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Traversable Lorentzian wormholes in the vacuum low energy effective string theory in Einstein
and Jordan frames

K. K. Nandi*
Department of Mathematics, University of North Bengal, Darjeeling (W.B.) 734430, India
and Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100080, China

Yuan-Zhong Zhan
CCAST (World Laboratory), P. O. Box 8730, Beijing 100080, China
and Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100080, China
(Received 11 May 2004; published 26 August 2004

ThreenewclasseglI-1V ) of solutions of the vacuum low energy effective string theory in four dimensions
are derived. Wormhole solutions are investigated in those solutions including the class | case both in the
Einstein and in the Jorddstring frame. It turns out that, of the eight classes of solutions investigébed in
the Einstein frame and four in the corresponding string framassive Lorentzian traversable wormholes exist
in five classes. Nontrivial massless limit exists only in class | Einstein frame solution while none at all exists
in the string frame. An investigation of test scalar charge motion in the class | solution in the two frames is
carried out by using the Plebski-Sawicki theorem. A curious consequence is that the motion around the
extremal zerdKepleriar) mass configuration leads, as a result of scalar-scalar interaction, to a new hypotheti-
cal “mass” that confines test scalar charges in bound orbits, but does not interact with neutral test particles.
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[. INTRODUCTION its solutions are what the string actually “see§We set the
B-functions to zero for reasons of quantum conformal invari-
Currently, there exist an intense activity in the field of ance) The JF action is referred to here as string theory. The
wormhole physics following particularly the seminal works action can also be cast into the Brans-Dicke form with the
of Morris, Thorne and Yurtsevdrl]. Wormholes are topo- coupling paramete= —1 showing that the Machian phi-
logical handles that connect two distant otherwise disconlosophy is already imbedded into the string action. This
nected regions of space. Theoretical importance of such ge&rans-Dicke action can be transferred to the conformally res-
metrical objects is exemplified in several ways. For instance@led Einstein frameEF) so that the Lagrangian assumes the
they are invoked to interpret or solve many outstanding isform of Einstein-Hilbert action of(non-Machian general
sues both in the local as well as cosmological scenario&ativity in which the scalar fielddilaton) couples to the

[2-5]. Lorentzian wormholes could be threaded both bygravitional sector minimally but with an arbitrary sign in the

quantum and classical matter fields that violate certain erfinetic term. We choose to call the latter the Einstein mass-

ergy conditiong“exotic matter”) at least at the throat. In the Ies_s scala(EMS) field theory. Both the signs can be theo-
retically allowed as long as there does not appear any incon-

quantum regime, several negative energy density fields aréalstency. It should be noted that the positive sign before the

already known to exist. For instance, they occur in the C""kinetic term in the action represents conventional coupling

simir effect, and in the context of Hawking evaporation of e the negative sign corresponds to the unconventional
black holes, and also in the squeezed vacuum SHdES  gne that leads to the violation of energy conditions.
Classical fields playing the role of exotic matter also exist. The motivation for the present paper is provided by three
They are known to occur in thR+R? theory [6], scalar  key reasons: First, both the above frames exhibit certain
tensor theorie$7—11], Visser's cut and paste thin shell ge- symmetry properties, T-duality in the Jordan frame and
ometries[12]. On general grounds, it has recently beens-duality in the Einstein frame. Second, there is as yet no
shown that the amount of exotic matter needed at the wormeonsensus as to which frame is more physical although the
hole throat can be made arbitrarily small thereby facilitatingEinstein frame is often advocated in view of energy consid-
an easier construction of wormholgk3|. erations. As we are here concerned with only wormhole so-
A commendable arena to look for classical exotic fields islutions, we need not be concerned with the violations of
the vacuum linear string theory which, in the low energyenergy conditions in either of the frames. Overall, there is no
limit, reproduces a scalar tensor theory of gravity in fourcanonical principle to rule out one frame in preference to the
dimensions. The action can be written in the Jordan framether and hence we shall examine the solutions in both of
(JP, which is also called the string frame, and it is this form them. This is the third reason. In fact, recently, in the context
of action that appears in the original nonlineaimodel and  of traversable Lorentzian wormholes in general relativity
Armendaiz-Picon (AP) [14] has shown that the most simple
form of Lagrangian that satisfies all the traversable worm-
*Email address: kamalnandi@hotmail.com hole conditions is that of EMS theory but withreegative
TEmail address: yzhang@itp.ac.cn sign before the kinetic term. The author has briefly discussed
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massive wormholes in a certain clasat us call it class)lof  |ater in Sec. VI. Under the substitutia 2% = ¢, the above

static, spherically symmetric solutions in the EMS theoryaction reduces to the JFBD acti¢we take the units 16G
and has also proved the existence and stability of zero massc=1);

wormholes. As remarked by the author, zero mass wormhole

configuration is the simplest and it exemplifies Wheeler's 4 = ~ 1.

