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Symmetric hyperbolicity and consistent boundary conditions for second-order Einstein equations
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We present two families of first-order in time and second-order in space formulations of the Einstein
equations~variants of the Arnowitt-Deser-Misner formulation! that admit a complete set of characteristic
variables and a conserved energy that can be expressed in terms of the characteristic variables. The associated
constraint system is also symmetric hyperbolic in this sense, and all characteristic speeds are physical. We
propose a family of constraint-preserving boundary conditions that is applicable if the boundary is smooth with
tangential shift. We conjecture that the resulting initial-boundary value problem is well-posed.
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I. INTRODUCTION

Current numerical relativity codes designed to simul
the inspiral and merger of a black hole binary are limited
instabilities. These are now believed to be usually instab
ties of the continuum equations, rather than of the numer
method. Intuitively one feels that the initial value proble
for the Einstein equations is well-posed in a geometri
sense. For instance, in fully harmonic spacetime coordin
the Einstein equations reduce to ten quasilinear wave e
tions @1#. However, in the usual 311 split one uses only six
of the ten Einstein equations for evolution, while the oth
four must be imposed as constraints on the initial data.
evolution in which the constraints are not obeyed is no
solution of the Einstein equations.

Consider perturbing a solution of the evolution equatio
around a solution of the full Einstein equations. We cal
linear perturbation physical if it obeys the constraints i
tially and therefore at all times, and if it cannot be remov
by a change of coordinates. A perturbation is called p
gauge if it obeys the constraint but can be removed b
coordinate transformation. A perturbation is called unphy
cal if it violates the constraints. All of these perturbations c
be instabilities in the~weak! sense that they grow with re
spect to the background solution. An example for a phys
instability is one that pushes a marginally stable star over
edge of gravitational collapse. An example of a gauge in
bility is given by the evolution of Minkowski spacetime wit
constant lapse, with an initial slice that is not quite flat: t
time slices become singular in a finite time. Some, perh
all, gauge instabilities can be avoided by a suitable choic
the lapse and shift adapted to the solution.

The problem in numerical solutions are unphysical ins
bilities. These will always be triggered in a numerical sim
lation by finite differencing or round-off error. Furthermor
the solution space of the evolution equations is infinit
bigger than the solution space of the full Einstein equatio
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and so the latter are likely to represent an unstable equ
rium. Evolution schemes which replace between one
four of the evolution equations with constraint equatio
~constrained evolution! do not fundamentally address th
problem, as they are still only solving six equations. Alte
native approaches to reducing the growth of the constra
or even making them decay are suggested in@2,3#.

In discussing instabilities, it is important to distinguis
between evolution systems which are well-posed and ev
tion systems which are ill-posed. In the former, the growth
any linear perturbationdu(x,t) of a background solution
u0(x,t) can be bounded as

uudu~•,t !uu< f ~ t !uudu~•,0!uu, ~1!

where f (t) depends onu0 but is independent ofdu(x,0).
This means that the solutionu01du depends continuously
on its initial data. By contrast, in an ill-posed system no su
bound f (t) exists. Rather, the growth rate increases u
boundedly with the highest spatial frequency present
du(x,0). These are instabilities in a rather stronger sen
They can be gauge, but typically are constraint-violating.

A numerical simulation inherits all the instabilities a
ready present in the continuum. A good numerical sche
does not add any others, but can never fix continuum in
bilities. A crucial point is that in a numerical evolution, th
highest spatial frequency present is effectively always
grid frequency, because it is generated by finite differenc
error even if the initial data are smooth.

As one increases the resolution in numerical solutions
an ill-posed system, instabilities grow more rapidly becau
the finer grid can represent a higher spatial frequency
these instabilities are constraint-violating, they will at high
resolution start at a lower amplitude, but the faster grow
rate eventually overcomes this. Therefore they do not c
verge away. At high enough resolution and late enough t
ill-posedness will become apparent as a breakdown of c
vergence for the entire solution. One can detect these mo
even before that by looking at a Fourier transform in spa
©2004 The American Physical Society32-1
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@5#. As these non-convergent instabilities are features of
continuum system they cannot be suppressed by any co
tent numerical dissipation.

By contrast, the numerical solution of a well-pos
scheme will in general still be swamped by constrai
violating instabilities at late time, but now these start w
smaller amplitude and grow at the same rate as one incre
resolution. They therefore converge away.

In practice, depending on the system, physical soluti
runtime and resolution, either convergent or non-converg
instabilities can be the dominant source of error.
3-dimensional simulations in particular, the available reso
tion is quite limited, and the lack of convergence may n
become apparent. The Arnowitt-Deser-Misner~ADM ! for-
mulation of the Einstein equations has for many years b
the main formulation used in 3-dimensional simulation
even though for a fixed lapse and shift it is ill-posed~weakly
hyperbolic! @4#. More recently a systematic comparison
high-resolution, long-time evolutions for well-posed and i
posed~weakly hyperbolic! systems@5# has demonstrated tha
the breakdown of convergence is really inevitable, and
revived interest in well-posed formulations of the Einste
equations.

This interest has focused on first-order reductions of
Einstein equations, because for general first order evolu
systems useful criteria for well-posedness are known@6#. A
sufficient and necessary criterion for the initial value pro
lem ~with no boundaries, or periodic boundaries! to be well-
posed is strong hyperbolicity: this roughly means that
system has a complete set of characteristic variables
real speeds. Symmetric hyperbolicity is another criter
which implies strong hyperbolicity and can be used to obt
a well-posed initial-boundary value problem: roughly spe
ing it means that the principal part of the system admit
conserved energy. Therefore a number of strongly or s
metric hyperbolic first-order reductions of the ADM equ
tions have been suggested over the years to assure
posedness, see for example@7–10#. In a symmetric
hyperbolic formulation of the Einstein equations, there is
chance of dealing with the constraints consistently in
initial-boundary value problem, see@11–14#.

However, first order reductions introduce new, auxilia
variables and constraints, and so further increase the solu
space. One would expect this to give rise to additio
constraint-violating instabilities of the convergent type, ev
if well-posedness rules out the non-convergent type. Ther
some evidence that this is a real problem, which requ
much more fine-tuning of the free parameters@15#. This may
even outweigh the benefits of hyperbolicity. It would ther
fore seem preferable to find a system that is symmetric
perbolic while enlarging the solution space as little as p
sible, and in particular this should be a second-order sys

In a companion paper@16# we have proposed a definitio
of symmetric hyperbolicity for second-order systems. T
can be used to obtain a well-posed initial-boundary va
problem in the same way as in first-order systems, but w
out enlarging the solution space. Here we show symme
hyperbolicity for two formulations of the Einstein equatio
that are variants of the Arnowitt-Deser-Misner~ADM ! equa-
04403
e
is-

-

ses

,
nt

-
t

n
,

s

e
n

-

e
th
n
n
-
a
-

ell-

a
e

,
on
l

n
is
s

-
y-
-

m.

s
e
-
ic

tions, namely the Baumgarte-Shapiro-Shibata-Nakam
~BSSN! system@17,18#, which is already widely used in nu
merical relativity@19–22#, and a simpler related system su
gested by Nagy, Ortiz and Reula~NOR! @4#.

