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Radiation tails and boundary conditions for black hole evolutions
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In numerical evolution of Einstein’s equations for black hole spacetimes, it will be necessary to use approxi-
mate boundary conditions at a finite distance from the holes. One interesting feature of numerical evolutions is
a ‘‘tail,’’ the inverse power-law decrease of the late-time field. Here we discuss and present numerical evidence
about the effect of approximate boundary conditions on the late-time behavior of evolved fields.
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I. INTRODUCTION

There is at present great interest in the computation of
gravitational waves from the inspiral and merger of a pair
mutually orbiting black holes@1–3#. To do such computa
tions a solution of the initial value equations of general re
tivity is chosen on some initial spatial hypersurface, and
remaining Einstein equations are used to find the space
to the future of that initial surface. In principle, one ca
compute the evolved spacetime only in the domain of dep
dence of that initial surface, which means that the init
surface must be large, many times the radius of the in
binary orbit, if the spacetime is to be evolved for seve
orbital times. The computational demands for such a pro
dure make it unfeasible for the foreseeable future, altho
pseudospectral codes can help considerably in extending
size of the initial hypersurface@4#. The alternative to a large
initial hypersurface is a timelike boundary on the compu
tion, typically at some large radius, at which appropriate
proximate boundary conditions are specified. These bou
ary conditions are chosen to represent~approximately! the
condition that no information moves inward through t
boundary. One of the problems that workers in this field ha
recently turned to is that of appropriate boundary conditio
especially in connection with the preservation of gauge c
straints@5–7#.

One of the features found in evolutions of perturbations
black holes spacetimes is the final latest-time behavior of
perturbation fields, a fall off in timet as 1/tn at a constant
distance from the hole@8,9#. This was first demonstrated fo
Schwarzschild holes in which casen52,13 for a multipole
of index , with generic initial data of compact support. F
Kerr holes such tails also represent the latest time beha
though there remains some controversy about the valuen
@10–13#. Most work on these tails has been done within l
earized perturbation theory, though some computations w
self-gravitating spherically symmetric scalar fields have a
been carried out@14,15#.

The focus of the present paper is the failure of numer
computations with approximate boundary conditions to p
duce the correct late-time tails. A rough intuitive reason
this is that the late-time tails are the result of the scattering
radiation due to the curvature of spacetime. This scatte
takes place far from the hole, and depends on the asymp
large-distance nature of spacetime curvature. A bound
condition on a timelike surface at finite radius means that
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asymptotic nature of the distant spacetime does not enter
the computation, so that the correct late-time tails can
develop. This argument, and the need to avoid approxim
boundary conditions has been implicit@12,16# or explicit
@13# in most computations of tails, and outer boundaries h
been put at distances too large to affect computations.

In the Schwarzschild background, it is possible to che
the idea that the late-time tail is due to the scattering far fr
the hole. In this case linearized perturbations~scalar, electro-
magnetic, or gravitational! can be analyzed into multipole
c5(c,m(t,r )Y,m(u,f), where t,r ,u,f are the standard
Schwarzschild coordinates. The evolution of each multip
is described by a simple wave equation@8#

] t
2c~ t,r !2] r*

2 c~ t,r !1V~r !c~ t,r !50. ~1!

Herec5G51 and, for simplicity, we have dropped the mu
tipole indices on c,m(t,r ) and on V,(r ). The Regge-
Wheeler@17# ‘‘tortoise coordinate’’r * is defined byr * 5r
12M ln(r/2M21), whereM is the mass of the Schwarzs
child hole. In the limitM→0, that is, in flat spacetime,r
5r * and the potential takes the form

Vflat5,~,11!/r * 2. ~2!

For this potential, the solution to Eq.~1! has a simple famil-
iar form in terms of spherical Bessel functions, and has
tails.

If MÞ0 there are important differences. For a scalar p
turbation, the potential,

Vsc~r !5S 12
2M

r D F,~,11!

r 2
1

2M

r 3 G , ~3!

is typical of that for all perturbation fields. Forr * @M this
potential has the form

Vsc5
,~,11!

r * 2 F114M
ln~r * /2M !

r *
1O~M /r * !G . ~4!

