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We present two families of first-order in time and second-order in space formulations of the Einstein
equations(variants of the Arnowitt-Deser-Misner formulatipmhat admit a complete set of characteristic
variables and a conserved energy that can be expressed in terms of the characteristic variables. The associated
constraint system is also symmetric hyperbolic in this sense, and all characteristic speeds are physical. We
propose a family of constraint-preserving boundary conditions that is applicable if the boundary is smooth with
tangential shift. We conjecture that the resulting initial-boundary value problem is well-posed.
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[. INTRODUCTION and so the latter are likely to represent an unstable equilib-
rium. Evolution schemes which replace between one and
Current numerical relativity codes designed to simulatefour of the evolution equations with constraint equations
the inspiral and merger of a black hole binary are limited by(constrained evolutiondo not fundamentally address this
instabilities. These are now believed to be usually instabiliProblem, as they are still only solving six equations. Alter-
ties of the continuum equations, rather than of the numericdative approaches to reducing the growth of the constraints
method. Intuitively one feels that the initial value problem OF €ven making them decay are suggestefRi@].
for the Einstein equations is We”_posed in a geometrica| In diSCUSSing instab”ities, it is important to dIStIﬂgUISh
sense. For instance, in fully harmonic spacetime coordinatedetween evolution systems which are well-posed and evolu-
the Einstein equations reduce to ten quasilinear wave equfon systems which are ill-posed. In the former, the growth of
tions[1]. However, in the usual-81 split one uses only six any linear perturbationsu(x,t) of a background solution
of the ten Einstein equations for evolution, while the otherUo(X,t) can be bounded as
four must be imposed as constraints on the initial data. An
evolution in which the constraints are not obeyed is not a
solution of the Einstein equations. [[u(-,v)]|<f(D)]|éu(-,0)], 1)
Consider perturbing a solution of the evolution equations
around a solution of the full Einstein equations. We call a
linear perturbation physical if it obeys the constraints ini-where f(t) depends orugy but is independent obu(x,0).
tially and therefore at all times, and if it cannot be removedThis means that the solutiom,+ éu depends continuously
by a change of coordinates. A perturbation is called puren its initial data. By contrast, in an ill-posed system no such
gauge if it obeys the constraint but can be removed by dound f(t) exists. Rather, the growth rate increases un-
coordinate transformation. A perturbation is called unphysitboundedly with the highest spatial frequency present in
cal if it violates the constraints. All of these perturbations candu(x,0). These are instabilities in a rather stronger sense.
be instabilities in thgweak sense that they grow with re- They can be gauge, but typically are constraint-violating.
spect to the background solution. An example for a physical A numerical simulation inherits all the instabilities al-
instability is one that pushes a marginally stable star over theeady present in the continuum. A good numerical scheme
edge of gravitational collapse. An example of a gauge instadoes not add any others, but can never fix continuum insta-
bility is given by the evolution of Minkowski spacetime with bilities. A crucial point is that in a numerical evolution, the
constant lapse, with an initial slice that is not quite flat: thehighest spatial frequency present is effectively always the
time slices become singular in a finite time. Some, perhapgrid frequency, because it is generated by finite differencing
all, gauge instabilities can be avoided by a suitable choice orror even if the initial data are smooth.
the lapse and shift adapted to the solution. As one increases the resolution in numerical solutions of
The problem in numerical solutions are unphysical insta-an ill-posed system, instabilities grow more rapidly because
bilities. These will always be triggered in a numerical simu-the finer grid can represent a higher spatial frequency. If
lation by finite differencing or round-off error. Furthermore, these instabilities are constraint-violating, they will at higher
the solution space of the evolution equations is infinitelyresolution start at a lower amplitude, but the faster growth
bigger than the solution space of the full Einstein equationstate eventually overcomes this. Therefore they do not con-
verge away. At high enough resolution and late enough time
ill-posedness will become apparent as a breakdown of con-
*Email address: C. Gundlach@maths.soton.ac.uk vergence for the entire solution. One can detect these modes
"Email address: jmm@imaff.cfmac.csic.es even before that by looking at a Fourier transform in space
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[5]. As these non-convergent instabilities are features of théons, namely the Baumgarte-Shapiro-Shibata-Nakamura

continuum system they cannot be suppressed by any consiBSSN system[17,18, which is already widely used in nu-

tent numerical dissipation. merical relativity[19—22, and a simpler related system sug-
By contrast, the numerical solution of a well-posedgested by Nagy, Ortiz and ReullOR) [4].

scheme will in general still be swamped by constraint- \We know of two previous partial results concerning the

violating instabilities at late time, but now these start with hyperbolicity of a second-order, ADM-like version of the

smaller amplitude and grow at the same rate as one increasE§)stein equations. 23] it was shown that a first-order
resolution. They therefore converge away. reduction of the BSSN system is strongly hyperbolic, and a

In practice, depending on the system, physical solutionvariant with some superluminal characteristic speeds is sym-

runtime and resolution, either convergent or non-convergerf'€tfic hyperbolic. It was then noted that the auxiliary con-
instabilities can be the dominant source of error. IpStraints associated with the introduction of the first-order

3-dimensional simulations in particular, the available resoluuXiliary variables form a closed subsystem of the constraint
tion is quite limited, and the lack of convergence may notSYStem. This means that if the auxiliary constraints are
become apparent. The Arnowitt-Deser-Misié&DM) for- obeyed initially, and if suitable boundary conditions are im-
mulation of the Einstein equations has for many years beeR0S€d; they are obeyed during the evolution, even if the other
the main formulation used in 3-dimensional simulations.constraints are not obeyed. In this sense, the introduction of
even though for a fixed lapse and shift it is ill-pogecakly the au?<|I|ary variables has not enlarged the solution system.
hyperbolio [4]. More recently a systematic comparison of !N [4] it was shown that the NOR syste(im second-order
high-resolution, long-time evolutions for well-posed and ill- form), .and Its gssomated constraint system are strorjgly hy-
posed(weakly hyperbolig systemd5] has demonstrated that perbollc_, by using a pseudo-differential redug:tlon to first or-
the breakdown of convergence is really inevitable, and had€r Which also does not enlarge the solution space. This
revived interest in well-posed formulations of the EinsteinMethod relies in an essential way on Fourier transforms, and
equations. S0 cannot be used to construct a locally _conseryed energy.
This interest has focused on first-order reductions of the, H€re we go beyond these two papers in showing symmet-
Einstein equations, because for general first order evolutiolC NyPerbolicity for the second order BSSN and NOR sys-
systems useful criteria for well-posedness are knpéinA ~ €ms and their associated constraint systems, without any
sufficient and necessary criterion for the initial value prob-réduction to first order. We do this by defining characteristic
lem (with no boundaries, or periodic boundaji¢s be well- variables, finding a conserved positive definite covariant en-

posed is strong hyperbolicity: this roughly means that ther9Y; and expressing it in terms of the characteristic vari-
system has a complete set of characteristic variables witAP/€S: We have chosen BSSN and NOR because BSSN s
real speeds. Symmetric hyperbolicity is another criterionPPular with numerical relativists today, whereas NOR
which implies strong hyperbolicity and can be used to obtairP©eMS @ simpler version of BSSN that shares all its advan-
a well-posed initial-boundary value problem: roughly speak-29es. _ _ ,

ing it means that the principal part of the system admits a The paper is organized as fpllows. In Sec. Il we introduce
conserved energy. Therefore a number of strongly or sym@U" method and general notation. In Sec. lll we prove sym-
metric hyperbolic first-order reductions of the ADM equa- metric hyperbolicity for the BSSN evolution equations and

tions have been suggested over the years to assure well€ @ssociated constraint system, and in Sec. IV we do the
posedness, see for exampl@—10. In a symmetric S&Me for the NOR system. We take a first look at the initial

hyperbolic formulation of the Einstein equations, there is a?°undary problem for both systems in Sec. V. We propose a

chance of dealing with the constraints consistently in thd@Mmily of boundary conditions for a smooth boundary where

initial-boundary value problem, sé&1-14. the shlft is 'Fangen_tlal to the'boundary. We show that there are
However, first order reductions introduce new, auxiliary, "0 arbitrarily rapidly growing modes—this amounts to a

variables and constraints, and so further increase the solutictiond indication of well-posedness but is short of a proof.

