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Black-hole bomb and superradiant instabilities
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A wave impinging on a Kerr black hole can be amplified as it scatters off the hole if certain conditions are
satisfied, giving rise to superradiant scattering. By placing a mirror around the black hole one can make the
system unstable. This is the black-hole bomb of Press and Teukolsky. We investigate in detail this process and
compute the growing time scales and oscillation frequencies as a function of the mirror’s location. It is found
that in order for the system black hole plus mirror to become unstable there is a minimum distance at which the
mirror must be located. We also give an explicit example showing that such a bomb can be built. In addition,
our arguments enable us to justify why large Kerr-AdS black holes are stable and small Kerr-AdS black holes
should be unstable.
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I. INTRODUCTION hole, amplifying itself each time. Then the total extracted
energy should grow exponentially until finally the radiation
Superradiant scattering is known in quantum systems fopressure destroys the mirror. This is the Press-Teukolsky
a long time, after the problems raised by Klein's paradoxPlack hole bomb[7]. Nature sometimes provides its own
[1,2]. However, for classical systems superradiant scatterin Irror. For example,_ if one considers a massive scalar field
was considered only much later in a paper by Zel'doVigh ith massy scattering off a Kerr black hole, then fas
where it was examined what happens when scalar waves hit 4 the massu effectively works as a mirro8 9.

. N . . o Here we investigate in detail the black hole-bomb by us-
a rotating cylindrical absorbing object. Considering a Wavemg a scalar field model. Specifically, the black-hole bomb
of the forme™''*IM% incident upon such a rotating object | ’

. S ' consists of a Kerr black-hole surrounded by a mirror placed
one concludes that if the frequenay of the incident wave

. . . - at a constant, r =ry, wherer is the Boyer-Lindquist radial
satisfiesw<m{), where () is the angular velocity of the = ;qrginate. We study the oscillation frequencies and growing

body, t_hen the scattered wave is. amplified. It.was a_Iso antiCigme scales as a function of the mirror's location and as a
pated in Ref[3] that by surrounding the rotating cylinder by fnction of the black-hole rotation. A spacetime with a “mir-

a mirror one could make the system unstable. __ror” naturally incorporated in it is anti—de SittefAdS)

A Kerr black hole is one of the most interesting rotating g4 cetime, which has attracted a great deal of attention re-
objects for superradiant phenomena, where the condiion cently. It could therefore be expected that Kerr-AdS black
<mQ also leads to superradiant scattering, withbeing  p5jes would be unstable. Fortunately, Hawking and Reall
now the angular velocity of the black holé-6]. Feeding [10] have given a simple argument showing that, at least
back the amplified scattered wave, one can extract as mughyqe Kerr-AdS black holes are stable. As we shall show, this
rotational energy as one likes from the black hole. Indeed, ifs pasjcally because superradiant modes are not excited for
one surrounds the black hole by a reflecting mirror, the wavgnese plack holes. Furthermore, we suggest it is not only

will bounce back and forth between the mirror and the blaCli)ossibIe but in fact highly likely that small Kerr-AdS black
holes are unstable.
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A. Formulation of the problem and basic equations
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2Mr 2Mra sir?o p? zon, which is th.e physically acgeptable solution, one must
ds?=—|1- 5 t2— —ZZdtquJr Kdr2 impose a negative group ve!ocny% for the wave packet.
P P Thus, we choosab~e e~ I(e=MDry — However, notice
that if
s | o, 2Mra’sirg| 2adas?
with the phase velocity- (w—mQ)/w will be positive. Thus, in
this superradiance regime, waves appear to be outgoing to an
A=r?+a2-2Mr, p?=r?+a2cogé. (2)  inertial observer at spatial infinity, and energy is in fact being

_ . . o _ extracted. Notice that, since we are working with positive
This metric describes the graVItatlonaI field of the Kerr b|aCksuperradiance will occur On|y for positi\"e' i.e., for waves
hole, with mass\l and angular momentud=Ma, and has  that are corotating with the black hole. This follows from the
an event horizon at=r, =M+ M?—a’ A characteristic time and angular dependence of the wave functidn,
and important parameter of a Kerr black hole is the angular-g/(-“t*m%) The phase velocity along the angfeis then
velocity of its event horizo) given by v »=w/m, which for >0 andm>0 is positive, i.e., is in

the same sense as the angular velocity of the black hole.
_ _ 3) Here we shall consider a Kerr black hole surrounded by a
2Mr 4 mirror placed at a constant Boyer-Lindquist radiatoordi-
In the absence of sources. which we consider to be our ca nate with a radius, so that the scalar field will be required
the evolution of the scalar field is dictated by the Klein-sﬁJ vanish at the mirror's location, i.eb(r=ro)=0. With
these two boundary conditions, ingoing waves at the horizon

