativistic

solution and can be used as an initial condition of (B¢ 1)

o
numerical simulation. However, since we do not assume the c?rza= —2—3+o(r*3);
r

helical symmetric relation gy,,#0, the solution does not

satisfy the equation for quasiequilibrium exactly. As a result,

£, £, and £,82 would be slightly different from zero

1

in general. Deviation of these quantities from zero can mea-
sure the violation of the helical symmetry. The magnitude of f dQK,, =o(r 3, Kij=o(r—%?),

the deviation depends on our choiceudf andv ,p,.

Ill. RELATIONS BETWEEN M apy AND My

(3.7
B'=0(r™h, o;p'=o(r 3; (3.9
aKij=o(r=2), (3.9

In this section, we derive the conditions needed for equalwhere fdQ denotes a surface integral. Théhe=M apy -

ity of the ADM massM 5py and the Komar mashl ¢ . This

Note that the equality also follows with the slightly altered

equality is closely related to the virial relations as discussedonditions,h;; =0(r 17¢ and DD hj; =0(r ~2"¢); and/or

in the Appendix.

A. Sufficient conditions for equality of M and M ppy

The Komar masf25] is constructed from a vectdt”* that

approaches a timelike Killing vector of a flat asymptotic met-

ric at spatial infinity. As presented in Ref26], ¢
=—a?V°t, and

1
MKzgﬁa(Vﬂga—V“gﬁ)nadsﬁ. (3.

With the metric written in the forni2.2), one uses the rela-
tionsn,=aV,t andnfVzn®=a~*y5D,a, to obtain

Va(VALE = V2PN, = aVe{ 2LV (an?) = V(an®)]V,t}

=2D,D%. (3.2

Using Eq.(3.2), we have
1JZDDf"dV—ljD""d 3.3
g ) 2DaD7adVEg ] DladS, 39

the conditions8'=0O(r ~*~¢) and 9,K;;=o(r ~27¢).

To prove this claim, it is useful to introduc@3G”— , the
part of 3G;; linear inh;; . The idea is to show that i63G;;
is the asymptotically dominant part 6(3”- , then

f *GixldS = —8TMapy . (3.10

One then uses the field equation fBG”- (the dynamical
equation forKj;) to show that this integral can be written in
the form (3.4) of the Komar mass, wheK;;, £ sK;;, and
o;K,, fall off rapidly enough at spatial infinity.

Formally,

jo

5 1 (0) (0) ‘ (0) (0) ‘ (0) (0) (0) ‘ 0) "
o GIIZE(DIth]—’_DJthI_AhI]_DIDJhk+77IJAhk

(0) (0)

_ﬂijDkD|hk|), (31])

The definitionh;; here is slightly different frorrﬁi,- in Eq. (2.40
in Sec. Il B.
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where the index of;; is raised by the flat metrigy'!. The
asymptotic behavior O?Gij is given by

3Gij_53Gij:O(r_3). (312
This is because each term ?Iﬁ;ij involves eitheD,D,h;; or

DyhijDihy,; then terms quadratic or higher orderhp fall

off as rapidly as eitheh,,,D,D,h;; or thgD,hmn.
(0)

From the linearized Bianchi identityDj(SsGiJ-:O, we
have

o o (0) )
f 3G'jxlds:f ﬁe'jxlds:J D (8°G;;x) nd3x
© 0 \%

:jvéGG”ﬂ” \/;dgx (313)
Now &3G;; 7'\ is a simpler divergence,
o 100 10 10 © O
77”5 G” = EDiDthJ + EA hk:EDI(D lhk_ Djhll),
(3.149

and we return to a surface integral,

o 10 @ (O
L3G;xlds=—EL(Djh”—D'ht)ds=:—8wMADM.
(3.15
As written, the integrations-by-parts of Eq§3.13 and

(3.195 appear to assume an interior with no boundary, a re
striction that eliminates typical hypersurfaces of black-holed
spacetimes; and Beig explicitly tak&s=R3. This restric-

PHYSICAL REVIEW D 70, 044044 (2004

Therr component of Eq(3.11) gives 5 3G,, as a sum of six
terms that we will label 1-VI. They can be rewritten in the
following manner:

0) (0) 1 1
I+11=D,Dhk=0, r—zﬁr(rzhrr)—;hl +0,Dyh!.
o N 1., 2
|||+V=§(5]—I‘I’J)Ahij=§¢9rh|+3r Fhl +r—2hrr
1 (I} 4 |
+§D| DhJ+Fhr .
10 1 1 [1
|V:—§D,2ht:—§a§ht.=—Ea{r—za,(ﬁh”)}
1 1,
+ 0, Fh” _Earhl'

