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Particles and vacuum for perturbative and nonperturbative Einstein-Rosen gravity
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We discuss the connection between the Fock space introduced by Ashtekar and Pierri for Einstein-Rosen
waves and its perturbative counterpart based on the concept of a particle that arises in linearized gravity with
a de Donder gauge. We show that the gauge adopted by Ashtekar and Pierri is indeed a generalization of the
de Donder gauge to full~i.e., non-linearized! cylindrical gravity. This fact allows us to relate the two descrip-
tions of the Einstein-Rosen waves analyzed here~the perturbative one and that made by Ashtekar and Pierri!
by means of a simple field redefinition. Employing this redefinition, we find the highly non-linear relation that
exists between the annihilation and creation-like variables of the two approaches. We next represent the
particle-like variables of the perturbative approach as regularized operators, introducing a cutoff. These can be
expanded in powers of the annihilation and creation operators of the Ashtekar-Pierri quantization, each addi-
tional power being multiplied by an extra square root of (\ times! the three-dimensional gravitational constant,
AG. In principle, the perturbative vacuum may be reached as the limit of a state annihilated by these regular-
ized operators when the cutoff is removed. This state can be written as the vacuum of the Ashtekar-Pierri
quantization corrected by a perturbative series inAG with no contributions from particles with energies above
the cutoff. We show that the first-order correction is in fact a state of infinite norm. This result is interpreted as
indicating that the Fock quantizations in the two approaches are unitarily inequivalent and, in any case, proves
that the perturbative vacuum is not analytic in the interaction constant. Therefore a standard perturbative
quantum analysis fails.

DOI: 10.1103/PhysRevD.70.044028 PACS number~s!: 04.60.Ds, 04.60.Kz, 04.62.1v, 11.15.Bt
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I. INTRODUCTION

Solutions to general relativity in vacuo with whole cylin
drical symmetry seem to have been first found by Beck@1#
and then rediscovered by Einstein and Rosen~ER! in the
search for spacetimes that could describe the propagatio
gravitational waves@2#. By whole cylindrical symmetry@3#
we understand the existence~in topologically trivial space-
times! of two linearly independent, commuting, and hype
surface orthogonal Killing vector fields, one of them rot
tional and the other translational. Among the motivations
the study of these solutions was Einstein’s belief that one
the fundamental problems of physics~at least at his time!
was the lack of a satisfactory theory of radiation, especia
in the presence of the gravitational field@4#.

The ER solutions are cylindrical gravitational waves w
linear polarization. Cylindrical waves with general polariz
tion, whose Killing vector fields are not hypersurface o
thogonal, were originally analyzed by Jordan, Ehlers a
Kundt and by Kompaneets@5#.

The ability to provide a model with the field complexit
of general relativity, but with known exact solutions whic
describe gravitational waves, has endowed the family of
spacetimes with a prominent role in the analysis of the qu
tization of gravitational systems@6–16#. Kuchař pioneered
this line of work by discussing the canonical quantization
1550-7998/2004/70~4!/044028~14!/$22.50 70 0440
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these cylindrical waves@6#. A key remark in this discussion
is that the dynamics of the ER spacetimes is equivalen
that of a cylindrically symmetric, massless scalar field pro
gating on an auxiliary Minkowski background. Thanks
this fact, one can recast the system as three-dimensi
gravity coupled to a scalar field with rotational symmet
This was precisely the approach followed by Allen to furth
explore the quantization of the model, studying regulari
tion issues and the relevance of the quantum fluctuati
around the vacuum@7#.

Employing this three-dimensional formulation, a cons
tent and essentially complete quantization of the ER wa
was obtained some years ago by Ashtekar and Pierri~AP!
@8#. This quantization was achieved after a careful treatm
of the regularity conditions at the symmetry axis, on the o
hand, and of the boundary conditions at spatial infinity th
ensure asymptotic flatness in cylindrical gravity@8,17#, on
the other. The quantization accounts as well for certain fu
tional analytic subtleties that arise in the regularization
metric operators. Actually, some of these subtleties were l
revisited by Varadarajan@9#. The definition and regulariza
tion of the metric operators, not from the perspective
three-dimensional gravity coupled to a scalar field, but fro
a purely gravitational, four-dimensional perspective was d
cussed in Ref.@10#.

This quantum framework has allowed to show that th
©2004 The American Physical Society28-1
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exist unexpectedly large quantum effects in the model
least in the asymptotic region@11–13# and the cylindrical
axis @10#. A more detailed study of the consequences of
vacuum fluctuations for microcausality, including the sme
ing of light cones all over the spacetime and the blurring
the symmetry axis, has recently been carried out in Ref.@14#.

