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Black-hole bomb and superradiant instabilities
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Óscar J. C. Dias†

Centro Multidisciplinar de Astrofı´sica–CENTRA, Departamento de Fı´sica, F.C.T., Universidade do Algarve,
Campus de Gambelas, 8005-139 Faro, Portugal
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A wave impinging on a Kerr black hole can be amplified as it scatters off the hole if certain conditions are
satisfied, giving rise to superradiant scattering. By placing a mirror around the black hole one can make the
system unstable. This is the black-hole bomb of Press and Teukolsky. We investigate in detail this process and
compute the growing time scales and oscillation frequencies as a function of the mirror’s location. It is found
that in order for the system black hole plus mirror to become unstable there is a minimum distance at which the
mirror must be located. We also give an explicit example showing that such a bomb can be built. In addition,
our arguments enable us to justify why large Kerr-AdS black holes are stable and small Kerr-AdS black holes
should be unstable.
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I. INTRODUCTION

Superradiant scattering is known in quantum systems
a long time, after the problems raised by Klein’s parad
@1,2#. However, for classical systems superradiant scatte
was considered only much later in a paper by Zel’dovich@3#,
where it was examined what happens when scalar wave
a rotating cylindrical absorbing object. Considering a wa
of the forme2 ivt1 imf incident upon such a rotating objec
one concludes that if the frequencyv of the incident wave
satisfiesv,mV, where V is the angular velocity of the
body, then the scattered wave is amplified. It was also an
pated in Ref.@3# that by surrounding the rotating cylinder b
a mirror one could make the system unstable.

A Kerr black hole is one of the most interesting rotati
objects for superradiant phenomena, where the conditiov
,mV also leads to superradiant scattering, withV being
now the angular velocity of the black hole@4–6#. Feeding
back the amplified scattered wave, one can extract as m
rotational energy as one likes from the black hole. Indeed
one surrounds the black hole by a reflecting mirror, the w
will bounce back and forth between the mirror and the bla
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hole, amplifying itself each time. Then the total extract
energy should grow exponentially until finally the radiatio
pressure destroys the mirror. This is the Press-Teuko
black hole bomb@7#. Nature sometimes provides its ow
mirror. For example, if one considers a massive scalar fi
with massm scattering off a Kerr black hole, then forv
,m the massm effectively works as a mirror@8,9#.

Here we investigate in detail the black hole-bomb by u
ing a scalar field model. Specifically, the black-hole bom
consists of a Kerr black-hole surrounded by a mirror plac
at a constantr, r 5r 0, wherer is the Boyer-Lindquist radial
coordinate. We study the oscillation frequencies and grow
time scales as a function of the mirror’s location and a
function of the black-hole rotation. A spacetime with a ‘‘mi
ror’’ naturally incorporated in it is anti–de Sitter~AdS!
spacetime, which has attracted a great deal of attention
cently. It could therefore be expected that Kerr-AdS bla
holes would be unstable. Fortunately, Hawking and Re
@10# have given a simple argument showing that, at le
large Kerr-AdS black holes are stable. As we shall show,
is basically because superradiant modes are not excited
these black holes. Furthermore, we suggest it is not o
possible but in fact highly likely that small Kerr-AdS blac
holes are unstable.

II. THE BLACK-HOLE BOMB

A. Formulation of the problem and basic equations

We shall consider a massless scalar field in the vicinity
a Kerr black hole, with an exterior geometry described by
line element:

ity,
s:
©2004 The American Physical Society39-1
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ds252S 12
2Mr

r2 D dt22
2Mra sin2u

r2
2dtdf1

r2

D
dr2

1r2du21S r 21a21
2Mra2sin2u

r2 D sin2udf2, ~1!

with

D5r 21a222Mr , r25r 21a2cos2u. ~2!

This metric describes the gravitational field of the Kerr bla
hole, with massM and angular momentumJ5Ma, and has
an event horizon atr 5r 15M1AM22a2. A characteristic
and important parameter of a Kerr black hole is the angu
velocity of its event horizonV given by

V5
a

2Mr 1
. ~3!

In the absence of sources, which we consider to be our c
the evolution of the scalar field is dictated by the Klei
Gordon equation in curved spacetime,¹m¹mF50. To make
the whole problem more tractable, it is convenient to se
rate the field as@11#

F~ t,r ,u,f!5e2 ivt1 imfSl
m~u!R~r !, ~4!

whereSl
m(u) are spheroidal angular functions, and the a

muthal numberm takes on integer~positive or negative! val-
ues. For our purposes, it is enough to consider positivev ’s in
~4! @4#. Inserting this in the Klein-Gordon equation, we g
the following angular and radial wave equations forR(r )
andSl

m(u):

1

sinu
]u~sinu]uSl

m!1Fa2v2cos2u2
m2

sin2u
1AlmGSl

m50,

~5!