1@ 11 1,01
V|=—§DKD|h :_Ear r_i(yr(r hrr)_Fhl _F(yrhrr

2 1 | 1 1J 6 | |
—r—zhrr+r—2h|—§D| D;h +Fhr _arDIhr-

Adding the terms, we find

10 O |
3Gy =1+ +VI=—2-(D;h!=D'hyVir + DV,
where V'=—(1/2)(D;hY—D'h}+(1/r)hl).  Because
r3DV'=D,(r3V"), the integrands differ by a two-

imensional divergence, as claimed.

tion, however, is unnecessary. Because the steps from Eqsext, from Eqs(2.29 and(2.24), 3(;”. has, outside the mat-

(3.13 to (3.19 use no field equations, one can repldgg
by any smooth symmetric tensor field that agrees with

for r greater than some radi&® and that vanishes faorless
than some smaller radiuR, outside all interior boundary
points of the hypersurfacé. The verification of the identity

(3.15 is then valid as written.
. ©
Because the equality [..63Gjx)dS=—3/.(D;h
0,
- D'hE)dS does not depend on the values hof,, in the

interior, the integrands should differ only by a two-

ter, the form
3 1
Gij=Rij— 5 7R

—1DD 1 1A 1
T DI gNigReTy

aK--—E i YK
tINij 27”7 tMkl

1
+2K|kK:(_ K'JK_ ’)/I](Kk|Kk|_ EKZ)

dimensional divergence, allowing a derivation that uses no 1

volume integral. We show this directly in the following:

Let I,J be indices on the 2-sphere, and Tetbe the two-
dimensional covariant derivative operator associated with th
metric on the unit 2-sphere. Writh;=7'"h,;. The inte-

grands are
83GixI d§=5°G, r’*dQ
and

1@ O 10 o 1
5 (Djh7-D'hj)ds =~ (D;h~ D"hi~~ h)rdQ.

1
gince the terms involving(;; areo(r ~3), we have
f 3G}xids:J DiDjar'r'rid{. (3.17
Now dyy;;=O(r ~2) andd;a=O(r ~?) imply
D, %a=09,2a+0(r %). (3.18

Finally, from Eq.(3.4) and the asymptotic forn@3.7) of «,
we have
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MK:iJ &d0, (3.19
47,
and

L 3G}xde:LDrzar3dQ=—87rMK, (3.20
whence

MADM:MK' (32])

The asymptotic behavior of Eq&2.60—(2.64) doesnot al-
wayssatisfy the condition$3.9), because’Kj; is o(r 9%,
noto(r ~3).

B. Relation betweenM ¢ and M »py in the waveless
approximation

For quasiequilibrium binary solutions that satisfy Egs.

(2.54—(2.58, with K=0, a slightly different relation holds
betweenMy and M ppy - The asymptotic behavior given in
Egs.(2.63 and(2.60 implies

(3.22

For the asymptotic behavior of Eq®.60—(2.64), together
with Eq. (3.22), Eq. (3.15 still holds and

Dihij:O(riz), DiDjhij:O(rig).

f3e}xids=—sw|\/|,<+f 3K, r3dQ

1 A
:_SWMKJ’_Zf 5t(12zrr—U”)dQ,
(3.23
or
d(3 1
I\/lADM:MK_a zzrr_gurr . (3.249
Using
nini A Am
J rIrJdQ:?ﬁij, (325)

Equation(3.23 may be written in asymptotically Cartesian
coordinates as

| 2epdds—-smmct [ auitiran

= _87TMK+47TTa (3.26
whence
3 1dzZ
Maom=Mx= 5 i~ (3.27)

We note that a similar expression has been derived for the
maximal slicing condition in the first post-Newtonian ap-
proximation [30]. The expression here is the fully general

relativistic generalization.

PHYSICAL REVIEW D 70, 044044 (2004

In the presence of a timelike Killing vector, we may set

9 Yab=0, (3.29
oyt =0, (3.29

d

grék=0, (3.30

and, hence, the virial relatiokl opyy =My holds. This con-
dition should be satisfied not only for axisymmetric equilib-
ria but also for nonaxisymmetric ones such as general rela-
tivistic Dedekind solutions.

The integral ofK;; in the above expression may be com-
puted further as

St =
L&tK,Jr rir°dQ 8 dt).