concept of “charge without charge.” However, there also SJF:f d X\/__g[¢R+ Egﬂv¢,l¢¢,v 2
exist other classes of EMS solutions although, unfortunately,

they have not received as much attention in the literature ag which the BD coupling parametes is set to the value
the class | solutions. Therefore, it is of interest to examine ify=—1. This particular value is actually a model indepen-
wormholes exist in those other classes of static sphericallgent prediction and it arises due to the fundamental symme-
symmetric solutionsll-IV) of EMS theory as well as in the try of strings, viz. the target space dualfty6]. It should be
string theory. In this paper, we start with the EMS solutionsnoted that the vacuum BD action has a conformal invariance
from our earlier paper and derive the corresponding néwharacterized by a constant gauge paraméteArbitrary
string frame solutions and then adopt a search for wormholeghoice of¢ can lead to a shift from the value= —1. This
analyzing all solutions on a class by class basis in both thembiguity can be removed either by allowing abnormal cou-

theories. The search result turns out to be quite encouragingling to matter or simply by fixing the gaud@1]. We fix
in the sense that out of the eight, three and two classes reg=0. Under a further substitution

resent massive wormhole solutions in the EMS and string

theory respectively. However, no massless limit exists in the gl'w: ¢§Mv, 3
string theory. We shall also study the motion of test particles

in the gravity-scalar field environment by adopting a differ- 20+3d¢

ent principle based on the Plels&irSawicki theorem. We de’' = ou 3 a#0, (4)
work mainly in the Morris-Thorne coordinate description for @ ¢

more transparency. the action(2) goes into the EFBD action, for the string value
The paper is organized as follows: In Sec. Il, we start _ _

from the linear string action and review the class | solution
of the EMS theory. In Sec. Ill, we elucidate more pedagogi-
cal details of the EMS class | wormhole in coordinate de- SEFZJ d*xy-g'[R"+ag ¢’ ,e], )
scription and revisit the zero mass limit. The contents will be

useful in Sec. IV where we explore the wormhole nature ofwhere we have introduced a constant arbitrary parameter
class | solution in the context of string theory. Investigationthat can have any Sign_ The acti®) is also called the string
of other classes of solutiondl-1V) is contained in Sec. V. action in the Einstein frame but in this paper we distinguish
This section also includes the analyses of the corresponding as the action of the EMS theory. If the kinetic term
string classes of solutions. In Sec. VI, we study test particle,q’ “rp' @', has an overall reversghat is, negativesign,
motion in the class | solution of the two theories while in e haye what one calls unconventional coupling. However,
Sec. VII, we summarize our results. An Appendix contains &,o matter what the sign or value of is, we can always

comparison of notations for easy reference. proceed from EMS actiori5) backwards up to the string
action (1). We keepa unassigned until later. It seems re-
Il. THE ACTION AND CLASS | SOLUTION: markable that A-H14] has ended up with actiofb) as the
A BRIEF REVIEW simplest action arguing from a completely different angle,

i o i i viz. by imposing wormhole constraints on the Lagrangian for
~ Our starting point is the 4-dimensional, low energy effec-3 general class of microscopic scalar field. Obviously, the
tive action of heterotic string theory compactified on asrguments have nothing to do with string theory yet the end
6-torus[15]. The tree level string effective action, keeping ction is quite the same. So we have here a picture in which
only linear terms in the string tensierl and in the curvature  the physics of dilatonic gravity meets that of wormholes. In
R, takes the following form in the ordinary-matter free re- what follows, we shall use slightly different notations that
gion (Smatter=0): are in line with our earlier papers. These can be easily tran-
scribed to those in Refl4], as shown in the Appendix.
1 — To clearly demarcate the scope of what follows, we must
Seff:—,f d4x\/—_ge*2‘1’[R+4gW<I)’M<I>’V], (1) state that we are not dealing here with time dependent cos-
a mological wormholes, and/or wormholes with Euclidean sig-
natureq17—-19 which are qualitatively completely different
where ® is the dilaton field. Note that the zero values of from static Lorentzian wormholes. However, the role of Eq.
other matter fields do not lead to any additional constraint$4) that connects JF and EF is the same. In this regard, note
either on the metric or on the dilatgd5]. One also avoids that we have imported a new parameiein Eq. (4) and it is
the complexity of abnormal scalar coupling with these fieldsobvious that the ranges @f and « can be chosen indepen-
in the EMS version. Such couplings are known to violate thedently. In the context of cosmology, the choice ©=0
principle of equivalence since the test particle rest mass ddeaves the parameter arbitrary in the EF17,18. It is also
pends on the scalar field. We shall comment on this principlevorth noting that Quiros, Bonal and Cardend®] have
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shown that the cosmological singularity occurring in the EFwhere

is removed in the JF in the range3/2<w<—4/3. This

result has significant impact on the question of which frame, o=—2m\=-2m[(1- %) /2a]"? 12
JF or EF, is more physical and also on the status of quantum

gravity [20]. However, in the context of string theory, we IS the strength of the scalar source. Wher 1, we have

must use only the model independent, unique string =0 and the Schwarzschild metric is recovered in accor-
value w=—1 in Eq. (4). In this case, we havely’ dance with the no hair theorem. Using Einstein’s energy mo-

