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Deriving formulations for numerical computation of binary neutron stars in quasicircular orbits
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Two relations, the virial relationMADM5MK and the first law in the formdMADM5VdJ, should be satisfied
by a solution and a sequence of solutions describing binary compact objects in quasiequilibrium circular orbits.
Here,MADM , MK , J, andV are the Arnowitt-Deser-Misner~ADM ! mass, Komar mass, angular momentum,
and orbital angular velocity, respectively.d denotes an Eulerian variation. These two conditions restrict the
allowed formulations that we may adopt. First, we derive relations betweenMADM and MK and between
dMADM and VdJ for general asymptotically flat spacetimes. Then, to obtain solutions that satisfy the virial
relation and sequences of solutions that satisfy the first law at least approximately, we propose a formulation
for computation of quasiequilibrium binary neutron stars in general relativity. In contrast to previous ap-
proaches in which a part of the Einstein equation is solved, in the new formulation, the full Einstein equation
is solved with maximal slicing and in a transverse gauge for the conformal three-metric. Helical symmetry is
imposed in the near zone, while in the distant zone, a waveless condition is assumed. We expect the solutions
obtained in this formulation to be excellent quasiequilibria as well as initial data for numerical simulations of
binary neutron star mergers.

DOI: 10.1103/PhysRevD.70.044044 PACS number~s!: 04.20.Fy, 04.30.Db, 04.40.Dg
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I. INTRODUCTION

A detailed theoretical understanding of evolution of clo
binary neutron stars is one of the most important goals
general relativity, since they are promising sources of gra
tational waves for laser interferometric gravitational wa
detectors such as LIGO, TAMA, GEO, and VIRGO@1,2#.
For the inspiral phase in which the orbital separationa is
much larger than the radiusR of a neutron star, the orbita
velocity is much smaller than the speed of light, and fini
size effects of neutron stars may be ignored. Thus, a p
Newtonian study together with the point particle approxim
tion is appropriate@3#. For a/R&4, however, the post
Newtonian and point particle approximations break do
and numerical study is required to take into account the
fect of tidal deformation of each star and full effects of ge
eral relativity. The procedure to be adopted for such cl
orbits up to the merger is~i! to compute a quasiequilibrium
circular orbit at a distant orbit witha&4R anda*10M for
which the ratio of a radial approaching velocity to the orbi
one will be small~less than 1%! @4#, and then~ii ! to perform
a numerical relativity simulation adopting a distant qua
equilibrium with a*10M as the initial condition@5,6#. In
this paper, we focus on the formulation for computation
the quasiequilibrium in circular orbits.

So far, the quasiequilibrium states of binary neutron st
have been widely computed in the so-called conformal fl
ness approximation~or Isenberg-Wilson-Mathews forma
ism! @7–11#, in which the conformal three-metric is assum
to be flat. The solution in this formulation satisfies the co
straint equations of general relativity and, hence, it is fu
1550-7998/2004/70~4!/044044~18!/$22.50 70 0440
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general relativistic for the initial value problem. However,
is only an approximatequasiequilibriumsolution for com-
pact binaries, since conformally nonflat parts of the thr
metric are not vanishing for the quasiequilibrium binarie
Thus, such approximation produces a systematic erro
magnitude;(M /a)2 for the solution of quasiequilibrium
configurations@4#. The systematic error is also included
gravitational waves computed from the conformal flat data
the quasiequilibrium binary@4,12# and in the numerical re-
sults of fully general relativistic simulations started from in
tial conditions of the conformally flat quasiequilibria@5#.

Formulations for computation of binary compact objec
in quasiequilibrium circular orbits with a conformally nonfla
three-metric have been proposed by several authors~e.g.,
Refs.@13–18,4#!. A promising approach to this problem is t
assume a helical Killing symmetry for the spacetime@17,18#.
In this case, however, the solution contains standing grav
tional waves in the whole spacetime and the averaged en
density of gravitational waves falls off asr 22 where r de-
notes a radial coordinate, resulting in an asymptotically n
flat spacetime. Thus, the solution obtained in such a form
lation is not physical in the distant wave zone, although
solution in the near zone and in a local wave zone wo
describe a realistic spacetime of binary compact objects.

In this paper, we consider general relativistic formulatio
for computation of the quasiequilibrium circular orbits a
suming that the spacetime is asymptotically flat. First,
require that the following two conditions should be satisfi
for a solution and a sequence of the solutions of quasie
librium states:
©2004 The American Physical Society44-1
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~1! A quasiequilibrium solution that is stationary in th
corotating frame should satisfy a virial relation associa
with the equality

MADM5MK , ~1.1!

of the Arnowitt-Deser-Misner~ADM ! and Komar masses de
fined in Sec. III.

~2! Binary compact objects inspiral adiabatically as a
sult of gravitational wave emission, conserving baryon ma
entropy, and vorticity. Thus, along a sequence of quasie
librium solutions, the first law should be satisfied. Here,
first law is written in the form

dMADM5VdJ, ~1.2!

where dMADM and dJ are infinitesimal differences of th
ADM mass and angular momentum along a quasiequilibri
sequence, andV is an orbital angular velocity.

These two conditions are likely to be satisfied for bina
neutron stars in nature. Thus, we should adopt a formula
that provides a solution and a sequence of the solutions
satisfy two conditions at least approximately.

Based on this motivation, in this paper, we first deri
relations for the differences,MADM2MK and dMADM
2VdJ, in arbitrary asymptotic flat spacetimes. The con
tion that the differences vanish can be used to restrict for
lations that we can adopt. Using these conditions, sev
possible candidates for the formulations emerge. Amo
them, we propose a formulation in which helical symmetry
imposed only in the near zone instead of in the whole spa
time. Specifically, we impose a mixed condition; a helic
symmetry condition in the near zone and a waveless co
tion in the distant zone. To fix the gauge, we adopt the ma
mal slicing condition and a transverse gauge condition
the upper component of the conformal three-metric. In t
case, all components of the Einstein equation reduce to
liptic equations as in the post-Newtonian approximatio
This implies that no standing waves appear in the wave zo
although in the near zone, gravitational-wave-like comp
nents are present. We expect the solutions obtained in
formulation to be excellent quasiequilibria as well as init
data for numerical simulations of binary neutron star me
ers.

The paper is organized as follows. In Sec. II, we descr
the basic equations for quasiequilibria. In Sec. III, we der
a relation betweenMADM and MK for arbitrary formulation
and clarify the condition for the formulation that its solutio
satisfies the virial relationMADM5MK . In Sec. IV, we de-
rive a relation for the difference,dMADM2VdJ, and clarify
the conditions on the formulation for which a sequence
solutions satisfies the first law. In Sec. V, we propose form
lations whose solutions and sequences of solutions app
mately satisfy the virial relation and the first law. Section
is devoted to a summary.

Throughout this paper, we use geometrical units withG
515c. Spacetime indices are Greek, spatial indices La
and the metric signature is2111. Readers familiar with
abstract indices can regard indices early in the alphabe
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abstract, whilei , j ,k, . . . are concrete, associated with
chart$xi%. If S is a 2-surface in a 3-spaceS andeabc is the
volume form onS associated with a 3-metricgab , we write
dSa5eabcdSbc; for S a surface of constantr, dSa

5¹arAgd2x.

II. FORMULATION

A. 3¿1 formalism

Let S t be a family of spacelike hypersurfaces, labeled
a time functiont. Let ta be a vector field transverse toS t for
which ta¹at51, and denote bya and ba a nonvanishing
lapse and a shift vector, respectively, with

ta5ana1ba, bana50. ~2.1!

Then, in a chart$t,xi%, we have ta5] t , and the metric
gab5gab2nanb has the form

ds252a2dt21g i j ~dxi1b idt!~dxj1b jdt!. ~2.2!

With a spatial covariant derivativeDa compatible with the
spatial metricgab , the extrinsic curvature ofS t is given by

Kab52
1

2
£ ngab5

1

2a
~2] tgab1Dabb1Dbba!, ~2.3!

where gab and ] tgab are the pullbacks toS t of gab and
£ tgab .

In the canonical formulation of general relativity@19#,
gab , pab, a and ba are regarded as independent gravi
tional field variables, wherepab is defined by

pab
ª2~Kab2gabK !Ag. ~2.4!

A perfect fluid is described by a stress-energy tensor

Tab5~e1p!uaub1pgab, ~2.5!

whereua, p, ande are the fluid four-velocity, pressure, an
energy density, respectively. The pressure and the en
density are assumed to satisfy an equation of state of
form

p5p~r,s!, e5e~r,s!, ~2.6!

wherer is the baryon mass density ands the entropy per unit
baryon mass.

In calculating the variation of the Lagrangian followin
Routh procedure, a perfect-fluid spacetime is specified by
canonical variables, the lapse and the shift, that together
scribe the metric, and by Lagrangian variables for the flu

Q~l!ª@gab~l!,pab~l!,a~l!,ba~l!,ua~l!,r~l!,s~l!#.