space. One would expect this to give rise to additiona>€Cction VI contains our conclusions.

constraint-violating instabilities of the convergent type, even

if WeII-po_sedness rules out the non-convergent type. Thefe is Il. METHOD AND NOTATION
some evidence that this is a real problem, which requires
much more fine-tuning of the free parametlrs]. This may Here we briefly summarize the relevant notation and

even outweigh the benefits of hyperbolicity. It would there-methods of16]. We need to split 3-tensors into their longi-
fore seem preferable to find a system that is symmetric hytudinal and transversal parts with respect to a given direction
perbolic while enlarging the solution space as little as posh;. Assume a 3-metric, say;; , which will be used to raise
sible, and in particular this should be a second-order systenand lower indices, and let' be a unit vector with respect to

In a companion papdi6] we have proposed a definition this metric. Then
of symmetric hyperbolicity for second-order systems. This
can be used to obtain a well-posed initial-boundary value qi=6—nni @)
problem in the same way as in first-order systems, but with- L
out enlarging the solution space. Here we show symmetric
hyperbolicity for two formulations of the Einstein equations is the projector into the space transversalno A tensor
that are variants of the Arnowitt-Deser-Misn&DM) equa-  index that has been projected will be denoted by the index
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A,B, ... instead ofi,j, .... Anindex n denotes a tensor e=I1°+0;¢d' b, (11

index contracted with; or n'. A self-explanatory example of i i

this notation is F'=2I1d'¢. (12)
P o;=Pndn+ P"ds. (3)  Interms of characteristic variables they are

A pair qq of indices indicates a contraction witfy , and for
tensors of rank 2 or higher, we use the convention that they
are totally tracefree on their projected indices.

Now consider a system of evolution equations that are R 5
second order in space and first order in time. Linearize F :E(U+_U—)- (14)
around a solution, and approximate the background-
dependent coefficients of the linearized system as constamherefore
(frozen. Retain only the principal part of the equations. We
call the resulting linear system with constant coefficients dE_J 1 U2 —U?)dsS 1
strongly hyperbolic if for any given direction' we can find dat &QE( +=UD) (19
a complete set of characteristic variabléghat obey

1
ezz(ui+u%)+uAuA, (13

whereU .. are now the characteristic variables normal to the
boundaryd).
The maximally dissipative boundary condition

d:U=\d,U +transversal derivatives (4

for real constanta. Here— \ is the propagation speed in the

n; direction. TheU are constructed fron{u}C{u,d;u}, U,=«U_+f (16)

where we includej;u of those variables that have a second

spatial derivative in the evolution equation. The characteriswith |k|<1 andf a given function then guarantees that the

tic variables are complete if they spén}. growth of E is bounded byf and thatE does not grow for
This definition has two important consequences: transverf=Q.

sal derivativesi,u are automatically zero speed variables, To make the energy positive definite dnitself rather than

and arbitrary multiples of transversal derivativeg can be  just g, ¢, one can add a term?¢? to €, with >0 constant.

added to any characteristic variable. Below we shall find thepjith a maximally dissipative boundary condition afig 0,

characteristic variabled in two steps: we first find a set of E js then bounded b§(t) <e*E(0).

non-zero speed variablés’ that do not contain any trans-  Finally, allow the linearized system to have variable co-

versal derivatives, then add transversal derivatives to thergfficients(from the non-constant background solutiemd a

until we can express the energy and flux in terms of thenon-principal part. For a finite time interval, the energy is

modified characteristic variables. then still bounded a&(t)<Ke®' for some constantk and
We call the system symmetric hyperbolic if it admits an 4, and the linearized initial-boundary value problem remains
energy well-posed. Therefore it is sufficient to establish well-
posedness to examine the principal part in the frozen coeffi-
E:f edV, (5)  cient approximation. On an intuitive level, this is so because
Q the purpose of well-posedness is to rule out instabilities of

) ) . . ) the non-convergent type, which have a growth rate that
wheree is covariant, positive definite, and conserved in thegrOWS with spatial frequency. Well-posedness of the linear-
sense that ized problem is a necessary condition for well-posedness of
6) the full non-linear(quasilineay problem.

dye=d;F'
for some fluxF', andif we can express andF" in terms of llIl. THE BSSN FORMULATION OF THE EINSTEIN
characteristic variables. EQUATIONS
The simplest example is the wave equation in the form A. Field equations
=11, (7) The BSSN formulation of the Einstein equatigmgthout
_ matte) is obtained from the ADM form of the Einstein equa-
oIl =0,0'¢, (8)  tions[24],
with u=(¢,I1) and u=(4d;¢,I1). The characteristic vari- dvyij=Lpvij— 20K, 17)

ables in a given direction; are |
&tKij=£ﬁKij—DiDja+ a(Rij—ZK”K J+KK|]),

U.=ll*d,¢, 9 (18
Upa=dad, (10) H=R-K;;K"+K?=0, (19
with speeds\ =(=*1,0). The covariant energy and flux are MiEDjKji— D;K=0, (20)
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by introducing the new variables - . 1. . ~ =k
~ s t‘?oAijze é _E')’mn'}’ij,mn_ 2(1+30)¢,ij+a7k(ir )
yij=(dety)” "y, (21
i ™ ¢ I
=21, (22) A=Y mia| ~5e ™Y Yamn,
1 (33

¢=15Indety, (23 B o 4

. dol '=2(b— 1)y 1Y A | — 307K, (34)
A”E(det’}/)l/?’(K”_—’y”K> (24) L

3 where = means equal up to non-principal terms, and TF

_ _ o - indicates the tracefree part. We have added the constraints
In th_e re.malndgri‘of this sec_tlgn, indices are move_d with aGy), 2bM; and —(0/6)6_4¢;’ij;’k'D,k| to the field equa-
and its inversey'. Generalizing the BSSN equations, we tions with free coefficients, b and c. Adding these terms
densitize the lapse with the determinant of the metric as  changes the evolution off the constraint surface which can
affect the hyperbolicity of the system.
a=e*?Q (25) inci iltoni
The principal part of the Hamiltonian and momentum

: . . constraints is
whereo is a constant and no®), rather thana, is a given

function of the coordinates. The shifi' is considered a o c’
given function of the coordinates. The definition of the H=Ho+e *%|a’'G - ?D,n}, (35
gives rise to the differential constraint
Gi=; T =7 «=0. (26) Ho=e 15 =841y (39
_ = . . . - o~y 2
The definition ofA;; gives rise to the algebraic constraint MizAij,k')’Jk_ §K,i ) (37)
T=%"A;=0, (27)

