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Traversable Lorentzian wormholes in the vacuum low energy effective string theory in Einstein
and Jordan frames

K. K. Nandi*
Department of Mathematics, University of North Bengal, Darjeeling (W.B.) 734430, India

and Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100080, China

Yuan-Zhong Zhang†

CCAST (World Laboratory), P. O. Box 8730, Beijing 100080, China
and Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100080, China

~Received 11 May 2004; published 26 August 2004!

Threenewclasses~II-IV ! of solutions of the vacuum low energy effective string theory in four dimensions
are derived. Wormhole solutions are investigated in those solutions including the class I case both in the
Einstein and in the Jordan~string! frame. It turns out that, of the eight classes of solutions investigated~four in
the Einstein frame and four in the corresponding string frame!, massive Lorentzian traversable wormholes exist
in five classes. Nontrivial massless limit exists only in class I Einstein frame solution while none at all exists
in the string frame. An investigation of test scalar charge motion in the class I solution in the two frames is
carried out by using the Pleban´ski-Sawicki theorem. A curious consequence is that the motion around the
extremal zero~Keplerian! mass configuration leads, as a result of scalar-scalar interaction, to a new hypotheti-
cal ‘‘mass’’ that confines test scalar charges in bound orbits, but does not interact with neutral test particles.
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I. INTRODUCTION

Currently, there exist an intense activity in the field
wormhole physics following particularly the seminal wor
of Morris, Thorne and Yurtsever@1#. Wormholes are topo-
logical handles that connect two distant otherwise disc
nected regions of space. Theoretical importance of such
metrical objects is exemplified in several ways. For instan
they are invoked to interpret or solve many outstanding
sues both in the local as well as cosmological scena
@2–5#. Lorentzian wormholes could be threaded both
quantum and classical matter fields that violate certain
ergy conditions~‘‘exotic matter’’! at least at the throat. In th
quantum regime, several negative energy density fields
already known to exist. For instance, they occur in the C
simir effect, and in the context of Hawking evaporation
black holes, and also in the squeezed vacuum states@1#.
Classical fields playing the role of exotic matter also ex
They are known to occur in theR1R2 theory @6#, scalar
tensor theories@7–11#, Visser’s cut and paste thin shell ge
ometries @12#. On general grounds, it has recently be
shown that the amount of exotic matter needed at the wo
hole throat can be made arbitrarily small thereby facilitat
an easier construction of wormholes@13#.

A commendable arena to look for classical exotic fields
the vacuum linear string theory which, in the low ener
limit, reproduces a scalar tensor theory of gravity in fo
dimensions. The action can be written in the Jordan fra
~JF!, which is also called the string frame, and it is this for
of action that appears in the original nonlinears-model and
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its solutions are what the string actually ‘‘sees.’’~We set the
b-functions to zero for reasons of quantum conformal inva
ance.! The JF action is referred to here as string theory. T
action can also be cast into the Brans-Dicke form with
coupling parameterv521 showing that the Machian phi
losophy is already imbedded into the string action. T
Brans-Dicke action can be transferred to the conformally r
caled Einstein frame~EF! so that the Lagrangian assumes t
form of Einstein-Hilbert action of~non-Machian! general
relativity in which the scalar field~dilaton! couples to the
gravitional sector minimally but with an arbitrary sign in th
kinetic term. We choose to call the latter the Einstein ma
less scalar~EMS! field theory. Both the signs can be the
retically allowed as long as there does not appear any inc
sistency. It should be noted that the positive sign before
kinetic term in the action represents conventional coupl
while the negative sign corresponds to the unconventio
one that leads to the violation of energy conditions.

The motivation for the present paper is provided by th
key reasons: First, both the above frames exhibit cer
symmetry properties, T-duality in the Jordan frame a
S-duality in the Einstein frame. Second, there is as yet
consensus as to which frame is more physical although
Einstein frame is often advocated in view of energy cons
erations. As we are here concerned with only wormhole
lutions, we need not be concerned with the violations
energy conditions in either of the frames. Overall, there is
canonical principle to rule out one frame in preference to
other and hence we shall examine the solutions in both
them. This is the third reason. In fact, recently, in the cont
of traversable Lorentzian wormholes in general relativ
Armendáriz-Picón ~AP! @14# has shown that the most simp
form of Lagrangian that satisfies all the traversable wor
hole conditions is that of EMS theory but with anegative
sign before the kinetic term. The author has briefly discus
©2004 The American Physical Society40-1
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massive wormholes in a certain class~let us call it class I! of
static, spherically symmetric solutions in the EMS theo
and has also proved the existence and stability of zero m
wormholes. As remarked by the author, zero mass wormh
configuration is the simplest and it exemplifies Wheele
concept of ‘‘charge without charge.’’ However, there al
exist other classes of EMS solutions although, unfortunat
they have not received as much attention in the literature
the class I solutions. Therefore, it is of interest to examin
wormholes exist in those other classes of static spheric
symmetric solutions~II-IV ! of EMS theory as well as in the
string theory. In this paper, we start with the EMS solutio
from our earlier paper and derive the corresponding n
string frame solutions and then adopt a search for wormh
analyzing all solutions on a class by class basis in both
theories. The search result turns out to be quite encoura
in the sense that out of the eight, three and two classes
resent massive wormhole solutions in the EMS and str
theory respectively. However, no massless limit exists in
string theory. We shall also study the motion of test partic
in the gravity-scalar field environment by adopting a diffe
ent principle based on the Pleban´ski-Sawicki theorem. We
work mainly in the Morris-Thorne coordinate description f
more transparency.