The difference between two nearby solutions can be trea
in either of two ways. Changes in the metric variables will
written as Eulerian variations, denoted byd; the Eulerian
change is the difference between corresponding quantitie
the two solutions at a fixed point in spacetime. Changes
fluid variables will be written as Lagrangian variations. I
4-2
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troducing a Lagrangian displacement vector fieldja, one
defines the Lagrangian change in any fluid variable as
change with respect to a frame dragged byja. Formally the
Lagrangian changeDQ in a quantityQ is then related to the
Eulerian changedQ by

DQ5dQ1£ jQ. ~2.7!

The description of fluid perturbation in terms of a Lagran
ian displacementja has a gauge freedom associated with
class of trivial displacements that yield no Eulerian change
the fluid variables. We use this freedom to choose a gaug
which j t

ªja¹at50, following Refs.@20,21#.
The Einstein-Hilbert action

S5E Ld4x, ~2.8!

with the Lagrangian density

L5S 1

16p
4R2e DA2g, ~2.9!

takes, in terms of Hamiltonian metric variables, the form

16pL5pab] tgab2aHG2baC G
a 1Da~22DaaAg

22bbpa
b1bap!2] tp216peA2g, ~2.10!

where 4R is the Ricci scalar,

HGª22GabnanbAg, C G
a
ª22Gabga

anbAg,
~2.11!

andGab is the Einstein tensor.
The variation in the Lagrangian density is given by

dL52rTA2gDs2
h

ut
D~rutA2g!1

1

16p F2daH

2dbaCa1dpabH ] tgab2Dabb2Dbba2
2a

Ag
S pab

2
1

2
gabp D J 2dgab~Gab28pSab!aAgG

2ja¹bTabA2g1DaQ̃aAg2
1

16p
] t~dpabgab!

1] t~ j ajaAg!, ~2.12!

whereT is the temperature,h is the enthalpy defined byh
ª(e1p)/r, and

Gab
ªGabga

agb
b and Sab

ªTabga
agb

b. ~2.13!

With definitions

rHªTabnanb and j a
ª2Tabga

anb , ~2.14!

we set
04404
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Hª22~Gab28pTab!nanbAg5HG116prH

52FR2
1

g S pabp
ab2

1

2
p2D216prHGAg, ~2.15!

C a
ª22~Gab28pTab!ga

anbAg5C G
a 216p j aAg

522~Dbpab18p j aAg!, ~2.16!

whereR is the Ricci scalar with respect togab . The density
Q̃a is the surface term of the Lagrangian density,

Q̃a5
1

16p F 1

Ag
$22d~DaaAg!1~bagbcdpbc1pdba

22pa
bdbb!%1~gacgbd2gabgcd!~aDbdgcd

2Dbadgcd!G1a~e1p!qa
bjb2baj bjb , ~2.17!

whereqab
ª(gab1uaub)ga

agb
b.

Independently varying the metric variable
$da,dba,dgab ,dpab%, gives the field equations,

H50, Ca50, and Gab28pSab50, ~2.18!

and the relation,

] tgab2Dabb2Dbba2
2a

Ag
S pab2

1

2
gabp D50. ~2.19!

Equation~2.19! is consistent with the definition ofpab @cf.
Eq. ~2.4!#.

When the field equations are satisfied, the Bianchi iden
implies¹bTab50. The variation of the action with respect t
the ~spatial! Lagrangian displacement vector is the spat
projection of this relation, the relativistic Euler equation,

ga
a¹bTab50. ~2.20!

For an isentropic fluid, conservation of baryon mass and
tropy are given by

£ u~rA2g!50 and £us50. ~2.21!

Equations~2.21! and ~2.20! together imply¹bTab50.
It is often convenient to rewrite the above set of ba

equations in terms of the conformally related spatial me
g̃ab and the trace-free part of the extrinsic curvatureÃab ,
defined by

g̃abªc24gab , ~2.22!

Ãabªc24S Kab2
1

3
gabK D , ~2.23!

where c is a conformal factor andKªKabg
ab. Here, we

may impose the condition,g̃ªdet(g̃ab)5det(hab)5:h,
where hab is a flat 3-metric. In the following, indices o
4-3
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SHIBATA, URYŪ, AND FRIEDMAN PHYSICAL REVIEW D 70, 044044 ~2004!
variables with a tilde, such asÃab , Ãab, b̃a , and b̃a

(5ba), are raised and lowered byg̃ab andg̃ab, respectively.
The Hamiltonian constraintH50 and the momentum

constraintCa50 are written in terms ofKab :

R2KabK
ab1K2516prH , ~2.24!

DbK a
b 2DaK58p j a . ~2.25!

With the conformal transformation~2.22! and ~2.23!, Eqs.
~2.24! and ~2.25! are rewritten in the form

D̃c5
c

8
R̃22prHc52

c5

8 S ÃabÃ
ab2

2

3
K2D , ~2.26!

D̃b~c6Ã a
b !2

2

3
c6D̃aK58p j ac6. ~2.27!

Here, R̃, D̃a , and D̃ are the Ricci scalar, the covariant d
rivative, and the Laplacian with respect tog̃ab , respectively.

The evolution equations forgab andKab are

] tgab522aKab1Dabb1Dbba , ~2.28!

] tKab5aRab2DaDba1a~KKab22KacKb
c!

1~Dbbc!Kca1~Dabc!Kcb1~DcKab!b
c

28paFSab1
1

2
gab~rH2Sc

c!G , ~2.29!

whereRab is the Ricci tensor with respect togab .
Contractinggab with Eqs.~2.28! and~2.29! and using Eq.

~2.24!, one obtains

] tc5
c

6
~2aK1Dcb

c!, ~2.30!

] tK5aKabK
ab2Da14pa~rH1Sa

a!1ba]aK, ~2.31!

whereD5DaDa. To write the evolution equation ofK in the
form of Eq. ~2.31!, we use the Hamiltonian constraint equ
tion ~2.24!.

In the following, we choose the maximal time slicing co
dition K505] tK. With this condition, Eq.~2.31! reduces to
an elliptic equation fora,

Da5aÃabÃ
ab14pa~rH1Sa

a!, ~2.32!

where we keep spatial indices abstract until fixing the spa
gauge condition. Using Eq.~2.26!, this equation is rewritten

D̃~ac!52pac5~rH12Sa
a!1

7

8
ac5ÃabÃ

ab1
ac

8
R̃.

~2.33!

Using Eqs.~2.28!, ~2.29!, ~2.30!, and ~2.31!, the evolution
equations forg̃ab and Ãab are
04404
al

] tg̃ab522aÃab1D̃ab̃b1D̃bb̃a2
2

3
g̃abD̃cb̃

c,

~2.34!

] tÃab5c24FaS Rab2
c4

3
g̃abRD2S DaDba

2
c4

3
g̃abDcD

ca D G22aÃacÃb
c1D̃abcÃcb

1D̃bbcÃca2
2

3
D̃cb

cÃab1bcD̃cÃab

28paS c24Sab2
1

3
g̃abSc

cD . ~2.35!

Now, Rab is split,

Rab5R̃ab1Rab
c , ~2.36!

whereR̃ab is the Ricci tensor with respect tog̃ab and

Rab
c 52

2

c
D̃aD̃bc2

2

c
g̃abD̃c1

6

c2D̃acD̃bc

2
2

c2g̃abD̃ccD̃cc. ~2.37!

R̃ab is then written in the form

R̃ab5
1

2
@2g̃cdD

~0!

cD
~0!

dg̃ab2 D
~0!

b~ g̃acF
c!2 D

~0!

a~ g̃bcF
c!

2~ D
~0!

cg̃bd! D
~0!

ag̃cd2~ D
~0!

cg̃ad! D
~0!

bg̃cd12FcCc,ab

22Ccb
d Cad

c #

5
1

2
@2 D

~0!

h̃ab2 D
~0!

b~ g̃acF
c!2 D

~0!

a~ g̃bcF
c!#1R̃ab

NL ,

~2.38!

whereFa
ªD

(0)

bg̃ab, D
(0)

a is the covariant derivative associate

with hab , and D
(0)

5hcdD
(0)

cD
(0)

d . R̃ab
NL is the collection of the

nonlinear terms inh̃ab and defined by

R̃ab
NL
ª2

1

2
@ f̃ cdD

~0!

cD
~0!

dh̃ab1~ D
~0!

ch̃bd! D
~0!

af̃ cd

1~ D
~0!

ch̃ad! D
~0!

bf̃ cd#1FcCc,ab2Ccb
d Cad

c . ~2.39!

Here,h̃ab and f̃ ab are introduced, respectively, by

h̃abªg̃ab2hab and f̃ ab
ªg̃ab2hab. ~2.40!