We know of two previous partial results concerning t
hyperbolicity of a second-order, ADM-like version of th
Einstein equations. In@23# it was shown that a first-orde
reduction of the BSSN system is strongly hyperbolic, an
variant with some superluminal characteristic speeds is s
metric hyperbolic. It was then noted that the auxiliary co
straints associated with the introduction of the first-ord
auxiliary variables form a closed subsystem of the constr
system. This means that if the auxiliary constraints
obeyed initially, and if suitable boundary conditions are im
posed, they are obeyed during the evolution, even if the o
constraints are not obeyed. In this sense, the introductio
the auxiliary variables has not enlarged the solution syst
In @4# it was shown that the NOR system~in second-order
form!, and its associated constraint system are strongly
perbolic, by using a pseudo-differential reduction to first
der which also does not enlarge the solution space. T
method relies in an essential way on Fourier transforms,
so cannot be used to construct a locally conserved ener

Here we go beyond these two papers in showing symm
ric hyperbolicity for the second order BSSN and NOR sy
tems and their associated constraint systems, without
reduction to first order. We do this by defining characteris
variables, finding a conserved positive definite covariant
ergy, and expressing it in terms of the characteristic va
ables. We have chosen BSSN and NOR because BSS
popular with numerical relativists today, whereas NO
seems a simpler version of BSSN that shares all its adv
tages.

The paper is organized as follows. In Sec. II we introdu
our method and general notation. In Sec. III we prove sy
metric hyperbolicity for the BSSN evolution equations a
the associated constraint system, and in Sec. IV we do
same for the NOR system. We take a first look at the ini
boundary problem for both systems in Sec. V. We propos
family of boundary conditions for a smooth boundary whe
the shift is tangential to the boundary. We show that there
no arbitrarily rapidly growing modes—this amounts to
strong indication of well-posedness but is short of a pro
Section VI contains our conclusions.

II. METHOD AND NOTATION

Here we briefly summarize the relevant notation a
methods of@16#. We need to split 3-tensors into their long
tudinal and transversal parts with respect to a given direc
ni . Assume a 3-metric, sayg i j , which will be used to raise
and lower indices, and letni be a unit vector with respect to
this metric. Then

qi
j[d i

j2nin
j ~2!

is the projector into the space transversal toni . A tensor
index that has been projected will be denoted by the in
2-2
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A,B, . . . instead ofi , j , . . . . An index n denotes a tenso
index contracted withni or ni . A self-explanatory example o
this notation is

Pi] i[Pn]n1PA]A . ~3!

A pair qq of indices indicates a contraction withqi j , and for
tensors of rank 2 or higher, we use the convention that t
are totally tracefree on their projected indices.

Now consider a system of evolution equations that
second order in space and first order in time. Linear
around a solution, and approximate the backgrou
dependent coefficients of the linearized system as cons
~frozen!. Retain only the principal part of the equations. W
call the resulting linear system with constant coefficie
strongly hyperbolic if for any given directionni we can find
a complete set of characteristic variablesU that obey

] tU5l]nU1transversal derivatives ~4!

for real constantsl. Here2l is the propagation speed in th
ni direction. The U are constructed from$u%,$u,] iu%,
where we include] iu of those variables that have a seco
spatial derivative in the evolution equation. The characte
tic variables are complete if they span$u%.

This definition has two important consequences: trans
sal derivatives]Au are automatically zero speed variable
and arbitrary multiples of transversal derivatives]Au can be
added to any characteristic variable. Below we shall find
characteristic variablesU in two steps: we first find a set o
non-zero speed variablesU8 that do not contain any trans
versal derivatives, then add transversal derivatives to th
until we can express the energy and flux in terms of
modified characteristic variablesU.

We call the system symmetric hyperbolic if it admits
energy

E5E
V

edV, ~5!

wheree is covariant, positive definite, and conserved in t
sense that

] te5] iF
i ~6!

for some fluxFi , and if we can expresse andFn in terms of
characteristic variables.

The simplest example is the wave equation in the form

] tf5P, ~7!

] tP5] i]
if, ~8!

with u5(f,P) and ũ5(] if,P). The characteristic vari-
ables in a given directionni are

U6[P6]nf, ~9!

UA[]Af, ~10!

with speedsl5(61,0). The covariant energy and flux are
04403
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e5P21] if] if, ~11!

Fi52P] if. ~12!

In terms of characteristic variables they are

e5
1

2
~U1

2 1U2
2 !1UAUA, ~13!

Fn5
1

2
~U1

2 2U2
2 !. ~14!

Therefore

dE

dt
5E

]V

1

2
~U1

2 2U2
2 !dS ~15!

whereU6 are now the characteristic variables normal to t
boundary]V.

The maximally dissipative boundary condition

U15kU21 f ~16!

with uku<1 and f a given function then guarantees that t
growth of E is bounded byf and thatE does not grow for
f 50.

To make the energy positive definite inf itself rather than
just ] if, one can add a terma2f2 to e, with a.0 constant.
With a maximally dissipative boundary condition andf 50,
E is then bounded byE(t)<eatE(0).

Finally, allow the linearized system to have variable c
efficients~from the non-constant background solution! and a
non-principal part. For a finite time interval, the energy
then still bounded asE(t)<Keat for some constantsK and
a, and the linearized initial-boundary value problem rema
well-posed. Therefore it is sufficient to establish we
posedness to examine the principal part in the frozen co
cient approximation. On an intuitive level, this is so becau
the purpose of well-posedness is to rule out instabilities
the non-convergent type, which have a growth rate t
grows with spatial frequency. Well-posedness of the line
ized problem is a necessary condition for well-posednes
the full non-linear~quasilinear! problem.

III. THE BSSN FORMULATION OF THE EINSTEIN
EQUATIONS

A. Field equations

The BSSN formulation of the Einstein equations~without
matter! is obtained from the ADM form of the Einstein equa
tions @24#,

] tg i j 5Lbg i j 22aKi j , ~17!

] tKi j 5LbKi j 2DiD ja1a~Ri j 22Kil K
l
j1KKi j !,

~18!

H[R2Ki j K
i j 1K250, ~19!

Mi[D jK
j
i2DiK50, ~20!
2-3
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by introducing the new variables

g̃ i j [~detg!21/3g i j , ~21!

G̃ i[g̃ i j g̃klg̃ jk,l , ~22!

f[
1

12
ln detg, ~23!

Ãi j [~detg!21/3S Ki j 2
1

3
g i j K D . ~24!

In the remainder of this section, indices are moved withg̃ i j

and its inverseg̃ i j . Generalizing the BSSN equations, w
densitize the lapsea with the determinant of the metric as

a5e6sfQ ~25!

wheres is a constant and nowQ, rather thana, is a given
function of the coordinates. The shiftb i is considered a
given function of the coordinates. The definition of theG̃ i

gives rise to the differential constraint

Gi[g̃ i j G̃
j2g̃ jkg̃ i j ,k50. ~26!

The definition ofÃi j gives rise to the algebraic constraint

T[g̃ i j Ãi j 50, ~27!

and from the definition ofg̃ i j we have the algebraic con
straint

D[ ln detg̃50. ~28!

The BSSN equations are first order in time, second or
in space, and quasilinear. The principal part of the evolut
equations forÃi j , K and G̃ i is given by the highest spatia
derivatives, (]2f,]2g̃,]Ã,]K,]G̃). The evolution equations
for g̃ andf do not contain any of these highest derivative
We define their principal part to be given by the next high
derivatives, that is (]f,]g̃,Ã,K,G̃). Note that with this defi-
nition of the principal part the equations are still quasiline
because the evolution equation forg i j is linear inKi j . Note
also thatbk]k is part of the principal part of the equation
while ]b terms are not. We define the derivative operato

]0[a21~] t2bk]k!. ~29!