The paper is organized as follows: In Sec. II, we st
from the linear string action and review the class I solut
of the EMS theory. In Sec. III, we elucidate more pedago
cal details of the EMS class I wormhole in coordinate d
scription and revisit the zero mass limit. The contents will
useful in Sec. IV where we explore the wormhole nature
class I solution in the context of string theory. Investigati
of other classes of solutions~II-IV ! is contained in Sec. V
This section also includes the analyses of the correspon
string classes of solutions. In Sec. VI, we study test part
motion in the class I solution of the two theories while
Sec. VII, we summarize our results. An Appendix contain
comparison of notations for easy reference.

II. THE ACTION AND CLASS I SOLUTION:
A BRIEF REVIEW

Our starting point is the 4-dimensional, low energy effe
tive action of heterotic string theory compactified on
6-torus @15#. The tree level string effective action, keepin
only linear terms in the string tensiona8 and in the curvature
R̃, takes the following form in the ordinary-matter free r
gion (Smatter50):

Se f f5
1

a8
E d4xA2g̃e22F̃@R̃14g̃mnF̃ ,mF̃ ,n#, ~1!

where F̃ is the dilaton field. Note that the zero values
other matter fields do not lead to any additional constra
either on the metric or on the dilaton@15#. One also avoids
the complexity of abnormal scalar coupling with these fie
in the EMS version. Such couplings are known to violate
principle of equivalence since the test particle rest mass
pends on the scalar field. We shall comment on this princ
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later in Sec. VI. Under the substitutione22F̃5f, the above
action reduces to the JFBD action~we take the units 16pG
5c51):

SJF5E d4xA2g̃FfR̃1
1

f
g̃mnf ,mf ,nG ~2!

in which the BD coupling parameterv is set to the value
v521. This particular value is actually a model indepe
dent prediction and it arises due to the fundamental sym
try of strings, viz. the target space duality@16#. It should be
noted that the vacuum BD action has a conformal invaria
characterized by a constant gauge parameterj. Arbitrary
choice ofj can lead to a shift from the valuev521. This
ambiguity can be removed either by allowing abnormal co
pling to matter or simply by fixing the gauge@21#. We fix
j50. Under a further substitution

gmn8 5fg̃mn , ~3!

dw85A2v13

2a

df

f
, aÞ0, ~4!

the action~2! goes into the EFBD action, for the string valu
v521,

SEF5E d4xA2g8@R81ag8 mnw ,m8 w ,n8 #, ~5!

where we have introduced a constant arbitrary parametea
that can have any sign. The action~5! is also called the string
action in the Einstein frame but in this paper we distingu
it as the action of the EMS theory. If the kinetic ter
ag8 mnw ,m8 w ,n8 has an overall reverse~that is, negative! sign,
we have what one calls unconventional coupling. Howev
no matter what the sign or value ofa is, we can always
proceed from EMS action~5! backwards up to the string
action ~1!. We keepa unassigned until later. It seems re
markable that A-P@14# has ended up with action~5! as the
simplest action arguing from a completely different ang
viz. by imposing wormhole constraints on the Lagrangian
a general class of microscopic scalar field. Obviously,
arguments have nothing to do with string theory yet the e
action is quite the same. So we have here a picture in wh
the physics of dilatonic gravity meets that of wormholes.
what follows, we shall use slightly different notations th
are in line with our earlier papers. These can be easily tr
scribed to those in Ref.@14#, as shown in the Appendix.

To clearly demarcate the scope of what follows, we m
state that we are not dealing here with time dependent
mological wormholes, and/or wormholes with Euclidean s
natures@17–19# which are qualitatively completely differen
from static Lorentzian wormholes. However, the role of E
~4! that connects JF and EF is the same. In this regard,
that we have imported a new parametera in Eq. ~4! and it is
obvious that the ranges ofv anda can be chosen indepen
dently. In the context of cosmology, the choice ofv50
leaves the parametera arbitrary in the EF@17,18#. It is also
worth noting that Quiros, Bonal and Cardenas@19# have
0-2
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shown that the cosmological singularity occurring in the
is removed in the JF in the range23/2,v<24/3. This
result has significant impact on the question of which fram
JF or EF, is more physical and also on the status of quan
gravity @20#. However, in the context of string theory, w
must use only the model independent, unique strin
value v521 in Eq. ~4!. In this case, we havedw8
5(1/A2a)(df/f), and the range ofa is essentially left
undetermined by the string theory field equationsper sein
the EF, viz. Eqs.~6! and ~7!. What actually determinesa is
the condition for the existence of wormholesat the solution
level given, for instance, byb2.1 @see Eq.~17! below#,
which in turn implies thatw8 be imaginary fora.0 @see
Eqs.~11!, ~12!#. AP @14# has shown that the imaginary natu
of w8 does not lead to any pathology or inconsistency in
physics of Lorentzian wormholes. A completely equivale
but alternative description, again at the solution level, is
regardw8 as a real function which then leads toa,0. All
these matters are developed in Secs. II and III. The impor
point is thatboth the cases@a.0, w8 imaginary, or,a,0,
w8 real# lead to a negative sign before the kinetic te
ag8mnw ,m8 w ,n8 which is what we need for exotic matter. On
is free to adopt any of the mutually exclusive theoreti
alternatives without any loss of rigor in the wormhole ana
sis.