D] r~D] rR!1@v2~r 21a2!222Mamvr

1a2m22D~a2v21Alm!#R50, ~6!

whereAlm is the separation constant that allows the split
the wave equation, and is found as an eigenvalue of~5!. For
small av, the regime we shall be interested on in the n
section, one has@5,12#

Alm5 l ~ l 11!1O~a2v2!. ~7!

Near the boundaries of interest, which are the horizonr
5r 1 , and spatial infinity,r 5`, the scalar field as given b
~4! behaves as

F;
e2 ivt

r
e6 ivr

* , r→` ~8!

F;e2 ivte6 i (v2mV)r
* , r→r 1 ~9!

where the tortoiser * coordinate is defined implicitly by
dr* /dr5(r 21a2)/D. Requiring ingoing waves at the hor
04403
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zon, which is the physically acceptable solution, one m
impose a negative group velocityvgr for the wave packet.
Thus, we chooseF;e2 ivte2 i (v2mV)r

* . However, notice
that if

v,mV, ~10!

the phase velocity2(v2mV)/v will be positive. Thus, in
this superradiance regime, waves appear to be outgoing t
inertial observer at spatial infinity, and energy is in fact bei
extracted. Notice that, since we are working with positivev,
superradiance will occur only for positivem, i.e., for waves
that are corotating with the black hole. This follows from th
time and angular dependence of the wave function,F
;ei (2vt1mf). The phase velocity along the anglef is then
vf5v/m, which for v.0 andm.0 is positive, i.e., is in
the same sense as the angular velocity of the black hole

Here we shall consider a Kerr black hole surrounded b
mirror placed at a constant Boyer-Lindquist radialr coordi-
nate with a radiusr 0, so that the scalar field will be require
to vanish at the mirror’s location, i.e.,F(r 5r 0)50. With
these two boundary conditions, ingoing waves at the hori
and a vanishing field at the mirror, the problem is tran
formed into an eigenvalue equation forv.

The frequencies satisfying both boundary conditions w
be called boxed quasinormal frequencies~BQN frequencies,
vBQN) and the associated modes will accordingly be term
boxed quasinormal modes~BQNMs!. The prefix ‘‘quasi’’
stems from the fact that they are not stationary modes,
that BQN frequencies are not real numbers. Instead they
complex quantities, describing the decaying or amplificat
of the field. One expects that for a mirror located at lar
distances, or for small black holes, the imaginary part of
BQNs will be negligibly small and thus the modes will b
stationary, corresponding to the pure normal modes of
mirror in the absence of the black hole. The BQNMs are
course different from the usual quasinormal modes~QNMs!
in asymptotically flat spacetimes, because the latter have
mirror and satisfy outgoing wave boundary conditions n
spatial infinity, they describe the free oscillations of the bla
hole spacetime. In the following we shall compute the
modes analytically in a certain limit, and numerically by d
rectly integrating the radial equation~6!.

B. The black-hole bomb: Analytical calculation
of the unstable modes

In this section, we will compute analytically, within som
approximations, the unstable modes of a scalar field i
black hole mirror system. Due to the presence of a reflec
mirror around the black hole, the scalar wave is successiv
impinging back on the black hole, and amplified.

We assume that 1/v@M , i.e., that the Compton wave
length of the scalar particle is much larger than the typi
size of the black hole. We will also assume, for simplici
thata!M . Following Refs.@5,13#, we divide the space out
side the event horizon in two regions, namely, the near
gion, r 2r 1!1/v, and the far region,r 2r 1@M . We will
solve the radial equation~6! in each one of these two re
gions. Then, we will match the near-region and the far-reg
9-2
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solutions in the overlapping region whereM!r 2r 1!1/v
is satisfied. Finally, we will insert a mirror around the bla
hole, and we will find the properties of the unstable mod

1. Near-region wave equation and solution

In the near region,r 2r 1!1/v, the radial wave equation
can be written as

D] r~D] rR!1r 1
4 ~v2mV!2R2 l ~ l 11!DR50. ~11!

To find the analytical solution of this equation, one first i
troduces a new radial coordinate,

z5
r 2r 1

r 2r 2
, 0<z<1, ~12!

with the event horizon being atz50. Then, one hasD] r
5(r 12r 2)z]z , and the near-region radial wave equati
can be written as

z~12z!]z
2R1~12z!]zR1Ã2

12z

z
R2

l ~ l 11!

12z
R50,

~13!

where we have defined the superradiant factor

Ã[~v2mV!
r 1

2

r 12r 2
. ~14!