K.Px3dS,

1 d

= by.ay43
87rdtf Dy(my°x®)d>x

X3jdV

T

1 d

" 167 dt

(0)
73%CD yapd®X,

(3.3

which yields

d , 1 b2
M apm =My + &f x4, dV— Ef (9y°X°D ¢ Yab

(0)
+ 73PXC D ¢y Yap) d3X

Mt gt

X3jdV
1 4_aby o~
- ﬁf [d(y md )XCDC')’ab

0
+ Y PXCD (3, Yap]d3X. (3.32

In a gauge withK=0, Eq.(3.32 can be written as

d _ 1 . O
Mapm =M+ af X% dV— EJ’ [3¢AapX°D ¢y2°

+ A pXED 0, y2P]d3x
d ) 1 0 _ b
=M K+ mf Xaj adV— EJ’ [UabXCD C’ya

(0)
+ A,px°D (udP]d3x,

(3.33
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(0) - O derived in Sec. Il are satisfied. The field equations are used

; aby,c — cy ~ab ;
where a relationm®*x"D ¢ yap=AapX"D ™" is used. Since 4 rejate the Komar mass to the Lagrangian density and the
we always impose a condition,£j ;\'y) =0, the second in-  gther terms in the manner

tegral can be discarded because of the relation,

1 1

d : . . M=—fDad =—fDaD dv

af XajadV=J’o7t(Xa]a\/;)d3X=JEk(Xaja\/;)d3X=O. K= 4m),.~ ¢ S Aqr ad
(3.39 1

— t /[ a__ p_ T ab
Thus, Eq.(3.33 is written as _Zf [PU V=ghup“=L 167 Yabt T
1 0 _ R (0) 1
M apm =M~ 75— (0apX°D ¥+ A XD u?)d3x. —an(zwabﬁb—wﬁa)]d?‘x, 4.1

(3.35

o ~where the definition ob ¢, slightly different from the previ-
If we assume that the spacetime is everywhere helically, ;s section, iwi®=u'(t*+v %) with v®n,=0. To compute

symmetric, £9,,=0, then it is not asymptotically flat, and he |ast equality, we first use a part of the Einstein equation,
hence the integrals in Eq$3.32 and (3.33, as well as

M apm » are not defined. Instead, we require helical symmetry 2

only in the near zone and the local distant zone. In this case, (G*?—8aT)| y,p+n.ng+ - Bals ay

in the local zone, we should set,#%°=0 and ﬁKAabz 0,

which can be written as B E

= Y.,y 720+ 2D2D yay+ 1677( 5T = e> NE
Uabz c?t;/abz —EQd;’;’ab, (336)

—16mpu'y—ghu,v®+D, (2728, — 78%)=0.
Vab=tAap= £ agAab, (3.37 4.2

while in the distant zoney®®—0 anduv,,—0 for r—=.  \We then subtract the trace of the Einstein equatiGA
With these choices]z,,/dt vanishes, and hence, the virial _877Taﬁ)gaﬂz ~R-87T =0 to relateM to the La-

relation M apy = My is satisfied. The virial relation is satis- grangian density2.9).
fied for the Simple CaS@ab:Uab: 0. Equatlon(335) re- The angu|ar momentum is defined by
minds us that it is satisfied in the conformal flatness approxi-

mation y*°= %", i.e.,u®=0 [21]. __if 2 b __if o b
J=—g,] T dS=— g | Dalmpe”)d’x

IV. RELATION FOR  6M zpy AND 83

1

A first law for binary systems with a helical Killing field =- gf (¢*Dp7°,+ 7 Dpa) d3x
k* has been formulated as relating a change in a conserved
chargeQ, associated with a family of helically symmetric A 1 ., 3
spacetimes, to the changes in the vorticity, baryon mass, and :f Jad™\y— 160 " £ yYap|d°X, (4.3
entropy of the fluid as well as in the area of black h¢2H.
Also shown is that a relatiohQ= 6M ppy — 2 8J holds for  where the momentum constrai@f=0 is used in the last
asymptotically flat systems, whef® is the orbital angular equality. The variations dfl, andJ are computed following

velocity of a binary system in circular orbits. Ref.[21]. First, we take the variation of Eg4.1) for M,
In inspiraling binary neutron stars, entropy, baryon mass,

and vorticity are almost constant, and hence energy and an- . W 1 ab
gular momentum are dissipated only by gravitational radia- 5MK:2f A(pu'y=ghu,v®)— 8- @5( Yapd ")
tion. Thus, the relatiordMpy /dt=QdJ/dt is satisfied.
Then, we should require that, in a formalism for computing 1
asymptotically flat binary equilibria, a first lawM spy _EDag(zwabﬁb_Tr'Ba) d, (4.4
=) 8J is satisfied. In this section, we present a heuristic way
to derive a relation held between the variations of the ADMand substitute the following relation into the first term,
mass and the angular momentum without assuming any sym-
metry for perfect-fluid spacetimes, but requiring the field A(puy'—ghuw®) =huw*A(puty—g)
equations to be satisfied. Then, we identify sources for the ) w ) a
violation of the first law. In the following calculation, no +pu'y=guA(hu,) +ja ¥
gauge condition is specified; and surface terms associated (4.5
with black hole horizons are not included.