The field equations for the EMS theory, after dropping t
primes in Eq.~5!, are given by

Rmn52aw ,mw ,n ~6!

h2w50. ~7!

In ‘‘isotropic’’ coordinates (xm,m50,1,2,3), the solution is
given by @22#.

ds25gmndxmdxn

5S 12
m

2r D
2bS 11

m

2r D
22b

dt22S 12
m

2r D
2(12b)

3S 11
m

2r D
2(11b)

@dr21r 2dV2
2#, ~8!

w~r !52l lnF 12
m

2r

11
m

2r

G , ~9!

dV2
25du21sin2udf2, ~10!

whereb25122al2. This solution can be directly obtaine
also by conformally rescaling the BD class I solution@9#.
The two undetermined constantsm andb are related to the
source strengths of the gravitational and scalar parts of
configuration. To first order,

w'
s

r
, ~11!
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where

s522ml522m@~12b2!/2a#1/2 ~12!

is the strength of the scalar source. Whenb51, we have
w50, and the Schwarzschild metric is recovered in acc
dance with the no hair theorem. Using Einstein’s energy m
mentum complex, we find that the total massM of the con-
figuration is given by

M5mb. ~13!

This is the conserved total mass of the configuration to
observed by asymptotic observers. Using this value, the m
ric ~8! can be expanded in the weak field as

ds25@122Mr 2112M2r 221O~r 23!#dt22@112Mr 21

1O~r 22!#@dr21r 2dV2
2#. ~14!

This metric exactly coincides with the weak field Roberts
expansion@23# of a centrally symmetric gravitational field
Assuming that the neutral test particles follow the geodes
determined by the metric~8!, that is no abnormal coupling o
ordinary matter with gravity, we see that all the well know
solar tests of gravity are described just as precisely as d
the exterior Schwarzschild metric. The parameterb does not
appear separately in the expansion~14! and hence its effec
cannot be measured by any metric test of gravity. The
rametera does not appear here either but it does appea
the expression for the scalar field in Eq.~9! or ~11! and we
can use its sign to fix the nature ofw. Let us return to Eq.
~13! which can be immediately rewritten as

M25m22
1

2
as2. ~15!

It is quite apparent from Eq.~12! that s can assume real o
imaginary values depending on the values assigned tob and
a. We shall now see what kind of values could be assign
to these parameters if the metric~8! is to represent a travers
able wormhole.

III. CLASS I WORMHOLE IN THE EMS THEORY

For a coordinate description of wormholes that encapsu
all the essential details, the Morris-Thorne@1# form is most
useful, which is given by

ds25e2F(R)dt22
1

12
b~R!

R

dR22R2dV2
2 , ~16!

whereF(R) is the redshift function andb(R) is the shape
function. Casting metric~8! in that form and manipulating a
little, the wormhole throat is found to occur at the isotropicr
coordinate radii

r 0
65

m

2
@b6~b221!1/2#. ~17!
0-3



bl

ui
a

at

le

o
lac

o
t
o

fin

k

o
er

e
, i

by

na

id-

der
that

the
st
-
ial
in

ally
al
in-

ve

an-
om-

e

K. K. NANDI AND Y.-Z. ZHANG PHYSICAL REVIEW D 70, 044040 ~2004!
The valueb251 corresponds to a massive nontraversa
wormhole sincer 0

6 coincides with the horizon radiusr s

5m/2 and we are not interested in this case. In order to b
a traversable wormhole, one needs to avoid this radius
therefore, one must have realr 0

6.m/2. This requires that
b2.1. Now consider scalar field energy densityr and the
Ricci scalarR which work out to be

r5
1

2
3

m2~12b2!

S 12
m2

4r 2D 2 3S r 1
m

2 D 22(11b)

3S r 2
m

2 D 22(12b)

,

~18!

R52m2r 4~12b2!3S r 2
m

2 D 22(22b)

3S r 1
m

2 D 22(21b)

.

~19!

They become finite atr 5m/2 if b>2, which accords well
with the wormhole condition. In fact, it can be verified th
all curvature invariants are also finite under the conditionb
>2. So, one indeed has a regular spacetime, but the prob
is that the surface area becomes infinite atr 5m/2. But this
could be due to a wrong choice of coordinates. Bronnik
et al. @24# called such spacetimes as representing cold b
holes~CBH! because of zero Hawking temperature. Some
their interesting properties have also been discussed in
literature @25#. In any case, the wormhole flares out to tw
asymptotically flat regions connected by the throat and
traversable because the tidal forces can be shown to be
at the throat and elsewhere.

For the wormhole value ofb2, viz. b2.1, then, we have
two equivalent situations:~i! Take a,0, saya522. This
means breaking the energy conditions ‘‘by hand’’~we shall
provide an example later! in the source term in Eq.~6! so
that we can have, from Eq.~12!, a real scalar charges, that
is s2.0, or ~ii ! take a.0, say a52, then we have an
imaginary scalar charge from Eq.~12! so thats252s8 2

,0. In either case, of course, we have a reversed sign
netic term in the action. Also in Eq.~6!, we have a stress
tensor that violates all energy conditions giving the kind
classical exotic matter necessary for the threading of trav
able wormholes. Then, from Eq.~15!, we have

M25m21s8 2. ~20!

A wormhole with zero total mass, that is,M50, immedi-
ately impliesm50 ands850. In other words, we have th
trivial case of a flat metric and zero scalar field. However
is possible to avoid this uninteresting case by makingm also
imaginary and noting from Eq.~13! that we can also have
M50 if we setb50. This is actually the case considered
AP @14#. In fact, takinga52,b50 we have from Eq.~15!,

s25m2. ~21!