Through the definition

R5ziÃ~12z! l 11F, ~15!

the near-region radial wave equation becomes

z~12z!]z
2F1$~11 i2Ã!2@112~ l 11!1 i2Ã#z%]zF

2@~ l 11!21 i2Ã~ l 11!#F50. ~16!

This wave equation is a standard hypergeometric equa
@14#, z(12z)]z

2F1@c2(a1b11)z#]zF2abF50, with

a5 l 111 i2Ã, b5 l 11, c511 i2Ã, ~17!

and its most general solution in the neighborhood ofz50 is
Az12cF(a2c11,b2c11,22c,z)1BF(a,b,c,z). Using
~15!, one finds that the most general solution of the ne
region equation is

R5Az2 iÃ~12z! l 11F~a2c11,b2c11,22c,z!

1BziÃ~12z! l 11F~a,b,c,z!. ~18!

The first term represents an ingoing wave at the horizoz
50, while the second term represents an outgoing wav
the horizon. We are working at the classical level, so th
can be no outgoing flux across the horizon, and thus one
B50 in ~18!. One is now interested in the larger, z→1,
behavior of the ingoing near-region solution. To achieve t
aim one uses thez→12z transformation law for the hyper
geometric function@14#,
04403
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F~a2c11,b2c11,22c,z!

5~12z!c2a2b
G~22c!G~a1b2c!

G~a2c11!G~b2c11!

3F~12a,12b,c2a2b11,12z!

1
G~22c!G~c2a2b!

G~12a!G~12b!
F~a2c11,b2c11,

2c1a1b11,12z!, ~19!

and the propertyF(a,b,c,0)51. Finally, noting that when
r→` one has 12z→(r 12r 2)/r , one obtains the large-r
behavior of the ingoing wave solution in the near region,

R;AG~12 i2Ã!F ~r 12r 2!2 lG~2l 11!

G~ l 11!G~ l 112 i2Ã!
r l

1
~r 12r 2! l 11G~22l 21!

G~2 l !G~2 l 2 i2Ã!
r 2 l 21G . ~20!

2. Far-region wave equation and solution

In the far region,r 2r 1@M , the effects induced by the
black hole can be neglected (a;0,M;0,D;r 2) and the
radial wave equation reduces to the wave equation of a m
less scalar field of frequencyv and angular momentuml in a
flat background,

] r
2~rR!1@v22 l ~ l 11!/r 2#~rR!50. ~21!

The most general solution of this equation is a linear com
nation of Bessel functions@14#,

R5r 21/2@aJl 11/2~vr !1bJ2 l 21/2~vr !#. ~22!

For larger this solution can be written as@14#

R;A 2

pv

1

r
@a sin~vr 2 lp/2!1b cos~vr 1 lp/2!#,

~23!

while for small r it reduces to@14#

R;a
~v/2! l 11/2

G~ l 13/2!
r l1b

~v/2!2 l 21/2

G~2 l 11/2!
r 2 l 21. ~24!

3. Matching the near-region and the far-region solutions

When M!r 2r 1!1/v, the near-region solution and th
far-region solution overlap, and thus one can match the la
r near-region solution~20! with the small-r far-region solu-
tion ~24!. This matching yields

A5
~r 12r 2! l

G~ l 13/2!

G~ l 11!

G~2l 11!

G~ l 112 i2Ã!

G~12 i2Ã! S v

2 D l 11/2

a,

~25!
9-3
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b

a
5

G~2 l 11/2!

G~ l 13/2!

G~ l 11!

G~2l 11!

G~22l 21!

G~2 l !

G~ l 112 i2Ã!

G~2 l 2 i2Ã!

3S v

2 D 2l 11

~r 12r 2!2l 11. ~26!

Using the property of the gamma function,G(11x)
5xG(x), one can show that G(2 l 11/2)/G(1/2)
5(21)l2l /(2l 21)!!, G( l 13/2)/G(1/2)5(2l 11)!!/2l 11,
G(22l 21)/G(2 l )5(21)l 11l !/(2 l 11)!, and G( l 11
2 i2Ã)/G(2 l 2 i2Ã)5 i (21)l 112Ã)k51

l (k214Ã2).
Then, the matching condition~26! yields

b

a
5 i2Ã

~21! l

2l 11 S l !

~2l 21!!! D
2 ~r 12r 2!2l 11

~2l !! ~2l 11!!

3S )
k51

l

~k214Ã2!Dv2l 11. ~27!