In the quantization proposed by Ashtekar and Pierri,
Hilbert space is the Fock space corresponding to the rotat
ally symmetric scalar field that propagates in the thr
dimensional, auxiliary Minkowski spacetime. There ex
two relevant notions of evolution in this Hilbert space: o
associated with the auxiliary Minkowski time and anoth
with the physical time@8,14#. In the former case, the dynam
ics is dictated by the Hamiltonian of the ax
symmetric, massless scalar field,H0, while in the latter the
Hamiltonian is a non-linear, bounded function of
H5(12e24G3H0)/(4G3) @18–20#. Here, G3 is the three-
dimensional gravitational constant or, equivalently, the eff
tive Newton constant per unit length in the direction of t
axis @10#.

The difference between the dynamical generators ar
because the presence of energy in the gravitational wa
causes a deficit angle at spatial infinity that affects the no
of the asymptotic, time-like Killing vector. Since this nor
must be unity for the physical time, one must consider
energy dependent change of time that leads to the ab
transformation in the Hamiltonian. In fact, the emergence
a bounded physical Hamiltonian proportional to the defi
angle produced by the wave is a feature not just of ER gr
ity, but of cylindrical gravitational waves with general pola
ization ~even in the presence of spinning strings! @21,22#.

Regardless of which Hamiltonian is considered to gov
the quantum dynamics,H0 or H, the Fock spaces and qua
tizations obtained in both cases are equivalent, in as muc
the corresponding evolution operators are unitary and
two initial time copies are exactly the same@14#. However, a
question that has not been addressed yet in the literatu
whether the Fock space employed in the AP quantizatio
the kind of Fock space that one would introduce in a per
bative treatment of the ER model and, if they differ, wh
relation exists between them. The main aim of this article
to discuss this issue. This is a fundamental question in o
to answer whether one can attain or not the correct n
perturbative results by adopting a perturbative approach

In a perturbative formalism, one would adopt as met
variables linear combinations of the difference between
Minkowski background and the actual spacetime metric,
panding the gravitational action in powers of them. The q
dratic term provides the action of linearized gravity, wh
the higher-order terms can be regarded as describing inte
tions. At this stage, it is convenient to adopt a gauge t
simplifies the linearized equations. A frequently used ga
is the de Donder or Lorentz gauge@23#, in which the linear-
ized gravitational equations reduce to wave equations, so
one easily arrives at a notion of particle.

We will see that the gauge fixing introduced by Ashtek
and Pierri is nothing but a generalization of the de Don
gauge from linearized to full ER gravity. Therefore, adopti
it as a valid gauge~with a clear interpretation in linearize
04402
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gravity!, the relation between the AP and the perturbat
treatments will straightforwardly follow from the transfo
mation on the configuration space that connects the me
variables used in each of the two descriptions. In particu
this transformation, when completed into a canonical o
will provide the relation between the particle-like variabl
of the two formalisms.

The plan of the work is as follows. We first review the E
model and the most important aspects of the AP quantiza
in Sec. II. In Sec. III we introduce a description of the E
waves in terms of fields that are linear in the excess of
metric around the Minkowski background and translate
them the AP gauge fixing. In Sec. IV we adapt to this d
scription the discussion of Ref.@14# about the linearization
of the model. Section V proves that the linearization of t
AP gauge is a de Donder gauge. Furthermore, while in g
eral relativity the de Donder gauge leaves some ambiguit
the choice of coordinates@23#, the gauge is completely de
termined in linearized ER gravity when one imposes suita
regularity conditions, corresponding to a fixed location of t
symmetry axis. Employing the transformation that maps
basic metric field of the reduced ER model in our descript
~linear in the excess around Minkowski! to the axisymmetric
scalar field of the AP approach, we find in Sec. VI the re
tion between the creation and annihilation variables ass
ated with each of the two fields considered. These variab
are promoted to regularized operators in Sec. VII. Us
them, we try to determine the perturbative vacuum in S
VIII. In particular, we investigate whether this vacuum c
be reached from the non-perturbative one by means o
series expansion in~the square root of! the gravitational con-
stant. The answer turns out to be in the negative, becaus
first correction to the non-perturbative vacuum would ha
an infinite norm, even if ultraviolet divergences are regula
with a cutoff. Finally, Sec. IX contains the conclusions.

In the rest of the paper, we callG5G3\, and adopt a
system of units in which\5c51, with \ being Planck con-
stant andc the speed of light. Note thatG3 is an inverse
energy, whereasG has dimensions of length.