Gordon equation in curved spacetimg,V“®=0. To make 54 5 vanishing field at the mirror, the problem is trans-
the whole problem more tractable, it is convenient to sepasy;med into an eigenvalue equation fer

rate the field a$11] The frequencies satisfying both boundary conditions will
® — e iottimggM )R 4 be called boxed quas_lnormal freque_noﬁBQN frequenues,
(tr.6.¢)=e S(ORD, @ wgon) and the associated modes will accordingly be termed
where S"(6) are spheroidal angular functions, and the azi-Poxed quasinormal modeSSQNMs). The prefix “quasi”
muthal numbem takes on integefpositive or negativeval- ~ Stems from the fact that they are not stationary modes, and
ues. For our purposes, it is enough to consider posiiigen that BON frequencies are not real numbers. Instead they are
(4) [4]. Inserting this in the Klein-Gordon equation, we get complex quantities, describing the decaying or amplification
the following angular and radial wave equations R{r) of the field. One expects that for a mirror located at large

a

andS™(6): distances, or for small black holes, the imaginary part of the
BQNs will be negligibly small and thus the modes will be
1 m2 stationary, corresponding to the pure normal modes of the
—— 3y(SiN03,") +| a2w?cog— —— + A | S"=0, mirror in the absence of the black hole. The BQNMs are of
sing sin’ g course different from the usual quasinormal mo@@slMs)

5 in asymptotically flat spacetimes, because the latter have no
mirror and satisfy outgoing wave boundary conditions near
Adr(AdR) +[w*(r*+a%)?—~2Mamar spatial infinity, they describe the free oscillations of the black
+a?m?— A(a2w?+A,,) JR=0, (6) hole spacetime. In_ the following_we shall compute the_se
modes analytically in a certain limit, and numerically by di-
whereA,,, is the separation constant that allows the split ofrectly integrating the radial equatid6).
the wave equation, and is found as an eigenvalug@)ofFor

small aw, the regime we shall be interested on in the next B. The black-hole bomb: Analytical calculation
section, one hakb,12] of the unstable modes
Apm=I(1+1)+O(a2w?). 7) In this section, we will compute analytically, within some

approximations, the unstable modes of a scalar field in a
Near the boundaries of interest, which are the horizon, black hole mirror system. Due to the presence of a reflecting
=r, , and spatial infinityr =, the scalar field as given by mirror around the black hole, the scalar wave is successively
(4) behaves as impinging back on the black hole, and amplified.

We assume that &M, i.e., that the Compton wave-
length of the scalar particle is much larger than the typical
size of the black hole. We will also assume, for simplicity,
thata<M. Following Refs[5,13], we divide the space out-

P~e iotetilommry Ly 9) side the event horizon in two regions, namely, the near re-
gion, r—r,<1/w, and the far regiont —r . >M. We will
where the tortoiser, coordinate is defined implicitly by solve the radial equatiof6) in each one of these two re-
dr, /dr=(r?+a?/A. Requiring ingoing waves at the hori- gions. Then, we will match the near-region and the far-region

—iwt

b~ et r o (8)
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solutions in the overlapping region wheké<r—r , <1/w F(a—c+1b—c+1,2-¢c,z)
is satisfied. Finally, we will insert a mirror around the black

hole, and we will find the properties of the unstable modes. I'(2—c)I'(a+b—c)

I'a—c+1)I'(b—c+1)
XF(l1—a,l1-b,c—a—b+1,1-2)

:(1_Z)Cfa7b

1. Near-region wave equation and solution

In the near region;, —r , <1/w, the radial wave equation

can be written as I'2-—c)I'(c—a—b)
F(1—a)(1-b) F(a—c+1b—c+1,
A9 (AGR) +r*(w—mQ)’R—I(I+1)AR=0. (11
—c+a+b+1,1-2), (19

To find the analytical solution of this equation, one first in-

troduces a new radial coordinate, and the property(a,b,c,0)=1. Finally, noting that when