=(12a)(d¢/¢), and the range ofr is essentially left MENUM complex, we find that the total madsof the con-
undetermined by the string theory field equatigres sein  f1guration is given by

the EF, viz. Eqs(6) and (7). What actually determines is
the condition for the existence of wormholasthe solution

level given, for instance, bﬁ2>.1 [see Eq.(17) below],  This is the conserved total mass of the configuration to be
which in turn implies thaty’ be imaginary fora>0 [see  ypserved by asymptotic observers. Using this value, the met-
Egs.(11), (12)]. AP[14] has shown that the imaginary nature (s (8) can be expanded in the weak field as

of ¢’ does not lead to any pathology or inconsistency in the

physics of Lorentzian wormholes. A completely equivalent ds?=[1—2Mr *+2M?r 2+ 0O(r ~3)]dt?—[1+2Mr !

but alternative description, again at the solution level, is to

regarde’ as a real function which then leads @<0. All +0(r~?)][dr?+r2d03]. (14

these matters are developed in Secs. Il and Ill. The important ] o ] ]
point is thatboth the case§a>0, ¢’ imaginary, or,a<0, This metric exactly coincides with the weak field Robertson

¢’ reall lead to a negative sign before the kinetic termexpans_ior[ZS] of a centrally symm_etric gravitational field._
Assuming that the neutral test particles follow the geodesics
determined by the metri@), that is no abnormal coupling of
ordinary matter with gravity, we see that all the well known

M =m§g. (13

!

ag""’go’ﬂ(,ofv which is what we need for exotic matter. One
is free to adopt any of the mutually exclusive theoretical

alternatives without any loss of rigor in the wormhole analy- ) . : :
sis. solar tes?s of gravity are descrl_bed just as precisely as does

The field equations for the EMS theory, after dropping thethe exterior Schwarzschﬂd metric. The param@does not

- : . appear separately in the expansidd) and hence its effect
primes in Eq.(5), are given by : .

cannot be measured by any metric test of gravity. The pa-

rametera does not appear here either but it does appear in
the expression for the scalar field in E§) or (11) and we
[12¢=0. 7) can use its sign to fix the nature @f Let us return to Eq.

(13) which can be immediately rewritten as
In “isotropic” coordinates &*,u=0,1,2,3), the solution is 1
given by[22]. M2=m2— Eaaz' (15)

Ruo=—a¢ .0, (6)

ds’=g,,,dx*dx” o
It is quite apparent from Eq12) that o can assume real or

_[1 m 2 1 m 72Bd 2_[4 m)2(=A) imaginary values depending on the values assigne®ldad
T oor tor Ul -5 a. We shall now see what kind of values could be assigned
2014 8) to these parameters if the met(R) is to represent a travers-
m
<14 E) [dr2+r2dQ§], ) able wormhole.
Ill. CLASS | WORMHOLE IN THE EMS THEORY
m
1- o For a coordinate description of wormholes that encapsules
o(r)=2\1n r (9) all the essential details, the Morris-Thorffg form is most
m |’ useful, which is given by
1+ —
2r
ds?=e2*Pd?— ———dR?—R2dQ3, 16
d02=d 6>+ sirPod ¢, (10 b(R) (16

R
where82=1-2a\?. This solution can be directly obtained

also by conformally rescaling the BD class | soluti®l.  where®(R) is the redshift function anth(R) is the shape
The two undetermined constantsand S8 are related to the function. Casting metri¢8) in that form and manipulating a
source strengths of the gravitational and scalar parts of thittle, the wormhole throat is found to occur at the isotropic
configuration. To first order, coordinate radii

o~ v 5= BB~ 1)) )
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The valueB?=1 corresponds to a massive nontraversable o' ?

wormhole sincer, coincides with the horizon radius, |ZT—T, (22
=m/2 and we are not interested in this case. In order to build

a traversable wormhole, one needs to avoid this radius angq metric(8) can be rewritten in the form

therefore, one must have regf >m/2. This requires that

B?>1. Now consider scalar field energy densityand the d?=dt2—dI2—(12+ o’ 2)dQ2, (23)
Ricci scalarR which work out to be

1 m¥(1-p% m)| 28 m\ 28 1_i
pm 2y MY ( _) x r——) , 2r()
2 (1 m) 2 2 e=In| ———1, (24)
4r? 1+ —
2r(l
m\ —2(2-8) m\ —22+8) | _Ii\/lz+(r’z o5
R=2m?r4(1- %) x| 1~ 3 |1+ . rh=—>%— (25
19

Sincem? is also negative, i.em?=—m’2<0, the worm-

They become finite at=m/2 if =2, which accords well hole throat atl=0 implies the real coordinate valueg
with the wormhole condition. In fact, it can be verified that = = ¢’/2=+m’/2 and the scalar fiel¢p becomes imaginary
all curvature invariants are also finite under the condiffon but does not blow up at this value. Also, in the units consid-
=2. So, one indeed has a regular spacetime, but the problesred, we have at=r, , p=—1/20'2, R=—2/g"' 2. Thus,
is that the surface area becomes infinite atm/2. But this  we indeed have the simplest well behaved wormhole. Under
could be due to a wrong choice of coordinates. Bronnikovthe considerations above, we now have a real equation that
et al. [24] called such spacetimes as representing cold blackq. (20) translates into, vizM?=—m’2+ ¢’ 2 obviously
holes(CBH) because of zero Hawking temperature. Some ofmplying thatM =0 wormholes arextremalin nature. This
their interesting properties have also been discussed in thgmounts to saying that we have a configuration in which the
literature[25]. In any case, the wormhole flares out to two stresses of the field contribute an amount of energy just
asymptotically flat regions connected by the throat and isufficient to nullify the effect of gravitational potential mak-
traversable because the tidal forces can be shown to be finiteg the total energy zero. In other words, we have nontrivial
at the throat and elsewhere. energy sources residing at the origin of central symmetry in