Herea' andc’ parametrize different ways of writing the
Hamiltonian constraint that are found in the literature. We
shall work explicitly only withH, and soa’ andc’ will not
appear below. There are many versions of the BSSN equa-
D=In dety=0. 28) tions vyhigh vary in small detai[s in both the _principal and
non-principal parts. For comparison, the principal part of the

The BSSN equations are first order in time, second ordeYersion given in[25] is characterized by =0 (the lapse is
in space, and quasilinear. The principal part of the evolutiof’ot densitizeflanda=b=a’=c'=1, ¢=0. _
equations forﬂij , K andT" is given by the highest spatial The constraints are compatible with the evolution equa-

L 2 o~ = . i tions, which means that they form a closed evolution system.
derivatives, ¢°¢,9%y,dA,dK,dT"). The evolution equations |; jg

for 5 and ¢ do not contain any of these highest derivatives.
We define their principal part to be given by the next highest doHo=—2e~4%5i M, (39
derivatives, that isd¢,dy,A,K,T'). Note that with this defi-

and from the definition oﬁ/ij we have the algebraic con-
straint

nition of the principal part the equations are still quasilinear, 9o M. EH g E~”<G
because the evolution equation fgy is linear inKj; . Note oMi=g Mo "€ 27 Pk
also that*s, is part of the principal part of the equations L
i i ivati a.. —C~.
while 9B terms are not. We define the derivative operator n g)’Jij,ikJr - 'kaD,ijk)- (39)
do=a" (3~ Bd). (29
. I . ) 30Gi=2bM;, 40
It is the derivative along the unit vector field normal to the o ! 40
slices of constant time. The principal part of the evolution c o
equations is then ApT=— Ee*4¢>7,u D, (42)
1
070’;,” __ Z“Aij (31) B. Strong hyperbolicity of the main system
. For the purpose of decomposing 3-tensors and tensor
doK = —60e*4¢y”¢,” , (32 equations, we defing;, n' andq;; with respect to the con-
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formal metric}ij . In the frozen coefficients approximation, b T = 4b K+2(b—1)A 52
the undifferentiated 3-metricy; , »'! and¢) is to be treated T3 (b=1)Ann.
as a background quantity, whil; , T', K, ¥ x, ¢; and _ _
their derivatives are to be treated as dynamical variables, anff'® tWo algebraic constrain®s=0 andD =0 are often en-
decomposed with respect . forced in numerical simulations after each time step. We can
We now prove strong hyperbolicity of the main and con-mimic enforcingT=0 in our analysis by settin@n,+Aqq
straint systems by constructing a complete set of character=0 and dropping one of the two variables from the system.
istic variablesU. The quantities Similarly, we can mimic enforcind =0 by settingd,, ¥,
+dnvqq=0 and dropping one of the two variables from the
system. Both reductions affect the hyperbolicity of the sys-
tem.
(a) Algebraic constraints not enforcethe scalar block is
diagonalizable for

u=(d;¢,0 vj . Aij 1" K), (43
obey the pseudo-first order system

du=(aP'+ g g;u (44)
or equivalently c>0, »>0, 0>0, c#7, (53

with eigenvalues

[This is not a genuine first-order system because in expres- A={0.x e, = \/;’i \/;}’ (54)
sions liked;(d;¢) that appear on its right-hand side we allow \; hare we have defined the shorthand

ourselves to commute partial derivatives, rather than treating

d;¢ as a 1-form variable;, as we would in a genuine re- dab—1

duction to first ordel. As discussed i16], transversal de- =3 - (59
rivatives are automatically zero speed characteristic vari-

ables. Here we have,dy¢= Pnﬁ/@ij:O. We shall write  (Allowing the system to be strongly hyperbolic without en-
the eigenvalues dP, ashe™ 2. With this definition\ mea-  forcing the algebraic constraints is the reason why we have
sures the propagation speed in units of the speed of lighiniroduced thec term, which potentially givesiyA;; a non-
measured with respect to thiy observers. In particulak  7¢rq trace.

== 1 variables propagate along the light cone. In the fol- () Trace constraint enforcetf we enforceT=0 but not

lowing we always use “speed” in this sense. D=0 this is consistent with the evolution equations only for
In tensor components with respectrip, the rows of the  c—q_ The scalar block is diagonalizable for

scalar block of the matrixP, acting on the variables

dou=P'5;u. (45)

(90230 Ynn+9nYqq K Ann Aqq. 1 n) are given by c=0, >0, ¢>0, (56)
1 with
P dnd=— EK’ (46)
A={0,0+ 75, = o} (57)
Pndn¥nn=~2Ann, (47) It would be inconsistent to enford2=0 but notT=0.

(c) Both algebraic constraints enforcéfiwe enforce both

PndnYqq= — 2Aqq. (48)  algebraic constraintd=0 andT=0 the scalar block is di-
agonalizable for
P.K=—60e *%d,¢, (49
7»>0, o>0. (58)
< (4 1 .
PrAnn=€ "% —| 3 +40 |dnd+ dnYnn (Note thatc becomes irrelevant in this cas&he character-
istic variables that do not contain any transversal derivatives
2a ~ l1-c -~ ~ are:
+?(Fn_an')’nn)'f'T(an')’nn"'&n')’qq) ) B ~
(50 Uo=(b—1)dpynntTn—8bd,¢, (59
~ Wl [ 1 U\ =(1—4a)dpyn+4al ,—8dnd
PA=e % |=+40|d,6— =d,y B
n\qq 3 n g “n7nn te2¢\/;(6Ann—4K), (60)
2a . ~ 1+2c . ~
- ?(Fn_anYnn)_ T(an'ynn"_&n')’qq) ) V;E6\/;o"nd)1 e’?K, (62)

(51 with speeds
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A=(0,=+7n,=* . 62 c _
(0%, = o) 62 PadnT=—5e 452D, (76)
The vector block ofP,, is
~ ~ 2 = —
Pndnyan= —2Aan, (63) PadaD 20nT. 70
a If we define
PrAan=e ** (T A= dnyan), 64
noAn 2= nvan) (64 C.=4ad,G,*676**M,+e**H, (79)
P.Ia=2(b—1)Aa,, (65)  the characteristic variables are
as well as the triviaP,dad=Pnda¥Ynn=Pnda¥qq=0. It is Co=e*’bHg+d,Gy, (79
diagonalizable foeb>0, with nontrivial characteristic vari-
ables Jea?D 5 2e2%5,T, (80)
Ua=(b—1)dpyaa+Ta, (66) , 2 c
(1-c) anD:TeZ%nT +|l1-—|C., (8D
La=—adnyantal ax2\abeA,,, (67) 7 7
with speeds\ = (0,+ \ab). The tensor block is with speeds\ = (0,= \/c, = /7). If we optionally impose the
trace constraint, the characteristic variables @feand C,
Pooryas=—2Aag, (68)  +daD with speedsh=(0,= /7). If we impose both the
trace and determinant constraints, we are left viihand
~ 1 - C'. with speeds\ = (0,+ .
PhAag=— e74¢_(9n7’AB ) (69 B P ( \/7]) i ion i
2 The vector sector of the constraint propagation is
as well as the trivialP,d,ys,=0. It is always diagonaliz- b M.—e-402 5
able, with nontrivial characteristic variables Ma=e€ "5 nCa, (82)
1 ~ ~ =
U;ABEE(?n'yABIez(bAABy (70) PrdnGa=20Ma, 83

as well asP,,0p,G,=P,daT=P,dpd,D=0. The nontrivial

with speeds\==*=1. We see that the vector and tensor sec-characteristic variables are
tors do not add any new conditions for strong hyperbolicity.