Fer r—oo one has +z—(r,—r_)/r, one obtains the large-
N

z= e 0=z=<1, (12 behavior of the ingoing wave solution in the near region,
-l
with the event horizon being @&=0. Then, one hadd, _ . (ry—ro) I'@2+1)
. . . R~AI'(1-i2w) :
=(r,—r_)zd,, and the near-region radial wave equation ra+nri+1-i2w)
can be written as . (r.—r ) *Ir(—21-1) " 0
5 ,1-z [(1+1) r—nr(-1-i2w)
2(1-2)9;R+(1-2)9,R+w TR_ 1—7 R=0,
(13 2. Far-region wave equation and solution

In the far regiony —r  >M, the effects induced by the
black hole can be neglectei{0,M~0,A~r?) and the
fi radial wave equation reduces to the wave equation of a mass-
(149 less scalar field of frequeney and angular momentuirin a

where we have defined the superradiant factor

w=(w—m)

re—r’ flat background,
Through the definition 2 2 2
| I(rR)+[w*=1(1+1)/r°](rR)=0. (22)
Rzzlw(l_z)lJrlF7 (15)
. ) ] The most general solution of this equation is a linear combi-
the near-region radial wave equation becomes nation of Bessel functiongl4],

2(1-2)2F+{(1+i2w)—[1+2(I1+ 1) +i2w ]z} o,F Rer Y% ad) . i f)+ Bt uf wF)]. 22)

—[(1+1)°+i2w(1+1)]F=0. (16)
For larger this solution can be written 44|
This wave equation is a standard hypergeometric equation

[14], 2(1—-2)3>F+[c—(a+b+1)z]9,F —abF=0, with > 1
R~ \/—=[asinwr—I7/2)+ B cod wr +17/2)],
a=l+1+i2w, b=I+1, c=1+i2w, (17 Tl
(23)
and its most general solution in the neighborhood=s0 is _ _
AZ' " °F(a—c+1b—c+1,2-c,z2)+BF(a,b,c,z). Using While for smallr it reduces td 14]
(15), one finds that the most general solution of the near-
region equation is (wl2)' 712 (wl2)~'712
- ~ariran! PArcr | @4
R=Az ""(1-2)'"'F(a—c+1b—c+1,2-c,2)
+BZ®(1-2)'"'F(a,b,c,2). (18 3. Matching the near-region and the far-region solutions

The first term represents an ingoing wave at the horizon Whe_n M<r—_r+<l/‘"’ the near-region solution and the
aﬁir-reglon solution overlap, and thus one can match the large

=0, while the second term represents an outgoing wave . ) : )
the horizon. We are working at the classical level, so ther near-region solutior20) with the smallr far-region solu-
’ ion (24). This matching yields

can be no outgoing flux across the horizon, and thus one se
B=0 in (18). One is now interested in the large z—1,

behavior of the ingoing near-region solution. To achieve this  , _ (ro—r)' T(I+1) I'(+1-i2w) ® |+1/2a
aim one uses the—1—z transformation law for the hyper- ra+3/2 rea2+1) ri-i2e) \2 ’
geometric functiorf14], (25)
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B T(~1+1/2) T(1+1) T(~21-1) [(1+1-i2w)
@ T(+32) T2+ T(-h) T(-1-i2w)
21+1
N2+l
5| (re-r)n (26)

Using the property of the gamma functiod;(1+x)

=xI'(x), one can show that I'(—1+1/2)/T'(1/2)
=(—1)2'/21-1)1", T(+3/2)T(1/2)=(21+1)11/2'*2,
I(-21-1)/T(-)=(-1)"/21+1)!, and T(I+1

—i2w)IT(—1—i2w)=i(—1) " 2wll|_,(k*+4w?).
Then, the matching conditiof26) yields

B (-1 2(r, =t

. 7)2|+1
%7311 (2D1(21+1)!

I
(2|—1)!!>

(27)

|
x| I1 (k2+4m2)) 0t
k=1

4. Mirror condition: Properties of the unstable modes

If one puts a mirror near infinity at a radius=r, the
scalar field must vanish at the mirror surface. Thus, settin
the radial field(22) to zero yields the extra condition be-
tween the amplitudes and B, and the position of the mirror

Mo,

B

(¢4

JituAro)
J_wrg)’

This mirror condition together with the matching condition
(27) yields a condition between the position of the mirror
and the frequency of the scalar wave,

(28)

Jiri@rg) . | ,
Tdarg VT (2|—1)!!>
(o)At !
((2|)I(Ti-1)l H (K% + 4w52 ))w2|+1.