It is the derivative along the unit vector field normal to t
slices of constant time. The principal part of the evoluti
equations is then

]0f.2
1

6
K, ~30!

]0g̃ i j .22Ãi j , ~31!

]0K.26se24fg̃ i j f ,i j , ~32!
04403
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]0Ãi j .e24fF2
1

2
g̃mng̃ i j ,mn22~113s!f ,i j 1ag̃k( i G̃

k
, j )

1~12a!g̃klg̃k( i , j ) l GTF

2
c

6
e24fg̃ i j g̃

mng̃klg̃kl,mn ,

~33!

]0G̃ i.2~b21!g̃ i j g̃klÃjk,l2
4

3
bg̃ i j K , j , ~34!

where . means equal up to non-principal terms, and
indicates the tracefree part. We have added the constra
aG( i , j ) , 2bMi and2(c/6)e24fg̃ i j g̃

klD ,kl to the field equa-
tions with free coefficientsa, b and c. Adding these terms
changes the evolution off the constraint surface which
affect the hyperbolicity of the system.

The principal part of the Hamiltonian and momentu
constraints is

H[H01e24fg̃ i j Fa8Gi , j2
c8

2
D ,i j G , ~35!

H0.e24fg̃ i j ~ g̃klg̃ki, j l 28f ,i j !, ~36!

Mi.Ãi j ,kg̃
jk2

2

3
K ,i . ~37!

Here a8 and c8 parametrize different ways of writing th
Hamiltonian constraint that are found in the literature. W
shall work explicitly only withH0, and soa8 andc8 will not
appear below. There are many versions of the BSSN eq
tions which vary in small details in both the principal an
non-principal parts. For comparison, the principal part of
version given in@25# is characterized bys50 ~the lapse is
not densitized! anda5b5a85c851, c50.

The constraints are compatible with the evolution eq
tions, which means that they form a closed evolution syst
It is

]0H0.22e24fg̃ i j M i , j , ~38!

]0Mi.
1

6
H0,i1e24fS a

2
g̃ jkGi , jk

1
a

6
g̃ jkGj ,ik1

12c

6
g̃ jkD ,i jk D , ~39!

]0Gi52bMi , ~40!

]0T.2
c

2
e24fg̃ i j D ,i j , ~41!

]0D522T. ~42!

B. Strong hyperbolicity of the main system

For the purpose of decomposing 3-tensors and ten
equations, we defineni , ni andqi j with respect to the con-
2-4
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formal metricg̃ i j . In the frozen coefficients approximation
the undifferentiated 3-metric (g̃ i j , g̃ i j andf) is to be treated
as a background quantity, whileÃi j , G̃ i , K, g̃ i j ,k , f ,i and
their derivatives are to be treated as dynamical variables,
decomposed with respect toni .

We now prove strong hyperbolicity of the main and co
straint systems by constructing a complete set of charac
istic variablesU. The quantities

ũ[~] if,] i g̃ jk ,Ãi j ,G̃ i ,K !, ~43!

obey the pseudo-first order system

] tũ.~aPi1b i !] i ũ ~44!

or equivalently

]0ũ.Pi] i ũ. ~45!

@This is not a genuine first-order system because in exp
sions like] i(] jf) that appear on its right-hand side we allo
ourselves to commute partial derivatives, rather than trea
] jf as a 1-form variabledj , as we would in a genuine re
duction to first order.# As discussed in@16#, transversal de-
rivatives are automatically zero speed characteristic v
ables. Here we havePn]Af5Pn]Ag̃ i j 50. We shall write
the eigenvalues ofPn asle22f. With this definitionl mea-
sures the propagation speed in units of the speed of li
measured with respect to the]0 observers. In particularl
561 variables propagate along the light cone. In the f
lowing we always use ‘‘speed’’ in this sense.

In tensor components with respect toni , the rows of the
scalar block of the matrixPn acting on the variables
(]nf,]ng̃nn ,]ng̃qq ,K,Ãnn ,Ãqq ,G̃n) are given by

Pn]nf52
1

6
K, ~46!

Pn]ng̃nn522Ãnn , ~47!

Pn]ng̃qq522Ãqq , ~48!

PnK526se24f]nf, ~49!

PnÃnn5e24fF2S 4

3
14s D ]nf1

1

6
]ng̃nn

1
2a

3
~ G̃n2]ng̃nn!1

12c

6
~]ng̃nn1]ng̃qq!G ,

~50!

PnÃqq5e24fF S 4

3
14s D ]nf2

1

6
]ng̃nn

2
2a

3
~ G̃n2]ng̃nn!2

112c

6
~]ng̃nn1]ng̃qq!G ,

~51!
04403
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PnG̃n52
4b

3
K12~b21!Ãnn . ~52!

The two algebraic constraintsT50 andD50 are often en-
forced in numerical simulations after each time step. We
mimic enforcingT50 in our analysis by settingÃnn1Ãqq
50 and dropping one of the two variables from the syste
Similarly, we can mimic enforcingD50 by setting]ng̃nn

1]ng̃qq50 and dropping one of the two variables from th
system. Both reductions affect the hyperbolicity of the s
tem.

~a! Algebraic constraints not enforcedThe scalar block is
diagonalizable for

c.0, h.0, s.0, cÞh, ~53!

with eigenvalues

l5$0,6Ac,6Ah,6As%, ~54!

where we have defined the shorthand

h[
4ab21

3
. ~55!

~Allowing the system to be strongly hyperbolic without e
forcing the algebraic constraints is the reason why we h
introduced thec term, which potentially gives]0Ãi j a non-
zero trace.!

~b! Trace constraint enforcedIf we enforceT50 but not
D50 this is consistent with the evolution equations only f
c50. The scalar block is diagonalizable for

c50, h.0, s.0, ~56!

with

l5$0,0,6Ah,6As%. ~57!

It would be inconsistent to enforceD50 but notT50.
~c! Both algebraic constraints enforcedIf we enforce both

algebraic constraintsD50 andT50 the scalar block is di-
agonalizable for

h.0, s.0. ~58!

~Note thatc becomes irrelevant in this case.! The character-
istic variables that do not contain any transversal derivati
are:

U08[~b21!]ng̃nn1G̃n28b]nf, ~59!

U68 [~124a!]ng̃nn14aG̃n28]nf

6e2fAh~6Ãnn24K !, ~60!

V68 [6As]nf7e2fK, ~61!

with speeds
2-5
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l5~0,6Ah,6As!. ~62!

The vector block ofPn is

Pn]ng̃An522ÃAn , ~63!

PnÃAn5e24f
a

2
~ G̃A2]ng̃An!, ~64!

PnG̃A52~b21!ÃAn , ~65!

as well as the trivialPn]Af5Pn]Ag̃nn5Pn]Ag̃qq50. It is
diagonalizable forab.0, with nontrivial characteristic vari-
ables

UA8[~b21!]ng̃nA1G̃A , ~66!

U6A8 [2a]ng̃An1aG̃A62Aabe2fÃAn , ~67!

with speedsl5(0,6Aab). The tensor block is

Pn]ng̃AB522ÃAB , ~68!

PnÃAB52e24f
1

2
]ng̃AB , ~69!

as well as the trivialPn]Ag̃Bn50. It is always diagonaliz-
able, with nontrivial characteristic variables

U6AB8 [
1

2
]ng̃AB7e2fÃAB , ~70!

with speedsl561. We see that the vector and tensor s
tors do not add any new conditions for strong hyperbolic

In summary, we have shown that the BSSN system w
both algebraic constraints enforced continuously is stron
hyperbolic if s.0 andh.0. If neither algebraic constrain
is enforced,c.0 andcÞh are also required. On the othe
hand, if only the trace constraint is enforced,c50 is re-
quired. ~If both constraints are enforced,c is irrelevant and
can be set to zero.! The characteristic spectrum of the com
plete system is

l5$0,6As,6Ah,6Aab,61%. ~71!