In summary, we have shown that the BSSN system with C/ a=ad,Ga*2abe?’M,, (84)
both algebraic constraints enforced continuously is strongly
hyperbolic if >0 and»>0. If neither algebraic constraint with speeds\ =+ \ab. The tensor sector is completely
is enforcedc>0 andc+ # are also required. On the other trivial, with P,dsGg=P,dadgT=0 (including the traces
hand, if only the trace constraint is enforcark=0 is re- The constraint system, in all three cases, is strongly hyper-
quired. (If both constraints are enforced,is irrelevant and  bolic as long as the main system is strongly hyperbolic.
can be set to zerpThe characteristic spectrum of the com-

plete system is D. Main system energy
A={0,+ Jo, * \/77,4_, Jab, + 1}. (72) We look for an energy derlsity of t~he Eecond—order Sys-
tem that is positive definite id;; , K, I';, y;; « and¢; and
C. Strong hyperbolicity of the constraint system obeys a conservation law. With the shorthagsy vy ;

=D ; andd;="%¥y; \, the most general quadratic form in

We construct characteristic variables for the constrain . .
hese variables is

system from the set

_ — 4PN 2 T2 2 2 i i
Uc=(HoM;,0,G;,d,T,0,;D). (72) €=Co PAjj“+cil“ et cadi“HcudiI +csti I
. L i 4py 2 Y2 . ik T &l
The scalar sector of the constraint propagation is +Cedit! + 78" K=+ Cayij k“+ Coij k¥ + Crol i
P Ho=— 26 %M, , 73) +C18* TK+Crop 2+ Crgdi ' +Cuati o'+ C10™ T2,
(85)
1 44 2a l1-c ,
PaMn=gHo*e "% Z-0nGnt —5= D |, 7% i1 the cross termy;; " and similar terms in the remainder
of the paper indices are raised only after differentiation. The
PndnGr=2bM,, (75 general ansatz for the fluk' contains 14 free coefficients.
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After some linear algebra it is possible to see that éhasd dper= (;i|:i2, (94)
F' together obey a conservation law only if

do€s=0;F5. 95

4ab=1+30, 86) o€ %9

[Condition (86) is required only for the conservation ef. ]

or equivalentlyn=o. o . The fluxes are given by
There are additional restrictions depending on whether or

not we enforce the algebraic constraints during evolution. If  F\ = 2Ali[aT,—a(b—1)d;—2(1+30) ¢ ]+ ¥ A
we work with non-vanishind and T then we needb=o ’

=1 andcy,(c—1)=0. On the other hand, if we enforce both X[2(1+ab—2a)yj k= ¥ik.], (96)
algebraic constraints the parameteand several of the co-
eﬁlglents ¢, become irrelevant, with no additional con- |:'2:4A1k(7,|m7mj’k_ Y Y™, (97)
straints on the parameters.

From now on, in order to simplify the equations, we en- |:i3: — 120K ¢l (98)
force both theT=0 andD=0 constraints in the remainder
of this section. The energy density in terms of characteristic variables is

The generic conserved energy depends on four free coef-

ficients, one of which is an overall factor. With the short- Co Co
e= 5 (Ul aptU%pg)+ 1 (USa+ U2y

hands
~ 1. 2a—ab—1. . . ~ CoC7 2 2 ZCO+3C7 2 2
eo=e*A; %+ ZY”YKZJFT)’”'WM —ad;(T" + m(Uﬁ' UD)+ —%—(Vi+Vo)
—8b¢'), (87) +quadratic in zero speed variables, (99
= and the flux is
e,=[I'i—8b¢;+(b—1)d;]?, (88)
~ o~ Co Co
62:di2_7ij,k7kl’], (89 ezd)Fn:E(UiAB_UZ—AB)"_ 4—\/%(U§—A_U2—A)
e;=e%K2+ 360'¢’i¢,i (90 CoCy 2cy+ 3¢y
(U2 -U?)+ ——
the energy density is 16\/3(200+ 3cy) 6
GZCOEO‘I‘ C161+[C3_(b_1)2C1]€2+ C763. (91) X \/;(Vi_vz—) (100)

The free parametersy, c;, c3 and c,; will be restricted T . . -
below by inequa"ties derived from the requirement thae terms in é’A’yij in order to writee in terms of characteristic

positive definite. variables. With the shorthands

This energy reduces to that given|[id3] for a first-order 5
reduction of BSSN with the change of notation-20, b z2,= 3= (b—1) C11 (101)
—m, }ij,k—>dkij and ¢ ;—d;/12, the restrictiora=1 to the Co

parameters of the evolution equations, fixing the overall

scale asxcy=1, and the further restrictions; = 1/(2b—2), 2;=1+3ab-4a+6z,, (102
c3=0 andc;=1/0=3/(4b—1) on the coefficients of the o

energy. The conditiori86) on ¢ reduces to a similar condi- Zz=a-ab-2z, (103
tion in [23]. The choice of Sarbacét al. can be interpreted 2,=2+3ab—5a+62, (104
as follows:c;=0 andc;=a/(2b—2) eliminated; from the ’

energy €3=c,=C,3=0); assuming those conditiona=1 z5=1+ab—2a+2z,, (105
is the only choice that eliminates the cross tep,y*".

Their choice forc, has no relevant effect. Note that the posi- Co

tivity condition on their choice ot, forcesb>1, and to- Zg= \/—— (106)
gether witha=1 this gives rise to a superluminal speed. By 2o (2Co+3¢7)

contrast, by retaining the contractiofsandd; in the ansatz o modified characteristic variables are

for the energy we shall be able to make all speeds physical.

The four terms in the energy are conserved separately: |y, —(1—4a)g,g,,+4al ,—8d,b= Joe?#(6A,,—4K)

do€o=0iFy, (92) —22,0%gan, (107)
do€,=0, (93) V. =60, pTe2?K—zU. , (108

044032-7
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U..=+2Jab&?A, +al,—ad +2.98 Note thatw, does not appear explicitly in E¢113 or Eq.
A Vabe Ayt al s—adigant 22 Gae (114, but it does appear in the definition of the characteristic
Z variables.
+ EaAgnn—SabaAd), (109

F. Symmetric hyperbolicity and causal speeds

With the conditiony= o that is required for conservation
of the main energy, the complete spectrum can be written
entirely in terms ofo:

— 267K 1 Z5
U.pg=+e"Apgt EangAB_ E(aAQBn"‘ dB9An

—0asd“dcn)- (110
V1+30
The expressions fdd, andU, are not given, but they also A=|0E Vo, t—0— 1. (117

include transversal derivatives. Note that becagser, U’
and V', are eigenvectors for the same eigenvalues, and wgtrong hyperbolicity requires>0 and the absence of super-

have used this to make the energy diagondlinandV-. . luminal speeds requires<1. Note that withc=ab=1 all
speeds are either 0 ar1.
E. Constraint system energy Now we impose positive definiteness of the energies, that

is, all eigenvalues of their respective matrices are strictly
positive. This means that the main energy vanishes if and
only if ;/ij and ¢ are constant and all other variables vanish,
and that the constraint energy vanishes if and onlg;ifis