For the wormhole value g2, viz. 82>1, then, we have such a way as to make a configuration that is gravitationally
two equivalent situationdi) Take «<0, saya=—2. This  indifferent to neutral test particles. Note that the extremal
means breaking the energy conditions “by har{die shall  configuration can arise even when no exotic matter is in-
provide an example latgin the source term in Eq6) so  volved, that is,3°<1. In this case also, we can haté
that we can have, from E@12), a real scalar charge, that =0=m= ¢ from Eq. (15) simply by choosinga=2. The
is 0?>0, or (i) take >0, say @=2, then we have an foregoing analyses will be helpful in what follows.
imaginary scalar charge from E¢l2) so thato®=—o'? Finally, it must be noted that class | EMS solutions have
<0. In either case, of course, we have a reversed sign Kikeceived good attention in the literat26,27]. For instance,
netic term in the action. Also in Eq6), we have a stress using Egs.(23)—(25), particle models in general relativity
tensor that violates all energy conditions giving the kind ofhave been constructed by EI[i26] by way of an ether flow
classical exotic matter necessary for the threading of travershrough a drainhole. Geometrical optics, classical and quan-
able wormholes. Then, from E¢L5), we have tum scattering problems have been studied in the Ellis geom-

etry by Chetouani and Clemef28] and by Clemen{29].
M2=m?+o' 2. (20)
A wormhole with zero total mass, that i8] =0, immedi- V. CLASS I WORMHOLE IN THE STRING THEORY

ately impliesm=0 andg¢’=0. In other words, we have the . , ) .
trivial case of a flat metric and zero scalar field. However, it~ Starting with the solution8) and(9) and working back-

is possible to avoid this uninteresting case by makinglso ~ Wards up to actiorl), we can straightaway write down the
imaginary and noting from Eq(13) that we can also have corresponding string solution as
M =0 if we setB=0. This is actually the case considered by

AP [14]. In fact, takinga=2,8=0 we have from Eq(15), dsz=gwdx’“‘dx”
o2=m2. 21) :<1_m)z(ﬁ—mﬂ)(l_km)—zw—mﬁ)
2r 2r
Clearly, if o2 is negative, then so i&” and vice versa. It is 2(1- - \T3)
thus enough in this particular case to assume the imaginary < dt2— ( 1 m) '
nature of anyone of them. Defining the proper distantas 2r
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2(1+ B+\\2a) m2 _ 2
|14 5 [dr2+r2dQ3],  (26) P2+ - —mpr
b(R)=R| 1-| ————— : (32
2. M
m ' 4
1__
~ 2r ~
d=—12aln (27) B=p+\1- 3. (33
1+ 5

Clearly, B=1=B=1. The throat occurs at the radii

Under a suitable reidentification of constants and coordi-
nates, the above solution reduces to that discussed by Kar
[15]. To first order in (1f), we have the strength of the
dilatonic sourcer given by and as before the wormhole requirement is &t 1. The

energy density is given by

To= (B (F-112 @39

=19t

. o=m\\2a. (28) ~ 2 m?r? -
= x(1-PY), 35
P sz(rz—m2/4)2><( & %9

B~

One recovers the Schwarzschild metric in the lif@it=1. S . ~5 .
However, it does not seem possible to recover the seed soll\ﬂ\fh'Ch is negative for3”>1, as expected. The tidal forces

tions (8) and (9) which shows that we are dealing here with are finite and so the solution represents a traversable worm-
a class of solutions that is essentially distinct from its coun—h°|e' The total con§erved mass of the gonflggratlon as ob-
terpart either in BD or in the EMS theory. served by asymptotic observers can be identified as
Expanding the metri€26) as in Eq.(14), and identifying M=mp 36)
the Keplerian mas#1*, the tensor masM=mg and the '
scalar mas#1 s= —m\/1— 2 (cf. [30] for these definitions

we have In the zero mass limit=0=M=0. This impliesp=

—1/y/2 which in turn implies a dilatonic field strengi
=m/ 2. It is now useful to recall the discussions surround-

(a2 _ *pr—1 *2,—2 -3 2 s
ds?=[1-2M*r~1+2M* =2+ 0(r %) ]dt ing Egs.(21)—(25). The situation here is that™ is imagi-

. Bt \/1——,82 . nary as before but to make it real one can assumte be
—|1+2M*r RN +0(r ) imaginary which automatically implies that is also imagi-
B=N1=8 nary. Under the transformatidn=r(1+m?/4r?), the metric
><[dr2+r2dQ§], (29) (26) becomes
: e I+m 2 2 2 2 2 2
whereM* =m(B8— J1— B%)=M:+Ms. Solar observations ds’= —m dte—dl“—(1*=m*)dQs3,

can put a limit toB, which obviously is expected to he
~1. Note that the motion of ordinary test particle measures

the Keplerian mass and it is assumed that the particle has H=— iln I—_m _ (37)
negligible self energy so that the Nordvedt effect can be 22 \I+m

ignored. The tensor mass is measured by the motion of a

Schwarzschild black hole in the metii@) [30]. With mimaginary, we have a positive definite minimum sur-