Cab
c andCc,ab are defined by
4-4
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Cab
c
ª

g̃cd

2
~ D

~0!

ah̃bd1 D
~0!

bh̃ad2 D
~0!

dh̃ab!

and

Cd,abªg̃cdCab
c , ~2.41!

andCcd
c 5 D

(0)

d(Ag̃/h)/Ag̃/h50, wheng̃5h.

B. Basic equations for quasiequilibria

Compact binary systems in quasiequilibrium circular
bits evolve toward merger due to gravitational radiation
action. Since the emission time scale of gravitational wa
is longer than the orbital period even just before the mer
we may expect that the fluid and field variables near
support of fluid source~or inside the light cylinder! in the
frame rotating with the same angular velocity as the orb
motion are approximately unchanged along a direction o
helical vector

ka5ta1Vfa, ~2.42!

wherefa is a spatial vector field that generates a family
closed circular curves onS t , andV denotes the orbital an
gular velocity.

First, we derive hydrodynamic equations to describe
nary neutron stars in quasiequilibrium circular orbits. T
baryon mass conservation law Eq.~2.21! and the Euler equa
tion ~2.20! are written

£ k1v~rutA2g!50, ~2.43!

ga
a£ k1v~hua!1DaS h

utD 50. ~2.44!

Then, we impose the conditions that the Lie derivativ
alongka vanish:

£ k~rutA2g!50, ~2.45!

ga
a£ k~hua!50. ~2.46!

Here, a spatial velocity vectorva is introduced by

ua5ut~ka1va!. ~2.47!

From conditions~2.45! and ~2.46!, the relation £k( j aAg)
50 also follows. In the above, we assumed isentropic flo
which leads to the local first law of thermodynamics,

1

r
¹ap5¹ah. ~2.48!

Equation~2.48! also implies that a one-parameter equation
state may be chosen. We thus have four independent
ables for the fluid, three for the fluid velocity, and one th
modynamic variable, governed by four equations~2.43! and
~2.44!.
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For corotational flowua5utka ~that is,va50) or irrota-
tional flow hua5¹aF, whereF is a velocity potential, one
can obtain a first integral of the Euler equation that is use
for computing quasiequilibrium configurations. For corot
tional flow, the velocity field becomes trivial and the fir
integral is the statement that the injection energy is cons
in the fluid:

h

ut
5const. ~2.49!

For irrotational flow, one thermodynamic variable and a v
locity potential are governed by two equations@22#,

DaFar

h
~DaF2hutva!G50, ~2.50!

£ vF1
h

ut
5const, ~2.51!

derived from Eqs.~2.43! and ~2.44!, respectively. Here, the
Lie derivative with respect to the spatial vectorva, £ v , is
defined onS t with a relation

va5ga
aS ua

ut
2vaD 5

1

hut
DaF2va, ~2.52!

where va is a rotational shift vector defined byva5ba

1Vfa.
Note that the symmetry of the spacetime with respec

the helical vectorka has not been imposed yet. Thus, the L
derivatives of the fluid quantities alongka may not vanish,
e.g., £krÞ0, £ kuaÞ0, £ krHÞ0, and £kSabÞ0. The values
of these quantities depend on the formulation for grav
tional fields that we choose below; their magnitude measu
the deviation from the helical symmetry.

We turn to the formulation for the gravitational fields o
binary systems in quasicircular orbits. Here, we do not
sume a global helical symmetry for the whole spacetim
First, we defineuab

ª] tg̃
ab and regard it as an input quan

tity: It is determined when we impose a certain conditi
betweeng̃ab on two spatial hypersurfaces of infinitesim
time difference, following the concept of a thin sandwic
formalism proposed by York@23#. In this section, we con-
tinue the calculation without fixing the condition foruab ex-
cept for a requirement

uab5] tg̃
ab5O~r 23!, ~2.53!

in a far zone (r @2pV21). This condition guarantees th
asymptotic flatness of the system on a sliceS t , but breaks
the helical symmetry forg̃ab in the far zone. The lower com
ponent of the time derivative is defined by

uabª2g̃acg̃bdu
cd. ~2.54!

We also define
4-5
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vabª] tÂab , ~2.55!

where Âabªc6Ãab . Later, we will impose a condition on
vab .

Bonazzolaet al. @15# propose a ‘‘gravito-inelastic ap
proximation’’ in which they setuab50, while ] tÂ

ab is free.
On the other hand, Scha¨fer and Gopakumar@16# propose a
minimal no-radiation approximation, in which th
transverse–trace-free part of] tp

ab is restricted. We deter
mine the conditions in the more rigid way: Our conditio
for uab andvab are determined from the requirement that t
quasiequilibrium solution and its sequence satisfy the vi
relation and first law at least approximately. This subject w
be discussed in Secs. III and IV.

Equation~2.34! is regarded as the equation for determ
ing Ãab , namely,

2aÃab5D̃ab̃b1D̃bb̃a2
2

3
g̃abD̃cb̃

c2uab . ~2.56!

Then, substituting Eq.~2.56! into Eq. ~2.27!, we obtain

D̃b̃a1
1

3
D̃aD̃bb̃b1R̃abb̃

b1D̃blnS c6

a D F D̃bb̃a1D̃ab̃b

2
2

3
g̃abD̃cb̃

cG2
a

c6D̃c~a21c6g̃bcuab!516pa j a .

~2.57!

This elliptic equation determinesb̃a .
Regardingvab as an input quantity, the evolution equatio

for Ãab may be rewritten as an elliptic equation forh̃ab ,

D
~0!

h̃ab52FRab
c 2

1

2
D
~0!

a~Fcg̃cb!2
1

2
D
~0!

b~Fcg̃ca!1Rab
NL

2
c4

3
g̃abR2

1

a S DaDba2
c4

3
g̃abDa D G

24c4ÃacÃb
c1

2c4

a S D̃abcÃcb1D̃bbcÃac

2
2

3
D̃cb

cÃab1bcD̃cÃabD216pS Sab2
c4

3
g̃abSc

cD
2

2c4

a
] tÃab . ~2.58!

Together with the above equations forh̃ab andb̃a , the ellip-
tic equations~2.26! and ~2.33! are solved forc and x
ªac, respectively.

To summarize, the Einstein equations are rewritten as
elliptic equations~2.26!, ~2.33!, ~2.57!, and~2.58! for c, x,
ba, and h̃ab , with uab5] tg̃

ab and vab5] tÂab , which are
regarded as input quantities that satisfy a certain ansatz.
asymptotic behavior ofuab and vab is chosen to preclude
standing waves in the far zone,r @2pV21. The simulta-
04404
l
l
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he

neous equations for the metric and the fluid on a sliceS t is
then similar to the equations for the initial value proble
since the equations for the metric variables are elliptic.

To solve the equations forh̃ab , we need to fix the spatia
gauge. The simplest choice is a transverse gauge@4# ~or a
generalized Dirac gauge in the terminology of Ref.@15#!,
satisfying

Fa5 D
~0!

bg̃ab50. ~2.59!

With this choice, the equations forh̃i j andR̃ are significantly
simplified, which results in the operator for the linear term
of h̃i j in its elliptic equation becoming the flat Laplacia
Furthermore, the behavior of the source terms of the ellip
equations for c and x for r @2pV21 have suitable
asymptotic behavior, becauseFi5O(r 23) and, hence,R̃
5O(r 24). Thus, the source terms of elliptic equations forc
andx areO(r 24) in the present gauge. This implies that w
can numerically solve these equations without serious d
culties.

As a result of the present choice of gauge conditions,
asymptotic behavior asr→` of the geometric variables is
@24#

c511
MADM

2r
1O~r 22!, ~2.60!

a512
MK

r
1O~r 22!, ~2.61!

bk52
1

4r 2 ~6Zklr̂
l13Zi j r̂

i r̂ j r̂ k2Zll r̂
k

18Zkl
ASr̂ l !1O~r 23!, ~2.62!

h̃i j 5O~r 21!, ]kh̃i j 5O~r 22!, ]k] l h̃i j 5O~r 23!,
~2.63!

Ãi j 52
1

4r 3 @6Zi j 22d i j Zkk26Zil r̂
l r̂ j26Zjl r̂

l r̂ i

14d i j Zklr̂
kr̂ l1~5Zklr̂

kr̂ l2Zll !~d i j 23r̂ i r̂ j !

212~Zik
ASr̂ kr̂ j1Zjk

ASr̂ kr̂ i !1Ui j #1O~r 24!, ~2.64!

where MADM and MK denote the ADM mass and Koma
mass ~see Sec. III!, r̂ k5xk/r , and Zkl and Zkl

AS are time-
dependent symmetric and antisymmetric moments, res
tively. Equation~2.64! implies that the total linear momen
tum of the system is implicitly assumed to be zero, as

È Ãj
idSi5 È c6Ãj

idSi50. ~2.65!