II. ASHTEKAR-PIERRI QUANTIZATION

The ER waves are linearly polarized, cylindrical waves
vacuum general relativity. They can be described by the m
ric @8,10#

ds25e2c@2N2dt21eg~dR1NRdt!21~8Gr !2du2#

1ecdZ2. ~2.1!

Here, ZPR is the coordinate of the symmetry axis,uPS1

corresponds to the axial coordinate,RPR1 will be called the
radial coordinate,NR describes the radial component of th
shift vector andN is the lapse function. Owing to the cylin
drical symmetry, all metric functionsNR, N, c, r, and g
depend only on the timet and on the radial coordinateR. We
follow the convention that the dimensionality of the spac
time interval is carried by the coordinatest, R, andZ, while
the metric fields are dimensionless@24#.
8-2
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The gravitational action, endowed with surface terms s
able for a fixed metric on the boundaries~namely, the initial
and final t sections and an exterior cylinderR5Rf in the
limit Rf→` @10#!, takes the form@6,17#

S5E
t1

t2
dtF2H1E

0

`

dR~pgġ1pr ṙ 1pcċ!G , ~2.2!

where thep’s are the momenta canonically conjugate to t
metric fields, the overdot stands for the derivative with
spect tot, andH is the total Hamiltonian:

H5
1

4G3
~12e2g`/2!1E

0

`

dR@NC1NRCR#.

The first contribution is a boundary term at infinity, wit
g`ªg(R→`). Besides, the Hamiltonian constraintC and
the ~radial! diffeomorphism constraintCR are

C5e2g/2F2r 92g8r 82pgpr1
pc

2

2r
1

r ~c8!2

2 G ,
CR522pg81pgg81prr 81pcc8.

The prime denotes the derivative with respect toR.
The Lagrangian of the model can be straightforwar

obtained by means of a Legendre transformation using
relation between momenta and time derivatives of the me
that the Hamilton equations provide

pgNe2g/252 ṙ 1NRr 8,

prNe2g/252ġ12~NR!82NRg8,

pcNe2g/25r ċ2NRrc8. ~2.3!

All metric fields, as well as their momenta, are subject
boundary conditions that ensure the regularity at the sym
try axis, the asymptotic flatness at spatial infinity~with a
possible deficit angle!, and a well-posed Hamiltonian dy
namics. We refer to the work of Ashtekar and Pierri@8# for
details about these conditions. In particular, we assume
all fields areC` everywhere, that at the axis

g~R50!50, NR~R50!50,

r~R50!50, r8~R50!50, ~2.4!

where we have calledrªr 2R/(8G), and that at spatia
infinity,

c5OS 1

RD , r5O~1!. ~2.5!

We say that a functionf is of asymptotic orderO(R2a) if the
productsRaf , Ra11f 8, andRa12f 9 admit limits asR tends to
infinity @8#. In addition, we note that, for the stability unde
diffeomorphisms of the regularity condition thatg vanish at
the axis, one must further restrict the shift vector to sati
@25#
04402
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Hg~R̃!,E dRNRCRJ U
R̃50

52~NR!8uR̃5050, ~2.6!

where the curved brackets denote Poisson brackets.
As shown by Ashtekar and Pierri@8#, the gauge freedom

corresponding to the Hamiltonian and radial constraints
be totally removed by imposing, respectively, the conditio

xR
ªr 2

R

8G
50, xªpg50. ~2.7!

In this way, one arrives at a reduced model whose only
gree of freedom is the scalar fieldc. The reduced metric is
given by Eq.~2.1! with NR50, 8Gr5R and

g5E
0

R

dR̃
R̃

2 F ~c8!21
~8Gpc!2

R̃2 G . ~2.8!

The reduced dynamics in the timet is generated by the
physical Hamiltonian H5(12e24G3H0)/(4G3), where
H0ªg` /(8G3) is ~up to a constant factor! the Hamiltonian
that would correspond to a free, axisymmetric, massless
lar field c in three dimensions.