It is the extra lnr* /r* term that is in Eq.~4!, but missing in
Eq. ~2!, that produces the 1/t2,13 tails @18#. To check this we
define a toy potential

Vtoy5
,~,11!

r * 2 F112MA
ln~r * /2M !

r *
G , ~5!
©2004 The American Physical Society38-1
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with an adjustable parameter,A, that allows us to control the
size of the extra term. Using this potential we have num
cally evolved Eq.~1! with ,51 @19#. The initial data, at time
t50, for this evolution was a time-symmetric Gaussi
pulse c5exp„20.1(r * /2M14)2

…, and the outer boundar
was taken at a large enough distance not to affect the c
putation. The results, forc at r * 5400M , are shown as a
function of time t in Fig. 1. The figure shows the straigh
lines in the log-log plot that indicate a power-law fall off i
time. For all values ofA the slope is25, consistent with the
2,13 rule. ~At very late times each of the power-law tai
disappears into round-off noise.! The results clearly show th
sensitivity of the tail to the size ofA. For A50, of course,
the toy potential becomes the flat spacetime potential c
trifugal, and there is no tail.~The magnitude of the tail in-
creases asA is made larger, but this increase slows, and
magnitude of the tail appears to reach a limit.!

The argument against tails with finite boundary con
tions, then, is that they depend on the asymptotic form of
potential. For the obvious Sommerfeld outgoing bound
condition

c ,t1c ,r* 50, at r * 5r bc* , ~6!

the interior solution cannot ‘‘know’’ what the potential is fo
r * .r bc* , and hence the solution cannot develop a tail exc
at spacetime points whose domain of dependence lies w
the outer boundary.

This argument, of course, is only suggestive. One
rebut it with the claim that a boundary condition could
made sufficiently precise so that it encodes the asympt
form of the potential. A trivial example is the caseV50 and
r 5r * , for which the general solution, in terms of an arb
trary outgoing functionf, and an arbitrary ingoing functiong,
is

c5 f ~ t2r !1g~ t1r !. ~7!

FIG. 1. Late-time evolved solutions for different values ofA, the
coefficient of the scattering term in the toy potential described
the text. The absolute value of the scalar fieldc is shown as a
function of timet at r * 5400M . Curves are labeled with the valu
of A.
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In this case the outgoing boundary conditionc ,t2c ,r50 is
exact; it constrainsg to be zero, the same condition as if th
boundary were infinitely far away. A less trivial, but les
useful case is theM50, ,51 scalar equation. The gener
solution in this case is

c5 f 8~ t2r !1
f ~ t2r !

r
1g8~ t1r !2

g~ t1r !

r
, ~8!

where f describes the outgoing part andg the ingoing part.
An exact boundary condition is

~] r1] t!
2@r 2~] r1] t!c#50, ~9!

which constrainsg ~more preciselyg-) to vanish.
The cases in Eqs.~7! and ~8! are special. In these case

the radiative part of the solution~the parts without 1/r fac-
tors! and the nonradiative parts are simply related. The n
radiative part is missing for Eq.~7!, and for Eq. ~8! the
nonradiative part is a simple time integral over the radiat
part. This simplicity is related to Huygens’ principle. Note
particular that in Eq.~7! or ~8! if g50 and if f has compact
support, then the solution will be nonzero only for a fini
time, and hence cannot have a power-law tail as a gen
feature. The nonsimple non-Huygens solution for proble
in which tailsare generic will not, therefore, have an exa
boundary condition that can be expressed as a finite num
of differentiations as in Eq.~9!. Exact boundary conditions
canbe imposed, but these are necessarily nonlocal and c
plicated@20#, are typically not used in numerical evolution

II. EVOLUTIONS WITH APPROXIMATE BOUNDARY
CONDITIONS

We now directly investigate the late-time behavior of s
lutions with approximate outgoing boundary condition of E
~6!. The monopole,50 case is studied so that the predict
slowly-falling 1/t3 tails stay well above the roundoff noise
The starting field is a purely outgoing pulse defined on
ingoing null rayt1r * 50. On this ray, in terms of retarde
time u[t2r * , the form of c is specified to bec5@u(u
28M )/16M2#8, for 0,u,8M , and c50 for u,0 or u
.8M . The initial data att50 then is approximately an out
going pulse~satisfyingc ,r* 52c ,t) confined betweenr * 5
28M and r * 50, centered atr * 524M with a peak value
c51 there. The left boundary for all,50 computations is at
r * 52500M , where the sommerfeld conditionc ,r* 5c ,t is
imposed. The right boundary is placed at different locatio
r bc* , and the conditionc ,r* 52c ,t is imposed.