Clearly, if s2 is negative, then so ism2 and vice versa. It is
thus enough in this particular case to assume the imagi
nature of anyoneof them. Defining the proper distancel as
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4r
, ~22!

the metric~8! can be rewritten in the form

ds25dt22dl22~ l 21s8 2!dV2
2 , ~23!

w5 lnF 12
is8

2r ~ l !

11
is8

2r ~ l !

G , ~24!

r ~ l !5
l 6Al 21s8 2

2
. ~25!

Sincem2 is also negative, i.e.,m252m8 2,0, the worm-
hole throat atl 50 implies the real coordinate valuesr 0

6

56s8/257m8/2 and the scalar fieldw becomes imaginary
but does not blow up at this value. Also, in the units cons
ered, we have atr 5r 0

6 , r521/2s8 2, R522/s8 2. Thus,
we indeed have the simplest well behaved wormhole. Un
the considerations above, we now have a real equation
Eq. ~20! translates into, viz.M252m8 21s8 2 obviously
implying thatM50 wormholes areextremalin nature. This
amounts to saying that we have a configuration in which
stresses of thew field contribute an amount of energy ju
sufficient to nullify the effect of gravitational potential mak
ing the total energy zero. In other words, we have nontriv
energy sources residing at the origin of central symmetry
such a way as to make a configuration that is gravitation
indifferent to neutral test particles. Note that the extrem
configuration can arise even when no exotic matter is
volved, that is,b2,1. In this case also, we can haveM
50⇒m5s from Eq. ~15! simply by choosinga52. The
foregoing analyses will be helpful in what follows.

Finally, it must be noted that class I EMS solutions ha
received good attention in the literature@26,27#. For instance,
using Eqs.~23!–~25!, particle models in general relativity
have been constructed by Ellis@26# by way of an ether flow
through a drainhole. Geometrical optics, classical and qu
tum scattering problems have been studied in the Ellis ge
etry by Chetouani and Clement@28# and by Clement@29#.

IV. CLASS I WORMHOLE IN THE STRING THEORY

Starting with the solutions~8! and~9! and working back-
wards up to action~1!, we can straightaway write down th
corresponding string solution as

ds̃25g̃mndxmdxn

5S 12
m

2r D
2(b2lA2a)S 11

m

2r D
22(b2lA2a)

3dt22S 12
m

2r D
2(12b2lA2a)
0-4
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3S 11
m

2r D
2(11b1lA2a)

@dr21r 2dV2
2#, ~26!

F̃52lA2a lnF 12
m

2r

11
m

2r

G . ~27!

Under a suitable reidentification of constants and coo
nates, the above solution reduces to that discussed by
@15#. To first order in (1/r ), we have the strength of th
dilatonic sources̃ given by

F̃'
s̃

r
, s̃5mlA2a. ~28!

One recovers the Schwarzschild metric in the limitb51.
However, it does not seem possible to recover the seed s
tions ~8! and ~9! which shows that we are dealing here wi
a class of solutions that is essentially distinct from its co
terpart either in BD or in the EMS theory.

Expanding the metric~26! as in Eq.~14!, and identifying
the Keplerian massM* , the tensor massMT5mb and the
scalar massMS52mA12b2 ~cf. @30# for these definitions!,
we have

ds̃25@122M* r 2112M* 2r 221O~r 23!#dt2

2F112M* r 21S b1A12b2

b2A12b2D 1O~r 22!G
3@dr21r 2dV2

2#, ~29!

whereM* 5m(b2A12b2)[MT1MS . Solar observations
can put a limit tob, which obviously is expected to beb
'1. Note that the motion of ordinary test particle measu
the Keplerian mass and it is assumed that the particle
negligible self energy so that the Nordvedt effect can
ignored. The tensor mass is measured by the motion
Schwarzschild black hole in the metric~8! @30#.

We shall now investigate if the solutions~26! and ~27!
represent traversable wormholes. To this end, we cast
metric ~26! in the Morris-Thorne form by redefining the ra
dial variabler→R as

R5r S 12
m

2r D
(12b2lA2a)S 11

m

2r D
(11b1lA2a)

. ~30!

The redshift functionF(R) and the shape functionb(R) turn
out to be

F~R!5@b2A12b2#3F lnS 12
m

2r D2 lnS 11
m

2r D G ,
~31!
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b~R!5RF 12S r 21
m2

4
2mb̃r

r 22
m2

4

D 2G , ~32!

b̃[b1A12b2. ~33!

Clearly,b51⇒b̃51. The throat occurs at the radii

r̃ 0
65

m

2
@b̃6~ b̃221!1/2# ~34!

and as before the wormhole requirement is thatb̃2.1. The
energy densityr̃ is given by

r̃5
2

R2
3

m2r 2

~r 22m2/4!2
3~12b̃2!, ~35!

which is negative forb̃2.1, as expected. The tidal force
are finite and so the solution represents a traversable wo
hole. The total conserved mass of the configuration as
served by asymptotic observers can be identified as

M̃5mb̃. ~36!

In the zero mass limit:b̃50⇒M̃50. This impliesb5

21/A2 which in turn implies a dilatonic field strengths̃
5m/A2. It is now useful to recall the discussions surroun
ing Eqs.~21!–~25!. The situation here is thatr 0̃

6 is imagi-
nary as before but to make it real one can assumem to be
imaginary which automatically implies thats̃ is also imagi-
nary. Under the transformationl 5r (11m2/4r 2), the metric
~26! becomes

ds̃25S l 1m

l 2mD A2

dt22dl22~ l 22m2!dV2
2 ,

F̃52
1

2A2
lnS l 2m

l 1mD . ~37!