We shall now investigate if the solution6) and (27)  face area—4=m? but atl =0, we havegy,=(—1)"? which

represent traversable wormholes. To this end, we cast thg 5 many valued function. Also for£0, Go, becomes
metric (26) in the Morris-Thorne form by redefining the ra- jmaginary which requires us to go beyond the real manifold

dial variabler —R as that we have been considering. Hence, although massive
- - wormholes exist, zero mass wormholes seem untenable, at

m | (1A= 2a) m | (1A Fr2a) least in the simplest form of the string theory that is under
R= r( 1- 5) 1+50 (30 present investigation. We shall also state a physical reason in

Sec. VI as to why they are untenable. Nonetheless(EqQ.

is still a formal zero mass solution of the string actiét).

We shall encounter solutions of similar nature in the next
section.

The developments in Secs. Il and IV immediately reveal
certain interesting features about the images of EMS class |
' wormholes in the string theory. It follows that bof= 0

(31 (zero maspand =1 EMS wormholes have the image of

The redshift functionb (R) and the shape functidmR) turn
out to be

. m
+_
2r

®(R)=[B—1—B]x

In

1 m I
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only a nontraversable wormhole in the string theory with theno horizon. In this sense, it shares the features of Morris-

throat occurring at ; =m/2. For 8=0 we havegy,— at  1horne “®=0" (no horizon wormholeg1]. Thus, the EMS
—m/2, which is undesirable. For the range of valygds class Il solutions also represent traversable wormholes. Al-

>1 traversable Lorentzian wormholes do exist in the EMS r:gug? (Ij?s:gﬁcéelraomml?asselI:Z]gk;/lzyr orglsrrr]]e rg;g{ 'ICS(BS) in
theory but they have no counterpart in the string theory sinc&™P guag P 9:

B andr ro become imaginary. However, ordinary EMS solu- ds?=dt?—dI2— (12+4b?)dQ32, (42
tions for B2<1 haveonly wormhole images in the string

regime due to the fact th#?< 1= 32> 1 which was shown such wormholes unfortunately do not exist as the limit itself

7 . — i i i i 2
to be a necessary condition for string wormholes. (y=0) conflicts with the inequality + y°<0.
The string version of the class Il solution is given by

V. CLASS II-IV SOLUTIONS IN THE EMS AND STRING d?zf’(r)dtz—é(r)[dr2+rzdﬂg], 43)
THEORY
By conformal rescaling of the BD class II-V solutions, it ﬁ(r)=e2ao+4[7*\1+721&f°tan¢/b),
is possible to obtain the corresponding solutions in the EMS
theory[31]. Alternatively, they can be obtained by solving _ 2]? —
the EMS equation$6) and (7) by standard procedures. We Q(r)= g2ho4ly+ N1t yTarctang/b) - (44)
take the general form of the metric as r
— 2__ 2 2 2 ~ r
ds?=P(r)dt?—Q(r)[dr2+r2d03]. (38) B(r)= (- 1+72)arcta,66 _ 45

(a) Class Il EMS solutions are
Other relevant quantities, e.g., the mass and throat radii, are

P(r)= g™ 4varctant/b), respectively given by
22 M=2by=2b[y+ 1+ %], To=b[y=(1+7?*3. (46)
Q(r)= eZB0—4y arctan(/b)l (39)
All these quantities are real lifis imaginary, as we assumed.

Here again, for the same reasons described in Sec. IV, mas-
(40) sive, i.e.,M #0 traversable wormholes do exist but the mass-
less limit does not, as no value of can makey+ 1+ y?

=0, a condition that is required to maké=0.
(b) Class lll EMS solutions are

r
o(r)y=2\ arctar(B ,

where A=[8(1+y?)/a]*? and «ag,By,7,b are arbitrary
constants. Asymptotic flatness requires tlgt=— 7,8,

=vy. The solution(39) has a conserved total enerdy -4 yr

=2by as can be verified by computing the Einstein complex P(r)=age” """, Q(r)= /80( ) e"d) - o(r)= 5"

of stress energy. With this value ®, the metric expands 47)

exactly like Eq.(14) for r2=b?, and thereby explains all the

solar system tests of gravity. To see if the solution(88}— This solution is not asymptotically flat and hence does not

(40) represent wormholes, we cast it in the Morris-Thornemeet the requirement of asymptotic flaring out of the worm-

form to find that the coordinate throat radii occur at holes. However, it is flat in the limit—0. If we still for-

mally impose the zero mass conditiop=0 and define

=b[y= 1+ 7] (4) 1= -"b?r, we have the metric

Note that, in the solutioti40), one has # y?*<0, and this ds?= aodt?— BodI2— Byl 2d03. (48)

inequality is a result of the field equatiof® and(9), so that

one has an imaginary. Alternatively, we can chooser  Under a further rescaling/agt—t’, \Bol—!’, we end up
<0, and have a reat. But this is no real problem as the two with a trivial metric. The string class Il metric is
situations are equivalent, as explained earlier. Althoygfis .
imaginary, one might choogeto be imaginary to makey Y @) Ao | T 1/2b
real. In this casell also becomes real. As is obvious, w?a are P(r) = age™ 7729, Qm_ﬁo(b) e,
employing the same arguments as we did in Sec. Il for the

zero mass case. Note that, althougtandb are imaginary, ~ yr

the metric functionsP(r) andQ(r) are real. All the curva- d(r)=- 2b’

ture invariants are finite everywheff@l] and the tidal forces

experienced by a geodesic traveler can be shown to be finiend we again have a flat Minkowski metric like E48) for

at the wormhole throat and these tend to vanish at théhe casey=0.