The evolution of the fieldc gets considerably simplified
if one introduces the energy dependent change of t
T5e24G3H0t. In this auxiliary time, the dynamics is dictate
precisely by the free-field HamiltonianH0, so the equation
of motion forc is just a wave equation with rotational sym
metry in a three-dimensional Minkowski spacetime with c
ordinates (T,R,u). The classical solutions with regularity a
the axis have the form

c~R,T!5A4GE
0

`

dkJ0~Rk!@A~k!e2 ikT1A†~k!eikT#,

whereJ0 is the zeroth-order Bessel function@26#. The func-
tion A(k) and its complex conjugateA†(k) are fixed by the
initial conditions and play the role of annihilation and cr
ation variables. In terms of them, the free-field Hamiltoni
can be written asH05*0

`dkkA†(k)A(k).
The quantization of the reduced ER model can be car

out following standard techniques. We introduce a Fo
space in whichĉ(R,0), the quantum counterpart ofc(R,0),
is an operator-valued distribution@27#. Its action is deter-
mined by those ofÂ(k) andÂ†(k), annihilation and creation
operators with non-vanishing commutators:

@Â~k!,Â†~ k̃!#5d~k,k̃!. ~2.9!

Explicitly,

ĉ~R,0!5A4GE
0

`

dkJ0~Rk!@Â~k!1Â†~k!# ~2.10!

and the Fock space is constructed over the Hilbert spac
square integrable functions on the positive real ax
L2(R1,dk). In this space, the free-field Hamiltonian is re
resented by the self-adjoint operator
8-3
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Ĥ05E
0

`

dkkÂ†~k!Â~k!.

Via the spectral theorem, we can then promote the phys
Hamiltonian to a bounded operatorĤ. The evolution in the
time parametersT and t are thus respectively given by th
unitary operatorsÛ0(T)5e2 iTĤ0 and Û(t)5e2 i tĤ .

In order to arrive at a well-defined operator forc, it is
necessary to regularize the quantum field~2.10! @10#. This
can be done by smearing the Bessel functionJ0(Rk) with a
square integrable functiongPL2(R1,dk):

ĉ~Rug!5A4GE
0

`

dkg~k!J0~Rk!@Â~k!1Â†~k!#.

~2.11!

It is then possible to define meaningful metric operators,
for the diagonalZ andu components~at the initial time!, by
exponentiating the regulated version of the field,e6ĉ(Rug)

@10#. For simplicity, we will restrict in the following to regu
lators that correspond to a cutoffkc , so that

g~k!5H 1 if k<kc ,

0 if k.kc .
~2.12!

In particular, we haveg2(k)5g(k).

III. NEW METRIC FIELDS

We will introduce now a different field parametrizatio
for the Einstein-Rosen metric such that the new fields
linear in the metric excess around Minkowski spacetime:

ds252~122N̄2c̄ !dt212N̄RdtdR1~11ḡ2c̄ !dR2

1~R22R2c̄116GRr̄ !du21~11c̄ !dZ2. ~3.1!

Obviously, when all the fields (N̄,N̄R,c̄,r̄,ḡ) vanish, we re-
cover the Minkowski solution. Moreover, our new parame
zation is specially suited for the study of linearized grav
since it reproduces the linearization of the spacetime me
~2.1! around the Minkowski background@14# @apart from the
notation with over-bars and withr5r 2R/(8G)]. Hence, at
first order one can interpret our new metric fields as
linearization of those used in the AP formulation.

The exact relation between both sets of fields is found
identifying the metric expressions. One gets

c5 ln~11c̄ !, ~3.2!

g5 ln@~11c̄ !~11ḡ2c̄ !#,

8Gr5A11c̄AR22R2c̄116GRr̄,

N5A11c̄A112N̄2c̄2
~N̄R!2

11ḡ2c̄
,

04402
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N̄R

11ḡ2c̄
. ~3.3!

In principle, if one insists on imposing that the fields on t
left hand side be real, the range of the new metric fie
should be properly restricted. Note also that the transform
tion is always well defined~even with these reality condi
tions! in a neighborhood of the Minkowski solution, i.e., fo
small over-barred fields and hence for the linearized theo

The above transformation can be easily completed int
canonical one. Old and new momenta are related by

pc5~11c̄ !pc̄1~2c̄2ḡ !pḡ1S R

8G
c̄2 r̄ D pr̄ ,

pg5~11ḡ2c̄ !pḡ ,

pr5A12c̄1
16Gr̄

R

pr̄

A11c̄
. ~3.4!

Using these expressions, it is not difficult to write th
constraints of the ER model in terms of the new canoni
variables. The associated gauge freedom can be elimin
by imposing conditions equivalent to those employed
Ashtekar and Pierri, namely

x̄R
ª~11c̄ !r̄2

R

16G
c̄250, x̄ªpḡ50. ~3.5!