Here
4-6



t
s

e

ot

sa
.
st

th
t
ul

e
o

a

se

et

-

-

al-

sat-

d

n

DERIVING FORMULATIONS FOR NUMERICAL . . . PHYSICAL REVIEW D 70, 044044 ~2004!
È ª lim
r→`

E
Sr

with Sr a sphere of constantr. The antisymmetric momen
can be related to the angular momentum of the system a

Zkl
AS52Jje jkl , ~2.66!

where e jkl is the completely antisymmetric symbol. In th
Newtonian limit,

Zkl5E r~vkxl1v lxk!d3x5
dIkl

dt
, ~2.67!

Zkl
AS5E r~vkxl2v lxk!d3x, ~2.68!

where I i j is the quadrupole moment.Ui j in Eq. ~2.64! is a
symmetric trace-free moment determined by the asympt
behavior ofui j .

A solution to the simultaneous equations derived here
isfies the constraint equations of the Einstein equation
this sense, it can be referred to as a fully general relativi
solution and can be used as an initial condition of the~311!
numerical simulation. However, since we do not assume
helical symmetric relation £kgab5” 0, the solution does no
satisfy the equation for quasiequilibrium exactly. As a res
£ kc, £ ka, and £kb

a would be slightly different from zero
in general. Deviation of these quantities from zero can m
sure the violation of the helical symmetry. The magnitude
the deviation depends on our choice ofuab andvab .

III. RELATIONS BETWEEN M ADM AND M K

In this section, we derive the conditions needed for equ
ity of the ADM massMADM and the Komar massMK . This
equality is closely related to the virial relations as discus
in the Appendix.

A. Sufficient conditions for equality of M K and M ADM

The Komar mass@25# is constructed from a vectorza that
approaches a timelike Killing vector of a flat asymptotic m
ric at spatial infinity. As presented in Ref.@26#, za

52a2¹at, and

MK5
1

8p È ~¹bza2¹azb!nadSb . ~3.1!

With the metric written in the form~2.2!, one uses the rela
tions na5a¹at andnb¹bna5a21ga

aDaa, to obtain

¹b~¹bza2¹azb!na5a¹b$gg
b@¹a~ang!2¹g~ana!#¹at%

52DaDaa. ~3.2!

Using Eq.~3.2!, we have

1

8pE 2DaDaadV5
1

4p È DaadSa , ~3.3!
04404
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and thus, we reach the familiar form@27#

MK5
1

4p È DaadSa . ~3.4!

For a stationary spacetime, withza the asymptotically
timelike Killing vector, Beig@28# and Ashtekar and Magnon
Ashtekar @29# prove the equalityMK5MADM . We obtain
here more general asymptotic conditions sufficient for equ
ity in the following way ~patterned in part on Beig’s work!.
Suppose that the metric has the form~2.2!, with1

g i j 5h i j 1hi j , ~3.5!

hi j 5O~r 21!, Dkhi j 5o~r 23/2!, DkDlhi j 5o~r 22!,
~3.6!

and suppose that the lapse, shift, and extrinsic curvature
isfy

a512

1
a

r
1o~r 21!, ] ra5

1
a

r 2
1o~r 22!,

] r
2a522

1
a

r 3
1o~r 23!; ~3.7!

b i5O~r 21!, ] jb
i5o~r 23/2!; ~3.8!

È dV̂Krr 5o~r 23!, Ki j 5o~r 23/2!,

]kKi j 5o~r 22!, ~3.9!

where *dV̂ denotes a surface integral. ThenMK5MADM .
Note that the equality also follows with the slightly altere
conditions,hi j 5O(r 212e) andDkDlhi j 5o(r 221e); and/or
the conditionsb i5O(r 212e) and]kKi j 5o(r 221e).

To prove this claim, it is useful to introduced 3Gi j , the
part of 3Gi j linear in hi j . The idea is to show that ifd 3Gi j
is the asymptotically dominant part of3Gi j , then

È 3Gj
i xjdSi528pMADM . ~3.10!

One then uses the field equation for3Gi j ~the dynamical
equation forKi j ) to show that this integral can be written i
the form ~3.4! of the Komar mass, whenKi j , £ bKi j , and
] tKrr fall off rapidly enough at spatial infinity.

Formally,

d 3Gi j 5
1

2
~ D

~0!

i D
~0!

khj
k1 D

~0!

j D
~0!

khi
k2 D

~0!

hi j 2 D
~0!

i D
~0!

jhk
k1h i j D

~0!

hk
k

2h i j D
~0!

kD
~0!

lh
kl!, ~3.11!

1The definitionhi j here is slightly different fromh̃i j in Eq. ~2.40!
in Sec. II B.
4-7
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where the index ofhi j is raised by the flat metrich i j . The
asymptotic behavior of3Gi j is given by

3Gi j 2d 3Gi j 5o~r 23!. ~3.12!

This is because each term in3Gi j involves eitherDkDlhi j or
Dkhi j Dlhmn ; then terms quadratic or higher order inhi j fall
off as rapidly as eitherhmnDkDlhi j or Dkhi j Dlhmn .

From the linearized Bianchi identity,D
(0)

jd 3Gi j 50, we
have

È 3G j
i xjdSi5 È d3Gi

jx
jdSi5E

V
D
~0!

i~d3Gi j x
j !Ahd3x

5E
V
d3Gi j h

i jAhd3x. ~3.13!

Now d 3Gi j h
i j Ah is a simpler divergence,

h i j d 3Gi j 52
1

2
D
~0!

i D
~0!

jh
i j 1

1

2
D
~0!

hk
k5

1

2
D
~0!

i~ D
~0!

ihk
k2 D

~0!

jh
i j ),

~3.14!

and we return to a surface integral,

È 3Gj
i xjdSi52

1

2 È ~ D
~0!

jh
i j 2 D

~0!
ihk

k)dSi5:28pMADM .

~3.15!

As written, the integrations-by-parts of Eqs.~3.13! and
~3.15! appear to assume an interior with no boundary, a
striction that eliminates typical hypersurfaces of black-h
spacetimes; and Beig explicitly takesV5R3. This restric-
tion, however, is unnecessary. Because the steps from
~3.13! to ~3.15! use no field equations, one can replacehab
by any smooth symmetric tensor field that agrees withhab
for r greater than some radiusR2 and that vanishes forr less
than some smaller radiusR1 outside all interior boundary
points of the hypersurfaceV. The verification of the identity
~3.15! is then valid as written.

Because the equality *`d 3Gj
i xj dSi52 1

2 *`( D
(0)

j hi j

2 D
(0)

ihk
k)dSi does not depend on the values ofhab in the

interior, the integrands should differ only by a two
dimensional divergence, allowing a derivation that uses
volume integral. We show this directly in the following:

Let I ,J be indices on the 2-sphere, and letD be the two-
dimensional covariant derivative operator associated with
metric on the unit 2-sphere. WritehI

I5h IJhIJ. The inte-
grands are

d 3Gj
i xj dSi5d 3Grr r

3dV

and

2
1

2
( D

~0!

j hi j 2 D
~0!

ihk
k)dSi52

1

2
( D

~0!

j hr j 2 D
~0!

rhk
k2

1

r
hI

I)r 2dV.
04404
-
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The rr component of Eq.~3.11! givesd 3Grr as a sum of six
terms that we will label I–VI. They can be rewritten in th
following manner:

I1II5 D
~0!

r D
~0!

khr
k5] rF 1

r 2 ] r~r 2hrr !2
1

r
hI

I G1] rDIhr
I .

III 1V5
1

2
~d i j 2 r̂ i r̂ j ! D

~0!

hi j 5
1

2
] r

2hI
I1] r S 1

r
hI

I D1
2

r 2 hrr

1
1

2
DI S DIhJ

J1
4

r
hr

I D .

IV52
1

2
D
~0!

r
2hk

k52
1

2
] r

2hk •

k
52

1

2
] rF 1

r 2 ] r~r 2hrr !G
1] r S 1

r
hrr D2

1

2
] r

2hI
I .

VI52
1

2
D
~0!

kD
~0!

l hkl52
1

2
] rF 1

r 2 ] r~r 2hrr !2
1

r
hI

I G2
1

r
] rhrr

2
2

r 2 hrr 1
1

r 2 hI
I2

1

2
DIFDJh

IJ1
6

r
hr

I G2] rDIhr
I .

Adding the terms, we find

dGrr 5I1•••1VI52
1

2r
~ D

~0!

j hi j 2 D
~0!

ihk
k!¹ i r 1DIV

I ,

where VI52(1/2)(DJh
IJ2DIhJ

J1(1/r )hr
I ). Because

r 3DIV
I5DI(r

3VI), the integrands differ by a two
dimensional divergence, as claimed.

Next, from Eqs.~2.29! and~2.24!, 3Gi j has, outside the mat
ter, the form

3Gi j 5Ri j 2
1

2
g i j R

5
1

a
DiD ja2

1

2
g i j

1

a
Da1

1

a S ] tKi j 2
1

2
g i j g

kl] tKklD
12KikK j

k2Ki j K2g i j S KklK
kl2

1

2
K2D

1
1

a
£ bKi j 2

1

2a
g i j g

kl £ bKkl . ~3.16!