asymptotic region. Most importantly, the exponential func- (c) Class IV EMS solutions exhibit some good properties.
tion P(r) does not vanish anywhere so that the solution hahey are given by

(49
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P(r) = age [P0 Q(r)=Boel D], ¢(r):_2_7b’r_ B(r)=e @MMNI-) §(r)=el@MNA+) a‘)zg_

(50) (53

Asymptotic flatness fixeay= Bo=1. The horizon appears at Clearly, Eqs.(53) do not represent wormholes in real space-
r=0. First of all, under the transformation—1/r, B,  times although it is an interesting formal solution of string
—b*B,, the solution goes over to the class Il EMS solutionfield equations of the actiofl) in the same way as the zero
(47) and hence the two classes are not essentially distinCiass solution, Eq.(37) is. Here again,M=M(1+i)
although in the original JF version, they are cited as different- 0= M =0, and this leads to a trivial Minkowski spacetime
classes of SolutionESZ]. Secondly, all the curvature invari- so that there are no zero mass wormholes.

ants are finite everywhere includimg=0. In fact, the solu-
tion could be interpreted as a CBR5] since the area at

=0 is infinite. But the geodesic congruences can not reach

the origin, but reach a minimum distancg=M (see below In this section, we consider motion only in the class |
away from it, corresponding to a finite surface area. Theresolution of EMS and string theory. As mentioned in Sec. I,
after, they diverge so that it is more likely that it represents &rom the expansioiil4) the effect of3 (or the source scalar
pure wormhole. Thirdly, the total conserved mass for thecharges) can not be separately explored by the motion of
solution is given by a reall = y/2b and the metric exactly neutral test particles at least in the power af?1gince the
coincides with the expansiofi4) up to the orders consid- total conserved gravitating massappears only as a product
ered. Hence, it describes all the weak field tests of generalf m and 8. The expansior{29) in the string version does
relativity just as good as the Schwarzschild metric doesseparate the effect g8 and neutral test particle probes are
However, fory=0 for whichM=0, we again have only a aple to put a limit on its value. However, here we wish to
flat spacetime and a vanishing scalar field and consequentionsider not neutral but charged particle motions. To this
no zero mass wormholes. In the scalar field theory, there is and, following an interesting approach by Buchdgl], we

black hole counterpart which usually occurs when the scalalregard@ (or in the string contextd) as representing some

field is set to zero in accordance with the “no hair” theorem. . . g .
o . . . . medium or long range force field existing in spacetig)g
This situation obviously does not arise here and that is an- g g g P

other reason why we prefer to call class IV solutions as puré_Or 9,,) and imagine a test scalar charge responding to this

wormholes ield directly in addition to interacting indirectly via the met-
To see if.class IV EMS solutions represent massive Worm_ric. The situation is analogous to the motion of an electrically

holes, we cast the metri®0) in the Morris-Thorne form to charged particle in the Reissner-Nordstrepacetime. In or-
obtair’1 the shape and redshift functions, respectively, as der to have bound orbits, we shall assume that the source and

test charges have opposite signs. With this understanding, let

VI. CHARGED TEST PARTICLE MOTION

2 M us consider the equation of motion of a test particle with
b(R)y=reM"1-|1— —) } d(R)=—-—,R=reM’", infinitesimally small mas$ and scalar charge. In virtue of
r r the Plebaski-Sawicki theoreni33], the geodesic equations
(52) are given by

The wormhole throat appears eg=M=R=Me which is M S— .
greater than the horizon radius. The dengitgnd the radial U (6=e@)u’l;,
tensionr are

=-&@’, (54)

whereu* is the four velocity of the particle and ; denotes
M2 M2 covariant derivative with respect ®,, defined in Eq.(8).
-——<0, 7=—— (520  These equations have the first integugli“=1 and the par-
R?r? R2r2 ticle trajectories correspond to those defined by the metric
[22]
such that7—p>0 not only at the throat but everywhere.
Hence the flaring out condition is satisfied. The tidal forces ds' ?=(5—e¢)?g, dx“dx". (55
are finite for static as well as for freely falling observg24].
The forces, however, could be large for small valuesvof By carrying out the expansion plugging in the expressions of
So, everything put together, the solution indeed representS@\W and ¢ from Egs.(8) and(9), we have the metric
massive Lorentzian wormhole that is traversable at least in
principle. , _ , ds' 2=h'(r)dt?—p’(r)[dr?+r2dQ2], (56)
Note that the solutiort50) solves the field equation®)
and (9) for = —2 so that here we have an example where, here
all energy conditions are broken by hand, sigcés real. In

p:

order to go to the string metric, we negdwhich becomes, 2

with this value ofa, ¢~ *=e 2. This imports an imagi- h'(r)=1—2(1—m)M+(2—4m+m2)M—+O 1
nary factor to the string metric. Therefore, the string version r r? r3)’
of class IV solution has the form (57)
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, M ! 7e h(r)=1-2(1 *+24+2M*2
p(r):1+2(1+m)T+O Zl T (58 (N=1-2(1-wy)| ——|+(2- 4w+ w])| ——
1
in which w can take on only negative values @ando are +0| =, (64)
assumed to have opposite signs. All the observable quantities r
relating to the trajectory of the test scalar charge can be ,
calculated in the usual way. For instancexifs the preces- Sy=1+2| (1+wy) BtN1-B M—*+O 1
sion of the pericenter per revolution for a givenand g is p(r)= (1t Ny R 2"
; B—N1-8 r
the precession fots =0, then
eo
K 2w w2 W= . (65)
—_—=1 . (59 oM™