The constraint energy is quadratic iy, M; andG; ;.
(We must usés,; ; rather thanG; so that all terms are of the
same order in derivativesThe most general conserved ex-

pression is N :
constant and the Hamiltonian and momentum constraints
By 2 Adan? 3aw; ) . vanish.(We are assuming that the two algebraic constraints
€c=Woe®’Hg+ 12w e**M{ + 5 (Gij) + WG G vanish because they are being continuously re-imppsed.
To see when the constraint energy is positive definite, we
Wn W , W+ (1+ab)w; —b?w . need to decompos®; ; as
+2——e"G/Hy+ — (G
1
(111) Gi,j:Sij+Aij+§')’iij,k (118
with arbitrary coefficientsv,, wy andw,. The correspond- WwhereS; is symmetric and tracefree ary; is antisymmet-
ing flux is ric. We obtain a sum of simple squares and a quadratic form
in the two variabledH, andG' ;.
F‘C=4w1(e4¢HOM‘+3an"Mj+aM‘Gi ) The constraint energy is positive definite, and all speeds

. o are causal, if and only if
+4bw,(G"'M;—M'G! ). (112
Wo>0, 0<w;<<3wpg,
In terms of characteristic variables, the constraint energy

and flux are Wo+ Wy w,b? Wo+ Wy
<ab=1, -—ab< ab— .
3 4wy 3w, 2w
A Wy 119
€= 5t (C_ACR+C.aCh)+ < (C2 +C2) (119
It is interesting to see howv, affects the possible range for
+ quadratic in zero speed variables, (113 ab.
The positivity of the main energy is more complicated.
3w w We must take into account that the partial tratesndd; of
1 1
92¢F2: (C+AC-A;_C—AC/DJr (Ci—CZ_), the three-index objecty;; , appear both explicitly and
2\/ab 6o Yij K

(114 implicitly in the energy. We therefore decompose it as

o - . ~ 1 ~ ~
\;vrk;ere the modified non-zero speed characteristic variables 7ij,k=§[(3d(i—t(i))’j)k+(2tk—dk)7ij]+fijk (120

aw, —bw, where f;;, is completely tracefree. We then obtain a qua-
C.=e*Hy=6e?*\JoM,+4ad,G,+ W—aAGA, dratic form int; andd;, plus cgff, +cof;jf'). To analyze
! (115 the positivity of the latter we decompogg in its 12 inde-
pendent frame components and analyze the corresponding
quadratic form by brute force. It turns out to be positive if
F XN (116  and only if cg>0 and —cg<<cg<2cg. Finally, assuming
3w, causal speeds, we obtain the positivity conditions

w,b
Cop=*2abe*M +ad,Gat ——

044032-8
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Co>0, ¢;>0, 2a’cy<(4ab—1)c,,

2a’c,— (4ab—1)c,
36¢,

Co c3—(b—1)%c,

1+2ab—4a

2 Cp<O0.

(121

The three sets of inequalities are compatible, and can be

solved sequentially, in this order: first choagg ¢, wg and
w; independently, thera and b, followed by c,. Finally
choosec; andw,. It is clear from this construction that the

solutions form a single connected set. For example, a pos-

sible solution withA=(0,=1) is

a=b=0=1, (122

C0:C7:1, 01:2, 0320, (123)
1

W0:1, WJ_:E, W2:0. (124)

IV. THE NOR FORMULATION OF THE EINSTEIN
EQUATIONS

A. Field equations

In this section, all indices are moved with}; and its
inverse y''. The NOR system is obtained from the ADM
system with densitized lapse by introducing the variables

P
fiEVij'J_E)"ijk,i, (129
wherep is a constant parameter. [A] the choicep=1 is

made.p=2/3 makesf;="y;T!. The definition off; gives
rise to the constraint

op
Gi=fi—y;'+ E)’Jk%‘k,izo- (126

As in the BSSN system, we parameterise the use of this
constraint witha and the use of the momentum constraint

with b by addingaG; j) and 2M; to the evolution equa-
tions forK;; andf;. Following[4], we also add y;;H to the
evolution equation foK;; with free parametec. The princi-
pal part of the evolution equations is

-2K (127

doYij= ij

K..:E foodf )=y K(1— kg, K
doKij Z[a( i ],I) Yij .k ( a)(YkI,J ')’kj,l)

+(ap—1-0) Yy +cyiH, (128
dofi=2(b—1)K;;'+(p—2b)K ;, (129

where
H=H,+a'G}, (130

PHYSICAL REVIEW D 70, 044032 (2004

Ho=vij.,' 1= ¥ vij %, (139
M;i=K;; 1=K ;. (132
In[4], p=a=a’=1.
The constraints system is
doHo=—2M;', (133
1 a i (2 , J.

&OMiz_ §+20 HO,i+§Gi,j’ - §+20a Gj,i’ y

(134

B. Strong hyperbolicity
This proceeds exactly as in the BSSN system, with
pseudo-first order variables

u=(d;vx.Kij .f) (136

and

uc=1{Ho,M;,d,G;} (137
for the constraint system. We define, n' and q;; with re-
spect toy;;. (In [4], a flat auxiliary metric is introduced
instead)

The scalar sector of the main system is diagonalizable for
x>0, 0>0 andy # o, with

A={0= x,= o}, (138
with the shorthand
x=1+4c(1l—-a’'b). (139

If »=x we can diagonalize the scalar sector also for
=o. [Note that while we use the same shorthandefined
by Eq.(55) as in the BSSN system/7 is not a speed in the
NOR system,

The vector sector is diagonalizable fab>0 with

A={0,+ Jab},

and the tensor sector is always diagonalizable, with
==*1. For general values ofp(o,a,b,c,a’) the character-
istic variables are too long to give here.

The scalar sector of the constraint system is diagonaliz-
able for x>0 with characteristic variables

(140

Co=0d,Gn+bHy, (141)

C.=(1+4c)Ho+4ca’ 9,6, 72xM,, (142

with speeds\ ={0,+ &}, and the vector sector is diagonal-
izable forab>0 with
C.a=ad,Ga*2\/abM,, (143

with speeds\ ={+ \/ab}.

044032-9
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The union of conditions for both the main system and the 2+2ab—2ap+o

constraint system to be strongly hyperbolic, and for all e3=K?+ 7 tf+(a—1dit'—atf’
speeds to be physicalN|<1), is (152
0<o=<1, O<abs<l, O<x<l, (149 (the indices ony;;  are raised only after differentiatidrthe

. . . energy can be written as
and eithery# o, or y=0= 5. The union of all speeds is 9y

620060+C161+[03_(b_1)201]62+C7E3. (153)

A={0,£1,%ab,* Jo, = \x}. (145)

We see that we can make all of these speeds either zero -(I)—rhe fluxis

one by choosing Fl=coF+[cs— (b= 1%, IFy+ciFs, (154
ab=o=y=1=c(1-a'b)=0, (146 with

that is, eithert=0 ora’=a. From now on we restrict our- i ij il e jk
; , = i—(b—1)d;—(b— i+ +
selves to the choice=0. This makey=1, and removea’ Fo=2aKllf; = (b= 1)d;=(b=p/2tJ+ y'KI[2(1+ab

from the system. We keegq b, p ando free, with the single —2a) )ik~ Yiki ], (155
restriction thaio=1 requiresab=1. The value o is irrel- ' '
evant for strong hyperbolicity. Our results on strong hyper- F‘2=47”Kjk(y,j = 79, (156)

bolicity of the NOR system confirm and generalize those of
[4], which were obtained using a pseudo-differential reduc- i _ i D SR _ i1 _
tion to first order. Fa K[Z_éf (@p—2-o)t+2(1-a)d]+2(1-ab)
X KUt (157
C. Main system energy
(As in BSSN, €; has no flux. The flux in terms of charac-

