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Radiation tails and boundary conditions for black hole evolutions
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In numerical evolution of Einstein’s equations for black hole spacetimes, it will be necessary to use approxi-
mate boundary conditions at a finite distance from the holes. One interesting feature of numerical evolutions is
a “tail,” the inverse power-law decrease of the late-time field. Here we discuss and present numerical evidence
about the effect of approximate boundary conditions on the late-time behavior of evolved fields.

DOI: 10.1103/PhysRevD.70.044038 PACS nuni§er04.25.Dm, 02.60.Cb, 04.70.Bw

[. INTRODUCTION asymptotic nature of the distant spacetime does not enter into
the computation, so that the correct late-time tails cannot
There is at present great interest in the computation of théevelop. This argument, and the need to avoid approximate
gravitational waves from the inspiral and merger of a pair ofooundary conditions has been impli¢it2,16 or explicit
mutually orbiting black hole§1—3]. To do such computa- [13]in most computations of tails, and outer boundaries have
tions a solution of the initial value equations of general rela-peen put at distances too large to affect computations.
tivity is chosen on some initial spatial hypersurface, and the In the Schwarzschild background, it is possible to check
remaining Einstein equations are used to find the spacetinfée idea that the late-time tail is due to the scattering far from
to the future of that initial surface. In principle, one can the hole. In this case linearized perturbati¢ssalar, electro-
compute the evolved spacetime only in the domain of depenmagnetic, or gravitationaican be analyzed into multipoles
dence of that initial surface, which means that the initialy== ¢em(t,r)Yem(6,¢), wheret,r,0,¢ are the standard
surface must be large, many times the radius of the initiaPchwarzschild coordinates. The evolution of each multipole
binary orbit, if the spacetime is to be evolved for severalis described by a simple wave equati@j
orbital times. The computational demands for such a proce- 5 5
dure make it unfeasible for the foreseeable future, although Jep(tr) = an p(tr) +V(r) ¥(t,r) =0. @

pseudospectral codes can help considerably in extending ﬂﬁereCZGz 1 and, for simplicity, we have dropped the mul-
size of the initial hypersurfacel]. The alternative to a large tipole indices on,zp (t.r) and, on V,(r). The Regge-
initial hypersurface is a timelike boundary on the ComPUta'Wheeler[lﬂ “tortoisfem cc’)ordinate"r* isf de.fined byr* =r
tion, typically at some large radius, at which appropriate ap-, o\ In(r/2M — 1), whereM is the mass of the Schwarzs-
proximate boundary conditions are specified. These boun Lhild hole. I the’limitM—>0 that is. in flat spacetime
ary conditions are chosen to represémpproximately the X . ' ' P '
condition that no information moves inward through the ' and the potential takes the form
boundary. One of the problems that workers in this field have Viat= ¢ (¢ 4+ 1)/r*2. )
recently turned to is that of appropriate boundary conditions,
especially in connection with the preservation of gauge confFor this potential, the solution to E¢L) has a simple famil-
straints[5-7]. iar form in terms of spherical Bessel functions, and has no
One of the features found in evolutions of perturbations intails.
black holes spacetimes is the final latest-time behavior of the If M #0 there are important differences. For a scalar per-
perturbation fields, a fall off in timé as 1" at a constant turbation, the potential,
distance from the holE8,9]. This was first demonstrated for
Schwarzschild holes in which case= 2¢ + 3 for a multipole < 2M
of index € with generic initial data of compact support. For VE(r)={ 1~ T
Kerr holes such tails also represent the latest time behavior,
though there remains some controversy about the value of s typical of that for all perturbation fields. Fo¥ >M this
[10—13. Most work on these tails has been done within “n'ﬁotential has the form

earized perturbation theory, though some computations witl

¢(¢+1) 2M
— 2 T3

, ©)

r r

self-gravitating spherically symmetric scalar fields have also 0(€+1) In(r*/2M)
been carried ouf14,15. VS°=T 1+4M—————+O(M/r*) . (4
The focus of the present paper is the failure of numerical r r

computations with approximate boundar)_/ co_n_dmons o PI9Y is the extra Im*/r* term that is in Eq(4), but missing in
duce the correct late-time tails. A rough intuitive reason for (2), that produces the & * 3 tails [18]. To check this we
this is that the late-time tails are the result of the scattering qu' k b :

radiation due to the curvature of spacetime. This scatteringeflne a toy potential

takes place far from the hole, and depends on the asymptotic Ce+1) In(r*/2M)
large-distance nature of spacetime curvature. A boundary vioy=—"_ "1 14 o MA————°|, (5)
condition on a timelike surface at finite radius means that the r*2 r*
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10° | ] In this case the outgoing boundary conditigh— ¢ =0 is
exact; it constraing to be zero, the same condition as if the
A=2 boundary were infinitely far away. A less trivial, but less
useful case is th =0, € =1 scalar equation. The general
solution in this case is
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f(tr—r)+g,(t+r)_g(t:rr), ®
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wheref describes the outgoing part agdhe ingoing part.
An exact boundary condition is