4. Mirror condition: Properties of the unstable modes

If one puts a mirror near infinity at a radiusr 5r 0, the
scalar field must vanish at the mirror surface. Thus, set
the radial field~22! to zero yields the extra condition be
tween the amplitudesa andb, and the position of the mirro
r 0,

b

a
52

Jl 11/2~vr 0!

J2 l 21/2~vr 0!
. ~28!

This mirror condition together with the matching conditio
~27! yields a condition between the position of the mirr
and the frequency of the scalar wave,

Jl 11/2~vr 0!

J2 l 21/2~vr 0!
5 i ~21! l 11Ã

2

2l 11 S l !

~2l 21!!! D
2

3
~r 12r 2!2l 11

~2l !! ~2l 11!! S )
k51

l

~k214Ã2!Dv2l 11.

~29!

The solution of~29! can be found in the approximation th
applies suitably to this problem, namely,v!1, and Re(v)
@Im(v). For very smallv, the right-hand side~r.h.s.! of
~29! is very small and can be assumed to be zero in the
approximation forv. This yields

Jl 11/2~vr 0!50, ~30!

which has well-studied~real! solutions@14#. We shall label
the solutions of~30! as j l 11/2,n :

Jl 11/2~vr 0!50⇔vr 05 j l 11/2,n , ~31!

wheren is a non-negative integer number. We now assu
that the complete solution to~29! can be written asv
; j l 11/2,n /r 01 i d̃/r 0, where we have inserted a small imag
nary part proportional tod̃!1. One then has, from~29!
04403
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Jl 11/2~ j l 11/2,n1 i d̃ !

J2 l 21/2~ j l 11/2,n1 i d̃ !

5 i ~21! l 11ÃS l !

~2l 21!!! D
2 2

2l 11

~r 12r 2!2l 11

~2l !! ~2l 11!!

3S )
k51

l

~k214Ã2!Dv2l 11. ~32!

Now, we can use, for smalld̃, the Taylor expansion of the
l.h.s.,

Jl 11/2~ j l 11/2,n1 i d̃ !

J2 l 21/2~ j l 11/2,n1 i d̃ !
; i d̃

Jl 11/28 ~ j l 11/2,n!

J2 l 21/2~ j l 11/2,n!
~33!

The quantities j l 11/2,n ,Jl 11/28 ( j l 11/2,n),J2 l 21/2( j l 11/2,n) are
tabulated in Ref.@14#, and can also easily be extracted usi
MATHEMATICA . Here it is important to note tha
Jl 11/28 ( j l 11/2,n) and (21)lJ2 l 21/2( j l 11/2,n) always have the
same sign. Furthermore, for large overtonen, j l 11/2,n;(n
1 l /2)p. The frequencies of the scalar wave that are allow
by the presence of the mirror located atr 5r 0 ~BQN frequen-
cies! are then

vBQN.
j l 11/2,n

r 0
1 id, ~34!

wheren is a non-negative integer number, labeling the mo
overtone number. For example, the fundamental mode co
sponds ton50. In ~34!, d5Im@vBQN# is obtained by sub-
stituting ~33! in ~32!,

d.2g
~21! lJ2 l 21/2~ j l 11/2,n!

Jl 11/28 ~ j l 11/2,n!

j l 11/2,n /r 02mV

r 0
2(l 11)

, ~35!

where

g[S l !

~2l 21!!! D
2r 1

2 ~r 12r 2!2l

~2l !! ~2l 11!!

2

2l 11 S )
k51

l

~k214Ã2!D
3@ j l 11/2,n#2l 11. ~36!

Notice thatd is very small for larger 0 and thus satisfies the
conditions that go with the approximation used, Re(v)
@Im(v). Equations~34! and~35! constitute the main result
of this section. Two important features of this system, bla
hole plus mirror, can already be read from the equatio
above: first, from Eqs.~34! and ~35! one has,

d}2~Re@vBQN#2mV!. ~37!

Therefore, d.0 for Re@vBQN#,mV, and d,0 for
Re@vBQN#.mV. The scalar fieldF has the time depen
dence e2 ivt5e2 iRe(v)tedt, which implies that for
Re@vBQN#,mV, the amplitude of the field grows exponen
tially and the BQNM becomes unstable, with a growth tim
9-4
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scale given byt51/d. In this case, we see that the syste
behaves in fact as a bomb, a black-hole bomb. Second,

Re@vBQN#5
j l 11/2,n

r 0
, ~38!

showing that the wave frequency is proportional to the
verse of the mirror’s radius. As one decreases the distanc
which the mirror is located, the allowed wave frequency
creases, and there will thus be a critical radius at which
BQN frequency no longer satisfies the superradiant condi
~10!. Notice also that Re@vBQN# as given by~38! is equal to
the normal mode frequencies of a spherical mirror in a
spacetime@15#. In the next section, when the numerical r
sults will also be available, we will return to this discussio

C. The black-hole bomb: Numerical approach

1. Numerical procedure

In the numerical calculation for determining oscillatio
frequencies of the modes, we use the same function as
defined by Teukolsky@16#, given by~see also Refs.@17,18#!