For M =0 ordinary string configuratiotot wormhole, they

do not exist as shown in Sec. Y\¢orresponding t@=0, we
find that the term in the square bracket vanishes identically.
Therefore, the motion in this situation would be somewhat
different from the one described by Eq&6)—(58). If in
addition, we assume that the Keplerian mits=0 in Eq.

(64), we have the metric function(r) analogous to Eq(62)

with M’ replaced bys o/ 5, but a flatp(r) up to first order.
Thus, in a flat metric with only the dilatonic field coupling to
ey — 2™’ ( 1) it, there is still some sort of a dilaton-dilaton interaction gen-
po(r)=1+——+0 , (61) e . _ S ,
r erating a certain mass if the physics is believed to be de-
scribed by the actiofil).
The developments of this section have a direct bearing on
e principle of equivalence that is usually discussed in terms
of motion of the test particles in a given metric. If the motion
follows the geodesics of the metric, one says that the prin-
M’ = E>O. 62) c!ple is obeyed. First consider thg BD theory. The V\{egk prin-
1) ciple of equivalencd WEP) is satisfied as smallnegligible
binding energy neutral test particles do move along the geo-
Although neutral test particles follow straight paths due todesics determined by the BD metric. But the strong equiva-
the fact that the Keplerian source mads=0, the test scalar €nce principle(SEP, which states that WEP must be satis-
charge executes a motion that closely resembles that of §¢d even for bodies with large gravitational self-energy, is
neutral test particle in the Schwarzschild spacetime geneiiolated in the BD theory due to the appearance of two types
ated by the masl’ = e/ 8. There will of course be a slight Of masseg30]. In the string theory, too, WEP is satisfied to
difference in the numerical value of the precession of orbit§Ne Same extent as in BD theory, but we see that SEP could
due to the lack of factor 2 in the () term in Eq.(60). D€ violated because of the appearance of two madseand
Nevertheless, what we have here is a purely scalar-scaldfls in the metric(26). The ratio of the two masses, viz.
interaction leading to a scalar malgs that restrains the test Ms/My=(y1—%)/B depends on the gravitational binding
charges in their geodesics but does not respond gravitatiomnergy of the source. Indeed, in the lingt—0, one has
ally. In the limit 5~0M’ could be very large. This is an |Mg/M{|—1, in contrast to the EMS case in which one has
interesting feature of string theory if we believe that physicsM=0. Thus, in the string zero mass configuration, the self
is described by the EMS actidh). One finds that the scalar- energy becomes maximum. This is probably an indicator as
scalar interaction in an otherwise flat spges noticed by to why zero mass wormholes in the string theory do not
neutral particlesdescribes a kind of confinement of the test exist.
scalar charge in bound orbits. In this context, recall that the metrg;,, (it is also called
In the string environmentp should be replaced b and  the Pauli metri¢ couples to dilaton in a “normal” way, that

9,,—0 and then the counterpart of the met(&s) be- is, by way of EMS actior(5) and it has been argued that the
cgrynes me dilatonic test particl€and not the ordinary neutral partigle

should follow the geodesics of,, and satisfy the WEP21].

- o - If we endow the dilaton with an infinitesimal masgs(e.g.,
ds' 2=(8—e®)?ds?>=h(r)dt*~p(r)[dr?+r2dQ3]. pseudo Goldstone bosdrand charge:, then the argument
(63)  seems to be at variance with the PletldrSawicki theorem

due to the fact that the dilaton follows the geodesicd $f?

Using the metric functions given by EQ9), we have and not of ds. Indeed, a value ok/k, away from unity

Note thatk= kg=w=—4. Now, in the environment of a
M =0 extremal configuration, we immediately find that the
metric functions reduce to

2M’  M’?2 1
hy(r)=1— —+—+0| —
r r2

-, (60

r
r2

that can be thought of as generated by a hypothetical scaI%
“mass”
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indicates a violation of WEP by charged particle motion.physical reason: The scalar madds does not appear in the
However, this need not necessarily be the case. One mapyetric (8) so that the gravitational self energy is negligible.
always take the usual viewpoint that the effect of the sourc®nly the EMS class | solution has this very desirable prop-
scalar field is already subsumed in the metric and the motioerty.
of test dilaton, by definition, does not alter the background (3) The motion of a test particle endowed with an infini-
geometry. It is only if one allows a departure from this view- tesimal mass and scalar charge has been investigated in both
point by introducing an extra scalar-scalar interactiotes EMS and string theory following an approach by Buchdahl
Buchdahl that one comes up with what is embodied in thé22] who used the Plebaki-Sawicki theorem. The approach
Egs.(60)—(65). is based on the idea that the test charge responds directly to
the scalar field and not only indirectly via the metric. The
metric expansions in the case of only indirect response have
Vil. SUMMARY been demonstrated in Eq4.4) and (29). If both direct and