Figure 2 shows the time profile ofc developing from the
initial pulse. The value ofc at the fixed positionr * 50 is
shown as a function of time for outgoing boundary locatio
r bc* 5500M ~solid curve! and at r bc* 5200M ~dot-dashed
curve!. Since the results are shown only up tot51000M , the
field at r * 50, shown by the solid curve, has not yet be
influenced by the interaction of the boundaries at6500M
with the evolution of the initial pulse fromr * 50. The solid
curve then shows the ‘‘boundaryless’’ behavior of the fie
evolving completely within the domain of dependence of t

n
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initial data. That field goes through quasinormal ringing
to around t5150M , then around t5300M becomes a
power-law tail. Since the plot is a semilog plot, not a log-l
plot, the tail is not a straight line, and a constant/t3 curve is
provided to illustrate the tail nature of the solid curve. T
dot-dashed curve for ther bc* 5200M outer boundary is iden
tical to the solid curve up tot5400M . In particular, fromt
'300M to t5400M the field starts to take the form of
power-law tail, but att5400M waves reflected from the
r bc* 5200M boundary arrive atr * 50 and a new oscillatory
behavior ensues due to the influence of the boundary.

A complementary viewpoint on the boundary influence
given in Fig. 3, in which spatial profiles of evolved fields a
shown at the moment of timet5500M . As in Fig. 2, the
solid curve corresponds to an outer boundary atr *

FIG. 2. The scalar monopolec evolving from an initially out-
going pulse nearr * 50. The fieldc is plotted as a function of time
at r * 50 for two different values ofr bc* , at 500M and 200M . The
two curves are identical up to timet5400M . A curve proportional
to 1/t3 is included for comparison.

FIG. 3. Spatial profile of the scalar monopolec evolving from
an initially outgoing pulse. Herec is plotted att5500M for values
of r bc* at 500M and 200M . The curves are identical forr *
<2100M where the field has not yet been influenced by reflecti
of the initial pulse off the 200M boundary.
04403
5500M , and the dot-dashed curve to an outer boundary
r * 5200M . The solid curve indicates that att5500M the
unit-height pulse has reached the outer boundary. In the
sence of scattering this would be the only feature of the p
but due to scattering there are quasinormal bumps cre
betweenr * '370M and 500M . Waves scattered inward als
create quasinormal bumps betweenr * '2300M and
2500M . From r * '2300M to '370M the solid curve
shows the spatial profile of the tail behavior. The dot-dash
curve shows that reflections of the initial pulse off ther *
5200M boundary have reachedr * 52100M and have
‘‘contaminated’’ the spatial profile fromr * 52100M to
200M . The spatial profile fromr * 52100M to 200M shows
spatial oscillations similar to the temporal oscillations th
appear in Fig. 2.

III. BOUNDARY-INDUCED QUASINORMAL RINGING

The nature of the boundary-induced oscillations is ma
clearer in Fig. 4, which shows the time profiles for out
boundaries at 100M , 50M , 25M . ~For larger values ofr bc*
similar oscillations develop at later times.! The late-time re-
sults for the 50M and 25M profiles indicates a constan
period oscillation, and the straight-line envelope of the os
lations in the semilog plot indicates an exponential dampi
The natural interpretation is that these damped oscillati
are a new form of quasinormal ringing. The ‘‘old’’ form i
the familiar quasinormal ringing of a black hole@21–23#,
like that in Fig. 2 for t/M less than;150. This is a real
physical phenomenon associated with the black hole sp
time. In Fig. 4 we see oscillations that are not physical in t
sense, but are numerical artifacts, the strongly damped o
lations of a leaky cavity created by the outer boundary a
the curvature potentialV near its peak atr * 50. Some evi-
dence for this is the dependence of the period of the osc
tions on r bc* . The longer cavity of the 50M -boundary case
creates longer oscillation periods than the cavity of
25M -boundary. The less-clearly defined oscillations of t

s

FIG. 4. Evolution of thec monopole for Sommerfeld outgoing
conditions on close boundaries. The time profiles are for an in
outgoing pulse nearr * 50. Results are shown for outer boundari
at locationsr * 5100M , 50M , and 25M .
8-3
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100M have yet longer periods.
The leaky-cavity interpretation is supported by the plot

Fig. 5 showing the periodT for a full oscillation ~the width
of a pair of ‘‘bumps’’ in Fig. 4! of the late time features, as
function of r bc* , the location of the outer boundary. The u
certainty in the period is around 2%, both due to truncat
error in the evolution ofc, and due to the extraction ofT
from the late time results. Forr bc* larger than;100M the
period quite accurately follows the linear relationT/M5
23012.9(r bc* /M ), confirming the view that these late tim
oscillations are resonances of a cavity created by the o
boundary. Forr bc* less than;100M it is not surprising that
the details near the peak of the curvature potentialV would
complicate the relationship; for large values ofr bc* the details
of the curvature potential become unimportant. Whatis at
first surprising in the linear relationship is the coefficient 2
This means that the number of half-wavelengths inside
‘‘cavity’’ is not an integer; one would naively expect th
periodT to be equal to the cavity length, or an integer m
tiple of half the cavity length. But our naive expectations a
based on the simple boundary condition that the field or
normal derivative vanish. In our artificial cavity the outgoin
boundary conditions does neither. For a constant-freque
oscillation the outgoing boundary condition, in effect, im
poses a relationship between the field and its normal der
tive. Computations with simple toy models have confirm
that with such boundary conditions a resonance of the ca
will not contain an integer number of half wavelengths.