The most general ansatz for the energy density qua- teristic variables is

dratic in y;; x, Kj; and f;. As well as contracting the free
indices on pairs of these, we can form the contractikins

i . C C CotC
di=y] andt;= "y first: F”=§(U3AB—U%AB)+4— r;—b(UiA_UZ—A)+ ;\/—7
E:COKi'2+lei2+C2ti2+C3di2+C4difl+C5tif|+C5ditl
: Co Cot+3C
Lo 0 *~0 7
+C7K2+C8’yij’k2+C9‘yij’k‘ylk']. (147) X(Vi—Vz_)-i-E CO+C7 (Ui_uz_) (158)

The most general form that is conserved depends on four fr

. ®fhe characteristic variables including transversal derivatives
parameterg,, c;, C3 andc,; obeying

are
2(ab—1)c;=(o—2ab+1)cy (148 U= —0n¥qq— 222" yan* 2Kqq, (159
for arbitrary (p,o,a,b). The coefficientc, must be strictly 1
positive and therefore there are two possibilities: eithbr V.=af * oK+ ap— o~ oy
=1 (which now impliesc=1) and therc, andc; are inde- - " nn 2 nrad
pendent, oab# 1 and thenc; is determined by, and the
parameters «,a,b). What follows is valid in both cases,
with the corresponding restrictions. Note that strong hyper-
bolicity and energy conservation together give the two direc-

ap—o—2a
Tan')’nn"' ZS&A')’An

tions of o=1<ab=1. + ———(—InYgq— 2229 ya
With the shorthands 2(cotcy) nraa .
1 2a—ab—1 +2\oKyq), (160

e0=K;;*+ 1 ¥ij o+ — 5 ¥ij (V)
U +AT afA_ a&nyAni 2\/ab KAn+ Z3§ByAB

—ad fi_(b_g)ti}' (149 +IA(Z4Vnnt Z57qq) (161
2 U K pgt S dryaatz| 0
+ABT *+ 3907, z Y
€= f|—<b—g t|+(b_1)d|:| , (150) AB AB 27N AB 2\ 9(AYB)n
~ Gnsd 162
Ez:diz_%j,wik’j, (151 EqABa Ycn)» (162
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with speeds\ ={=1,= \Jo, = \Jab, = 1}, where we have de- , (Wl 3wy LW,
fined the shorthands b, —<ab<z|{1-—=—b" . 173
1 0 1
_c3—(b—1)%c, The positivity conditions of the main energy will be analyzed
=——", (163 ; ;
Co separately for the generic and special cases.
In the general caseb+ 1 ando# 1 positivity of the main
z,=2a—ab—1-2z,, (164 energy requires thdtising the strong hyperbolicity condition
o>0 and the causal speeds conditier1)
Z3:a._a.b_ 221, (165) +30
co>0, <ab<1,
z,=(2ab—o—1)/2+1—-2a+ap/2+2z,, (166
2 _ —
2e=(2ab— o —1)/2+a(1—3b+p)/2— 2z, . (167) a°Co(1=0)<20¢,(1-ab),
Note that the last term of E4160) requirescy+c;#0. We _ 9Co 20¢y(1-ab)—a’cy(1-0)
shall see below that this is always true. 4 2c,(1—ab)(4—4ab+30)—a’cy(4ab—1—30)
D. Constraint system energy <03—(b—1)201+ 1+2a4b—4a Co<0. (174

The constraint energy is quadratic iy, M; andG; ;.

The most general form that is conserved has three free pame yvalue ofy is irrelevant also for symmetric hyperbolicity.
rameterswo, w; andw, for arbitrary (o, o,a,b). Itis The restrictions orr and ab guarantee that,+c, and ¢,
aw, N +3c, are always strictly positive. A simple example is
6C2W0H3+4W1Mi2+ T(Giyj)z'f‘WzGi'jGJ'l

3 b=1 ! 2 (175
a: R = H o= A p: A
Wo— W Wo—(1+ab)w;—b?w, . 4 2 3
+2 b G'iHot+ b2 (G')=.
CO::L, 01:2, 0320720, (176)
(168
1
The flux is Wo=1, W1=7, w,=0. a77
Fo=—4(aw; +bwy)G! M’ — 4w HoM! In the special casab=o=1 positivity of the main en-
+4(bw,GH +aw,GI) M . (169 ~ °Sr9y requires
. , Co>0, Co+3c,>0, b?c;>cy+c,>0,
In terms of characteristic variables,
w w 5co b%c;—co—cy < (b 1)t 3b—4 —0
-— ————<c3—(b—1)%C c .
Fl=—5 (C2~C2)+ ——==(C%,~C%,), (170 4 3p%c,~co-3c; ap
2 2/ab (178
where, including transversal derivatives, A simple example is
bw, A 2
C.=Ho+|a+—=|a,G"F2M,, (171 a=b=o0=1, p=g3, (179
1
bW2 Cozl, 01:3, C3:C7:O, (180)
C.p=ad,Gat+ W—aAGnizﬁMA, (172
1 1
Wo= 1, Wl:Z' W2:O. (181)

with speeds\={+1,+ J/ab}.

E. Symmetric hyperbolicity and causal speeds V. CONSTRAINT-PRESERVING BOUNDARY

s . . . CONDITIONS
Positivity of the constraint energy requires that for a given
value ofab we must choose&v,, w; andw, obeying A. The boundary system
w W, 3 W We have proved symmetric hyperbolicity for both the
We>0, 0<—<1, b2—2<—(1——1), main system and the constraint system of the BSSN and
Wo wy 4 Wo NOR formulations. Therefore both formulations admit

044032-11
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constraint-preserving boundary conditions. We follow the ex- U,+kU_=X, (194)
ample of[12], but see als$13,29-31. A general discussion
is left to future work. Here we summarize the basic idea, and U,atckU_p=X,4. (195

propose a family of boundary conditions for the case of a

smooth boundary with t_angent|al S.h'ﬂ' . . The characteristic variables in these systems are given by
.Because the constraint _system is Con’)pf.itlble.WIth the ev: £ 4s.(107)—(110),(115),(116) for the BSSN system and Eqs.
lution system, for every pair of characteristic varialles of (159—(162),(171),(172) for the NOR systen
the constraint system with speeds\, there is a pair of § X y '
raint sy: SP ’ P In general the boundary system is coupled to the bulk
characte_rlstlc varlablgsli_W|th the same speeds, such that system, so thak and X, in Egs.(194),(195 cannot be con-
(after suitable normalizatignthey obey sidered as given a priory, and then the constraint-preserving
Co=dUs+t--, (182 boundary condi_tions are not true maxim_ally dis_sipative
boundary conditions. There are two exceptions, which have
where the dots, here and in the remainder of this subsectiobeen called “Neumann” and “Dirichlet” boundary condi-
indicate transversal derivatives and lower-order terms. In ortions in the literature, where an extended boundary system
der to guarantee that the constraint energy does not grow, wgan be given that decouples from the bulk system. This hap-
formally impose the homogeneous maximally dissipativepens for the Einstein-Christoffel system linearized around
boundary condition Minkowski spacetime[12], the full Einstein equations in
harmonic gaug¢l3], and the Maxwell equationd6]. This
C,—kC_= (183  boundary system can then be evolved before the bulk system