C. Strong hyperbolicity of the constraint system

We construct characteristic variables for the constra
system from the set

ũc[~H0 ,Mi ,] iGj ,] iT,] i] jD !. ~72!

The scalar sector of the constraint propagation is

PnH0522e24fMn , ~73!

PnMn5
1

6
H01e24fS 2a

3
]nGn1

12c

6
]n

2D D , ~74!

Pn]nGn52bMn , ~75!
04403
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Pn]nT52
c

2
e24f]n

2D, ~76!

Pn]n
2D522]nT. ~77!

If we define

C68 [4a]nGn66Ahe2fMn1e4fH0 ~78!

the characteristic variables are

C08[e4fbH01]nGn , ~79!

Ac]n
2D72e2f]nT, ~80!

~12c!S ]n
2D7

2

Ah
e2f]nTD 1S 12

c

h DC68 , ~81!

with speedsl5(0,6Ac,6Ah). If we optionally impose the
trace constraint, the characteristic variables areC08 and C68
1]n

2D with speedsl5(0,6Ah). If we impose both the
trace and determinant constraints, we are left withC08 and
C68 with speedsl5(0,6Ah).

The vector sector of the constraint propagation is

PnMA5e24f
a

2
]nGA , ~82!

Pn]nGA52bMA , ~83!

as well asPn]AGn5Pn]AT5Pn]A]nD50. The nontrivial
characteristic variables are

C6A8 [a]nGA62Aabe2fMA , ~84!

with speedsl56Aab. The tensor sector is completel
trivial, with Pn]AGB5Pn]A]BT50 ~including the traces!.
The constraint system, in all three cases, is strongly hyp
bolic as long as the main system is strongly hyperbolic.

D. Main system energy

We look for an energy densitye of the second-order sys
tem that is positive definite inÃi j , K, G̃ i , g̃ i j ,k andf ,i and
obeys a conservation law. With the shorthandst i[g̃ jkg̃ jk,i

5D ,i and di[g̃ jkg̃ i j ,k , the most general quadratic form i
these variables is

e5c0e4fÃi j
21c1G̃ i

21c2t i
21c3di

21c4di G̃
i1c5t i G̃

i

1c6dit
i1c7e4fK21c8g̃ i j ,k

21c9g̃ i j ,kg̃
ik, j1c10G̃ if

,i

1c11e
4fTK1c12f ,i

21c13dif
,i1c14t if

,i1c15e
4fT2.

~85!

In the cross termg̃ i j ,kg̃
ik, j and similar terms in the remainde

of the paper indices are raised only after differentiation. T
general ansatz for the fluxFi contains 14 free coefficients
2-6
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After some linear algebra it is possible to see that thise and
Fi together obey a conservation law only if

4ab5113s, ~86!

or equivalentlyh5s.
There are additional restrictions depending on whethe

not we enforce the algebraic constraints during evolution
we work with non-vanishingD andT then we needab5s
51 andc11(c21)50. On the other hand, if we enforce bo
algebraic constraints the parameterc and several of the co
efficients ck become irrelevant, with no additional con
straints on the parameters.

From now on, in order to simplify the equations, we e
force both theT50 andD50 constraints in the remainde
of this section.

The generic conserved energy depends on four free c
ficients, one of which is an overall factor. With the sho
hands

e05e4fÃi j
21

1

4
g̃ i j ,k

21
2a2ab21

2
g̃ i j ,kg̃

ik, j2adi~ G̃ i

28bf ,i !, ~87!

e15@G̃ i28bf ,i1~b21!di #
2, ~88!

e25di
22g̃ i j ,kg̃

ki, j , ~89!

e35e4fK2136sf ,if ,i ~90!

the energy density is

e5c0e01c1e11@c32~b21!2c1#e21c7e3 . ~91!

The free parametersc0 , c1 , c3 and c7 will be restricted
below by inequalities derived from the requirement thate be
positive definite.

This energy reduces to that given in@23# for a first-order
reduction of BSSN with the change of notations→2s, b

→m, g̃ i j ,k→dki j andf ,i→di /12, the restrictiona51 to the
parameters of the evolution equations, fixing the ove
scale asc051, and the further restrictionsc151/(2b22),
c350 and c751/s53/(4b21) on the coefficients of the
energy. The condition~86! on s reduces to a similar condi
tion in @23#. The choice of Sarbachet al. can be interpreted
as follows:c350 andc15a/(2b22) eliminatedi from the
energy (c35c45c1350); assuming those conditions,a51
is the only choice that eliminates the cross termg̃ i j ,kg̃

ki, j .
Their choice forc7 has no relevant effect. Note that the po
tivity condition on their choice ofc1 forcesb.1, and to-
gether witha51 this gives rise to a superluminal speed. B
contrast, by retaining the contractionst i anddi in the ansatz
for the energy we shall be able to make all speeds phys

The four terms in the energy are conserved separatel

]0e05] iF0
i , ~92!

]0e150, ~93!
04403
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]0e25] iF2
i , ~94!

]0e35] iF3
i . ~95!

@Condition~86! is required only for the conservation ofe0.#
The fluxes are given by

F0
i 52Ãi j @aG̃ j2a~b21!dj22~113s!f , j #1g̃ i l Ã jk

3@2~11ab22a!g̃ j l ,k2g̃ jk,l #, ~96!

F2
i 54Ãjk~ g̃ img̃m j ,k2g̃ i

j g̃km
,m!, ~97!

F3
i 5212sKf ,i . ~98!

The energy density in terms of characteristic variables is

e5
c0

2
~U1AB

2 1U2AB
2 !1

c0

4ab
~U1A

2 1U2A
2 !

1
c0c7

16s~2c013c7!
~U1

2 1U2
2 !1

2c013c7

6
~V1

2 1V2
2 !

1quadratic in zero speed variables, ~99!

and the flux is

e2fFn5
c0

2
~U1AB

2 2U2AB
2 !1

c0

4Aab
~U1A

2 2U2A
2 !

1
c0c7

16As~2c013c7!
~U1

2 2U2
2 !1

2c013c7

6

3As~V1
2 2V2

2 !. ~100!

We have modified the characteristic variables by add
terms in]Ag̃ i j in order to writee in terms of characteristic
variables. With the shorthands

z15
c32~b21!2c1

c0
, ~101!

z25113ab24a16z1 , ~102!

z35a2ab22z1 , ~103!

z45213ab25a16z1 , ~104!

z5511ab22a12z1 , ~105!

z65
c0

2As~2c013c7!
, ~106!

the modified characteristic variables are

U65~124a!]ngnn14aG̃n28]nf6Ase2f~6Ãnn24K !

22z2]AgAn , ~107!

V656As]nf7e2fK2z6U6 , ~108!
2-7
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U6A562Aabe2fÃAn1aG̃A2a]ngAn1z3]BgAB

1
z4

2
]Agnn28ab]Af, ~109!

U6AB57e2fÃAB1
1

2
]ngAB2

z5

2
~]AgBn1]BgAn

2qAB]CgCn!. ~110!

The expressions forU0 andUA are not given, but they also
include transversal derivatives. Note that becauseh5s, U68
and V68 are eigenvectors for the same eigenvalues, and
have used this to make the energy diagonal inU6 andV6 .