(29

The solution of(29) can be found in the approximation that
applies suitably to this problem, namely<1, and Re{)
>Im(w). For very smallw, the right-hand sider.h.s) of

PHYSICAL REVIEW D 70, 044039 (2004

JisvJi+12nt i)
Ji—vydJir1onTi10)

I 2

—1)

2 (ry—
21+1 (21)!1(21+1)!

r7)2|+1

:i(_l)IJrlm_((z

(32

|
X H (k2+4w2)) w1
k=1

Now, we can use, for smab, the Taylor expansion of the
l.h.s,,

Jsvlitsontio)  ~ Jiulirenzn)

I i—ud 112 i 8)

- 33
I ufis12p) 33

The quantities]on 3/ 12001+ 120) 31— 12i1+1720) are
tabulated in Ref[14], and can also easily be extracted using
MATHEMATICA. Here it is important to note that
Isvalite1zn) and (=1)"3__yj1+125) always have the
same sign. Furthermore, for large overtomej 1o~ (N
+1/2)ar. The frequencies of the scalar wave that are allowed
%y the presence of the mirror locatedratr, (BQN frequen-
cies are then

Ji+12n

wBQN: + | 5, (34)

wheren is a non-negative integer number, labeling the mode
overtone number. For example, the fundamental mode corre-
sponds ton=0. In (34), 6=Im[wgqn] is obtained by sub-
stituting (33) in (32),

- (=D yii+120) J1+12nT0—MQ 35
I 12di+1i20) ro2¢* Y
where
I r2(ry—r)2 2 [
= 2
7 <2I—1>!!) <2|>'<2|+1>n o1 | L (Erae?)

X[jis12n]? ! (36)

(29) is very small and can be assumed to be zero in the firSliotice thats is very small for large , and thus satisfies the

approximation forw. This yields

Ji+ 1 @rg) =0, (30
which has well-studiedreal) solutions[14]. We shall label
the solutions 0{30) asj;12n:

it 0rg) =0 0rg=j112p, (31

wheren is a non-negative integer number. We now assume,

that the complete solution t§29) can be written asw
~J|+1,2n/ro+|5/r0, where we have inserted a small imagi-
nary part proportional té<1. One then has, fror29)

04403

conditions that go with the approximation used, &®(
>Im(w). Equationg34) and(35) constitute the main results
of this section. Two important features of this system, black
hole plus mirror, can already be read from the equations
above: first, from Eqs(34) and (35) one has,
0% — (R wgon] —mQ2). 37
Therefore, >0 for Rf wggon]<m(), and 6<0 for
e[wBQN]>mQ The scalar field® has the time depen-
dence e '@t=g 1Re@ed  which implies that for

R wgon]<m(2, the amplltude of the field grows exponen-
tially and the BQNM becomes unstable, with a growth time

9-4
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scale given byr=1/5. In this case, we see that the system 0.001 gy
behaves in fact as a bomb, a black-hole bomb. Second, 0.0001 g - \{\.\ 3
1085 | T ]
. 3 ! I
Ji+1/2n - otr P
Re wpon]= r— (39 3 10
0 @E« 100 a/(2m)=0.1
showing that the wave frequency is proportional to the in- 1‘0(:: : :jﬁﬁﬁj:ﬂj
verse of the mirror’s radius. As one decreases the distance at Lo | —— /(M=o
which the mirror is located, the allowed wave frequency in- o BT T
creases, and there will thus be a critical radius at which the 1 10 100
BQN frequency no longer satisfies the superradiant condition o/ (2M)
(10). Notice also that Revgqn] as given by(38) is equal to FIG. 1. The imaginary part of the fundamentai=0) BQN

the normal mode frequencies Qf a spherical mirror jn a fla'ﬁ‘requency eon) as a function of the mirror’s locatiorn, is plot-
spacetimg 15]. In the next section, when the numerical re- ted. The plot refers to &=m=1 wave. Also shown is the depen-
sults will also be available, we will return to this discussion. dence on the rotation parameterOne sees that far, greater than

a critical value,ré™, depending ora, there is the possibility of

C. The black-hole bomb: Numerical approach building a bomb. Moreover, the imaginary component of the BQN
) frequency decreases abruptly from its maximum value to zero at
1. Numerical procedure rét. Forro<r&™ the BQNM is stable. Tracking the mode to yet

In the numerical calculation for determining oscillation smaller distances shows that indeed it remains staibteimaginary
frequencies of the modes, we use the same function as thB@rt of wsqn is negative.