My

A Y it 4
N ‘\\”““M/ e
| | il W‘r‘ HM "’,\, WV " | (A, + 30 2[r2(d,+3) Y] =0, ©)
2000 5000 10000 which constraing (more preciselyg”) to vanish.
M The cases in Eqg7) and (8) are special. In these cases

FIG. 1. Lateti ved solutions for different val th the radiative part of the solutiotthe parts without 1/ fac-
i ; n.t ?tek; ime et;/or_\;e ts?nl: I‘ﬁntsh ort ! er(:nm\_/al udesﬁor_bed .ntors) and the nonradiative parts are simply related. The non-
coetlicient of tne scatlering term In the toy potential desceribed N, o yjqiy e part is missing for Eq.7), and for Eq.(8) the
the text. The absolute value of the scalar figldis shown as a - - . . : -
) ) . . nonradiative part is a simple time integral over the radiative
function of timet atr* =400M. Curves are labeled with the value S L R .
of A, part. This simplicity is related to Huygens’ principle. Note in

particular that in Eq(7) or (8) if g=0 and iff has compact

with an adjustable parametdy, that allows us to control the support, then the solution will be nonzero onl_y for a finite.
size of the extra term. Using this potential we have numeri{iMe and hence cannot have a power—law.tall as a generic
cally evolved Eq(1) with £ =1 [19]. The initial data, at time featurg. Th_e nonsmplg no_n—Huygens solution for problems
t=0, for this evolution was a time-symmetric Gaussian'" which tailsare generic will not, therefore, have an exact

pulse = exp(— 0.1(*/2M +4)?), and the outer boundary bour_wdary c_on_dition th_at can be expressed as a finite_ _number
was taken at a large enough distance not to affect the con‘P—f d|fferent|at|ons as in Eq(9). Exact bogndary conditions
putation. The results, foy at r* =400M, are shown as a can be imposed, but_these are necgssanly npnlocal an.d com-
function of timet in Fig. 1. The figure shows the straight plicated[20], are typically not used in numerical evolutions.
lines in the log-log plot that indicate a power-law fall off in

time. For all values oA the slope is—5, consistent with the Il. EVOLUTIONS WITH APPROXIMATE BOUNDARY

2¢+ 3 rule. (At very late times each of the power-law tails CONDITIONS

disappears into round-off noig& he results clearly show the
sensitivity of the tail to the size oA. For A=0, of course,
the toy potential becomes the flat spacetime potential ce
trifugal, and there is no tailThe magnitude of the tail in-
creases a# is made larger, but this increase slows, and th

We now directly investigate the late-time behavior of so-
lutions with approximate outgoing boundary condition of Eq.
6). The monopoleg =0 case is studied so that the predicted
slowly-falling 14 tails stay well above the roundoff noise.
®Ihe starting field is a purely outgoing pulse defined on the

magnitude of the tail appears to reach a limit. S * _ : ;
. ) A . ingoing null rayt+r*=0. On this ray, in terms of retarded
The argument against tails with finite boundary condi time u=t—r*, the form of y is specified to bey=[u(u

tions, t_hen, is that they.depend on the asymptotic form of the—8M)/16M2]8, for 0<u<8M, and =0 for u<0 or u
potential. For the obvious Sommerfeld outgoing boundary. S - . ;
condition >$M. The |n|t|§I df'ita at=0 then is ap.prOX|mater an out-
going pulse(satisfying ¢ .« = — ¢ ;) confined between* =
Yo+ =0, atr* =rk, (6) —8M andr* =0, centered at* = —4M with a peak value
' ‘ =1 there. The left boundary for afl=0 computations is at
the interior solution cannot “know” what the potential is for I'*=—500M, where the sommerfeld conditiof .« =, is
r*>r¥_, and hence the solution cannot develop a tail excep'lTposed- The rlght' boundary is plaped at different locations
at spacetime points whose domain of dependence lies withifee: @nd the condition), .« = — ¢ is imposed.
the outer boundary. Figure 2 shows the time profile @f developing from the
This argument, of course, is only suggestive. One carfitial pulse. The value of/ at the fixed positiom* =0 is
rebut it with the claim that a boundary condition could beshown as a function of time for outgoing boundary locations
made sufficiently precise so that it encodes the asymptotitsc=500M (solid curve and at ri.=200M (dot-dashed
form of the potential. A trivial example is the ca¥e=0 and ~ curve. Since the results are shown only upt t9100(M, the
r=r*, for which the general solution, in terms of an arbi- field atr* =0, shown by the solid curve, has not yet been
trary outgoing functiorf, and an arbitrary ingoing functiom influenced by the interaction of the boundariesta500M
is with the evolution of the initial pulse from* =0. The solid
curve then shows the “boundaryless” behavior of the field
Yp=f(t—r)+g(t+r). (7)  evolving completely within the domain of dependence of the
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FIG. 2. The scalar monopol¢ evolving from an initially out- FIG. 4. Evolution of theyy monopole for Sommerfeld outgoing