Since the terms involvingKi j areo(r 23), we have

È 3Gj
i xjdSi5 È DiD ja r̂ i r̂ j r 3dV̂. ~3.17!

Now ]kg i j 5O(r 22) and] ia5O(r 22) imply

Dr
2a5] r

2a1O~r 24!. ~3.18!

Finally, from Eq.~3.4! and the asymptotic form~3.7! of a,
we have
4-8
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MK5
1

4p È 1
adV̂, ~3.19!

and

È 3Gj
i xjdSi5 È Dr

2ar 3dV̂528pMK , ~3.20!

whence

MADM5MK . ~3.21!

The asymptotic behavior of Eqs.~2.60!–~2.64! doesnot al-
wayssatisfy the conditions~3.9!, because] tKi j is O(r 23),
not o(r 23).

B. Relation betweenM K and M ADM in the waveless
approximation

For quasiequilibrium binary solutions that satisfy Eq
~2.54!–~2.58!, with K50, a slightly different relation holds
betweenMK and MADM . The asymptotic behavior given i
Eqs.~2.63! and ~2.60! implies

Dihi j 5O~r 22!, DiD jhi j 5O~r 23!. ~3.22!

For the asymptotic behavior of Eqs.~2.60!–~2.64!, together
with Eq. ~3.22!, Eq. ~3.15! still holds and

È 3Gj
i xjdSi528pMK1 È ] tKrr r

3dV̂

528pMK1
1

4 È ] t~12Zrr 2Urr !dV̂,

~3.23!
or

MADM5MK2
d

dt S 3

2
Zrr 2

1

8
Urr D . ~3.24!

Using

È r̂ i r̂ jdV̂5
4p

3
d i j , ~3.25!

Equation~3.23! may be written in asymptotically Cartesia
coordinates as

È 3Gj
i xjdSi528pMK1 È ] tKi j r̂

i r̂ j r 3dV̂

528pMK14p
dZkk

dt
, ~3.26!

whence

MADM5MK2
1

2

dZkk

dt
. ~3.27!

We note that a similar expression has been derived for
maximal slicing condition in the first post-Newtonian a
proximation @30#. The expression here is the fully gener
relativistic generalization.
04404
.

e

l

In the presence of a timelike Killing vector, we may se

] tg̃ab50, ~3.28!

] t~c4pab!50, ~3.29!

d

dt
Zkk50, ~3.30!

and, hence, the virial relationMADM5MK holds. This con-
dition should be satisfied not only for axisymmetric equili
ria but also for nonaxisymmetric ones such as general r
tivistic Dedekind solutions.

The integral ofKi j in the above expression may be com
puted further as

È ] tKi j r̂
i r̂ j r 3dV̂5

1

8p

d

dt È Ka
bxadSb

5
1

8p

d

dtE Db~pa
bxa!d3x

52
d

dtE xaj adV

1
1

16p

d

dtE pabxcD
~0!

cgabd
3x,

~3.31!

which yields

MADM5MK1
d

dtE xaj adV2
1

16pE ~] tp
abxcD

~0!

cgab

1pabxcD
~0!

c] tgab!d
3x

5MK1
d

dtE xaj adV

2
1

16pE @] t~c4pab!xcD
~0!

cg̃ab

1c4pabxcD
~0!

c] tg̃ab#d
3x. ~3.32!

In a gauge withK50, Eq. ~3.32! can be written as

MADM5MK1
d

dtE xaj adV2
1

16pE @] tÂabx
cD
~0!

cg̃
ab

1Âabx
cD
~0!

c] tg̃
ab#d3x

5MK1
d

dtE xaj adV2
1

16pE @vabx
cD
~0!

cg̃
ab

1Âabx
cD
~0!

cu
ab#d3x, ~3.33!
4-9
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where a relationpabxcD
(0)

cgab5Âabx
cD
(0)

cg̃
ab is used. Since

we always impose a condition £k( j aAg)50, the second in-
tegral can be discarded because of the relation,

d

dtE xaj adV5E ] t~xaj aAg!d3x5E £ k~xaj aAg!d3x50.

~3.34!

Thus, Eq.~3.33! is written as

MADM5MK2
1

16pE ~vabx
cD
~0!

cg̃
ab1Âabx

cD
~0!

cu
ab!d3x.

~3.35!

If we assume that the spacetime is everywhere helic
symmetric, £kgab50, then it is not asymptotically flat, an
hence the integrals in Eqs.~3.32! and ~3.33!, as well as
MADM , are not defined. Instead, we require helical symme
only in the near zone and the local distant zone. In this c
in the local zone, we should set £kg̃

ab50 and £kÂab50,
which can be written as

uab5] tg̃
ab52£ Vfg̃ab, ~3.36!

vab5] tÂab52£ VfÂab , ~3.37!

while in the distant zone,uab→0 and vab→0 for r→`.
With these choices,dZkk /dt vanishes, and hence, the viri
relation MADM5MK is satisfied. The virial relation is satis
fied for the simple caseuab5vab50. Equation~3.35! re-
minds us that it is satisfied in the conformal flatness appro
mation g̃ab5hab, i.e., uab50 @21#.

IV. RELATION FOR dM ADM AND dJ

A first law for binary systems with a helical Killing field
ka has been formulated as relating a change in a conse
chargeQ, associated with a family of helically symmetr
spacetimes, to the changes in the vorticity, baryon mass,
entropy of the fluid as well as in the area of black holes@21#.
Also shown is that a relationdQ5dMADM2VdJ holds for
asymptotically flat systems, whereV is the orbital angular
velocity of a binary system in circular orbits.

In inspiraling binary neutron stars, entropy, baryon ma
and vorticity are almost constant, and hence energy and
gular momentum are dissipated only by gravitational rad
tion. Thus, the relationdMADM /dt5VdJ/dt is satisfied.
Then, we should require that, in a formalism for computi
asymptotically flat binary equilibria, a first lawdMADM
5VdJ is satisfied. In this section, we present a heuristic w
to derive a relation held between the variations of the AD
mass and the angular momentum without assuming any s
metry for perfect-fluid spacetimes, but requiring the fie
equations to be satisfied. Then, we identify sources for
violation of the first law. In the following calculation, n
gauge condition is specified; and surface terms associ
with black hole horizons are not included.

In contrast to our earlier paper@21#, no helical symmetry
is assumed. Instead, we assume only that the field equa
04404
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derived in Sec. II are satisfied. The field equations are u
to relate the Komar mass to the Lagrangian density and
other terms in the manner

MK5
1

4p È DaadSa5
1

4pE DaDaadV

52E H rutA2ghuava2L2
1

16p
gab] tp

ab

2
1

16p
Da~2pabbb2pba!J d3x, ~4.1!

where the definition ofva, slightly different from the previ-
ous section, isua5ut(ta1va) with vana50. To compute
the last equality, we first use a part of the Einstein equat

~Gab28pTab!S gab1nanb1
2

a
banbDaAg

5gab] tp
ab12DaDaaAg116pS 2

1

2
Ta

a2e DA2g

216prutA2ghuava1Da~2pabbb2pba!50.

~4.2!

We then subtract the trace of the Einstein equation (Gab

28pTab)gab52R28pTa
a50 to relate MK to the La-

grangian density~2.9!.
The angular momentum is defined by

J52
1

8p È pa
bfbdSa52

1

8pE Da~pa
bfb!d3x

52
1

8pE ~faDbpb
a1pabDbfa!d3x

5E S j afaAg2
1

16p
pab£ fgabDd3x, ~4.3!

where the momentum constraintC a50 is used in the last
equality. The variations ofMK andJ are computed following
Ref. @21#. First, we take the variation of Eq.~4.1! for MK ,

dMK52E H D~rutA2ghuava!2dL2
1

16p
d~gab] tp

ab!

2
1

16p
Dad~2pabbb2pba!J d3x, ~4.4!

and substitute the following relation into the first term,

D~rutA2ghuava!5huavaD~rutA2g!

1rutA2gvaD~hua!1 j aAg] tj
a,

~4.5!

where we used the facts that a choice ofj t50 implies
Dva52Dta5£ tj

a and that £tj
a¹at50 yields
4-10
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rutA2ghua£ tj
a5 j aAg] tj

a. To the second term, the varia
tion in the Lagrangian density~2.12! is applied.

When all components of the Einstein equation and
Bianchi identity, Eqs.~2.18!–~2.21!, are satisfied,dMK be-
comes

dMK52E FrTDsA2g1S h

ut
1huavaD D~rutA2g!

1vaD~hua!rutA2g2ja] t~ j aAg!

1
1

16p
~dpab] tgab2dgab] tp

ab!2DaH Q̃aAg

1
1

16p
d~2pabbb2pba!J Gd3x. ~4.6!

The contribution of the surface term of the above equatio
given by

22E DaF Q̃aAg1
1

16p
d~2pabbb2pba!Gd3x

522 È Q̃adSa

5
1

4p È DadadSa2
1

8p È ~gacgbd

2gabgcd!DbdgcddSa

5dMK22dMADM . ~4.7!