E. Constraint system energy

The constraint energy is quadratic inH0 , Mi and Gi , j .
~We must useGi , j rather thanGi so that all terms are of the
same order in derivatives.! The most general conserved e
pression is

ec5w0e8fH0
2112w1e4fMi

21
3aw1

b
~Gi , j !

21w2Gi , jG
j ,i

12
w01w1

b
e4fGi

,iH01
w01~11ab!w12b2w2

b2
~Gi

,i !2,

~111!

with arbitrary coefficientsw0 , w1 andw2. The correspond-
ing flux is

Fc
i 54w1~e4fH0Mi13aGj ,iM j1aMiGj

, j !

14bw2~Gi , jM j2MiGj
, j !. ~112!

In terms of characteristic variables, the constraint ene
and flux are

ec5
3w1

2ab
~C2AC2

A 1C1AC1
A !1

w1

6s
~C2

2 1C1
2 !

1quadratic in zero speed variables, ~113!

e2fFc
n5

3w1

2Aab
~C1AC1

A 2C2AC2
A !1

w1

6As
~C1

2 2C2
2 !,

~114!

where the modified non-zero speed characteristic varia
are

C65e4fH066e2fAsMn14a]nGn1
aw12bw2

w1
]AGA ,

~115!

C6A562Aabe2fMA1a]nGA1
w2b

3w1
]AGn . ~116!
04403
e
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Note thatw2 does not appear explicitly in Eq.~113! or Eq.
~114!, but it does appear in the definition of the characteris
variables.

F. Symmetric hyperbolicity and causal speeds

With the conditionh5s that is required for conservatio
of the main energy, the complete spectrum can be writ
entirely in terms ofs:

l5S 0,6As,6
A113s

2
,61D . ~117!

Strong hyperbolicity requiress.0 and the absence of supe
luminal speeds requiress<1. Note that withs5ab51 all
speeds are either 0 or61.

Now we impose positive definiteness of the energies, t
is, all eigenvalues of their respective matrices are stric
positive. This means that the main energy vanishes if
only if g̃ i j andf are constant and all other variables vanis
and that the constraint energy vanishes if and only ifGi is
constant and the Hamiltonian and momentum constra
vanish.~We are assuming that the two algebraic constra
vanish because they are being continuously re-imposed.!

To see when the constraint energy is positive definite,
need to decomposeGi , j as

Gi , j5Si j 1Ai j 1
1

3
g i j G

k
,k ~118!

whereSi j is symmetric and tracefree andAi j is antisymmet-
ric. We obtain a sum of simple squares and a quadratic fo
in the two variablesH0 andGi

,i .
The constraint energy is positive definite, and all spe

are causal, if and only if

w0.0, 0,w1,3w0 ,

w01w1

4w0
,ab<1, 2ab,

w2b2

3w1
,ab2

w01w1

2w0
.

~119!

It is interesting to see howw1 affects the possible range fo
ab.

The positivity of the main energy is more complicate
We must take into account that the partial tracest i anddi of
the three-index objectg̃ i j ,k appear both explicitly and
implicitly in the energy. We therefore decompose it as

g̃ i j ,k5
1

5
@~3d( i2t ( i !g̃ j )k1~2tk2dk!g̃ i j #1 f i jk ~120!

where f i jk is completely tracefree. We then obtain a qu
dratic form in t i anddi , plus c8f i jk

2 1c9f i jk f ik j . To analyze
the positivity of the latter we decomposef i jk in its 12 inde-
pendent frame components and analyze the correspon
quadratic form by brute force. It turns out to be positive
and only if c8.0 and 2c8,c9,2c8. Finally, assuming
causal speeds, we obtain the positivity conditions
2-8
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c0.0, c7.0, 2a2c0,~4ab21!c1 ,

5c0

2a2c02~4ab21!c1

36c1
,c32~b21!2c1

1
112ab24a

4
c0,0. ~121!

The three sets of inequalities are compatible, and can
solved sequentially, in this order: first choosec0 , c7 , w0 and
w1 independently, thena and b, followed by c1. Finally
choosec3 andw2. It is clear from this construction that th
solutions form a single connected set. For example, a p
sible solution withl5(0,61) is

a5b5s51, ~122!

c05c751, c152, c350, ~123!

w051, w15
1

2
, w250. ~124!

IV. THE NOR FORMULATION OF THE EINSTEIN
EQUATIONS

A. Field equations

In this section, all indices are moved withg i j and its
inverseg i j . The NOR system is obtained from the ADM
system with densitized lapse by introducing the variables

f i[g i j
, j2

r

2
g jkg jk,i , ~125!

wherer is a constant parameter. In@4# the choicer51 is
made.r52/3 makesf i5g̃ i j G̃

j . The definition of f i gives
rise to the constraint

Gi[ f i2g i j
, j1

r

2
g jkg jk,i50. ~126!

As in the BSSN system, we parameterise the use of
constraint witha and the use of the momentum constra
with b by addingaG( i , j ) and 2bMi to the evolution equa-
tions forKi j and f i . Following @4#, we also addcg i j H to the
evolution equation forKi j with free parameterc. The princi-
pal part of the evolution equations is

]0g i j .22Ki j , ~127!

]0Ki j .
1

2
@a~ f i , j1 f j ,i !2g i j ,k

k1~12a!~gki, j
k1gk j ,i

k!

1~ar212s!gklgkl,i j #1cg i j H, ~128!

]0f i.2~b21!Ki j
j1~r22b!K ,i , ~129!

where

H[H01a8Gi
,i , ~130!
04403
be

s-

is
t

H0.g i j ,
i j 2g i j g i j ,k

,k , ~131!

Mi.Ki j
, j2K ,i . ~132!

In @4#, r5a5a851.
The constraints system is

]0H0.22Mi
,i , ~133!

]0Mi.2S 1

2
12cDH0,i1

a

2
Gi , j

, j2S a

2
12ca8DGj ,i

, j ,

~134!

]0Gi52bMi . ~135!

B. Strong hyperbolicity

This proceeds exactly as in the BSSN system, w
pseudo-first order variables

ũ[~] ig jk ,Ki j , f i ! ~136!

and

ũc5$H0 ,Mi ,] iGj% ~137!

for the constraint system. We defineni , ni andqi j with re-
spect tog i j . ~In @4#, a flat auxiliary metric is introduced
instead.!

The scalar sector of the main system is diagonalizable
x.0, s.0 andxÞs, with

l5$0,6Ax,6As%, ~138!

with the shorthand

x[114c~12a8b!. ~139!

If h5x we can diagonalize the scalar sector also forx
5s. @Note that while we use the same shorthandh defined
by Eq. ~55! as in the BSSN system,Ah is not a speed in the
NOR system.#

The vector sector is diagonalizable forab.0 with

l5$0,6Aab%, ~140!

and the tensor sector is always diagonalizable, withl
561. For general values of (r,s,a,b,c,a8) the character-
istic variables are too long to give here.

The scalar sector of the constraint system is diagona
able forx.0 with characteristic variables

C0[]nGn1bH0 , ~141!

C6[~114c!H014ca8]nGn72AxMn , ~142!

with speedsl5$0,6Ax%, and the vector sector is diagona
izable forab.0 with

C6A[a]nGA62AabMA , ~143!

with speedsl5$6Aab%.
2-9
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The union of conditions for both the main system and
constraint system to be strongly hyperbolic, and for
speeds to be physical (ulu<1), is

0,s<1, 0,ab<1, 0,x<1, ~144!

and eitherxÞs, or x5s5h. The union of all speeds is

l5$0,61,6Aab,6As,6Ax%. ~145!