In contrast to our earlier papg21], no helical symmetry where we used the facts that a choice &0 implies
is assumed. Instead, we assume only that the field equatiodsy “= —At*=£,£“ and that £&“V,t=0  vyields
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pu—ghu,£ &%= .\ vd,£2. To the second term, the varia- Where
tion in the Lagrangian densit{2.12) is applied. )
When all components of the Einstein equation and the A(ia¢™Vy)=A(pu'N=g)hu,¢*+pu'y=gpA(hu,)

Bianchi identity, Eqs(2.18—(2.21), are satisfiedpMy be- . a
comes jaVyE o¢
h t = A(pu'y=g)hu, ¢+ pu'\=gs*A(hu,)
5MK=2] pTAs{—g+| —+hu,v®|A(pu\—Q) ) .
u' + &€ y(ja\7) — £ 4(1aEV), (4.10
+0A(hu,)puty—g—&20,(ja\y) which results from relationsj,¢®\y=pu'y—ghu, ¢,
1 0¢*=0, andA ¢“=—£ ;£ The last term in the integral of
+ E(‘Sﬂ'abé’t'}’ab_ 85YandymP) — Da[ 02y Eq. (4..9) yanishes since it becomes a surface integral with a
combination¢?dS,=0.
1 Finally, Egs. (4.8) and (4.9) are combined to derive a
+ Ea(zwabﬁb—wﬂa)] d3x. (4.6)  relation
The contribution of the surface term of the above equation iSM ppy— Q2 8= f pTAs{—g
given by
~ 1 h
_Zf Da[®aﬁ+ﬁﬁ(2”abﬁb_ﬂﬁa) dx +{J+hua(v“—9¢“)]A(put\/—g)
:_zj 2ds, + (0= Q¢ A(hu,)pu'V—g
1 1 _§a£t+()¢(ja\/;)
- a _ ac, bd
_47TLD dadS, 877J;(7 ’ +i(5wab£
167 t+Q¢7&b
—7*Y*)Dpoycad Sy
=6My—26M ppy - 4.7 — 0YabE 1+ 0gm™) |d3X, (4.11)
Combining Egs.(4.6) and (4.7), the variation in the ADM _ .
massM apy , instead of the Komar madd ¢, is written where £, q4=d+£q4, which operates on the spatial
h quantities, is understood as a pullback of the Lie derivative
SM - TAsV=—a+| —+huov?|A(outy=q along the helical vector field onfp, . The flrst three terms qf
ADM f{p SV (u‘ Ha¥ ) (pu 9) Eqg. (4.11) are the same as those derived in our previous
_ paper[21] except for the definition of the spatial velocity
+v*A(hu,) put=g—E(ja\y) v®=u/ut (in Ref.[21], we used the definition*=u</u’
-0 ¢*). The difference also changes the definition of the
shift.

As discussed in Ref21], for an isentropic fluid, conser-

1 ab ab 3
+ 167T(57T &tyab— 5’yab(9t7T ) d=x. (48)
vation of baryon mass, entropy, and vorticity become

The variation in the angular momentuéd, computed in a
similar way from Eq.(4.3), is £.pV—9)=0, £,5=0, and fw,z=0. (4.12
_ 1 : .
5J:j [A(Jacba\/;)_ Eﬁ(wabﬁ ¢>'Yab)]d3x These imply perturbed conservation laws,
A(pu'y—9g)=0, As=0, andAw,;=0, (4.13

that will be almost satisfied during binary inspiral before the
merger. Here, the relativistic vorticity .z is given by

®ap=0a"05°TV,(hus) = Vs(hu,) 1= V,(hug) — Va(h ?4(11)1.

= f [huWA(putJ—_gH¢“A<hua>pu%—_g

_ 1
+6£ y(jaVy) ~ 152 (87 yYan
4

_ by _ i

OYapE 47 £¢(Ja§a‘/; The third term in Eq(4.11) vanishes foxi) corotating bina-

ries, flows withv “=Q ¢, and(ii) irrotational binaries, po-
tential flows withhu,=V,®. For the latter case, the third

term in Eq.(4.1D) with A(hu,)=AV,®=V,Ad becomes

1 ab 3
+E7T 6Yap| (d°X, 4.9
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J(v“—w“)A(hua)pu‘J—_gde
:f (v*— Q™) V,ADputy—gdx

= J [D{(0* = QM) AP pu'ay}
+HEW(pV=9)— £ 4(pV—g)}AD]d3x
:J [ExpV=0)—Eu(pV=g)]add,
(4.15

where we assumg=0 for the distant zone to derive the last
line. Then, together with Eq$4.12 and(4.13), Eq.(4.1)) is
rewritten as

6MADM—96J=f [£k<pJ—_g>A¢—§a£k<jafy>

1 ab ab 3
+16_7T(57T £k’yab_5’yab£k’ﬁ ) de°x.