. . ._is evolved X andX, can be treated as givenpriori, and the
on the constraint system. This must then be translated into @onstraint—preserving boundary conditions become true

boundary condition on the main system. From E2), we 1 ayimally dissipative boundary conditions. The details, as-

have suming a smooth boundary with tangential shift, are given in

GU.=(ENa+B)d U+ - (184) Appendices B and C. _I—_|owever, we Would_lik_e to stress that

these boundary conditions are very restrictive: it does not

In the following we restrict consideration to the case whereseem very physical to find the boundary of the spacetime
B,=0 on the boundary, so that the=0 characteristic vari- Without knowing what is inside.

ables propagate along the boundary. Equati®8) is then As we have assumed that the shift is everywhere tangen-
equivalent to tial to the boundary, and this is possible in the case of a
non-smooth boundaryfor example a cubeonly for zero
U, +kaU_=---. (185  shift, we also restrict the analysis in this paper to a smooth
boundary.

We define a variabl&X=U , + «U _ that is restricted to the

boundary, with evolution equation _
B. Mode analysis

K="+, (186 If the boundary system does not decouple, we cannot use

our current energy estimates to prove well-posedness of the

and impose the boundary condition s
P y initial-boundary value problem. We can, however, check a

U,+xU_=X (1870  necessary condition for well-posedness, namely that there are
no modes that grow exponentially in time where the growth
on the main system. rates increases unboundedly with spatial frequency. We con-
We have chosen our notation in the previous sections sfecture that this condition is also sufficiefor previous
that in both BSSN and NOR we have applications of this analysis to the Einstein equations, see
[28,29.)
Ci=dqUst---, (188 In the frozen coefficients approximation that we have
been using throughout this paper we assume that the linear-
Cop=dnUont- -, (189 ized perturbation varies over space and time scales much

smaller than those given by the background solution and the

and the boundary conditions for either system are numerical domain. For consistency we must therefore as-

C,—x,C_=0, (190 sume that the domain is a half space and that the boundary is
a plane. We introduce coordinates so that the domains is
Coae k,Ca=0, (191) —w<xt<0 and —c<x*=(x?x% <, and the metric in
these coordinates i§; . In the frozen coefficient approxima-
V, —k3V_=F, (192  tion >0 andp' are also constant in space and tintés
before we assumg,=0 on the boundary, and therefore ev-
Ui ag— kU _ag=Fag, (193 erywhere in the frozen coefficient approximation.

After a Fourier transform ix® and Laplace transform in
whereF and F g are free boundary data, and Eq$90, t we are left with a system of linear ODEs with constant
(191 are implemented as coefficients inx'. In general this can be transformed into a
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matrix eigenproblem by an exponential ansatxin (A pri- r =0, (205
ori an exponential times a polynomial it could be re-
quired to find the general solution but this is not the case -

here) The general solution with homogeneous boundary I'n=—8w?¢, (206

conditions can therefore be written as a sum of modes of the

form I =8ud. (207)
U(Xl,t) — e(as+iBAwA)t+iwAXA+;LXlU (196)

- Note thatsixij represents the time derivative Tm‘j . There-
whereu is a constant vector. With this ansatz we haya  fore, as we assume that the algebraic constiaint0 is be-
=su, d,u=puu and dau=iwau. We are interested only in ing imposed continuouslyy;; must be tracefree. Similarly,
modes that are square-integrable over space at any momefndm the algebraic conditiom=0, A;; is also tracefree. With

in time. Therefore we assume that, is real, and that Eq. (197) obeyed,¥; and ¢ are free coefficients, and deter-
Reu>0. sandu will in general be complex. If a mode of mineAij K andI'.

this form exists for somes(wa ,u,u), then one exists also  \we now substitute the ansatk96) with these coefficients
for (ks,kwp ,ku,u) for anyk>0. Therefore, if any growing into the six constraint equatiori$90—(193). We obtain six
mode, with Res>0, exists, there are growing modes with algeb@ic equatigns that are linear in the four components

arbitrarily large growth rates and the problem is ill-posed. A'ynnv_')’nmv_;npv Yaq Of ;ij and the two compon_ent&mm

necessary condition for well-posedness of the initial-_ :
. =— , of the tracefree transversal ob . We
boundary value problem is therefore that the homogeneous Yop: Ymp JePhs

boundary conditions rule out the existence of any mode witfFan Solve these recursively to find that =0, as long as
Res>0 for realw, and Reu>0.

For simplicity we concentrate again on NOR with Egs. (1= k)t (1+k;)s#0 (208
(179-(181). u= (v ,Kj; ,f;) is decomposed with respect to
the normal vecton;=(1,0,0). It is helpful to introduce the for all four ;. For a mode to exist, this inequality must be
notationf,,.=iw”f, andf,=p'f; wherep' is orthonormal to  violated for at least one of the, . Let the value of this¢; be
wj andn;, and similarly for other tensor components. Sub-« which therefore obeys
stituting the ansatz196) into the NOR evolution equations,

we find after some linear algebra that, ®# 0, k(p—s)=(u+s). (209
2, 2 2\
(5" ™= 477 =0 (197 We now investigate the space of possible solutions
and (m,s,w,k) of the two algebraic equation®02 and (209
with Reu>0 and Res>0, with the aim of finding a condi-
Kom S— (198 tion on « that excludes all such solutions. We first consider
g 2% the casew=0. Then eitheiu=s=0, or u=—s and«=0.

Either solution does not correspond to growing square-
f.=0, (199  integrable modes. We can now assume 0, and param-
etrize all solutions by. We find

_ 2 .
fm:_ng(')’nn"' ')’qq)a (200 w—s -2
,u(s)=\/s§+ w2, K(S):(T) . (210
_ 2 _ _
fi 3 #(Ynt Vag)- (203 We choose the principal branch of the square root and put the
) ) branch cut on the negative real axis, because this maps
For a non-zero solution to exist, we must have Res>0 to Reu>0, that is, the growing modes are precisely
p2— 2= w?. (202 the square-integrable modes. This choice also maps Re