The leaky-cavity viewpoint on the outer boundary su
gests a way to quantify the effectiveness of the outer bou
ary condition. The more effective the outer boundary con
tion is, the more quickly the cavity modes should die out
we characterize the effective reflectivity of the outer boun
ary asR, and letN represent the number of reflections fro
the outer boundary, then the amplitude should fall off asRN.
We can takeN to be the timet divided by some measure o
the time for a reflection. For generality we will take this to
k1T, werek1 is some constant, andT is the period for an

FIG. 5. The periodT for a full oscillation ~two ‘‘bumps’’! as a
function of the locationr bc* of the outer boundary. The straight lin
T/M523012.9(r bc* /M ) is the least-squares fit to the results f
r bc* 5100M and larger.
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oscillation. The cavity oscillations should then die off
Rt/(k1T), or as exp(2t/t), where the damping timet is
2Tk1 /ln(R). The outgoing boundary condition is expecte
to improve asr bc* increases@24#, so it is interesting to make
the ansatz R5k2M /r bc* . This model predicts t/T
5k1 /@ log(rbc* /M )2 log(k2)#. Figure 6 showst/T for a range
of outer boundary locationsr bc* ; the uncertainty here, as in
Fig. 5, is no worse than 2% at anyr bc* . The large-r bc* results
in Fig. 6 do show a gradual decrease oft/T with increasing
r bc* , as expected. Our heuristic model fort is fit to those
results by eye, and is plotted in Fig. 6. That fit correspond
reflectivity 4.8M /r bc* , or ;5% for a boundary at 100M . The
plot of the heuristic model gives an appearance of reason
agreement except for small values ofr bc* , but with two ad-
justable parameters in the fit, this agreement can only be
to be weakly suggestive.

IV. SUMMARY AND DISCUSSION

We have shown that finite-radius boundary conditio
prevent the formation of power-law tails of perturbations
black hole spacetimes. In place of a tail, the latest-time f
ture of a computation will be a new form of quasinorm
oscillation. Unlike black hole oscillations, these oscillatio
are not physical phenomena; they are numerical artifacts
troduced by the imperfect outgoing condition at the ou
boundary.

In numerical relativity, these oscillation will probably no
be a serious practical difficulty. The goal of present nume
cal relativity work is a better understanding of strong fie
nonlinear dynamics. Numerical codes in the foreseeable
ture will not be able to run long enough for the bounda
induced oscillations to appear, nor are they likely to be
curate enough to deal with such a weak field phenomen

These limitations of running time and accuracy do n
apply when the Lazarus@25# method is used in a problem
involving the formation of a final black hole. That metho
uses the solution computed by a fully nonlinear numeri

FIG. 6. The time constantt for the envelope of the decayin
oscillations, divided byT, the period of the oscillations, as a func
tion of the locationr bc* of the outer boundary. The thick solid curv
shows a heuristic model fort.
8-4
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RADIATION TAILS AND BOUNDARY CONDITIONS FOR . . . PHYSICAL REVIEW D70, 044038 ~2004!
evolution code as initial data for further evolution by bla
hole perturbation theory. The nonlinear numerical evolut
would, of necessity, use timelike boundaries, but the num
cal cavity oscillations would not develop in the limited tim
for which the evolutions run. In principle, the subseque
Lazarus evolution could be used without boundary con
tions, i.e., with evolution only within the domain of depe
dence of the initial data inherited from the fully nonline
numerical code. Such boundaryless Lazarus evoluti
would exhibit power-law tails, but the tails would be strong
affected by boundary effects contained in the initial data
herited from the nonlinear evolution. In practice, Lazar
evolutions are not boundaryless. Rather, to reduce mem
requirements, timelike boundary conditions are used in
Lazarus perturbation evolutions. These evolutions sho
04403
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contain boundary-induced artifacts of the type we have d
cussed above. But these artifacts would be miniscule, an
no concern for most applications of black hole evolutio
with or without Lazarus.
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