(4.19

The form of the “first law” described in Eq(4.11) or Eq.
(4.16 is derived without relying on the helical symmetry of

the spacetime and the fluid. Choosing the maximal slicin

condition K=0=, we may rewrite Eq(4.16 using the
trace-free part of the conjugate momentus?®= 72°
— 1427 and the conformal metriE/ab= v *Yap @S

£1(pV—9)AD— £ (jo\y)

5MADM_Q(S‘]Zj
1 47 ab =
+ 15, O T E kYan

d3x

— 8yapf k(¢ T0)}
=f [Ek(pJ—_g>Ad>—§a£k<jaJ§>

d3x.

1 " - - "
+ @( SALE ¥?P— 5Y*E \Aap)
(4.1

Here, the gauge choice=0 impliesé7=0 and £7=0.
If one requires %y.,=0 and £72°=0 (or £,y*"=0
and £,A,,=0) in a gauger=0=K, together with condi-

tions for the fluid variables gpy—g)=0 and £(j.\y)
=0, Eq. (4.16 leads to the first law relationrSM spy

PHYSICAL REVIEW D 70, 044044 (2004

In a realistic system, the radiation reaction violates the
Killing symmetry. In its presencejy,, and 572° are deter-
mined by the radiation reaction, and these terms may be
proportional to the violation of the helical symmetry near the
source. Namely, we expect that the following relations hold:

(£ kYab) Ot=90Vap, (4.18

(£ 7°) St= 572, (4.19
or in the gaugeK =0,

(£17%°) ot= 577", (4.20

(£ kAap) 8t = 0A4p, (4.2

where 6t is a radiation reaction time scale. In this case, the
right-hand side of Eq4.16 vanishes with the symmetry for
the fluid variables. This indicates that even with the slight
violation of the helical symmetry due to the radiation reac-
tion, a relationdM ppy = 6J may be well satisfied.

Finally, as shown in Ref.21], SM ppy = 48J is exact in
the conformal flathess approximatiofsenberg-Wilson-
Mathews(IWM) formalism]. In this case, one needs to re-
place the Lagrangian densitg.9) by one that reproduces the
field equations of the IWM formalism. One can derive such a
Lagrangian density by substituting=0 and?y,,= 7.5, into
Eqg. (2.9. Then, assuming helical symmetry for the fluid and
rom the factsy,,=0, the first law is shown to be satisfied.

See Ref.[21] for a description of the artificiality of this
choice in a helically symmetric IWM framewopk.

V. CANDIDATE FORMULATIONS FOR
QUASIEQUILIBRIA

The conditionu®®=O(r ~%) is not compatible with helical
symmetry in the whole spacetime. Thus, we propose to im-
pose
—Ew}ab for r<ry,
0

b:

ud (5.1

for r=rg,

wherer g is an arbitrary radius. With this condition, the type

of the field equation foﬁij changes from Helmholtz-type to
elliptic for r=r,. To make the equation be almost elliptic for
numerical computation, it may be desirable to takevithin
the light cylinder radius asy=<2#/{). On the other hand,

we can impose helical symmetry ‘3’% without serious dif-
ficulty. In this case, helical symmetry is exact in the near
zone and, as a result, the violation of the first law is given by

5MADM_95‘]: 167 -

(5AE 047 °dx. (5.2
0

Since BA,p)E o4 falls off asO(r ~*) and the integral is

=(4J. However, these assumptions are equivalent to imeone only in the distant zone, the magnitude of the integral
posing helical symmetry on the whole spacetime and, henceyould be very small. Thus, even with the modified formula-

preclude asymptotic flatness; in other worllks,p,, andJ are
ill defined.

tion, the first law would be satisfied approximately. Further-
more, the virial relation is satisfied in this formulation.
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The condition ford,A,, may be changed to conditions at least approximately. We propose a formulation
in which the full Einstein equation is solved with the maxi-

—£ MAab for r<ry, mal slicing and in a transverse gauge for the cpnfqrmal three-

Vab= 0 for r=r (5.3 metrlc_. In th'e proposed for'mulatlo_n, the sqlutlon in the near
0 zone is helically symmetric, but in the distant zone, it is

Then asymptotically waveless.
’ So far, quasiequilibria of binary neutron stars have been

1 A - computed using the conformal flatness approximation for the
M apm —Q263= 74— [(SAE 067 three-metric[9,11]. In this formulation, only five compo-
=To nents of the Einstein equation are satisfied, and thus, the
_(£Q¢Aab) 5y d3x. (5.4) obtained numerical solutions for quasiequilibria involve a

systematic error. Specifically, in a real solution of the quasi-
Even in this case, the magnitude of the violation of the firstequilibrium circular orbit, the conformal nonflat part of the
law would be small, and the virial relation holds. The meritthree-metric will be of order NI/a)?, which can be~0.1
in this approach is that the right-hand side of the ellipticnear the neutron stars for close circular orbitsacf 10M
equation forh,, falls off asO(r ~%). As a result, it is nu- (e.g., Ref.[4]). This implies that to compute an accurate