Combining Eqs.~4.6! and ~4.7!, the variation in the ADM
massMADM , instead of the Komar massMK , is written

dMADM5E H rTDsA2g1S h

ut
1huavaD D~rutA2g!

1vaD~hua!rutA2g2ja] t~ j aAg!

1
1

16p
~dpab] tgab2dgab] tp

ab!J d3x. ~4.8!

The variation in the angular momentumdJ, computed in a
similar way from Eq.~4.3!, is

dJ5E H D~ j afaAg!2
1

16p
d~pab£ fgab!J d3x

5E H huafaD~rutA2g!1faD~hua!rutA2g

1ja£ f~ j aAg!2
1

16p
~dpab£ fgab

2dgab£ fpab!2£ fS j ajaAg

1
1

16p
pabdgabD J d3x, ~4.9!
04404
e

is

where

D~ j afaAg!5D~rutA2g!huafa1rutA2gfaD~hua!

2 j aAg£ fja

5D~rutA2g!huafa1rutA2gfaD~hua!

1ja£ f~ j aAg!2£ f~ j ajaAg!, ~4.10!

which results from relationsj afaAg5rutA2ghuafa,
dfa50, andDfa52£ fja. The last term in the integral o
Eq. ~4.9! vanishes since it becomes a surface integral wit
combinationfadSa50.

Finally, Eqs. ~4.8! and ~4.9! are combined to derive a
relation

dMADM2VdJ5E FrTDsA2g

1H h

ut
1hua~va2Vfa!J D~rutA2g!

1~va2Vfa!D~hua!rutA2g

2ja£ t1Vf~ j aAg!

1
1

16p
~dpab£ t1Vfgab

2dgab£ t1Vfpab!Gd3x, ~4.11!

where £t1Vf5] t1£ Vf , which operates on the spatia
quantities, is understood as a pullback of the Lie derivat
along the helical vector field ontoS t . The first three terms of
Eq. ~4.11! are the same as those derived in our previo
paper @21# except for the definition of the spatial velocit
va5ua/ut ~in Ref. @21#, we used the definitionva5ua/ut

2Vfa). The difference also changes the definition of t
shift.

As discussed in Ref.@21#, for an isentropic fluid, conser
vation of baryon mass, entropy, and vorticity become

£ u~rA2g!50, £us50, and £uvab50. ~4.12!

These imply perturbed conservation laws,

D~rutA2g!50, Ds50, and Dvab50, ~4.13!

that will be almost satisfied during binary inspiral before t
merger. Here, the relativistic vorticityvab is given by

vab5qa
gqb

d@¹g~hud!2¹d~hug!#5¹a~hub!2¹b~hua!.
~4.14!

The third term in Eq.~4.11! vanishes for~i! corotating bina-
ries, flows withva5Vfa, and~ii ! irrotational binaries, po-
tential flows withhua5¹aF. For the latter case, the thir
term in Eq.~4.11! with D(hua)5D¹aF5¹aDF becomes
4-11
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E ~va2Vfa!D~hua!rutA2gd3x

5E ~va2Vfa!¹aDFrutA2gd3x

5E @Da$~va2Vfa!DFrutaAg%

1$£ k~rA2g!2£ u~rA2g!%DF#d3x

5E @£ k~rA2g!2£ u~rA2g!#DFd3x,

~4.15!

where we assumer50 for the distant zone to derive the la
line. Then, together with Eqs.~4.12! and~4.13!, Eq. ~4.11! is
rewritten as

dMADM2VdJ5E H £ k~rA2g!DF2ja£ k~ j aAg!

1
1

16p
~dpab£ kgab2dgab£ kp

ab!J d3x.

~4.16!

The form of the ‘‘first law’’ described in Eq.~4.11! or Eq.
~4.16! is derived without relying on the helical symmetry
the spacetime and the fluid. Choosing the maximal slic
condition K505p, we may rewrite Eq.~4.16! using the
trace-free part of the conjugate momentump̂ab5pab

2 1
3 gabp and the conformal metricg̃ab5c24gab as

dMADM2VdJ5E F£ k~rA2g!DF2ja£ k~ j aAg!

1
1

16p
$d~c4p̂ab!£ kg̃ab

2dg̃ab£ k~c4p̂ab!%Gd3x

5E F£ k~rA2g!DF2ja£ k~ j aAg!

1
1

16p
~dÂab£ kg̃

ab2dg̃ab£ kÂab!Gd3x.

~4.17!

Here, the gauge choicep50 impliesdp50 and £kp50.
If one requires £kgab50 and £kp

ab50 ~or £ kg̃
ab50

and £kÂab50) in a gaugep505K, together with condi-
tions for the fluid variables £k(rA2g)50 and £k( j aAg)
50, Eq. ~4.16! leads to the first law relationdMADM
5VdJ. However, these assumptions are equivalent to
posing helical symmetry on the whole spacetime and, he
preclude asymptotic flatness; in other words,MADM andJ are
ill defined.
04404
g

-
e,

In a realistic system, the radiation reaction violates
Killing symmetry. In its presence,dgab anddpab are deter-
mined by the radiation reaction, and these terms may
proportional to the violation of the helical symmetry near t
source. Namely, we expect that the following relations ho

~£ kgab!dt5dgab , ~4.18!

~£ kp
ab!dt5dpab, ~4.19!

or in the gaugeK50,

~£ kg̃
ab!dt5dg̃ab, ~4.20!

~£ kÂab!dt5dÂab , ~4.21!

wheredt is a radiation reaction time scale. In this case,
right-hand side of Eq.~4.16! vanishes with the symmetry fo
the fluid variables. This indicates that even with the slig
violation of the helical symmetry due to the radiation rea
tion, a relationdMADM5VdJ may be well satisfied.

Finally, as shown in Ref.@21#, dMADM5VdJ is exact in
the conformal flatness approximation@Isenberg-Wilson-
Mathews~IWM ! formalism#. In this case, one needs to re
place the Lagrangian density~2.9! by one that reproduces th
field equations of the IWM formalism. One can derive suc
Lagrangian density by substitutingp50 andg̃ab5hab into
Eq. ~2.9!. Then, assuming helical symmetry for the fluid a
from the factdg̃ab50, the first law is shown to be satisfied
~See Ref.@21# for a description of the artificiality of this
choice in a helically symmetric IWM framework.!

V. CANDIDATE FORMULATIONS FOR
QUASIEQUILIBRIA

The conditionuab5O(r 23) is not compatible with helical
symmetry in the whole spacetime. Thus, we propose to
pose

uab5H 2£ Vfg̃ab for r<r 0 ,

0 for r>r 0 ,
~5.1!

wherer 0 is an arbitrary radius. With this condition, the typ
of the field equation forh̃i j changes from Helmholtz-type to
elliptic for r .r 0 . To make the equation be almost elliptic fo
numerical computation, it may be desirable to taker 0 within
the light cylinder radius asr 0&2p/V. On the other hand
we can impose helical symmetry onÂab without serious dif-
ficulty. In this case, helical symmetry is exact in the ne
zone and, as a result, the violation of the first law is given

dMADM2VdJ5
1

16pEr .r 0

~dÂab!£ Vfg̃abd3x. ~5.2!

Since (dÂab)£ Vfg̃ab falls off asO(r 24) and the integral is
done only in the distant zone, the magnitude of the integ
would be very small. Thus, even with the modified formu
tion, the first law would be satisfied approximately. Furth
more, the virial relation is satisfied in this formulation.
4-12
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The condition for] tÂab may be changed to

vab5H 2£ VfÂab for r<r 0 ,

0 for r>r 0 .
~5.3!

Then,

dMADM2VdJ5
1

16pEr .r 0

@~dÂab!£ Vfg̃ab

2~£ VfÂab!dg̃ab#d3x. ~5.4!

Even in this case, the magnitude of the violation of the fi
law would be small, and the virial relation holds. The me
in this approach is that the right-hand side of the ellip
equation forh̃ab falls off as O(r 24). As a result, it is nu-
merically easier to integrate the equation.

We also note that instead of using the step function,
may write

uab52£ f (r )Vfg̃ab, ~5.5!

vab52£ f (r )VfÂab , ~5.6!

where f (r ) is a smooth function that satisfies the conditio

f ~r !5H 1 for r !r 0 ,

0 for r @r 0 .
~5.7!

This choice is equivalent to taking a Killing vector of th
form

km5S ]

]t D
m

1 f ~r !VS ]

]w D m

. ~5.8!

This Killing vector is helical in the near zone and pure
timelike for r→`.

Finally we comment on other possible formulations.
the formulation withuab505vab , the virial relation is sat-
isfied for a quasiequilibrium binary. However, the first la
along quasiequilibrium sequences is not satisfied in gene
The violation of the first law is written as

dMADM2VdJ5
V

16pE @~dÂab!£ fg̃ab2~£ fÂab!dg̃ab#d3x

52
V

16p
dE ~£ fÂab!g̃

abd3x. ~5.9!