defined by Teukolsky16], given by(see also Ref4.17,18)) ) o ) _
function atr =r,, which is considered a function of the fre-

Y=(r’+a?'nR. (390  quency,Y(rq,w). If Y(ro,)=0, the solution satisfies the
. _ ~ boundary condition of perfect reflection due to the mirror
Then, the Teukolsky equation becomes a canonical equatiognd the frequencw is a BQN frequency, which we label as

given by wggn- In other words, the dispersion relation of our problem
42 is given by the equatiol(ry,wgqn) =0. In order to solve
—Y+VY=0, (40) the algebraic equatiohf_(r_o,_wBQN)=O iteratively, we use a
dri secant method. Here, it is important to note that if the mode

is stable or Imfggn) <0, the asymptotic solutio¥3) di-
where verges exponentially and another independent solution,
K2\ A d which is unphysical, damps exponentially rgs— — .
2

(r°+a%)? dry G “4) 2. Numerical results
with K=(r+a%)w—am, and G=rA(r2+a2 2. For the Our numerical results are summarized in Figs. 1-7. As we
separation constant=A,,+a2w?— 2amw, we make use of noted earlier, we only show the data corresponding to the
a well known series expansion @w, given by unstable BQNMs. We have also found the stable modes, but
since they lead to no bomb we refrain from presenting them.
* From the figures we confirm the analytical expectations. In
7\=a2w2—2amw+20 of ™aw)', (42

I= 1 T T q
Whereof:m is the expansion coefficieffior the explicit form,
see, e.g., Refl12]). In this study, we keep the terms in the
expansion up to an order ofifp)?. As mentioned, near the E
horizon, the physically acceptable solution of E4Q) is the 8 o1e a/(2M)=0.1 E
incoming wave solution, given by e [ - a/(eM)=0.2

.. 8/(2M)=0.3
Y=e @M [y by (11 ) Hy(r—r )2, T e-oawe
(43) 000 L T L
1 10 100

wherey; is the expansion coefficient determined &yand ro/(2M)
Yo. Here, we do not show explicit expression for s FIG. 2. The real part of the fundamental£ 0) BQN frequency
because it is straightforward to derive it. (wson) as a function of the mirror’s location, is plotted. The plot

In order to obtain the proper solutions numerically, by refers to d =m=1 wave. There is no perceptieedependencéas
using a Runge-Kutta method, we start integrating the differmatter of fact there is a very smalldependence but too small to be
ential equatior(40) outward fromr=r, (1+ 10 °) with the noticeable. Thus, the oscillation frequency basically depends only
asymptotic solutior{43). We then stop the integration at the onr,, and for larger, goes as 1#, as predicted by the analytical
radius of the mirrory =r,, and get the value of the wave formula(34). The dots indicateS™ (cf. Fig.1).
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0 T 1 g
AN
C N \
-0.2 :— \ AN
g -0.4 C \ 3
I 5 ] =
$ os a/(2M)=0 1 b S
6 3 - 3
8 b oeee a/(2M)=02,
& . 8/(2M)=0.3
08 afam=04 . ]
A a/(zu)=¢7.4999 ~~~~~~~~~ §
1 10 100 1
ry/(2M) ro/(2M)
FIG. 3. This figure helps in understanding why the instability FIG. 5. Same as Fig. 4, but for the real partafoy.

disappears fory smaller than a certain critical value. The condition

for superradiance i® —mQ<0. Sincew goes as %, (check Fig. . . .
2), then it is expected that the condition will stop to hold at a critical Wavelength approximation. In fact, to a great accuneffyis
ro. This is clearly seen here. Note that the critical valuepis in ~ given by the root of R[au(ré”‘)]—m9=0, as is shown in
excellent agreement with that shown in Fig. 1. Fig. 3. Also supporting the analytical results, Fig. 2 shows
that R¢ wgon] behaves as 4, which is consistent with Eq.
addition, we can discuss increasing time scales, oscillatiof84). This means that it is indeed the mirror that selects the
frequencies, energy extracted, and efficiencies with great a@llowed vibrating frequencies. The results for higher mode
curacy. Figure 1 plots the imaginary part of the BQN fre-numbern is shown in Figs. 4 and 5, and the behavior agrees
guency for the fundamental BQNM as a function of the mir-with the picture provided by the analytical approximation.
ror’s locationry and the rotation parameter In Fig. 2, we  The agreement between the analytical and numerical results
show the real part of the BQN frequency for the fundamentals best seen in Table I, where we show the lowest BON
BQNM also as a function of, anda. Supporting the ana- frequencies obtained using both methods. In Figs. 6 and 7 we
lytical results, Fig. 1 shows thafi) The instability is weaker show the numerical results referring to different values of the
(the increasing time scale=1/Imlwgqn] is largey for angular numbet andm. Our numerical results indicate that
larger mirror radius, meaning that [@gqy] decreases ay LM wgon]~To 2! Y, in agreement with the analytical re-
increases. This is also expected on physical grounds, as waslt, Eq. (35). The numerical results also indicate that the
noted in Ref[7], if one views the process as one of succes-oscillating frequencies (Regon]) scale withl, more pre-
sive amplifications and reflections on the mirror. cisely, Ré¢wggn] behaves as Reggn]~7/ro(n+1/2).