Y5~r 21a2!1/2R. ~39!

Then, the Teukolsky equation becomes a canonical equa
given by

d2

dr
*
2 Y1VY50, ~40!

where

V5
K22lD

~r 21a2!2 2G22
d

dr*
G, ~41!

with K5(r 21a2)v2am, and G5rD(r 21a2)22. For the
separation constantl5Alm1a2v222amv, we make use of
a well known series expansion inav, given by

l5a2v222amv1(
i 50

`

0f i
lm~av! i , ~42!

where0f i
lm is the expansion coefficient~for the explicit form,

see, e.g., Ref.@12#!. In this study, we keep the terms in th
expansion up to an order of (av)2. As mentioned, near the
horizon, the physically acceptable solution of Eq.~40! is the
incoming wave solution, given by

Y5e2 i (v2mV)r
* @y01y1~r 2r 1!1y2~r 2r 1!21•••#,

~43!

whereyi is the expansion coefficient determined byv and
y0. Here, we do not show explicit expression for theyi ’s
because it is straightforward to derive it.

In order to obtain the proper solutions numerically,
using a Runge-Kutta method, we start integrating the dif
ential equation~40! outward fromr 5r 1(111025) with the
asymptotic solution~43!. We then stop the integration at th
radius of the mirror,r 5r 0, and get the value of the wav
04403
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function atr 5r 0, which is considered a function of the fre
quency,Y(r 0 ,v). If Y(r 0 ,v)50, the solution satisfies the
boundary condition of perfect reflection due to the mirr
and the frequencyv is a BQN frequency, which we label a
vBQN . In other words, the dispersion relation of our proble
is given by the equationY(r 0 ,vBQN)50. In order to solve
the algebraic equationY(r 0 ,vBQN)50 iteratively, we use a
secant method. Here, it is important to note that if the mo
is stable or Im(vBQN),0, the asymptotic solution~43! di-
verges exponentially and another independent solut
which is unphysical, damps exponentially asr * →2`.

2. Numerical results

Our numerical results are summarized in Figs. 1–7. As
noted earlier, we only show the data corresponding to
unstable BQNMs. We have also found the stable modes,
since they lead to no bomb we refrain from presenting the
From the figures we confirm the analytical expectations.

FIG. 1. The imaginary part of the fundamental (n50) BQN
frequency (vBQN) as a function of the mirror’s locationr 0 is plot-
ted. The plot refers to al 5m51 wave. Also shown is the depen
dence on the rotation parametera. One sees that forr 0 greater than
a critical value,r 0

crit , depending ona, there is the possibility of
building a bomb. Moreover, the imaginary component of the BQ
frequency decreases abruptly from its maximum value to zero
r 0

crit . For r 0,r 0
crit the BQNM is stable. Tracking the mode to ye

smaller distances shows that indeed it remains stable~the imaginary
part of vBQN is negative!.

FIG. 2. The real part of the fundamental (n50) BQN frequency
(vBQN) as a function of the mirror’s locationr 0 is plotted. The plot
refers to al 5m51 wave. There is no perceptivea dependence~as
matter of fact there is a very smalla dependence but too small to b
noticeable!. Thus, the oscillation frequency basically depends o
on r 0, and for larger 0 goes as 1/r 0, as predicted by the analytica
formula ~34!. The dots indicater 0

crit ~cf. Fig.1!.
9-5
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addition, we can discuss increasing time scales, oscilla
frequencies, energy extracted, and efficiencies with great
curacy. Figure 1 plots the imaginary part of the BQN fr
quency for the fundamental BQNM as a function of the m
ror’s locationr 0 and the rotation parametera. In Fig. 2, we
show the real part of the BQN frequency for the fundamen
BQNM also as a function ofr 0 and a. Supporting the ana
lytical results, Fig. 1 shows that:~i! The instability is weaker
~the increasing time scalet51/Im@vBQN# is larger! for
larger mirror radius, meaning that Im@vBQN# decreases asr 0
increases. This is also expected on physical grounds, as
noted in Ref.@7#, if one views the process as one of succ
sive amplifications and reflections on the mirror.