going pulse near* =0. The fieldy is plotted as a function of time  conditions on close boundaries. The time profiles are for an initial
atr* =0 for two different values of 5., at 500M and 200. The  outgoing pulse near* =0. Results are shown for outer boundaries
two curves are identical up to tinte=400M. A curve proportional  at locationsr* =100M, 50M, and 2.

to 142 is included for comparison.

=500M, and the dot-dashed curve to an outer boundary at

initial data. That field goes through quasinormal ringing upr*=200M. The solid curve indicates that &t500M the
to around t=150M, then aroundt=300M becomes a unit-height pulse has reached the outer boundary. In the ab-
power-law tail. Since the plot is a semilog plot, not a log-log Sence of scattering this would be the only feature of the plot,
plot, the tail is not a straight line, and a const&htturve is  but due to scattering there are quasinormal bumps created
provided to illustrate the tail nature of the solid curve. Thebetweernr* ~370M and 500M. Waves scattered inward also
dot-dashed curve for thet,=200M outer boundary is iden- create quasinormal bumps betwearf ~—300M and
tical to the solid curve up to=400M. In particular, fromt ~ —500M. From r*~—300M to ~370M the solid curve
~300M to t=400M the field starts to take the form of a Shows the spatial profile of the tail behavior. The dot-dashed
power-law tail, but att=400M waves reflected from the Curve shows that reflections of the initial pulse off the
r¥ =200M boundary arrive at* =0 and a new oscillatory —200M boundary have reached*=-100M and have
behavior ensues due to the influence of the boundary. ~contaminated” the spatial profile fronr*=—100M to

A complementary viewpoint on the boundary influence is200M. The spatial profile fronn* = —100M to 200M shows
given in Fig. 3, in which spatial profiles of evolved fields are spatial (_)SClI_Iat|0ns similar to the temporal oscillations that
shown at the moment of time=500M. As in Fig. 2, the appearin Fig. 2.
solid curve corresponds to an outer boundary rat

Ill. BOUNDARY-INDUCED QUASINORMAL RINGING

10° . . . .
The nature of the boundary-induced oscillations is made

clearer in Fig. 4, which shows the time profiles for outer
boundaries at 10@, 50M, 25M. (For larger values of
similar oscillations develop at later timgg.he late-time re-
10° boundary at 500M sults for the 501 and 23 profiles indicates a constant-
period oscillation, and the straight-line envelope of the oscil-
lations in the semilog plot indicates an exponential damping.
The natural interpretation is that these damped oscillations
are a new form of quasinormal ringing. The “old” form is
the familiar quasinormal ringing of a black hoJ]@1-23,
like that in Fig. 2 fort/M less than~150. This is a real
boundary at 200M | ' physical phenomenon associated with the black hole spac-
L time. In Fig. 4 we see oscillations that are not physical in this
-500 —400 -300 -200 —100 0 , 100 200 300 400 500 sense, but are numerical artifacts, the strongly damped oscil-
radius r/M lations of a leaky cavity created by the outer boundary and
FIG. 3. Spatial profile of the scalar monopajeevolving from  the curvature potentia¥ near its peak at* =0. Some evi-
an initially outgoing pulse. Here is plotted att=500M for values ~ dence for this is the dependence of the period of the oscilla-
of rf, at 500M and 2004. The curves are identical for*  tions onrg.. The longer cavity of the 8@-boundary case
< —100M where the field has not yet been influenced by reflectionscreates longer oscillation periods than the cavity of the
of the initial pulse off the 2081 boundary. 25M-boundary. The less-clearly defined oscillations of the
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FIG. 6. The time constant for the envelope of the decaying
oscillations, divided byT, the period of the oscillations, as a func-
tion of the locatiorr }; of the outer boundary. The thick solid curve
shows a heuristic model for.

FIG. 5. The periodr for a full oscillation(two “bumps”) as a
function of the location'}, of the outer boundary. The straight line
T/IM=—30+2.9(r3/M) is the least-squares fit to the results for
ry.=100M and larger.