With m imaginary, we have a positive definite minimum su
face area24pm2 but at l 50, we haveg̃005(21)A2 which
is a many valued function. Also forlÞ0, g̃00 becomes
imaginary which requires us to go beyond the real manif
that we have been considering. Hence, although mas
wormholes exist, zero mass wormholes seem untenable
least in the simplest form of the string theory that is und
present investigation. We shall also state a physical reaso
Sec. VI as to why they are untenable. Nonetheless, Eq.~37!
is still a formal zero mass solution of the string action~1!.
We shall encounter solutions of similar nature in the n
section.

The developments in Secs. III and IV immediately reve
certain interesting features about the images of EMS cla
wormholes in the string theory. It follows that bothb50
~zero mass! and b51 EMS wormholes have the image o
0-5
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only a nontraversable wormhole in the string theory with
throat occurring atr̃ 0

65m/2. For b50 we haveg̃00→` at

r̃ 0
65m/2, which is undesirable. For the range of valuesb2

.1, traversable Lorentzian wormholes do exist in the EM
theory but they have no counterpart in the string theory si
b̃ and r̃ 0

6 become imaginary. However, ordinary EMS sol
tions for b2,1 haveonly wormhole images in the string
regime due to the fact thatb2,1⇒b̃2.1 which was shown
to be a necessary condition for string wormholes.

V. CLASS II-IV SOLUTIONS IN THE EMS AND STRING
THEORY

By conformal rescaling of the BD class II-IV solutions,
is possible to obtain the corresponding solutions in the E
theory @31#. Alternatively, they can be obtained by solvin
the EMS equations~6! and ~7! by standard procedures. W
take the general form of the metric as

ds25P~r !dt22Q~r !@dr21r 2dV2
2#. ~38!

~a! Class II EMS solutions are

P~r !5e2a014g arctan(r /b),

Q~r !5F11
b2

r 2G 2

e2b024g arctan(r /b), ~39!

w~r !52l arctanS r

bD , ~40!

where l[@8(11g2)/a#1/2 and a0 ,b0 ,g,b are arbitrary
constants. Asymptotic flatness requires thata052pg,b0
5pg. The solution~39! has a conserved total energyM
52bg as can be verified by computing the Einstein comp
of stress energy. With this value ofM, the metric expands
exactly like Eq.~14! for r 2>b2, and thereby explains all th
solar system tests of gravity. To see if the solution set~38!–
~40! represent wormholes, we cast it in the Morris-Thor
form to find that the coordinate throat radii occur at

r 0
65b@g6A11g2#. ~41!

Note that, in the solution~40!, one has 11g2,0, and this
inequality is a result of the field equations~8! and~9!, so that
one has an imaginaryw. Alternatively, we can choosea
,0, and have a realw. But this is no real problem as the tw
situations are equivalent, as explained earlier. Althoughr 0

6 is
imaginary, one might chooseb to be imaginary to maker 0

6

real. In this case,M also becomes real. As is obvious, we a
employing the same arguments as we did in Sec. III for
zero mass case. Note that, althoughg and b are imaginary,
the metric functionsP(r ) andQ(r ) are real. All the curva-
ture invariants are finite everywhere@31# and the tidal forces
experienced by a geodesic traveler can be shown to be fi
at the wormhole throat and these tend to vanish at
asymptotic region. Most importantly, the exponential fun
tion P(r ) does not vanish anywhere so that the solution
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no horizon. In this sense, it shares the features of Mor
Thorne ‘‘F50’’ ~no horizon! wormholes@1#. Thus, the EMS
class II solutions also represent traversable wormholes.
though in the zero mass limit, viz.g50, the metric~38! in
proper distance language looks promising, that is,

ds25dt22dl22~ l 214b2!dV2
2 , ~42!

such wormholes unfortunately do not exist as the limit its
(g50) conflicts with the inequality 11g2,0.

The string version of the class II solution is given by

ds̃25 P̃~r !dt22Q̃~r !@dr21r 2dV2
2#, ~43!

P̃~r !5e2a014[g2A11g2]arctan(r /b),

Q̃~r !5F11
b2

r 2G 2

e2b024[g1A11g2]arctan(r /b), ~44!

F̃~r !52~g2A11g2!arctanS r

bD . ~45!

Other relevant quantities, e.g., the mass and throat radii,
respectively given by

M̃52bg̃52b@g1A11g2#, r̃ 0
65b@ g̃6~11g̃2!1/2#. ~46!

All these quantities are real ifb is imaginary, as we assumed
Here again, for the same reasons described in Sec. IV, m
sive, i.e.,M̃Þ0 traversable wormholes do exist but the ma
less limit does not, as no value ofg can makeg1A11g2

50, a condition that is required to makeM̃50.
~b! Class III EMS solutions are

P~r !5a0e2(gr /b), Q~r !5b0S r

bD 24

e(gr /b), w~r !5
gr

2b
.

~47!

This solution is not asymptotically flat and hence does
meet the requirement of asymptotic flaring out of the wor
holes. However, it is flat in the limitr→0. If we still for-
mally impose the zero mass conditiong50 and define
l 52b2/r , we have the metric

ds25a0dt22b0dl22b0l 2dV2
2 . ~48!