(i) As one decreases, the instability gets stronger, as This behavior is also predicted by the analytical study.
expected, but surprisingly, suddenly the BQNM is no longer Let us now take the Press-Teukolsky example of a black
unstable. The imaginary component®@§qy drops from its  hole with massM =1Mg, [7]. We are now in a position to
maximum value to zero, and the mode becomes stable atraake a much improved quantitative analysis. We take
critical radiusrg“t. Physically, this happens because superra=0.8M, a large angular momentum, so that we make full
diance generates wavelengths with- 1/(). So the mirror at  use of our results. In addition, to better take advantage of the
a distancer, will “see” these wavelengths ifro>r§"~\  whole process, one should place the mirror at a position near

~1/Q). One can improve the estimate fof™ using Egs.

(10), (37), and (38), yielding rgm~j|+l,21n/mﬂ. This esti- 0.0001 g——r—rrrrrry
mate for the critical radius matches very well with our nu- 1o F
merical data, even though the analytical calculation is a large o= r
10-7
0.0001 F—— v — g 3 10'“:r -
g 3 i-’« 107 A
I = 10-10 | )
105 E 1
o et
3 [ L P
§ 100 10-0 B il
E F 1 10 100
. r,/(2M)
107 E
F ] FIG. 6. The imaginary part of the fundamentadqy for ana
10-8 TR S Y R S =0.4 black hole, as a function of the mirror’s locatiog here
1 10 100 . . .
ro/(2M) shown for some values ¢fm. Furthermore, as is evident from this

figure and also as could be anticipated, the largehe smaller
FIG. 4. The imaginary part of the BQN frequency as a functioncan be, still displaying instability. Note, however, that the maximum
of rq for a=0.4 and for the three lowest overtonesfor |=m instability is larger for them=1 mode. This is a general feature.
=1. As expected from the general arguments presented, highdthe imaginary part of the frequency seems to behave as
overtones get stable at larger distances, and attain a smaller ma)kin[wBQN]fvrgz('“), which agrees with the analytical prediction
mum growing rate. (35).
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TABLE I. The fundamental BQN frequencies for a black hole watk 0.8M and a mirror placed at,
=100M. The data correspond to the-m modes, and the frequency is measured in units of the iMask
the black hole. We present both the numeriaa%,\,) and analytical @QQN) results. Notice that the agree-
ment between the two is very good, and it gets bettériasreases. Also, we have checked that for very large
ro the two yield basically the same results.

| ngN wéQN
1 8.75x 1072+ 1.19x 107 7i 8.99x 1072+ 1.41x 107 7i
2 1.13x 10" 1+ 6.77x 10713 1.15x 10 1+6.89x 10713
3 1.37x 10" 1+ 2.45x 10716 1.39x 10 1+2.26x 10715

the point of maximum growing rate, but farther. Thus, for Since the cost of mirror construction scaleséswe see that
example,ro~22M ~33 km (see Fig. 1 This gives a grow- small mirrors are more effective. One can give other inter-
ing time scale of about~0.6 s (see also Fig. )1 which  esting examples. For a black hole at the center of a galaxy,
means that every 0.6 s the amplitude of the field gets apwith massM~10°M, a=0.8M, andr,=22M, the maxi-
proximately doubled. This means that at the end of 13 s thenum increase in time scale is of the order of 2 yr. Another
initial amplitude of the wave has grown to 6f its initial  interesting situation happens when the black hole has a mass
value, and that thus the energy content i$*lines greater of the order of the Earth mass. In this case, by placing the
than the initial perturbation. We consider there are no lossemirror atro=1 m one gets an increase in the time scale of
through the mirror and assume the process to be adiabatiabout 0.02 s. At the other end of the black hole spectrum one
Using the first law of thermodynamics one can then setan consider Planck size black holes.