~ii ! As one decreasesr 0 the instability gets stronger, a
expected, but surprisingly, suddenly the BQNM is no long
unstable. The imaginary component ofvBQN drops from its
maximum value to zero, and the mode becomes stable
critical radiusr 0

crit . Physically, this happens because supe
diance generates wavelengths withl.1/V. So the mirror at
a distancer 0 will ‘‘see’’ these wavelengths ifr 0.r 0

crit;l
;1/V. One can improve the estimate forr 0

crit using Eqs.
~10!, ~37!, and ~38!, yielding r 0

crit; j l 11/2,n /mV. This esti-
mate for the critical radius matches very well with our n
merical data, even though the analytical calculation is a la

FIG. 3. This figure helps in understanding why the instabil
disappears forr 0 smaller than a certain critical value. The conditio
for superradiance isv2mV,0. Sincev goes as 1/r 0 ~check Fig.
2!, then it is expected that the condition will stop to hold at a critic
r 0. This is clearly seen here. Note that the critical value ofr 0 is in
excellent agreement with that shown in Fig. 1.

FIG. 4. The imaginary part of the BQN frequency as a funct
of r 0 for a50.4 and for the three lowest overtonesn, for l 5m
51. As expected from the general arguments presented, hi
overtones get stable at larger distances, and attain a smaller m
mum growing rate.
04403
n
c-

-
-

l

as
-

r

t a
-

e

wavelength approximation. In fact, to a great accuracyr 0
crit is

given by the root of Re@v(r 0
crit)#2mV50, as is shown in

Fig. 3. Also supporting the analytical results, Fig. 2 sho
that Re@vBQN# behaves as 1/r 0, which is consistent with Eq
~34!. This means that it is indeed the mirror that selects
allowed vibrating frequencies. The results for higher mo
numbern is shown in Figs. 4 and 5, and the behavior agre
with the picture provided by the analytical approximatio
The agreement between the analytical and numerical res
is best seen in Table I, where we show the lowest BQ
frequencies obtained using both methods. In Figs. 6 and 7
show the numerical results referring to different values of
angular numberl andm. Our numerical results indicate tha
1/Im@vBQN#;r 0

22(l 11) , in agreement with the analytical re
sult, Eq. ~35!. The numerical results also indicate that t
oscillating frequencies (Re@vBQN#) scale withl, more pre-
cisely, Re@vBQN# behaves as Re@vBQN#;p/r 0(n1 l /2).
This behavior is also predicted by the analytical study.

Let us now take the Press-Teukolsky example of a bl
hole with massM51M ( @7#. We are now in a position to
make a much improved quantitative analysis. We takea
50.8M , a large angular momentum, so that we make f
use of our results. In addition, to better take advantage of
whole process, one should place the mirror at a position n

FIG. 5. Same as Fig. 4, but for the real part ofvBQN .

FIG. 6. The imaginary part of the fundamentalvBQN for an a
50.4 black hole, as a function of the mirror’s locationr 0 here
shown for some values ofl ,m. Furthermore, as is evident from thi
figure and also as could be anticipated, the largerm the smallerr 0

can be, still displaying instability. Note, however, that the maximu
instability is larger for them51 mode. This is a general feature
The imaginary part of the frequency seems to behave
Im@vBQN#;r 0

22(l 11) , which agrees with the analytical predictio
~35!.
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TABLE I. The fundamental BQN frequencies for a black hole witha50.8M and a mirror placed atr 0

5100M . The data correspond to thel 5m modes, and the frequency is measured in units of the massM of
the black hole. We present both the numerical (vBQN

N ) and analytical (vBQN
A ) results. Notice that the agree

ment between the two is very good, and it gets better asl increases. Also, we have checked that for very la
r 0 the two yield basically the same results.

l vBQN
N vBQN

A

1 8.753102211.1931027i 8.993102211.4131027i
2 1.133102116.77310212i 1.153102116.89310212i
3 1.373102112.45310216i 1.393102112.26310216i
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the point of maximum growing rate, but farther. Thus, f
example,r 0;22M;33 km ~see Fig. 1!. This gives a grow-
ing time scale of aboutt;0.6 s ~see also Fig. 1!, which
means that every 0.6 s the amplitude of the field gets
proximately doubled. This means that at the end of 13 s
initial amplitude of the wave has grown to 107 of its initial
value, and that thus the energy content is 1014 times greater
than the initial perturbation. We consider there are no los
through the mirror and assume the process to be adiab
Using the first law of thermodynamics one can then
DM;VDJ, whereDM andDJ are the changes in mass an
angular momentum of the black hole in this process, resp
tively. Now, the black hole is losing angular momentum
each superradiant scattering. Thusa decreases. If we go to
Fig. 1 we see thatr 0

crit increases with decreasinga. At a
certain stager 0

crit coincides with the position of the mirror a
r 0, at which point there is no longer a possibility of supe
radiance. The process is finished. Thus from Fig. 1, or m
accurately from our numerics, one can findDa, and thusDJ.
Then DM follows from DM;VDJ. In the example this
gives a total amountDM;0.01M of extracted energy befor
the bomb stops functioning. The process thus has an
ciency of 1%, about the same order of magnitude as
efficiency of nuclear fusion of hydrogen burning into heliu
(;0.7%). If, instead, the mirror is placed atr 0;200M
;300 km one still gets a good increase in the time scale
about 15 min. This means that at the end of 6 h the initial
amplitude of the wave has grown to 107 of its initial value. In
this caseDM;0.1M , with a 10% efficiency, and one ca
show that the efficiency increases with mirror radiusr 0.