Under a further rescalingAa0t→t8, Ab0l→ l 8, we end up
with a trivial metric. The string class III metric is

P̃~r !5a0e2(3gr /2b), Q̃~r !5b0S r

bD 24

e(gr /2b),

F̃~r !52
gr

2b
, ~49!

and we again have a flat Minkowski metric like Eq.~48! for
the caseg50.

~c! Class IV EMS solutions exhibit some good propertie
They are given by
0-6
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P~r !5a0e2[g/(br)] , Q~r !5b0e[g/(br)] , w~r !52
g

2br
.

~50!

Asymptotic flatness fixesa05b051. The horizon appears a
r 50. First of all, under the transformationr→1/r , b0
→b4b0, the solution goes over to the class III EMS soluti
~47! and hence the two classes are not essentially dist
although in the original JF version, they are cited as differ
classes of solutions@32#. Secondly, all the curvature invar
ants are finite everywhere includingr 50. In fact, the solu-
tion could be interpreted as a CBH@25# since the area atr
50 is infinite. But the geodesic congruences can not re
the origin, but reach a minimum distancer 05M ~see below!
away from it, corresponding to a finite surface area. The
after, they diverge so that it is more likely that it represent
pure wormhole. Thirdly, the total conserved mass for
solution is given by a realM5g/2b and the metric exactly
coincides with the expansion~14! up to the orders consid
ered. Hence, it describes all the weak field tests of gen
relativity just as good as the Schwarzschild metric do
However, forg50 for which M50, we again have only a
flat spacetime and a vanishing scalar field and conseque
no zero mass wormholes. In the scalar field theory, there
black hole counterpart which usually occurs when the sc
field is set to zero in accordance with the ‘‘no hair’’ theore
This situation obviously does not arise here and that is
other reason why we prefer to call class IV solutions as p
wormholes.

To see if class IV EMS solutions represent massive wo
holes, we cast the metric~50! in the Morris-Thorne form to
obtain the shape and redshift functions, respectively, as

b~R!5reM /rF12S 12
M

r D 2G , F~R!52
M

r
,R5reM /r .

~51!

The wormhole throat appears atr 05M⇒R5Me which is
greater than the horizon radius. The densityr and the radial
tensiont are

r52
M2

R2r 2
,0, t5

M2

R2r 2
, ~52!

such thatt2r.0 not only at the throat but everywher
Hence the flaring out condition is satisfied. The tidal forc
are finite for static as well as for freely falling observers@21#.
The forces, however, could be large for small values ofM.
So, everything put together, the solution indeed represen
massive Lorentzian wormhole that is traversable at leas
principle.

Note that the solution~50! solves the field equations~8!
and ~9! for a522 so that here we have an example whe
all energy conditions are broken by hand, sincew is real. In
order to go to the string metric, we needf which becomes,
with this value ofa, f215e22iw. This imports an imagi-
nary factor to the string metric. Therefore, the string vers
of class IV solution has the form
04404
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P̃~r !5e2(2M /r )(12 i ), Q̃~r !5e(2M /r )(11 i ), F̃5
iM

r
.

~53!

Clearly, Eqs.~53! do not represent wormholes in real spac
times although it is an interesting formal solution of strin
field equations of the action~1! in the same way as the zer
mass solution, Eq.~37! is. Here again, M̃5M (11 i )
50⇒M50, and this leads to a trivial Minkowski spacetim
so that there are no zero mass wormholes.

VI. CHARGED TEST PARTICLE MOTION

In this section, we consider motion only in the class
solution of EMS and string theory. As mentioned in Sec.
from the expansion~14! the effect ofb ~or the source scala
charges) can not be separately explored by the motion
neutral test particles at least in the power of 1/r 2 since the
total conserved gravitating massM appears only as a produc
of m and b. The expansion~29! in the string version does
separate the effect ofb and neutral test particle probes a
able to put a limit on its value. However, here we wish
consider not neutral but charged particle motions. To t
end, following an interesting approach by Buchdahl@22#, we
regardw ~or in the string context,F̃) as representing som
medium or long range force field existing in spacetimegmn

~or g̃mn) and imagine a test scalar charge responding to
field directly in addition to interacting indirectly via the me
ric. The situation is analogous to the motion of an electrica
charged particle in the Reissner-Nordstro¨m spacetime. In or-
der to have bound orbits, we shall assume that the source
test charges have opposite signs. With this understanding
us consider the equation of motion of a test particle w
infinitesimally small massd and scalar charge«. In virtue of
the Pleban´ski-Sawicki theorem@33#, the geodesic equation
are given by

um@~d2«w!un# ;m52«w ;
n , ~54!

whereum is the four velocity of the particle and ; denote
covariant derivative with respect togmn defined in Eq.~8!.
These equations have the first integralumum51 and the par-
ticle trajectories correspond to those defined by the me
@22#

ds8 25~d2«w!2gmndxmdxn. ~55!

By carrying out the expansion plugging in the expressions
gmn andw from Eqs.~8! and ~9!, we have the metric

ds8 25h8~r !dt22p8~r !@dr21r 2dV2
2#, ~56!

where

h8~r !5122~12Ã!
M

r
1~224Ã1Ã2!

M2

r 2
1OS 1

r 3D ,

~57!
0-7
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p8~r !5112~11Ã!
M

r
1OS 1

r 2D , Ã5
s«

dM
, ~58!

in which Ã can take on only negative values ase ands are
assumed to have opposite signs. All the observable quan
relating to the trajectory of the test scalar charge can
calculated in the usual way. For instance, ifk is the preces-
sion of the pericenter per revolution for a givenÃ andk0 is
the precession forÃ50, then

k

k0
512

2Ã

3
2

Ã2

6
. ~59!