The contents of the paper may be summarized as underndirect responses are taken into_ account, then thg metrics

(1) Using the four classed-IV ) of EMS solutiongaction expand like Eqs(56) and (63). An interesting resulj[ in the
(5)] as seed solutions derived earlif81], corresponding ¢ase of extremall =0 EMS environmenfaction(5)] is that
classes of solutions in the low energy effective string theoryfh® scalar-scalar interactions produce a hypothetical scalar
[action (1)] have been obtained and analyzed. They can beMass” that can confine test charges. Similar, but not quite
grouped as string clasgEgs.(26), (27)], class lI[Egs.(44), the_ same, effects occur also in the string theory described by
(45)], class III[Eq. (49) and class IMEq. (53)] static spheri- action(). o _
cally symmetric solutions. The string class | solutions can be AS @ mere curiosity, one can speculate a possible cosmo-
identified with those discussed recently by K], but the logical |mpllcat|on of this phenqme_non. Will anq Spemhardt
rest of the three sets of solutions given here are essentially®l conjectured that an inflation induced oscillation of a
newto our knowledge. Note that it is not possible to recoverMassive gravitational scalar field could account for the
the seed EMS solutions by any choice of the free parametersMissing mass” required to close the universe. The scalar-
The metric parts of the string solutions resemble those in thgcalqr interaction at a class_|cal level as con3|d_ered here c_ould
BD theory withw=—1, while the scalar parts correspond to _prowde a pOSS|bIe mechamsm fqr the production of the miss-
those of EMS theory up to a redefinition of constants. Ini"g Mass in the universe, if one is prepared to allow a viola-
other words, the solutions have one leg in the BD and othefion of WEP. Ordinary neutral particles does not respond to
in the EMS theory. These solutions could be derived also bjh€ Scalar mass!’ (since the Keplerian mass of the configu-
solving the whole plethora of string field equations comingf@tion M=mg=0) butM’ does curve the local spacetime
from the action(1). The last solution set, Eq&3), is com- by way of the metric(60), (61). One could think of zero
plex but that is not unexpected as the seed BD class I\ epler massbut M’#0) microscopic wormholes populat-
solution is also complex at the string valwe= — 1. It should N9 the universe and the contributions frani leading to the
be emphasized that the solutions discussed here do not e¥losure of the visible universe. However, it is stressed that
haust all the possible spherically symmetric solutions of th&€solving the missing mass issue is not the main purpose of
string theory that might exist. the present paper as the problem involves several other dif-

(2) Wormhole solutions have been explored in all theferent considerations.
above solutions of EMS and string theories. The following

results are obtained: Massive Lorentzian traversable worm- ACKNOWLEDGMENTS
holes exist in classes I, Il and IV in the EMS theory, but not _
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responding classes of solutiofidl, 1V ). A remarkable result

is that zero mass wormholes dot exist in the string theory APPENDIX

at all, at least within the solution sets considered. A physical

reason for this could be that the gravitational self-energy The equivalence of notations of AP with those in the
becomes very large. In this sense, the nonexistence of zeresent paper can be readily achieved by the identifications:
mass wormholes is a result of the violation of SEP in theM,,,—Ma_p ,Mour— Na—p,0our—0a_p- The expression
string frame. Stable zero mass wormholes that exemplifyn’= 5%—q? used in Ref[14] with the assumptiog?<0 is
Wheeler's “charge without charge” discussed by identical to our Eq(20) above. It should also be pointed out
Armendaiz-Picon [14] can exist only in EMS class I, and that the solutiong8) and (9) reduce, under the radial trans-
not in other EMS classes, as shown in this paper. From théormation r=p(1+m/2p)? and in the AP notation, to the
analysis in Sec. Ill, one can now discern the underlyinglanis-Newman-WinnicoulJNW) form:
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o\ 29\ ™7 1 2
d52=<1—77]) dt2—(1——’7) dp? <p=§|n(1—|—77). (Ad)

p2dQ2, (A1) _ -
Whatever be the nature or sign gfthe minimum surface

area is zero that occurs eitherlat0 or atl=2% and the
scalar field either blows up or becomes undefined at those
values. Thus this form of metric is not suitable since it rep-
(A2) resents a naked singularity B0 or |=27. It should be
noted that the solutio(8) and(9), which represents theame
For more details, see Reff34]. The metric(Al) above is  solution as the one in EqéA1) and(A2) but only rewritten
precisely the Eq(21) in AP [14]. Now, impose the condition in isotropic form, also exhibits a globally strong naked sin-
of zero total mass, ViV ,,,—ma_p=0 on Eq.(Al). Rede-  gularity atr =m/2. (Visser[12] called such wormholes “dis-

e(r)=

fining p=1, one gets, from Eq(A1) eased.) What is interesting is that, only in the zero mass
limit, the disease disappears in one but persists in the other
ds’=dt?—dI?—(12-279)d03, (A3)  coordinate system.
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