We see that we can make all of these speeds either ze
one by choosing

ab5s5x51⇒c~12a8b!50, ~146!

that is, eitherc50 or a85a. From now on we restrict our
selves to the choicec50. This makesx51, and removesa8
from the system. We keepa, b, r ands free, with the single
restriction thats51 requiresab51. The value ofr is irrel-
evant for strong hyperbolicity. Our results on strong hyp
bolicity of the NOR system confirm and generalize those
@4#, which were obtained using a pseudo-differential red
tion to first order.

C. Main system energy

The most general ansatz for the energy densitye is qua-
dratic in g i j ,k , Ki j and f i . As well as contracting the free
indices on pairs of these, we can form the contractionsK,
di[g i j

, j and t i[g jkg jk,i first:

e5c0Ki j
21c1f i

21c2t i
21c3di

21c4di f
i1c5t i f

i1c6di t
i

1c7K21c8g i j ,k
21c9g i j ,kg

ik, j . ~147!

The most general form that is conserved depends on four
parametersc0 , c1 , c3 andc7 obeying

2~ab21!c75~s22ab11!c0 ~148!

for arbitrary (r,s,a,b). The coefficientc0 must be strictly
positive and therefore there are two possibilities: eitherab
51 ~which now impliess51) and thenc0 andc7 are inde-
pendent, orabÞ1 and thenc7 is determined byc0 and the
parameters (s,a,b). What follows is valid in both cases
with the corresponding restrictions. Note that strong hyp
bolicity and energy conservation together give the two dir
tions of s51⇔ab51.

With the shorthands

e05Ki j
21

1

4
g i j ,k

21
2a2ab21

2
g i j ,kg

ik, j

2adiF f i2S b2
r

2D t i G , ~149!

e15F f i2S b2
r

2D t i1~b21!di G2

, ~150!

e25di
22g i j ,kg

ik, j , ~151!
04403
e
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e35K21
212ab22ar1s

4
t i
21~a21!dit

i2ati f
i

~152!

~the indices ong i j ,k are raised only after differentiation!, the
energy can be written as

e5c0e01c1e11@c32~b21!2c1#e21c7e3 . ~153!

The flux is

Fi5c0F0
i 1@c32~b21!2c1#F2

i 1c7F3
i , ~154!

with

F0
i 52aKi j @ f j2~b21!dj2~b2r/2!t j #1g i l K jk@2~11ab

22a!g l j ,k2g jk,l #, ~155!

F2
i 54g i l K jk~g l j ,k2g l j dk!, ~156!

F3
i 5K@2a fi1~ar222s!t i12~12a!di #12~12ab!

3Ki j t j . ~157!

~As in BSSN,e1 has no flux.! The flux in terms of charac-
teristic variables is

Fn5
c0

2
~U1AB

2 2U2AB
2 !1

c0

4Aab
~U1A

2 2U2A
2 !1

c01c7

2As

3~V1
2 2V2

2 !1
c0

16

c013c7

c01c7
~U1

2 2U2
2 !. ~158!

The characteristic variables including transversal derivati
are

U652]ngqq22z2]AgAn62Kqq , ~159!

V65a fn6AsKnn1
ar2s21

2
]ngqq

1
ar2s22a

2
]ngnn1z3]AgAn

1
c7

2~c01c7!
~2]ngqq22z2]AgAn

62AsKqq!, ~160!

U6A5a fA2a]ngAn62AabKAn1z3]BgAB

1]A~z4gnn1z5gqq!, ~161!

U6AB57KAB1
1

2
]ngAB1z2S ] (AgB)n

2
1

2
qAB]CgCnD , ~162!
2-10
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with speedsl5$61,6As,6Aab,61%, where we have de
fined the shorthands

z15
c32~b21!2c1

c0
, ~163!

z252a2ab2122z1 , ~164!

z35a2ab22z1 , ~165!

z45~2ab2s21!/21122a1ar/212z1 , ~166!

z55~2ab2s21!/21a~123b1r!/22z1 . ~167!

Note that the last term of Eq.~160! requiresc01c7Þ0. We
shall see below that this is always true.

D. Constraint system energy

The constraint energy is quadratic inH0 , Mi and Gi , j .
The most general form that is conserved has three free
rametersw0 , w1 andw2 for arbitrary (r,s,a,b). It is

ec5w0H0
214w1Mi

21
aw1

b
~Gi , j !

21w2Gi , jG
j ,i

12
w02w1

b
Gi

,iH01
w02~11ab!w12b2w2

b2 ~Gi
,i !

2.

~168!

The flux is

Fc
i 524~aw11bw2!Gj

, jM
i24w1H0Mi

14~bw2Gi , j1aw1Gj ,i !M j . ~169!

In terms of characteristic variables,

Fc
n5

w1

2
~C1

2 2C2
2 !1

w1

2Aab
~C1A

2 2C2A
2 !, ~170!

where, including transversal derivatives,

C65H01S a1
bw2

w1
D ]AGA72Mn , ~171!

C6A5a]nGA1
bw2

w1
]AGn62AabMA , ~172!

with speedsl5$61,6Aab%.

E. Symmetric hyperbolicity and causal speeds

Positivity of the constraint energy requires that for a giv
value ofab we must choosew0 , w1 andw2 obeying

w0.0, 0,
w1

w0
,1, b2

w2

w1
,

3

4 S 12
w1

w0
D ,
04403
a-

b2
uw2u
w1

,ab,
3

2 S 12
w1

w0
D2b2

w2

w1
. ~173!

The positivity conditions of the main energy will be analyz
separately for the generic and special cases.

In the general caseabÞ1 andsÞ1 positivity of the main
energy requires that~using the strong hyperbolicity conditio
s.0 and the causal speeds conditions<1)

c0.0,
113s

4
,ab,1,

a2c0~12s!,2sc1~12ab!,

2
5c0

4

2sc1~12ab!2a2c0~12s!

2c1~12ab!~424ab13s!2a2c0~4ab2123s!

,c32~b21!2c11
112ab24a

4
c0,0. ~174!

The value ofr is irrelevant also for symmetric hyperbolicity
The restrictions ons and ab guarantee thatc01c7 and c0
13c7 are always strictly positive. A simple example is

a5
3

4
, b51, s5

1

2
, r5

2

3
, ~175!

c051, c152, c35c750, ~176!

w051, w15
1

4
, w250. ~177!

In the special caseab5s51 positivity of the main en-
ergy requires

c0.0, c013c7.0, b2c1.c01c7.0,

2
5c0

4

b2c12c02c7

3b2c12c023c7

,c32~b21!2c11
3b24

4b
c0,0.

~178!

A simple example is

a5b5s51, r5
2

3
, ~179!

c051, c153, c35c750, ~180!

w051, w15
1

4
, w250. ~181!

V. CONSTRAINT-PRESERVING BOUNDARY
CONDITIONS

A. The boundary system

We have proved symmetric hyperbolicity for both th
main system and the constraint system of the BSSN
NOR formulations. Therefore both formulations adm
2-11
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constraint-preserving boundary conditions. We follow the
ample of@12#, but see also@13,29–31#. A general discussion
is left to future work. Here we summarize the basic idea, a
propose a family of boundary conditions for the case o
smooth boundary with tangential shift.