Note thatk5k0⇒Ã524. Now, in the environment of a
M50 extremal configuration, we immediately find that t
metric functions reduce to

h08~r !512
2M 8

r
1

M 8 2

r 2
1OS 1

r 3D , ~60!

p08~r !511
2M 8

r
1OS 1

r 2D , ~61!

that can be thought of as generated by a hypothetical sc
‘‘mass’’

M 85
s«

d
.0. ~62!

Although neutral test particles follow straight paths due
the fact that the Keplerian source massM50, the test scalar
charge executes a motion that closely resembles that
neutral test particle in the Schwarzschild spacetime ge
ated by the massM 85s«/d. There will of course be a sligh
difference in the numerical value of the precession of orb
due to the lack of factor 2 in the (1/r 2) term in Eq. ~60!.
Nevertheless, what we have here is a purely scalar-sc
interaction leading to a scalar massM 8 that restrains the tes
charges in their geodesics but does not respond gravita
ally. In the limit d→0,M 8 could be very large. This is an
interesting feature of string theory if we believe that phys
is described by the EMS action~5!. One finds that the scalar
scalar interaction in an otherwise flat space~as noticed by
neutral particles! describes a kind of confinement of the te
scalar charge in bound orbits.

In the string environment,w should be replaced byF̃ and
gmn→g̃mn , and then the counterpart of the metric~56! be-
comes

ds̃8 25~d2«F̃!2ds̃25h̃~r !dt22 p̃~r !@dr21r 2dV2
2#.

~63!

Using the metric functions given by Eq.~29!, we have
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h̃~r !5122~12Ã1!S M*

r D1~224Ã11Ã1
2!S M*

r D 2

1OS 1

r 3D , ~64!

p̃~r !5112F ~11Ã1!S b1A12b2

b2A12b2D GM*

r
1OS 1

r 2D ,

Ã15
«s̃

dM*
. ~65!

For M̃50 ordinary string configuration~not wormhole, they
do not exist as shown in Sec. IV! corresponding tob̃50, we
find that the term in the square bracket vanishes identica
Therefore, the motion in this situation would be somewh
different from the one described by Eqs.~56!–~58!. If in
addition, we assume that the Keplerian massM* 50 in Eq.
~64!, we have the metric functionh̃(r ) analogous to Eq.~62!

with M 8 replaced by«s̃/d, but a flatp̃(r ) up to first order.
Thus, in a flat metric with only the dilatonic field coupling t
it, there is still some sort of a dilaton-dilaton interaction ge
erating a certain mass if the physics is believed to be
scribed by the action~1!.

The developments of this section have a direct bearing
the principle of equivalence that is usually discussed in te
of motion of the test particles in a given metric. If the motio
follows the geodesics of the metric, one says that the p
ciple is obeyed. First consider the BD theory. The weak pr
ciple of equivalence~WEP! is satisfied as small~negligible
binding energy! neutral test particles do move along the ge
desics determined by the BD metric. But the strong equi
lence principle~SEP!, which states that WEP must be sati
fied even for bodies with large gravitational self-energy,
violated in the BD theory due to the appearance of two ty
of masses@30#. In the string theory, too, WEP is satisfied
the same extent as in BD theory, but we see that SEP c
be violated because of the appearance of two massesMT and
MS in the metric ~26!. The ratio of the two masses, viz
MS /MT5(A12b2)/b depends on the gravitational bindin
energy of the source. Indeed, in the limitb̃→0, one has
uMS /MTu→1, in contrast to the EMS case in which one h
MS50. Thus, in the string zero mass configuration, the s
energy becomes maximum. This is probably an indicator
to why zero mass wormholes in the string theory do n
exist.

In this context, recall that the metricgmn ~it is also called
the Pauli metric! couples to dilaton in a ‘‘normal’’ way, that
is, by way of EMS action~5! and it has been argued that th
dilatonic test particle~and not the ordinary neutral particle!
should follow the geodesics ofgmn and satisfy the WEP@21#.
If we endow the dilaton with an infinitesimal massd ~e.g.,
pseudo Goldstone bosons! and charge«, then the argumen
seems to be at variance with the Pleban´ski-Sawicki theorem
due to the fact that the dilaton follows the geodesics ofds8 2

and not of ds2. Indeed, a value ofk/k0 away from unity
0-8
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indicates a violation of WEP by charged particle motio
However, this need not necessarily be the case. One
always take the usual viewpoint that the effect of the sou
scalar field is already subsumed in the metric and the mo
of test dilaton, by definition, does not alter the backgrou
geometry. It is only if one allows a departure from this vie
point by introducing an extra scalar-scalar interactiona la
Buchdahl that one comes up with what is embodied in
Eqs.~60!–~65!.