merically easier to integrate the equation. quasiequilibrium in circular orbits of error within, say, 1%, it
We also note that instead of using the step function, weVill be necessary to take into account the conformal nonflat
may write part of the three-metric. In the new formulations described
here, such term is computed, and thus, more accurate solu-
uab:_Ef(r)M‘;,ab’ (5.5  tions of quasiequilibria will be obtained. Currently, we are
working in computation of binary neutron stars in quasiequi-
Vap= _Ef(r)Q¢>Aaba (5.6) librium circular orbits using these formulations. In a subse-

quent papef31], we will present the numerical results. Such

wheref(r) is a smooth function that satisfies the condition a numerical solution will also be used as an appropriate ini-
tial condition for simulations of binary neutron star mergers
1 for r<ry, [5].
f(r)=(0 for r>ryg. (5.7) In this paper, we restrict our attention to the system in
which no black hole exists. In the presence of black holes,
This choice is equivalent to taking a Killing vector of the we should carefully treat the surface terms at event horizons.
form The surface terms would modify the equations for the first
law [21,33. The formulation for computation of quasiequi-

k/":(i " librium black hole binaries are left for the futufa2)].
at

+f(r)0(£)ﬂ. (5.9
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APPENDIX: EVOLUTION EQUATION FOR THE SCALAR
MOMENT AND VIRIAL RELATION

Q .~
= Eéj (£ 4Aqp) ¥2Pd3x. (5.9 In this section, we derive the virial relation by direct in-
tegration of the Euler equation. Thus, the virial relation we
consider here is associated with an evolution equation for the
VI. SUMMARY scalar moment as in the Newtonian case. In the end, we

Two relations, the virial relatioM sy =My and the first confirm that the virial relation derived is equivalent Ny

law M py=Q6J, are regarded as guiding principles to =Maom - , ,
develop a formalism for computing binary compact objects !N the following, we often refer td1, as a “Komar-like

in quasiequilibrium circular orbits in general relativity. De- Mass,” which is defined by the asymptotic behavior of a
riving the explicit equations foM spy— My and M apu function y:=ay atr—o=,

—Q6J on the assumption that the spacetime is asymptoti-
cally flat, it is shown that a solution and a sequence of the

M
X -2
. : . . - ==+ .
solutions computed in some formulations satisfy these two x—1 o) (A1)

2r
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For simplicity, in the following calculation, we adopt a gauge whereT'§ denotes the Christoffel symbol with respectyg,
in which K=0, F*=0, andy= 7, and we carry out the cal- andA = ySA,; . Thus, we obtain

culations in Cartesian coordinates. We often need to evaluate .
surface integrals at—c<. In the evaluation, we assume Eqgs.
(2.60—(2.69 as well as(Al) the asymptotic behaviors of
geometric variables. As a consequence, all the volume inte-

6; I_ pl 6 i?_ ij
o)1 (2v' = B) +6ay P+1677A”u

MX_MADM:J

grals that appear below are well defined, and furthermore, 1 ~ 1~ij 3
the surface integrals derived during the calculation can be + g XYRT Y1 (0ig)dix | dX (A8)
safely discarded.
From the asymptotic behavior as—»«, we can define where we use the relation
M, andM,py using the surface integrals
1 _ eI '7 +3aP=](v"+ B9 +3aP. (A9)
My = 5= | waxds, (82)
(Note thatv® here is defined by*=u*/u'.) In stationary
1 - spacetimes, the relatiod ooy =M, [28,29 and u;; =(9t7yij
Maom =~ ZLX& yds. (A3) 0 should hold. Thus, we get the virial relation as
Using Gauss’s law, they can be rewritten in other forms, f o)1 (2v'— B+ 6aytP+ %XJR
1 -~
=_ 9 v 3 1.
MX Zﬂf (lﬂAX'f‘ Y t?l)(aj lﬁ)d X, (A4) + ;)"J(f?ilﬂ)an d3X:0. (A].O)
1 ~ o~ In quasiequilibrium binariesu;; #0 in general. Thus, the
= — 9. 0o 3 i )
M aom zwf (XA gty aipa;x)d>x. virial relation, Mapy =M, , is written as
(A5)
Yji(2v' = B+ 6aytP+ > —A,; gy = YR
The difference betweeM opy andM, is written in the form ! 167 g X

M~ Moo= | | 20585+ —— xR TR 1+ - yyR
x ~ Mabm™ XS g)(lﬂ i g)(‘ﬂ

1.
+—ylaipaix d3x (A6)

Here, using Eq(2.34), we can derive an identity,
6% Ri 43 1 6Ri i LT Tin g pk

ayA AL AX= 5 | A (0B kY B
+ Y B yni— Vi) dx

~. 1 ~
:J [lﬁGA' 9B+ EIIIGAJ",Bk(?ijn

d3x

_%‘/’G’Aijuij
=f [—{amwﬁﬂ‘j)—wﬁﬂ' WL

+ = ¢/;6A ul|d

d3x

R T
_f[Bﬂ'lilﬂ B'— AU
(A7)

d®x=0. (A11)