Because the constraint system is compatible with the e
lution system, for every pair of characteristic variablesC6 of
the constraint system with speeds6l, there is a pair of
characteristic variablesU6 with the same speeds, such th
~after suitable normalization!, they obey

C65]nU61•••, ~182!

where the dots, here and in the remainder of this subsec
indicate transversal derivatives and lower-order terms. In
der to guarantee that the constraint energy does not grow
formally impose the homogeneous maximally dissipat
boundary condition

C12kC250 ~183!

on the constraint system. This must then be translated in
boundary condition on the main system. From Eq.~29!, we
have

] tU65~6la1bn!]nU61•••. ~184!

In the following we restrict consideration to the case wh
bn50 on the boundary, so that thel50 characteristic vari-
ables propagate along the boundary. Equation~183! is then
equivalent to

] tU11k] tU25•••. ~185!

We define a variableX[U11kU2 that is restricted to the
boundary, with evolution equation

] tX5•••, ~186!

and impose the boundary condition

U11kU25X ~187!

on the main system.
We have chosen our notation in the previous sections

that in both BSSN and NOR we have

C65]nU61•••, ~188!

C6A5]nU6A1•••, ~189!

and the boundary conditions for either system are

C12k1C250, ~190!

C1A2k2C2A50, ~191!

V12k3V25F, ~192!

U1AB2k4U2AB5FAB , ~193!

where F and FAB are free boundary data, and Eqs.~190!,
~191! are implemented as
04403
-

d
a

o-

t

n,
r-
we
e

a

e

o

U11kU25X, ~194!

U1A1kU2A5XA . ~195!

@The characteristic variables in these systems are given
Eqs.~107!–~110!,~115!,~116! for the BSSN system and Eqs
~159!–~162!,~171!,~172! for the NOR system.#

In general the boundary system is coupled to the b
system, so thatX andXA in Eqs.~194!,~195! cannot be con-
sidered as given a priory, and then the constraint-preser
boundary conditions are not true maximally dissipati
boundary conditions. There are two exceptions, which h
been called ‘‘Neumann’’ and ‘‘Dirichlet’’ boundary condi
tions in the literature, where an extended boundary sys
can be given that decouples from the bulk system. This h
pens for the Einstein-Christoffel system linearized arou
Minkowski spacetime,@12#, the full Einstein equations in
harmonic gauge@13#, and the Maxwell equations@16#. This
boundary system can then be evolved before the bulk sys
is evolved,X andXA can be treated as givena priori, and the
constraint-preserving boundary conditions become t
maximally dissipative boundary conditions. The details,
suming a smooth boundary with tangential shift, are given
Appendices B and C. However, we would like to stress t
these boundary conditions are very restrictive: it does
seem very physical to find the boundary of the spacet
without knowing what is inside.

As we have assumed that the shift is everywhere tang
tial to the boundary, and this is possible in the case o
non-smooth boundary~for example a cube! only for zero
shift, we also restrict the analysis in this paper to a smo
boundary.

B. Mode analysis

If the boundary system does not decouple, we cannot
our current energy estimates to prove well-posedness of
initial-boundary value problem. We can, however, check
necessary condition for well-posedness, namely that there
no modes that grow exponentially in time where the grow
rates increases unboundedly with spatial frequency. We c
jecture that this condition is also sufficient.~For previous
applications of this analysis to the Einstein equations,
@28,29#.!

In the frozen coefficients approximation that we ha
been using throughout this paper we assume that the lin
ized perturbation varies over space and time scales m
smaller than those given by the background solution and
numerical domain. For consistency we must therefore
sume that the domain is a half space and that the bounda
a plane. We introduce coordinates so that the domains
2`,x1<0 and 2`,xA[(x2,x3),`, and the metric in
these coordinates isd i j . In the frozen coefficient approxima
tion a.0 andb i are also constant in space and time.~As
before we assumebn50 on the boundary, and therefore e
erywhere in the frozen coefficient approximation.!

After a Fourier transform inxA and Laplace transform in
t we are left with a system of linear ODEs with consta
coefficients inx1. In general this can be transformed into
2-12
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matrix eigenproblem by an exponential ansatz inx1. ~A pri-
ori an exponential times a polynomial inx1 could be re-
quired to find the general solution but this is not the ca
here.! The general solution with homogeneous bound
conditions can therefore be written as a sum of modes of
form

u~x1,t !5e(as1 ibAvA)t1 ivAxA1mx1
ū ~196!

whereū is a constant vector. With this ansatz we have]0u
5su, ]nu5mu and ]Au5 ivAu. We are interested only in
modes that are square-integrable over space at any mo
in time. Therefore we assume thatvA is real, and that
Rem.0. s andm will in general be complex. If a mode o
this form exists for some (s,vA ,m,ū), then one exists also
for (ks,kvA ,km,ū) for anyk.0. Therefore, if any growing
mode, with Res.0, exists, there are growing modes wi
arbitrarily large growth rates and the problem is ill-posed
necessary condition for well-posedness of the initi
boundary value problem is therefore that the homogene
boundary conditions rule out the existence of any mode w
Res.0 for realvA and Rem.0.

For simplicity we concentrate again on NOR with Eq
~179!–~181!. u5(g i j ,Ki j , f i) is decomposed with respect t
the normal vectorni5(1,0,0). It is helpful to introduce the
notationf m[ ivAf A and f p[pi f i wherepi is orthonormal to
v i andni , and similarly for other tensor components. Su
stituting the ansatz~196! into the NOR evolution equations
we find after some linear algebra that, forsÞ0,

~s21v22m2!ḡ i j 50 ~197!

and

K̄ i j 52
s

2
ḡ i j , ~198!

f̄ p50, ~199!

f̄ m52
2

3
v2~ ḡnn1ḡqq!, ~200!

f̄ n5
2

3
m~ḡnn1ḡqq!. ~201!

For a non-zero solution to exist, we must have

m22s25v2. ~202!

The coefficientsḡ i j are then free parameters. They determ
the coefficientsK̄ i j and f̄ i through Eqs.~198!–~201!.

Similarly, for the BSSN system with Eqs.~122!, ~123! we
find the equivalent of condition~197! for gD i j and f̄, and

K̄526sf̄, ~203!

AD i j 52
s

2
gD i j , ~204!
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GS p50, ~205!

GSm528v2f̄, ~206!

GS n58mf̄. ~207!

Note thatsgD i j represents the time derivative ofg̃ i j . There-
fore, as we assume that the algebraic constraintD50 is be-
ing imposed continuously,gD i j must be tracefree. Similarly
from the algebraic conditionT50, AD i j is also tracefree. With
Eq. ~197! obeyed,gD i j andf̄ are free coefficients, and dete
mine AD i j , K̄ andGS i .

We now substitute the ansatz~196! with these coefficients
into the six constraint equations~190!–~193!. We obtain six
algebraic equations that are linear in the four compone
ḡnn , ḡnm , ḡnp , ḡqq of ḡ i j and the two components,ḡmm

[2ḡpp , ḡmp of the tracefree transversal objectḡAB . We
can solve these recursively to find that allḡ i j 50, as long as

~12k i !m1~11k i !sÞ0 ~208!

for all four k i . For a mode to exist, this inequality must b
violated for at least one of thek i . Let the value of thisk i be
k, which therefore obeys

k~m2s!5~m1s!. ~209!

We now investigate the space of possible solutio
(m,s,v,k) of the two algebraic equations~202! and ~209!
with Rem.0 and Res.0, with the aim of finding a condi-
tion on k that excludes all such solutions. We first consid
the casev50. Then eitherm5s50, or m52s andk50.
Either solution does not correspond to growing squa
integrable modes. We can now assumev.0, and param-
etrize all solutions bys. We find

m~s!5As21v2, k~s!5S m2s

v D 22

. ~210!