VII. SUMMARY

The contents of the paper may be summarized as und
~1! Using the four classes~I-IV ! of EMS solutions@action

~5!# as seed solutions derived earlier@31#, corresponding
classes of solutions in the low energy effective string the
@action ~1!# have been obtained and analyzed. They can
grouped as string class I@Eqs.~26!, ~27!#, class II@Eqs.~44!,
~45!#, class III@Eq. ~49! and class IV@Eq. ~53!# static spheri-
cally symmetric solutions. The string class I solutions can
identified with those discussed recently by Kar@15#, but the
rest of the three sets of solutions given here are essent
newto our knowledge. Note that it is not possible to recov
the seed EMS solutions by any choice of the free parame
The metric parts of the string solutions resemble those in
BD theory withv521, while the scalar parts correspond
those of EMS theory up to a redefinition of constants.
other words, the solutions have one leg in the BD and ot
in the EMS theory. These solutions could be derived also
solving the whole plethora of string field equations comi
from the action~1!. The last solution set, Eqs.~53!, is com-
plex but that is not unexpected as the seed BD class
solution is also complex at the string valuev521. It should
be emphasized that the solutions discussed here do no
haust all the possible spherically symmetric solutions of
string theory that might exist.

~2! Wormhole solutions have been explored in all t
above solutions of EMS and string theories. The followi
results are obtained: Massive Lorentzian traversable wo
holes exist in classes I, II and IV in the EMS theory, but n
in class III. However, it has been pointed out that class
solution is related to class IV through a coordinate invers
and are not really distinct solutions. However, for the wor
hole flaring out condition, the latter form~IV ! is more suit-
able due to its asymptotic flatness atr 5`. The zero mass
limit is mathematically forbidden in class II while the cla
IV solution leads to a trivially flat spacetime in this limit. I
the string theory, massive wormholes exist in the three c
responding classes of solutions~I,II,IV !. A remarkable result
is that zero mass wormholes donot exist in the string theory
at all, at least within the solution sets considered. A phys
reason for this could be that the gravitational self-ene
becomes very large. In this sense, the nonexistence of
mass wormholes is a result of the violation of SEP in
string frame. Stable zero mass wormholes that exemp
Wheeler’s ‘‘charge without charge’’ discussed b
Armendáriz-Picón @14# can exist only in EMS class I, an
not in other EMS classes, as shown in this paper. From
analysis in Sec. III, one can now discern the underly
04404
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physical reason: The scalar massMS does not appear in the
metric ~8! so that the gravitational self energy is negligibl
Only the EMS class I solution has this very desirable pro
erty.

~3! The motion of a test particle endowed with an infin
tesimal mass and scalar charge has been investigated in
EMS and string theory following an approach by Buchda
@22# who used the Pleban´ski-Sawicki theorem. The approac
is based on the idea that the test charge responds direct
the scalar field and not only indirectly via the metric. Th
metric expansions in the case of only indirect response h
been demonstrated in Eqs.~14! and ~29!. If both direct and
indirect responses are taken into account, then the me
expand like Eqs.~56! and ~63!. An interesting result in the
case of extremalM50 EMS environment@action~5!# is that
the scalar-scalar interactions produce a hypothetical sc
‘‘mass’’ that can confine test charges. Similar, but not qu
the same, effects occur also in the string theory described
action ~1!.

As a mere curiosity, one can speculate a possible cos
logical implication of this phenomenon. Will and Steinhar
@35# conjectured that an inflation induced oscillation of
massive gravitational scalar field could account for t
‘‘missing mass’’ required to close the universe. The sca
scalar interaction at a classical level as considered here c
provide a possible mechanism for the production of the m
ing mass in the universe, if one is prepared to allow a vio
tion of WEP. Ordinary neutral particles does not respond
the scalar massM 8 ~since the Keplerian mass of the config
ration M5mb50) but M 8 does curve the local spacetim
by way of the metric~60!, ~61!. One could think of zero
Kepler mass~but M 8Þ0) microscopic wormholes populat
ing the universe and the contributions fromM 8 leading to the
closure of the visible universe. However, it is stressed t
resolving the missing mass issue is not the main purpos
the present paper as the problem involves several other
ferent considerations.
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APPENDIX

The equivalence of notations of AP with those in t
present paper can be readily achieved by the identificatio
Mour→mA2P ,mour→hA2P ,sour→qA2P . The expression
m25h22q2 used in Ref.@14# with the assumptionq2,0 is
identical to our Eq.~20! above. It should also be pointed ou
that the solutions~8! and ~9! reduce, under the radial trans
formation r 5r(11m/2r)2 and in the AP notation, to the
Janis-Newman-Winnicour~JNW! form:
0-9
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ds25S 12
2h

r D m/h

dt22S 12
2h

r D 2m/h

dr2

2S 12
2h

r D 12m/h

r2dV2
2 , ~A1!

w~r !5
A12

m2

h2

2a
lnS 12

2h

r D . ~A2!

For more details, see Ref.@34#. The metric~A1! above is
precisely the Eq.~21! in AP @14#. Now, impose the condition
of zero total mass, viz.Mour→mA2P50 on Eq.~A1!. Rede-
fining r5 l , one gets, from Eq.~A1!

ds25dt22dl22~ l 222h l !dV2
2 , ~A3!
tt

n-

s

ys

g

04404
w5
1

2
lnS 12

2h

l D . ~A4!

Whatever be the nature or sign ofh the minimum surface
area is zero that occurs either atl 50 or at l 52h and the
scalar field either blows up or becomes undefined at th
values. Thus this form of metric is not suitable since it re
resents a naked singularity atl 50 or l 52h. It should be
noted that the solution~8! and~9!, which represents thesame
solution as the one in Eqs.~A1! and~A2! but only rewritten
in isotropic form, also exhibits a globally strong naked s
gularity atr 5m/2. ~Visser@12# called such wormholes ‘‘dis-
eased.’’! What is interesting is that, only in the zero ma
limit, the disease disappears in one but persists in the o
coordinate system.
hys.
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