1.
+ —M (9. .
777 (all//)ajx

As in the Newtonian case, we can derive the general rela-
tivistic virial relation from the evolution equation for the
scalar moment. First, we write the general relativistic Euler
equationy’,V, T% =0 in the form

A(J1®) + 3 (jkp®ol) + d(ayp®P) + pryp®ax — (pn
1 o
+28 ) x vt b= %18+ 5 x9Sy’ =0.
(A12)

Equation(Al12) is a fully general relativistic expression, and
no simplification is done. Taking an inner product with
we have

E

I 6 o ol L ~ii | 43y —
+2S)x ¢ o — ) 10kB +§X¢Sij(9k7 d°x=0.

(A13)

A k) + 9, (jp®)) + (@ ®P) + priPax — (py

In the following, we carry out the integral for each term
separately.
(1) First term:
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d
= f Xay(j ®)d3x= J X 83k, (Al4) = f ¥°5 X aB'd

T dt
__i ko gl g 6’Ai+i 6A.. 9,1 |3
In the Newtonian limit,,4®— pv*= pdx¥/dt, and thus, this = ~ g5 | X kB | G(°A D+ S¢°A; 9y |d°X
term leads to half of the second time derivative of the scalar
. . l .
moment, i.e.} /2. __ = {_ 6K, (x%a.5: B'+ o B
(2) Second and third terms: By integration by parts, we 8w VA XCAAB A

immediately find

1 -
+ Exk(ﬁkﬁl)lﬁGAij07| Y d3x
|2‘=f Xk&j(ikvjlﬂ6)d3X=_f jo uld3x, (A15) 1 B o
:_gj {(aﬁ')xkakw%'|>+2<aiﬁ'>w6A.'
I -:kaa (aszP)de’x:—SJ’ ay®Pdx (A16) Lo ol R i | g3
3t K : + X (B YA 9y dX

== if {(aiﬁbxkak(ﬂi )—2B'a(y°A "
In the Newtonian limit,—1, and — I3 are the terms associ- 8w
ated with kinetic energy and internal energy. 1

(3) Fourth and fifth terms: Using Eq§2.26 and (2.33, + =X B8 YA 9y
we can rewrite the combination of them as 2

d3x. (A20)

Here, let us evaluate the first term. Using E21.34),
putPox— (pu+28 )y oy .
R 1 L= — %f (08X an(y°A ) dx
= Eﬁk()(w)_ E[(Al/’)ﬁkXJr(AX)f?klﬂ]

1 - o ~ -
VRIRT (| a :_gj (201A|i_7“7ik<9j,3k_ Vllﬁkﬁk%j
_ oty
16m ak( JG) (ALD) ~il Ko (0 6Ri 3
+ Y Ui )X 9 (P°A ) d X
Taking into account an identity, == gf [(2aA", =Y B9y + Y Ui X (WA )
f LX) Ay + (X<a00) A ] dx (984 WA X (¥ i) 1%~ 15 (A21)

Thus,
:f [Y1(3ix) 9+ X(dix) (9;9) 3y 1d3x, 1
(A18) lé:_ﬁf [(2aA"; =Y B o yij+ 7' uip) dm( YA

. - . + (0 B (AT 9pryi+ A dmy ) 8 1xMd3x
where we discard the vanishing surface integral terms, we (G5B AT Im it Aadmy" ) ¥]

e “— o] [ R )+ Gy
|4==f K[ pp A — (pu+2S )y vt a]d3x + Ui Im($OA ) + (9384 (A G i
+ Ay ¥ [xMd3x
=Ton | | R =8y (Gix) d+ X (oY) R R
o . 167 H m(dIG iA kY [Im(7A)
Xwiw"w}_wlaijzjlxkak(?) e (A9 — YR iy 1+ 7 WA )+ (3,89 (R 2y
(4) Sixth term: + Ay ) 8 XM= BayPAl AT |d3x. (A22)
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As a result,

's= " T6m
+ By (WA — YA Gy IX™

+ YU XA )+ (984 (A 9y

+ A Iy ) XM+ XK( 0kﬂl)l//6'~°\ij gy

—2'(16aj, 95— yCA;; 9 ) | dx
1 3. . o
=— E [— EAHUKI— l/llz;&l iAI |Xm(9m( F)

+ B4y [ In( lﬁezﬂ )— YA Iﬁm’;’ij x™
+;’“Uijxm5m( YA |)+(f9j3k)(;&ij0m;’ik
+Admy!) PO+ XK (98" YA 01y — B (8 4

—2y°A;; 99" |d3x. (A23)