FIG. 7. Same as Fig. 6 but for the real part. Note that there is
l dependence of the real part of the frequency. On the other h
there is no noticeablem dependence, in accordance with the an
lytical result ~34!.
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Since the cost of mirror construction scales asr 0
2, we see that

small mirrors are more effective. One can give other int
esting examples. For a black hole at the center of a gal
with massM;108M ( , a50.8M , andr 0522M , the maxi-
mum increase in time scale is of the order of 2 yr. Anoth
interesting situation happens when the black hole has a m
of the order of the Earth mass. In this case, by placing
mirror at r 051 m one gets an increase in the time scale
about 0.02 s. At the other end of the black hole spectrum
can consider Planck size black holes.

D. Zel’dovich’s cylinder surrounded by a mirror

As a corollary, we discuss here electromagnetic supe
diance in the presence of a cylindrical rotating body, a s
ation first discussed by Zel’dovich@3#. He noted that by sur-
rounding this rotating body with a reflecting mirror on
could amplify the radiation, much as the black-hole bom
process just described. Bekenstein and Schiffer@19# have
recently elaborated on this. An independent analytical
proximation, similar in all respects to the one we discuss
earlier in the black-hole bomb context, can also be app
here for finding the BQN frequencies of this system~con-
ducting cylinder plus reflecting mirror!, and leads to almos
the same results as for the black hole bomb. The imagin
component ofvBQN is d}2(Re@vBQN#2mV). The electro-
magnetic field has the time dependencee2 ivt5e2 iRe(v)tedt

and thus, for Re@vBQN#,mV, the amplitude of the field
increases exponentially with time and the mode becomes
stable, with a growth time scale given byt51/d. Second,
Re@vBQN#}1/r 0, i.e., the wave frequency is proportional
the inverse of the mirror’s radius, as it was for the black-h
bomb. Therefore, as one decreases the distance at whic
mirror is located, the allowed wave frequency increases,
again there will be a critical radius at which the frequency
longer satisfies the superradiant condition~10!. If one tries to
use the system as it is, it would be almost impossible
observe superradiance in the laboratory. Take as an exa
a cylinder with radiusR510 cm, rotating at a frequencyV
52p3102 s21, and a surrounding mirror with radiusr 0
520 cm. For the system to be unstable and experiment
detectable, the minimum mirror radius is given byr crit
;c/mV ~where we have reinstated the velocity of lightc),
which yieldsr crit;1000 km for am51 wave. It seems im-
possible to use this apparatus to measure superradianc
perimentally. A way out of this problem may be the on
suggested in Ref.@19#: to surround the conducting mirror b
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a material with a low velocity of light. In this case the critic
radius would certainly decrease, although further investi
tion is needed in order to ascertain what kind of mate
should be used.

III. ARE KERR-AdS BLACK HOLES UNSTABLE?

A spacetime with a naturally incorporated mirror in it
AdS spacetime, which has attracted a great deal of atten
recently due to the AdS/CFT~conformal field theory! corre-
spondence and other matters. As is well known, AdS sp
behaves effectively as a box, in other words, the AdS infin
works as a mirror wall. Thus, one might worry that Kerr-Ad
black holes could behave as the black-hole bomb just
scribed, and that they would be unstable. Hawking and R
@10# have shown that, at least for large Kerr-AdS black hol
this instability is not present. The stability of large Kerr-Ad
black holes in four and higher dimensions can be underst
in yet another way, using the knowledge one acquired fr
the black-hole bomb study. The black-hole rotation is co
strained to bea,,, where, is the AdS radius@10#. Large
black holes are the ones for whichr 1@,. In this case the
angular velocity of the horizonV5@a/(r 1