AM~QAJ, whereAM andAJ are the changes in mass and

angular momentum of the black hole in this process, respec- D. Zel'dovich’s cylinder surrounded by a mirror

tively. Now, the black hole is losing angular momentum in
each superradiant scattering. Thaslecreases. If we go to

Fig. 1 we see that{™" increases with decreasirgy At a

certain stage{™ coincides with the position of the mirror at
ro, at which point there is no longer a possibility of super-
radiance. The process is finished. Thus from Fig. 1, or mor
accurately from our numerics, one can fifuel, and thusAJ.
Then AM follows from AM~QAJ. In the example this
gives a total amounk M ~0.0IM of extracted energy before
the bomb stops functioning. The process thus has an eff
ciency of 1%, about the same order of magnitude as th
efficiency of nuclear fusion of hydrogen burning into helium
(~0.7%). If, instead, the mirror is placed at~200M
~300 km one still gets a good increase in the time scale o
about 15 min. This means that at the erfdéch the initial
amplitude of the wave has grown to6¥ its initial value. In
this caseAM ~0.1M, with a 10% efficiency, and one can
show that the efficiency increases with mirror radiys

As a corollary, we discuss here electromagnetic superra-
diance in the presence of a cylindrical rotating body, a situ-
ation first discussed by Zel'dovidl3]. He noted that by sur-
rounding this rotating body with a reflecting mirror one
could amplify the radiation, much as the black-hole bomb
%rocess just described. Bekenstein and Schifi& have
recently elaborated on this. An independent analytical ap-
proximation, similar in all respects to the one we discussed
earlier in the black-hole bomb context, can also be applied
here for finding the BQN frequencies of this systéoon-
ﬁucting cylinder plus reflecting mirrgrand leads to almost
the same results as for the black hole bomb. The imaginary

omponent ofvgqy is 6% — (R wggn] —MA2). The electro-
agnetic field has the time dependercé®!=e 'Re@)tgdt
and thus, for Rewggon]<m(2, the amplitude of the field
increases exponentially with time and the mode becomes un-
stable, with a growth time scale given by 1/6. Second,
Re wgon]*1/ry, i.e., the wave frequency is proportional to
the inverse of the mirror’s radius, as it was for the black-hole
Vg AL bomb. Therefore, as one decreases the distance at which the
F ] mirror is located, the allowed wave frequency increases, and
again there will be a critical radius at which the frequency no
longer satisfies the superradiant conditi@f). If one tries to
use the system as it is, it would be almost impossible to
observe superradiance in the laboratory. Take as an example
a cylinder with radiusR=10 cm, rotating at a frequendy
=27x10% s 1, and a surrounding mirror with radius
=20 cm. For the system to be unstable and experimentally
detectable, the minimum mirror radius is given by
~c/mQ (where we have reinstated the velocity of light

FIG. 7. Same as Fig. 6 but for the real part. Note that there is atvhich yieldsr ;~1000 km for am=1 wave. It seems im-
| dependence of the real part of the frequency. On the other hangdossible to use this apparatus to measure superradiance ex-
there is no noticeablen dependence, in accordance with the ana-perimentally. A way out of this problem may be the one
Iytical result(34). suggested in Ref19]: to surround the conducting mirror by

Re(2Mw)
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a material with a low velocity of light. In this case the critical and numerically. We have provided both analytical and nu-
radius would certainly decrease, although further investigamerical accurate estimates for growing timescales and oscil-
tion is needed in order to ascertain what kind of materialation frequencies of the corresponding unstable BQNMs.

should be used. Both results agree and yield consistent answers. An impor-
tant feature born out in this work is that there is a minimum
IIl. ARE KERR-AdS BLACK HOLES UNSTABLE? distance at which the mirror must be located in order for the

system to become unstable and for the bomb to work. Basi-
A spacetime with a naturally incorporated mirror in it is cally this is because the mirror selects the frequencies that
AdS spacetime, which has attracted a great deal of attentiohay pe excited. For distances smaller than this, the system is
recently due to the AdS/CFconformal field theorycorre-  giaple and the perturbation dies off exponentially. This mini-
spondence and other matters. As is well known, AdS spacg,,m gistance increases as the rotation parameter decreases.
behaves effe(_:tlvely as a box, in oth_erwords, the AdS infinity e have given an explicit example where such a system
\évlorks as a mirror wall. Thus, one might worry that Kery—AdS works, yielding a reliable source of energy. By using this
af:k holes could behave as the black-hole bpmb Just de'xtracted energy appropriately, one could perhaps build a
scribed, and that they would be unstable. Hawking and Rea lack-hole power plant. Although we have worked only with