>0 to|«|>1, minus the negative real axis, and these values

The coefficients% are then free parameters. They determin O.f K must the_refore be excluded beca_use they would give
— rise to a growing mode. Furthermore, if we want to bound

the coefficient;; andf; through Eqs(198~(201). the solution on the boundary in terms of free boundary data,
Similarly, for the BSSN system with Eqel22), (123 we e muyst also exclude reai< —1. (See[16] for more de-
find the equivalent of conditiof97) for y;; and ¢, and tails) This then excludes allk|>1. On the other hand, in
_ _ the Appendix we show explicitly using the energy method
=—6s¢, (203 that the problem is well-posed for-k;=ky=k3=k,
=+1. We conjecture that the problem is in fact well-posed
= S - for all complex «; with |x;|<1, in particular realk; with
A== 5% (04 O) T SOTPEN i P |
i<1.
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VI. CONCLUSIONS have shown, however, that these boundary conditions rule

out perturbation modes with unbounded growth, which is a

We have constructed families of generalizations of the‘< "
. ; . ey necessary condition for well-posedngé8f We plan to
BSSN and NOR variants of the ADM evolution equations;, etigate a proof of well-posedness, and in parallel to ex-

that are symmetric hyperboli.c in t.he sense dgfined foL mine stability in numerical experiments.
second-order systems [ii6]. Th|.s conflrms the previous re- Our discussion of both maximally dissipative and
sult of [23] on the BSSN equations, without recourse to anyconstraint-preserving boundary conditions assumes that the
first-order reduction, and generalizes it by finding the most,grmal componeng, of the shift vanishes at the boundary,
general energies for the main and constraint system. Thigs then the\ =0 characteristic modes propagate along the
generalization allows all characteristic modes to propagatgoundary. This restriction allows for a shift that is every-
with causal speeds, in particular with speedsH(D) only. where tangential to a smooth boundary, and this could be
In our analysis of the BSSN equations we also clarify theused for example to employ corotating coordinates in the
role for hyperbolicity of imposing the algebraic constraintssimulation of a binary system. The case of a general shift
dety;=1 and trK”-:O during the evolution. We find that will be investigated in future work.
the equations can be made symmetric hyperbolic if these All equations in this paper were derived usixitensor an
constraints are imposed continuously, and strongly hyperepen-sourcéMathematicapackage for abstract tensor calcu-
bolic without imposing the constraints, but adding an extraus, developed by J.M.M. It is available under the GNU Pub-
term to the evolution equations. lic License from http://metric.imaff.csic.es/Martin-Garcia/
There is numerical evidence that densitizing the lapse angAct/.
imposing the trace constraint improves stability in moving
single black hole simulations, even without imposing maxi- ACKNOWLEDGMENT
mally dissipative constraint-preserving or boundary condi-
tions[26]. This is not surprising, as these changes make the The authors would like thank G. Nagy, O. Ortiz and O.
evolution equations strongly hyperbolic, and imposing theReula for communicating a draft paper and for discussions.
determinant constraint as well would make them symmetri€c.G. would like to thank the Kavli Institute for Theoretical
hyperbolic. Physics for hospitality while this work was begun, and T.
Our results go some way towards explaining why theBaumgarte, G. Calabrese, H. Friedrich, L. Kidder, L. Lind-
BSSN system has been relatively successful in simulatinglom, O. Sarbach, M. Scheel, D. Shoemaker and J. Vickers
black hole or neutron star binaries. It is possible that thdor helpful discussions. J.M.M. was supported by the Comu-
Bona-Massoformulation [27], a strongly hyperbolic first- hidad Autmoma de Madrid and Fondo Social Europeo and
order version of the Einstein equations that introduced varialso in part by the Spanish MCYT under the research project

ables similar to thel or f;, has not been as successful BFM2002-04031-C02-02.
because it is first order, which we expect makes it more
susceptible to constraint-violating instabilities of the conver- APPENDIX A: THE KST FORMULATION

gent type. . . .
. . . The Kidder-Scheel-TeukolskyKST) formulation [9] is
The NOR system is basically the BSSN system WIthOUtPased on a reduction to first order of the ADM evolution

the conformal-traceless decomposition, and the similarity o . . o . e
our results for the two systems suggests that the NOR systeﬁ'ﬂqat'ons with a denS|t|;ed [ap@ADM) with the f'i.uxmary
\éarlablesdkijzﬁkyij . This gives rise to the auxiliary con-

shares all the advantages of the BSSN system, without th

overhead of the extra variabl&sand ¢ and extra constraints straints Ci;y = Jydjy=0. The principal part of the evolu-
T=0 andD=0. tion equations is

With symmetric hyperbolicity, we can make the initial-

boundary value problem formally well-posed by imposing doviy=—2Kij, (AL)
maximally dissipative boundary conditions. However, these W

boundary conditions are in general not compatible with the ~ 9oKij=DADM+yy;;H+{y Cuiji» (A2)
constraints, and so large constraint violatiéokthe conver-

gent type propagate in from the boundaries. This can be  dodyjj=DADM + 7y (iM )+ x 7ij M. (A3)

avoided by replacing some of the maximally dissipative
boundary conditions on the main system by maximally dis-This system can be made strongly or symmetric hyperbolic
sipative boundary conditions on the constraint sysf@é@j,  for certain ranges of the parameters v, {, » and x. In
and we have given details of how to do this for NOR andparticular, the Einstein-ChristoffgEC) system is the case
BSSN, for the case of a smooth boundary with tangentialy=0,{=—1,7=4,x=0, densitizing the lapse witbhr=1 in
shift. Note that even when we have fixed the principal part ofour notation. In this appendix we want to point out that only
the field equations both the main and constraint energies stitk andy have counterparts in a second-order systéimas a
depend on a number of free parameters, which appear explisimilar function to our parametex, and 2,+ y has a similar
itly in the boundary conditions. function to our parametds, but these parameters vanish if
Except for two rather unphysical special cases, we haveve replaced;; by dyy; : Cij then vanishes identically, and
not proved that the initial-boundary value problem with d;; is no longer evolved explicitly by EqA3), but only
constraint-preserving boundary conditions is well-posed. Wémplicitly by Eq. (A1). Comparing the KST system to NOR
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with the benefit of hindsight, one could say that the only APPENDIX C: NEUMANN BOUNDARY SYSTEM
indispensable effect ofl;; is to introduce the divergence

d¥; as an auxiliary variable. With
—K1=Ky=K3=Ky=—1 (C)
APPENDIX B: DIRICHLET BOUNDARY SYSTEM
we have
With
F=2f,—=dnynnt (P—=2)dn(Ynnt ')’qq)1 (C2
—K1=Ky=K3z=K4=1 (B1) p—2
we have(in our example NOR system Uo=Tnt 2 In(¥nnt Yaq): €3
F=2Knn, (B2 Fae=nYag, (CH
Fag=—2Kag, (B3) X==20nYqq> (CH)
X=4Kqq, (B4) Xa=4Kan- (C6)
The autonomous boundary system is
Xa=2(fa= 30 ¥an) +(p—2)Ia( Yon™ Yaq)- sy

(B5) AoX="Xa, (C7)

The boundary system 1

JoXA= = IaX+ 20BF ag+ 294F — 29 U — 29895 yan,
36X = X 20N I¥aq). (B6) 0AAT 5 0A AB A A0 BYAn
(C9
FpX —1a X+ 20,F + 28F (B7) 1

07AT 2 TA A AB do(dayen) = — Eé’AXB, (CY
1 JoUL=0 (C10

aO(aA')’qq) = E&AX (B8) e

Note that all variables of the boundary system have parity
decouples from the bulk system. Note that all variables of the- 1. The boundary system is strongly hyperbolic with char-
boundary system have parity 1 under the reflectiom;— acteristic variables
—n; through the boundary. The boundary system is strongly

hyperbolic with characteristic variables X+ =49 Ymn— X7 V6Xp, (C1y
_ _ - 1

X+ =4dpnYaq— 2XmT V6X, (B9) Y= I YpnT 5 Xp. (C12
Xo= X+ ImYqq> (B10) 1

which have speeds=(+ 3/2,0), as well aX, and d,yqq Xo=dmYmnt 5 X, (C13

with zero speed(lt is also symmetric hyperbolic, but this is
not required for well-posedness if the boundary is smoottwith speeds\ =(*+/3/2,=1,0), as well as the zero speed
without boundary, and therefore we do not give details here.variablesU, d,ymn anddpypn-
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