2 1a2)#(1
2a2/,2) goes to zero and one expects that the rotation p
a neglecting role in this regime, with the results found for t
nonrotating AdS black hole@20,21# still holding approxi-
mately when the rotation is nonzero. The characteristic q
sinormal frequencies for large, nonrotating AdS black ho
were computed in Refs.@20,21# showing that the real par
scales withr 1 . Now, sinceV→0 for large black holes and
the QNMs have a very large real part, one can underst
why there is no instability: superradiant modes are sim
not excited, as the condition for superradiance,v,mV, can-
not be fulfilled. We could try to evade this by going to high
values ofm, but thenl has also to be large (l>m). However,
for large l ’s, the real part of the QNMs is known to sca
with l @22#; thus the condition for superradiance is nev
fulfilled. What about small Kerr-AdS black holes,r 1!,?
Considering the case for smalla, a!r 1 say, is enough for
our purposes. In this situation the horizon’s angular veloc
scales as the inverse ofr 1 , and it can be made arbitraril
large. Although the effect of rotation cannot be neglected
this case, the results of the QNM analysis for nonrotat
AdS black holes give some hints about what may happ
For small nonrotating AdS black holes, the QN frequenc
have a real part that goes to a constant, independent ofr 1 ,
whereas the imaginary part goes to zero@21#. If we add a
small angular momentum per unit massa to the black hole,
we do not expect the real part of the QN frequency to gr
significantly. But, sinceV is very large anyway, the superra
diance conditionv,mV will most likely be fulfilled. There-
fore we expect it to be possible to excite the superrad
instability in these spacetimes.

IV. CONCLUSIONS

To conclude, we have investigated the black-hole bo
thoroughly, by analytical means in the long wavelength lim
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and numerically. We have provided both analytical and n
merical accurate estimates for growing timescales and o
lation frequencies of the corresponding unstable BQNM
Both results agree and yield consistent answers. An imp
tant feature born out in this work is that there is a minimu
distance at which the mirror must be located in order for
system to become unstable and for the bomb to work. B
cally this is because the mirror selects the frequencies
may be excited. For distances smaller than this, the syste
stable and the perturbation dies off exponentially. This mi
mum distance increases as the rotation parameter decre
We have given an explicit example where such a sys
works, yielding a reliable source of energy. By using th
extracted energy appropriately, one could perhaps buil
black-hole power plant. Although we have worked only wi
zero spin~scalar! waves, we expect that the general featu
for other spins will be the same. Moreover, it is known tha
charged black hole, even in the absence of rotation, prov
a background for superradiance, as long as the imping
wave is a bosonic charged wave~fermions do not exhibit
superradiance!. In this case, the critical radius should be
orderr crit;1/eF, wheree is the charge of the scalar partic
andF is the black hole’s electromagnetic potential.

We have also shown that a mirror surroundi
Zel’dovich’s rotating cylinder leads to a system that displa
the same instabilities as the black-hole bomb. However,
the instability to be triggered in an Earth-based experime
some improvements must be made. In particular, the cylin
should be surrounded by a material with a low light veloci
since otherwise it would require a huge mirror radius or hu
rotating frequencies.

The study of the black-hole bomb and of the associa
instabilities allows one to better understand the absenc
superradiance in large Kerr-AdS black holes@10# and more-
over to expect that small Kerr-AdS black holes will be u
stable.

Finally, it seems worth investigating whether or not th
kind of black-hole bomb is possible in TeV-scale gravity.
these scenarios, one has four noncompact dimensions an
extra compact dimensions. It might be possible that th
extra compactified dimensions work as a reflecting mirr
and therefore rotating black holes in 41n dimensions could
turn out to be unstable.

We would also like to make a remark on a possible as
physical application of this black hole-reflecting wall syste
It has been proposed in Putten@23#, and further discussed in
Aguirre @24#, that the superradiant amplification proce
might provide the energy necessary to feed the highly en
getic gamma-ray burst. Magnetosonic plasma waves, ge
ated in the accreting plasma around an astrophysical b
hole, might enter in the waveguide cavity located betwe
the gravitational potential barrier of the black hole and t
inner edge of the accretion disk. Once there, the inner bou
ary of the accretion disk might act as a reflecting wall, a
waves can then suffer multiple reflection and superrad
amplification, increasing their energy. This energy incre
will continue until the magnetosphere that surrounds the s
9-8
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tem is no longer capable of supporting the energy pressu
the waveguide cavity. The wave energy would then be
leased in a burst, and collimated into a relativistic jet by, e
the Blandford-Znajek process Blandford@25#, and finally
transferred into the observed gamma-ray photons, as
scribed by the Fireball model Piran@26#. In order to better
compare the energy and timescales derived from the su
radiant model with the observational data taken fro
gamma-ray bursts, it is appropriate to apply the method
this paper to superradiant cavities that have an accreting
ter configuration of a torus or disk.
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of Astron. and Astrophys.40, 137 ~2002!.
9-9