We choose the principal branch of the square root and put
branch cut on the negative real axis, because this m
Res.0 to Rem.0, that is, the growing modes are precise
the square-integrable modes. This choice also mapss
.0 to uku.1, minus the negative real axis, and these val
of k must therefore be excluded because they would g
rise to a growing mode. Furthermore, if we want to bou
the solution on the boundary in terms of free boundary da
we must also exclude realk,21. ~See@16# for more de-
tails.! This then excludes alluku.1. On the other hand, in
the Appendix we show explicitly using the energy meth
that the problem is well-posed for2k15k25k35k4
561. We conjecture that the problem is in fact well-pos
for all complexk i with uk i u<1, in particular realk i with
21<k i<1.
2-13
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VI. CONCLUSIONS

We have constructed families of generalizations of
BSSN and NOR variants of the ADM evolution equatio
that are symmetric hyperbolic in the sense defined
second-order systems in@16#. This confirms the previous re
sult of @23# on the BSSN equations, without recourse to a
first-order reduction, and generalizes it by finding the m
general energies for the main and constraint system. T
generalization allows all characteristic modes to propag
with causal speeds, in particular with speeds (0,61) only.

In our analysis of the BSSN equations we also clarify
role for hyperbolicity of imposing the algebraic constrain
detg i j 51 and trÃi j 50 during the evolution. We find tha
the equations can be made symmetric hyperbolic if th
constraints are imposed continuously, and strongly hyp
bolic without imposing the constraints, but adding an ex
term to the evolution equations.

There is numerical evidence that densitizing the lapse
imposing the trace constraint improves stability in movi
single black hole simulations, even without imposing ma
mally dissipative constraint-preserving or boundary con
tions @26#. This is not surprising, as these changes make
evolution equations strongly hyperbolic, and imposing
determinant constraint as well would make them symme
hyperbolic.

Our results go some way towards explaining why t
BSSN system has been relatively successful in simula
black hole or neutron star binaries. It is possible that
Bona-Masso´ formulation @27#, a strongly hyperbolic first-
order version of the Einstein equations that introduced v
ables similar to theG̃ i or f i , has not been as successf
because it is first order, which we expect makes it m
susceptible to constraint-violating instabilities of the conv
gent type.

The NOR system is basically the BSSN system with
the conformal-traceless decomposition, and the similarity
our results for the two systems suggests that the NOR sys
shares all the advantages of the BSSN system, without
overhead of the extra variablesK andf and extra constraints
T50 andD50.

With symmetric hyperbolicity, we can make the initia
boundary value problem formally well-posed by imposi
maximally dissipative boundary conditions. However, the
boundary conditions are in general not compatible with
constraints, and so large constraint violations~of the conver-
gent type! propagate in from the boundaries. This can
avoided by replacing some of the maximally dissipat
boundary conditions on the main system by maximally d
sipative boundary conditions on the constraint system@12#,
and we have given details of how to do this for NOR a
BSSN, for the case of a smooth boundary with tangen
shift. Note that even when we have fixed the principal par
the field equations both the main and constraint energies
depend on a number of free parameters, which appear ex
itly in the boundary conditions.

Except for two rather unphysical special cases, we h
not proved that the initial-boundary value problem w
constraint-preserving boundary conditions is well-posed.
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have shown, however, that these boundary conditions
out perturbation modes with unbounded growth, which i
key necessary condition for well-posedness@6#. We plan to
investigate a proof of well-posedness, and in parallel to
amine stability in numerical experiments.

Our discussion of both maximally dissipative an
constraint-preserving boundary conditions assumes that
normal componentbn of the shift vanishes at the boundar
as then thel50 characteristic modes propagate along
boundary. This restriction allows for a shift that is ever
where tangential to a smooth boundary, and this could
used for example to employ corotating coordinates in
simulation of a binary system. The case of a general s
will be investigated in future work.

All equations in this paper were derived usingxTensor, an
open-sourceMathematicapackage for abstract tensor calc
lus, developed by J.M.M. It is available under the GNU Pu
lic License from http://metric.imaff.csic.es/Martin-Garci
xAct/.
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APPENDIX A: THE KST FORMULATION

The Kidder-Scheel-Teukolsky~KST! formulation @9# is
based on a reduction to first order of the ADM evolutio
equations with a densitized lapse~DADM ! with the auxiliary
variablesdki j[]kg i j . This gives rise to the auxiliary con
straintsCi jkl [] [ idj ]kl50. The principal part of the evolu
tion equations is

]0g i j .22Ki j , ~A1!

]0Ki j .DADM1gg i j H1zgklCk( i j ) l , ~A2!

]0dki j.DADM1hgk( iM j )1xg i j Mk . ~A3!

This system can be made strongly or symmetric hyperb
for certain ranges of the parameterss, g, z, h and x. In
particular, the Einstein-Christoffel~EC! system is the case
g50,z521,h54,x50, densitizing the lapse withs51 in
our notation. In this appendix we want to point out that on
s andg have counterparts in a second-order system.z has a
similar function to our parametera, and 2h1x has a similar
function to our parameterb, but these parameters vanish
we replacedki j by ]kg i j : Ci jkl then vanishes identically, an
di jk is no longer evolved explicitly by Eq.~A3!, but only
implicitly by Eq. ~A1!. Comparing the KST system to NOR
2-14
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with the benefit of hindsight, one could say that the on
indispensable effect ofdki j is to introduce the divergenc
dk

k j as an auxiliary variable.

APPENDIX B: DIRICHLET BOUNDARY SYSTEM

With

2k15k25k35k451 ~B1!

we have~in our example NOR system!

F52Knn , ~B2!

FAB522KAB , ~B3!

X54Kqq , ~B4!

XA52~ f A2]ngAn!1~r22!]A~gnn1gqq!.
~B5!

The boundary system

]0X5]AXA22]A~]Agqq!, ~B6!

]0XA5
1

2
]AX12]AF12]BFAB , ~B7!

]0~]Agqq!52
1

2
]AX ~B8!

decouples from the bulk system. Note that all variables of
boundary system have parity11 under the reflectionni→
2ni through the boundary. The boundary system is stron
hyperbolic with characteristic variables

X654]mgqq22Xm7A6X, ~B9!

X05Xm1]mgqq , ~B10!

which have speedsl5(6A3/2,0), as well asXp and]pgqq
with zero speed.~It is also symmetric hyperbolic, but this i
not required for well-posedness if the boundary is smo
without boundary, and therefore we do not give details he!
,

th
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APPENDIX C: NEUMANN BOUNDARY SYSTEM

With

2k15k25k35k4521 ~C1!

we have

F52 f n2]ngnn1~r22!]n~gnn1gqq!, ~C2!

U085 f n1
r22

2
]n~gnn1gqq!, ~C3!

FAB5]ngAB , ~C4!

X522]ngqq , ~C5!

XA54KAn . ~C6!

The autonomous boundary system is

]0X5]AXA , ~C7!

]0XA5
1

2
]AX12]BFAB12]AF22]AU0822]B]BgAn ,

~C8!

0~]AgBn!52
1

2
]AXB , ~C9!

]0U0850. ~C10!

Note that all variables of the boundary system have par
21. The boundary system is strongly hyperbolic with ch
acteristic variables

X654]mgmn2X7A6Xm , ~C11!

Y65]mgpn7
1

2
Xp , ~C12!

X05]mgmn1
1

2
X, ~C13!

with speedsl5(6A3/2,61,0), as well as the zero spee
variablesU08 , ]pgmn and]pgpn .
D
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