(5) Seventh term: Using Eq2.35, we rewrite it as

Xy T -~ 1
TS”X ﬁk’)/IJ:EX ﬁk’y” )(l// RIJ+RI¢Jl_EDIDJa

+y°

- ZaZik'Aj k+ AljilBkhAkj'f' ﬁjTBKAki

20 ~ ~ ~ ~ ~
_§Dk,3kAij+,3kaAij_l9tAij } (A24)

where we usey;;dyy' = g Iny=0.
By straightforward calculations, we obtain

|6‘=if X (oY Ry d3x
16 g

1 ~ ~

:_Ef [ X (ay )T+ a (xR

+Ryy]d®x, (A25)
1 DU _ 2 ko 7iid3
|7::Ef [Xlej_lzb DiDja]X ﬁk)/ d X

! DD Ko i3
:ﬁj [=DiDj(x ) +8(d;4) 3 x1x 9 y" d°x

! T! Ko i3
=@f [0 (x ) +8(d14) 9 x 1“9 y" d°x.
(A26)

Here, to derive the first equation, we use the spatial gauge

condition FX=0 and relations in the present gauge as

PHYSICAL REVIEW D 70, 044044 (2004

~ 1 ~i =
R=—S(ayT =7TLT. (A27)

The spatial gauge condition is also used in calculatior for

To evaluate the remaining terms, we first rewrite the fol-

lowing equation using the definition @; as
Rk LR KR L E oKk 2R k% kS &
—2aAikA j+DiIB Akj+ D]B Aki_ §Dkﬂ Aij+ﬁ DkAij
= B A — A i 0B+ A BE— A BF oy + AN uy .
(A28)

Then, after a straightforward calculation, we get

1 A Ak LR pKA . rKA 2 KA
ISZE —ZaAlkAJ+D|,8 Ak]+D]IB Akl_§DkB A”
+ﬂk5kz\ij _(9tFAij l/l6xla|;/ijd3x

= %J [— ((%Aij)xlé’&ij + lﬁez\ij(ak;’”)xlﬁlﬁk
+ 28y A+ BX (ay') o (YEA)
+ lﬁsxlxik(ﬁkﬁj)ﬁﬁ’ij +x! l/IGAik(aj,Bk)'?S’”
= BX YA [(dyin) 9n Y + X IR Uy v 1d3x,
(A29)
where we use an identity,Inyf=D, 8=y Co(y°B") that

follows from the maximal slicing conditioi{=0. Eventu-
ally, we find thatl s+ I g has the following simple form:

1
|5+|8:EJ

+ 87T] kl/l6ﬁk_ vin”&n;/” _Ainn&nUij

2

3. i o
— SAqU -+ A TR, an(?n(Jg)

d3x.

(A30)

By summation ofl;~Ilg, we obtain the following simple
relation:

8
I.:
I

0=2

d 1 ~

. ki 1643y - v k.6
P2 dtf XJeyprd™x f[lGaTXIﬁRJFJkU ¥

6 1 1 o6 ok S A i
+3ay°P+ E’y ﬁiXaj(/f_Elr/kaB +EA”U

d3x

1 _ A .
+ E(Uijxnan')’” +A;x"d,ul)

_MADM_MX dJ ki 1643
—T+a XS d>x

1 _ A .
_Ef (VX" Y +A;x"gu) d3x. (A31)
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Here, sinceu’’ =g,y andv;=a,A;;, the second integral B dZy, A4
term in the last line of Eq(A31) is rewritten as Maom=M, = dt ’ (A34)
1 d 6% . ~ii 13 ) _ _ _ _
~T6n i) (AX Iy )d X, (A32) s derived as is done fo¥l ,py andMy in Sec. IlI. In this

way, one can associate a relation of two maddasg,, and
Using the momentum constraint, we further rewrite this termM, (Mg) to a moment equation of the relativistic Euler
as equation(A13).
In the Newtonian theory, we usually check the accuracy
1 d 6% ok o i3 of numerical solutions by the virial relation. Since the rela-
167 EJ' (A X dcy?)d™x tion is not trivially satisfied in numerical solutions, violation
of this relation can be used to estimate the magnitude of the
1 ~ 1~  ~ numerical error of equilibria. Motivated by this idea, a virial
f Xk[ (A P°) + E‘ﬁGAii&kV'J]dax relation is also derived for axisymmetric equilibrium states
in general relativity{34], and it is subsequently used to check
accuracy of numerical solutions for rotating neutron stars
[35]. The virial relation has been also derived for binary
neutron stars in quasiequilibrium in conformally flat space-

8 dt

_ LdS"Ai X<y

e ez, L times[21] and applied for monitoring accuracy of numerical
T at JX JipPdx— §Zkk : (A33)  solutions in Ref[36]. The virial relation, e.g., Eq(ALl),
derived here will be used when checking the accuracy of
Thus, a similar relation betweed 5py andM, nonaxisymmetric numerical solutions.
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