100M have yet longer periods. oscillation. The cavity oscillations should then die off as
The leaky-cavity interpretation is supported by the plot inR'*1”, or as expt-t/7), where the damping time- is
Fig. 5 showing the period for a full oscillation (the width ~ — T«1/In(R). The outgoing boundary condition is expected

of a pair of “bumps” in Fig. 4 of the late time features, as a to improve ag} increase$24], so it is interesting to make
function ofr}., the location of the outer boundary. The un-the ansatz Re«x,M/rf.. This model predicts 7/T
certainty in the period is around 2%, both due to truncation= « /[log(r§/M) —log(x,)]. Figure 6 shows/T for a range
error in the evolution ofy, and due to the extraction f  of outer boundary locations;; the uncertainty here, as in
from the late time results. Far, larger than~100M the  Fig. 5, is no worse than 2% at amjj,. The larger}, results
period quite accurately follows the linear relatidiM = in Fig. 6 do show a gradual decreaserT with increasing
—30+2.9(r5/M), confirming the view that these late time r},, as expected. Our heuristic model foris fit to those
oscillations are resonances of a cavity created by the outeesults by eye, and is plotted in Fig. 6. That fit corresponds to
boundary. Forrj. less than~100M it is not surprising that reflectivity 4.8V /ry., or ~5% for a boundary at 100. The
the details near the peak of the curvature potenfialould  plot of the heuristic model gives an appearance of reasonable
complicate the relationship; for large valuesrgf the details  agreement except for small valuesrgf, but with two ad-
of the curvature potential become unimportant. Wisaat  justable parameters in the fit, this agreement can only be said
first surprising in the linear relationship is the coefficient 2.9.to be weakly suggestive.
This means that the number of half-wavelengths inside the
“cavity” is not an integer; one would naively expect the
period T to be equal to the cavity length, or an integer mul-
tiple of half the cavity length. But our naive expectations are We have shown that finite-radius boundary conditions
based on the simple boundary condition that the field or itprevent the formation of power-law tails of perturbations in
normal derivative vanish. In our artificial cavity the outgoing black hole spacetimes. In place of a tail, the latest-time fea-
boundary conditions does neither. For a constant-frequendyre of a computation will be a new form of quasinormal
oscillation the outgoing boundary condition, in effect, im- oscillation. Unlike black hole oscillations, these oscillations
poses a relationship between the field and its normal derivaare not physical phenomena; they are numerical artifacts in-
tive. Computations with simple toy models have confirmedtroduced by the imperfect outgoing condition at the outer
that with such boundary conditions a resonance of the cavitpoundary.
will not contain an integer number of half wavelengths. In numerical relativity, these oscillation will probably not
The leaky-cavity viewpoint on the outer boundary sug-be a serious practical difficulty. The goal of present numeri-
gests a way to quantify the effectiveness of the outer boundsal relativity work is a better understanding of strong field
ary condition. The more effective the outer boundary condi-nonlinear dynamics. Numerical codes in the foreseeable fu-
tion is, the more quickly the cavity modes should die out. Ifture will not be able to run long enough for the boundary-
we characterize the effective reflectivity of the outer bound-induced oscillations to appear, nor are they likely to be ac-
ary asR, and letN represent the number of reflections from curate enough to deal with such a weak field phenomenon.
the outer boundary, then the amplitude should fall ofRs These limitations of running time and accuracy do not
We can takeN to be the timet divided by some measure of apply when the Lazarug25] method is used in a problem
the time for a reflection. For generality we will take this to be involving the formation of a final black hole. That method
k,T, were «; is some constant, anfl is the period for an uses the solution computed by a fully nonlinear numerical

IV. SUMMARY AND DISCUSSION
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evolution code as initial data for further evolution by black contain boundary-induced artifacts of the type we have dis-
hole perturbation theory. The nonlinear numerical evolutioncussed above. But these artifacts would be miniscule, and of
would, of necessity, use timelike boundaries, but the numerino concern for most applications of black hole evolution,
cal cavity oscillations would not develop in the limited time with or without Lazarus.

for which the evolutions run. In principle, the subsequent
Lazarus evolution could be used without boundary condi-
tions, i.e., with evolution only within the domain of depen-
dence of the initial data inherited from the fully nonlinear
numerical code. Such boundaryless Lazarus evolutions We gratefully acknowledge the support of the National
would exhibit power-law tails, but the tails would be strongly Science Foundation to the University of Utah, under grants
affected by boundary effects contained in the initial data in-PHY9734871 and PHY0244605. We thank Gioel Calabrese,
herited from the nonlinear evolution. In practice, LazarusManuel Tiglio, Luis Lehner and Jorge Pullin for discussions
evolutions are not boundaryless. Rather, to reduce memomgnd suggestions about boundary effects. We thank Carlos
requirements, timelike boundary conditions are used in théousto for discussions of the boundary treatment in the Laz-
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