VI. SUMMARY

Two relations, the virial relationMADM5MK and the first
law dMADM5VdJ, are regarded as guiding principles
develop a formalism for computing binary compact obje
in quasiequilibrium circular orbits in general relativity. De
riving the explicit equations forMADM2MK and dMADM
2VdJ on the assumption that the spacetime is asympt
cally flat, it is shown that a solution and a sequence of
solutions computed in some formulations satisfy these
04404
t
t

e

al.

s

i-
e
o

conditions at least approximately. We propose a formulat
in which the full Einstein equation is solved with the max
mal slicing and in a transverse gauge for the conformal thr
metric. In the proposed formulation, the solution in the ne
zone is helically symmetric, but in the distant zone, it
asymptotically waveless.

So far, quasiequilibria of binary neutron stars have be
computed using the conformal flatness approximation for
three-metric@9,11#. In this formulation, only five compo-
nents of the Einstein equation are satisfied, and thus,
obtained numerical solutions for quasiequilibria involve
systematic error. Specifically, in a real solution of the qua
equilibrium circular orbit, the conformal nonflat part of th
three-metric will be of order (M /a)2, which can be;0.1
near the neutron stars for close circular orbits ofa&10M
~e.g., Ref. @4#!. This implies that to compute an accura
quasiequilibrium in circular orbits of error within, say, 1%,
will be necessary to take into account the conformal non
part of the three-metric. In the new formulations describ
here, such term is computed, and thus, more accurate s
tions of quasiequilibria will be obtained. Currently, we a
working in computation of binary neutron stars in quasieq
librium circular orbits using these formulations. In a subs
quent paper@31#, we will present the numerical results. Suc
a numerical solution will also be used as an appropriate
tial condition for simulations of binary neutron star merge
@5#.

In this paper, we restrict our attention to the system
which no black hole exists. In the presence of black ho
we should carefully treat the surface terms at event horizo
The surface terms would modify the equations for the fi
law @21,33#. The formulation for computation of quasiequ
librium black hole binaries are left for the future@32#.
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APPENDIX: EVOLUTION EQUATION FOR THE SCALAR
MOMENT AND VIRIAL RELATION

In this section, we derive the virial relation by direct in
tegration of the Euler equation. Thus, the virial relation w
consider here is associated with an evolution equation for
scalar moment as in the Newtonian case. In the end,
confirm that the virial relation derived is equivalent toMK
5MADM .

In the following, we often refer toMx as a ‘‘Komar-like
mass,’’ which is defined by the asymptotic behavior of
function xªac at r→`,

x→12
Mx

2r
1O~r 22!. ~A1!
4-13
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For simplicity, in the following calculation, we adopt a gau
in which K50, Fk50, andg̃5h, and we carry out the cal
culations in Cartesian coordinates. We often need to eval
surface integrals atr→`. In the evaluation, we assume Eq
~2.60!–~2.64! as well as~A1! the asymptotic behaviors o
geometric variables. As a consequence, all the volume i
grals that appear below are well defined, and furtherm
the surface integrals derived during the calculation can
safely discarded.

From the asymptotic behavior asr→`, we can define
Mx andMADM using the surface integrals

Mx 5
1

2p È c] ixdSi , ~A2!

MADM52
1

2p È x] icdSi . ~A3!

Using Gauss’s law, they can be rewritten in other forms,

Mx 5
1

2pE ~cD̃x1g̃ i j ] ix] jc!d3x, ~A4!

MADM52
1

2pE ~xD̃c1g̃ i j ] ic] jx!d3x.

~A5!

The difference betweenMADM andMx is written in the form

Mx 2MADM5E F2xc5Sk
k1

3

8p
xc5Ãi

j Ã j
i1

1

8p
xcR̃

1
1

p
g̃ i j ] ic] jxGd3x. ~A6!

Here, using Eq.~2.34!, we can derive an identity,

E ac6Ã j
i Ã i

j d3x5
1

2E c6Ã j
i ~] ib

j1g̃ ikg̃ jn]nbk

1g̃ jnbk]kg̃ni2g̃ jkuik!d3x

5E Fc6Ã j
i ] ib

j1
1

2
c6Ãjnbk]kg̃ jn

2
1

2
c6Ãi j ui j Gd3x

5E F2$] i~c6Ã j
i !2c6Ã k

l G̃ j l
k %b j

1
1

2
c6Ãi j u

i j Gd3x

52E F8p j ic
6b i2

1

2
Âi j u

i j Gd3x,

~A7!
04404
te
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whereG̃ i j
k denotes the Christoffel symbol with respect tog̃ i j ,

and Âi j 5c6Ãi j . Thus, we obtain

Mx 2MADM5E Fc6 j l~2v l2b l !16ac6P1
3

16p
Âi j u

i j

1
1

8p
xcR̃1

1

p
g̃ i j ~] ic!] jxGd3x, ~A8!

where we use the relation

aSk
k5

j kulg
kl

ut
13aP5 j k~vk1bk!13aP. ~A9!

~Note thatvk here is defined byvk5uk/ut.) In stationary
spacetimes, the relationMADM5Mx @28,29# and ui j 5] tg̃ i j
50 should hold. Thus, we get the virial relation as

E Fc6 j l~2v l2b l !16ac6P1
1

8p
xcR̃

1
1

p
g̃ i j ~] ic!] jxGd3x50. ~A10!

In quasiequilibrium binaries,ui j 5” 0 in general. Thus, the
virial relation, MADM5Mx , is written as

E Fc6 j l~2v l2b l !16ac6P1
3

16p
Âi j u

i j 1
1

8p
xcR̃

1
1

p
g̃ i j ~] ic!] jxGd3x50. ~A11!

As in the Newtonian case, we can derive the general r
tivistic virial relation from the evolution equation for th
scalar moment. First, we write the general relativistic Eu
equationg k

n ¹mT n
m 50 in the form

] t~ j kc
6!1] j~ j kc

6v j !1]k~ac6P!1rHc5]kx2~rH

12Sl
l !xc4]kc2c6 j l]kb

l1
1

2
xcSi j ]kg̃

i j 50.

~A12!

Equation~A12! is a fully general relativistic expression, an
no simplification is done. Taking an inner product withxk,
we have

E xkF] t~ j kc
6!1] j~ j kc

6v j !1]k~ac6P!1rHc5]kx2~rH

12Sl
l !xc4]kc2c6 j l]kb

l1
1

2
xcSi j ]kg̃

i j Gd3x50.

~A13!

In the following, we carry out the integral for each ter
separately.

~1! First term:
4-14
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I 1ªE xk] t~ j kc
6!d3x5

d

dtE xkj kc
6d3x. ~A14!

In the Newtonian limit,j kc
6→rvk5rdxk/dt, and thus, this

term leads to half of the second time derivative of the sca
moment, i.e.,Ï kk/2.

~2! Second and third terms: By integration by parts,
immediately find

I 2ªE xk] j~ j kv
jc6!d3x52E j kv

kc6d3x, ~A15!

I 3ªE xk]k~ac6P!d3x523E ac6Pd3x. ~A16!

In the Newtonian limit,2I 2 and 2I 3 are the terms assoc
ated with kinetic energy and internal energy.

~3! Fourth and fifth terms: Using Eqs.~2.26! and ~2.33!,
we can rewrite the combination of them as

rHc5]kx2~rH12Sl
l !xc4]kc

5
R̃

16p
]k~xc!2

1

2p
@~Dc!]kx1~Dx!]kc#

2
c12Ãi

j Ã j
i

16p
]kS a

c6D . ~A17!

Taking into account an identity,

E @~xk]kc!Dx1~xk]kx!Dc#d3x

5E @ g̃ i j ~] ix!] jc1xk~] ix!~] jc!]kg̃
i j #d3x,

~A18!

where we discard the vanishing surface integral terms,
find

I 4ªE xk@rHc5]kx2~rH12Sl
l !xc4]kc#d3x

5
1

16pE F R̃xk]k~xc!28$g̃ i j ~] ix!] jc1xk~]kg̃
i j !

3~] ix!] jc%2c12Ãi
j Ã j

ixk]kS a

c6D Gd3x. ~A19!

~4! Sixth term:
04404
r

e

I 5ª2E c6 j lx
k]kb

ld3x

52
1

8pE xk]kb
lF] i~c6Ãl

i !1
1

2
c6Ãi j ] l g̃

i j Gd3x

52
1

8pE F2c6Ãl
i~xk]k] ib

l1] ib
l !

1
1

2
xk~]kb

l !c6Ãi j ] l g̃
i j Gd3x

52
1

8pE F ~] ib
l !xk]k~c6Ã l

i !12~] ib
l !c6Ãl

i

1
1

2
xk~]kb

l !c6Ãi j ] l g̃
i j Gd3x

52
1

8pE F ~] ib
l !xk]k~c6Ã l

i !22b l] i~c6Ãl
i !