[10] have shown that, at least for large Kerr-AdS black holesz ) lay t that th | feat
this instability is not present. The stability of large Kerr-AdS ero spin(scalay waves, we expect that the general features

black holes in four and higher dimensions can be understoo

in yet another way, using the knowledge one acquired frongharged black hole, even in the absence of rotation, provides
the black-hole bomb study. The black-hole rotation is con-2 background for superradiance, as long as the impinging

strained to bea<¢, where is the AdS radiug10]. Large ~Wave is a bosonic charged wayirmions do not exhibit
black holes are the ones for which >¢. In this case the Superradiande In this case, the critical radius should be of
angular velocity of the horizonQ=[a/(r2+a?)](1  orderrq;~1/ed, whereeis the charge of the scalar particle
—a?/€?) goes to zero and one expects that the rotation play@nd® is the black hole’s electromagnetic potential.

a neglecting role in this regime, with the results found for the We have also shown that a mirror surrounding
nonrotating AdS black hol¢20,21] still holding approxi- Zel'dovich’s rotating cylinder leads to a system that displays
mately when the rotation is nonzero. The characteristic quathe same instabilities as the black-hole bomb. However, for
sinormal frequencies for large, nonrotating AdS black holeshe instability to be triggered in an Earth-based experiment,
were computed in Ref§20,21 showing that the real part some improvements must be made. In particular, the cylinder
scales withr, . Now, since()—0 for large black holes and should be surrounded by a material with a low light velocity,
the QNMs have a very large real part, one can understansince otherwise it would require a huge mirror radius or huge
why there is no instability: superradiant modes are simplyrotating frequencies.

not excited, as the condition for superradianse;m{}, can- The study of the black-hole bomb and of the associated
not be fulfilled. We could try to evade this by going to higher instabilities allows one to better understand the absence of
values ofm, but thenl has also to be largd £m). However,  syperradiance in large Kerr-AdS black hofé§] and more-

for largel’s, the real part of the QNMs is known to scale gyer to expect that small Kerr-AdS black holes will be un-
with | [22]; thus the condition for superradiance is nevergigple.

fulfilled. What about small Kerr-AdS black holes, <€? Finally, it seems worth investigating whether or not this

Considering the case for small a<r . Say, is enough for  ying of black-hole bomb is possible in TeV-scale gravity. In
our purposes. In this situation the horizon’s angular Veloc'tythese scenarios, one has four noncompact dimensions and

lscalesAzlatsh thek:rl\r/]ers?f oth, fandt ':. can be n,:%de arblltri”g/. extra compact dimensions. It might be possible that these
arge. ougnh the etiect of rotation cannot be neglected I, compactified dimensions work as a reflecting mirror,
this case, the results of the QNM analysis for nonrotatin

AdS black holes give some hints about what may happegafnd therefore rotating black holes in- dimensions could

For small nonrotating AdS black holes, the QN frequencie urn out to be unstable.

have a real part that goes to a constant, independent f We would also like to make a remark on a possible astro-
whereas the imaginary part goes to z@éﬂ]. If we add a Physical application of this black hole-reflecting wall system.

small angular momentum per unit masso the black hole, 't "as been proposed in PuttE28], and further discussed in
we do not expect the real part of the QN frequency to grow guirre [24], that the superradiant amplification process
significantly. But, sincd) is very large anyway, the superra- might provide the energy necessary to feed the highly ener-
diance conditiono<m® will most likely be fulfilled. There- ~ getic gamma-ray burst. Magnetosonic plasma waves, gener-

fore we expect it to be possible to excite the superradian@ted in the accreting plasma around an astrophysical black
instability in these spacetimes. hole, might enter in the waveguide cavity located between

the gravitational potential barrier of the black hole and the
inner edge of the accretion disk. Once there, the inner bound-
ary of the accretion disk might act as a reflecting wall, and
waves can then suffer multiple reflection and superradiant
To conclude, we have investigated the black-hole bomtamplification, increasing their energy. This energy increase
thoroughly, by analytical means in the long wavelength limit, will continue until the magnetosphere that surrounds the sys-

IV. CONCLUSIONS
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