1
1

2
xk~]kb

l !c6Ãi j ] l g̃
i j Gd3x. ~A20!

Here, let us evaluate the first term. Using Eq.~2.34!,

I 58ª2
1

8pE ~] ib
l !xk]k~c6Ã l

i !d3x

52
1

8pE ~2aÃ i
l 2g̃ j l g̃ ik] jb

k2g̃ j l bk]kg̃ i j

1g̃ j l ui j !x
k]k~c6Ã l

i !d3x

52
1

8pE @~2aÃ i
l 2g̃ j l bk]kg̃ i j 1g̃ j l ui j !x

k]k~c6Ã l
i !

1~] jb
k!c6Ã l

i xm]m~ g̃ j l g̃ ik!#d3x2I 58 . ~A21!

Thus,

I 5852
1

16pE @~2aÃ i
l 2g̃ l j bk]kg̃ i j 1g̃ j l ui j !]m~c6Ã l

i !

1~] jb
k!~Ãi j ]mg̃ ik1Ãkl]mg̃ j l !c6#xmd3x

52
1

16pE F a

c6 ]m~c12Ã i
l Ã l

i !1~ g̃ i j b
k]kg̃

j l

1g̃ j l ui j !]m~c6Ã l
i !1~] jb

k!~Ãi j ]mg̃ ik

1Ãkl]mg̃ j l !c6Gxmd3x

52
1

16pE F H 2]mS a

c6Dc12Ã i
l Ã l

i 1bk]kg̃
j l @]m~c6Ãj l !

2c6Ã l
i ]mg̃ i j #1g̃ j l ui j ]m~c6Ã l

i !1~] jb
k!~Ãi j ]mg̃ ik

1Ãkl]mg̃ j l !c6J xm23ac6Ã i
l Ã l

i Gd3x. ~A22!
4-15
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SHIBATA, URYŪ, AND FRIEDMAN PHYSICAL REVIEW D 70, 044044 ~2004!
As a result,

I 552
1

16pE F23ac6Ã i
l Ã l

i 2c12Ã i
l Ã l

i xm]mS a

c6D
1bk~]kg̃

j l !@]m~c6Ãj l !2c6Ã l
i ]mg̃ i j #x

m

1g̃ j l ui j x
m]m~c6Ã l

i !1~] jb
k!~Ãi j ]mg̃ ik

1Ãkl]mg̃ j l !c6xm1xk~]kb
l !c6Ãi j ] l g̃

i j

22b l~16p j lc
62c6Ãi j ] l g̃

i j !Gd3x

52
1

16pE F2
3

2
Âklu

kl2c12Ã i
l Ã l

i xm]mS a

c6D
1bk~]kg̃

j l !@]m~c6Ãj l !2c6Ã l
i ]mg̃ i j #x

m

1g̃ j l ui j x
m]m~c6Ã l

i !1~] jb
k!~Ãi j ]mg̃ ik

1Ãkl]mg̃ j l !c6xm1xk~]kb
l !c6Ãi j ] l g̃

i j 2b l~8p j lc
6

22c6Ãi j ] l g̃
i j !Gd3x. ~A23!

~5! Seventh term: Using Eq.~2.35!, we rewrite it as

xc

2
Si j x

k]kg̃
i j 5

1

16p
xk]kg̃

i j FxcS R̃i j 1Ri j
c 2

1

a
DiD ja D

1c6S 22aÃikÃj
k1D̃ i b̃

kÃk j1D̃ j b̃
kÃki

2
2

3
D̃kb̃

kÃi j 1bkD̃kÃi j 2] tÃi j D G , ~A24!

where we useg̃ i j ]kg̃
i j 5]klng̃50.

By straightforward calculations, we obtain

I 6ª
1

16pE xcxk~]kg̃
i j !R̃i j d

3x

52
1

16pE @] l~xc!xk~]kg̃
i j !G̃ i j

l 1xk]k~xc!R̃

1R̃xc#d3x, ~A25!

I 7ª
1

16pE @xcR̃i j
c 2c2DiD ja#xk]kg̃

i j d3x

5
1

16pE @2D̃ i D̃ j~xc!18~] ic!] jx#xk]kg̃
i j d3x

5
1

16pE @G̃ i j
l ] l~xc!18~] ic!] jx#xk]kg̃

i j d3x.

~A26!

Here, to derive the first equation, we use the spatial ga
conditionFk50 and relations in the present gauge as
04404
e

R̃52
1

2
~] l g̃

i j !G̃ i j
l 5g̃ i j G̃ ik

l G̃ j l
k . ~A27!

The spatial gauge condition is also used in calculation forI 7 .
To evaluate the remaining terms, we first rewrite the f

lowing equation using the definition ofÃi j as

22aÃikÃ j
k 1D̃ ib

kÃk j1D̃ jb
kÃki2

2

3
D̃kb

kÃi j 1bkD̃kÃi j

5bk]kÃi j 2Ãj
kg̃ i l ]kb

l1Ãik] jb
k2Ã j

l bk]kg̃ i l 1Ã j
k uik .

~A28!

Then, after a straightforward calculation, we get

I 85
1

16pE F22aÃikÃ j
k 1D̃ ib

kÃk j1D̃ jb
kÃki2

2

3
D̃kb

kÃi j

1bkD̃kÃi j 2] tÃi j Gc6xl] l g̃
i j d3x

5
1

16pE @2~] tÂi j !x
l] l g̃

i j 1c6Ãi j ~]kg̃
i j !xl] lb

k

12bk~]kg̃
i j !Ãi j c

61bkxl~]kg̃
i j !] l~c6Ãi j !

1c6xlÃik~]kb
j !] l g̃ i j 1xlc6Ãik~] jb

k!] l g̃
i j

2bkxnc6Ã j
l ~]kg̃ i l !]ng̃ i j 1xlc6Ã j

k uik] l g̃
i j #d3x,

~A29!

where we use an identity] tlnc65Dkb
k5c26]k(c

6bk) that
follows from the maximal slicing conditionK50. Eventu-
ally, we find thatI 51I 8 has the following simple form:

I 51I 85
1

16pE F2
3

2
Âklu

kl1c12Ãi
j Ã j

ixn]nS a

c6D
18p j kc

6bk2v i j x
n]ng̃ i j 2Âi j x

n]nui j Gd3x.

~A30!

By summation ofI 1;I 8 , we obtain the following simple
relation:

05(
i 51

8

I i5
d

dtE xkj kc
6d3x2E F 1

16p
xcR̃1 j kv

kc6

13ac6P1
1

2p
g̃ i j ] ix] jc2

1

2
c6 j kb

k1
3

32p
Âi j u

i j

1
1

16p
~v i j x

n]ng̃ i j 1Âi j x
n]nui j !Gd3x

5
MADM2Mx

2
1

d

dtE xkj kc
6d3x

2
1

16pE ~v i j x
n]ng̃ i j 1Âi j x

n]nui j !d3x. ~A31!
4-16



l

rm r

cy
la-
n
the

al
es
ck
ars
ry
e-
al

of

DERIVING FORMULATIONS FOR NUMERICAL . . . PHYSICAL REVIEW D 70, 044044 ~2004!
Here, sinceui j 5] tg̃
i j and v i j 5] tÂi j , the second integra

term in the last line of Eq.~A31! is rewritten as

2
1

16p

d

dtE ~c6Ãi j x
n]ng̃ i j !d3x. ~A32!

Using the momentum constraint, we further rewrite this te
as

2
1

16p

d

dtE ~c6Ãi j x
k]kg̃

i j !d3x

52
1

8p

d

dt F E xkH ] i~Ã k
i c6!1

1

2
c6Ãi j ]kg̃

i j J d3x

2 È dSiÃ k
i xkc6G

52
d

dt F E xkj kc
6d3x2

1

2
ZkkG . ~A33!

Thus, a similar relation betweenMADM andMx ,
-
n

.
d

ill

nd

. D

-

D

04404
MADM5Mx 2
dZkk

dt
, ~A34!

is derived as is done forMADM and MK in Sec. III. In this
way, one can associate a relation of two massesMADM and
Mx (MK) to a moment equation of the relativistic Eule
equation~A13!.

In the Newtonian theory, we usually check the accura
of numerical solutions by the virial relation. Since the re
tion is not trivially satisfied in numerical solutions, violatio
of this relation can be used to estimate the magnitude of
numerical error of equilibria. Motivated by this idea, a viri
relation is also derived for axisymmetric equilibrium stat
in general relativity@34#, and it is subsequently used to che
accuracy of numerical solutions for rotating neutron st
@35#. The virial relation has been also derived for bina
neutron stars in quasiequilibrium in conformally flat spac
times@21# and applied for monitoring accuracy of numeric
solutions in Ref.@36#. The virial relation, e.g., Eq.~A11!,
derived here will be used when checking the accuracy
nonaxisymmetric numerical solutions.
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