Taking into account relations~3.2!, ~3.3!, and~3.4!, one can
check that these conditions are identical to the gauge fix
requirements~2.7! except for metric-dependent, global mu
tiplicative factors that differ from zero for almost all value
of the metric fields and, in particular, in a neighborhood
their origin ~the Minkowski background!.

The reduction of the model can be carried out by the sa
procedure followed by Ashtekar and Pierri, translated to
new variables, so we will not repeat the details here. Perh
the only noticeable point is that, owing to the dependence
the gauge fixing conditionx̄R on c̄, the momentum canoni
cally conjugate toc̄ after reduction,P̄c̄ , does not coincide
with the original onepc̄ ~in other words, the Poisson an
Dirac brackets ofc̄ andpc̄ differ!. One finds instead

P̄c̄5
2~11c̄ !

2~11c̄ !1Rc̄c̄8~21c̄ !
pc̄ .

The only physical degree of freedom is described byc̄.
The reduced metric, regular at the axis and with asympt
cally unit lapse, takes the form

ds25~11ḡ2c̄ !F2
dt2

11ḡ`

1dR2G1
R2

11c̄
du2

1~11c̄ !dZ2,
8-4
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with ḡ given by

~11ḡ2c̄ !~11c̄ !5expH E
0

R

dR̃
R̃

2 F S c̄8

11c̄
D 2

1S 8GP̄c̄

R̃
D 2

~11c̄ !2G J . ~3.6!

In the reduced metric,ḡ` denotes the limit whenR→` of ḡ.
Recalling conditions~2.5! and relations~3.3!, which in par-
ticular imply thatc̄`50, one easily checks that

11ḡ`5eg`5expH E
0

`

dR
R

2 F S c̄8

11c̄
D 2

1S 8GP̄c̄

R
D 2

~11c̄ !2G J . ~3.7!

Finally, the action of the reduced model is

Sr5E
t1

t2
dtF2

1

4G3
S 12

1

A11ḡ`

D 1E
0

`

dRP̄c̄ċ̄G .

The first contribution is therefore minus the reduced Ham
tonian. In fact, as one could expect, the above express
for the reduced metric and action reproduce exactly th
obtained in the AP treatment of the ER model, provided t
the basic fieldsc andc̄ are related byc5 ln(11c̄) @see Eq.
~3.2!# and their canonical momenta by

pc5 P̄c̄~11c̄ !. ~3.8!

This is precisely the change of momentum needed to c
plete our field redefinition into a canonical transformation
the reduced system. In other words, instead of changing
metric fields for the ER waves, completing the transform
tion into a canonical one, and reducing the system, one
simply proceed to redefine the fieldc in the reduced mode
while preserving its canonical symplectic structure.

It is worth noting that, if one insists that the induced m
ric of the reduced model be positive, one should demand
the fieldc be real or, equivalently, thatc̄.21. In a pertur-
bative analysis, however, the fieldc̄ is directly assumed to
be small and so the above reality condition would be ob
ated in practice.

IV. EINSTEIN-ROSEN WAVES IN LINEARIZED GRAVITY

Let us consider the linearization of the ER model arou
the Minkowski solution. Since our new parametrization
the metric is linear in the excess around the flat backgrou
the action of the linearized theoryS̄l can be obtained from
that in general relativity by keeping only up to quadra
terms in our fields. Our discussion will essentially follow th
lines presented in Ref.@14#. One starts with the Lagrangia
form of the action~2.2!, which can be easily deduced em
04402
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ploying the Hamilton equations~2.3!. Next, one expresses
in terms of our new metric fields employing the transform
tions ~3.2! and ~3.3!, and expands the result in powers
those fields. As we have commented, the actionS̄l is given
by the terms quadratic in the fields. In deducing this acti
one can get rid of several boundary terms by using the re
larity and asymptotic conditions~2.4! and ~2.5!. Together
with our field redefinitions, the latter of these sets of con
tions implies that, at spatial infinity, the limits ofc̄, Rc̄8,
r̄/R, and r̄8 vanish. The regularity conditions~2.4! guaran-
tee in turn that@for generic values ofc̄(R50)] N̄R and r̄
vanish at the axis and

ḡ~R50!516Gr̄8~R50!5
c̄2~R50!

11c̄~R50!
. ~4.1!

We notice also that the strict linearization of these relatio
between field values leads toḡ(R50)5 r̄8(R50)50.

Writing back the action in Hamiltonian form by means
a Legendre transformation, one gets@14#

S̄l5E
t1

t2
dtF2H̄l1E

0

`

dR~Pḡġ̄1Pr̄ ṙ̄1Pc̄ċ̄ !G ,
H̄l5E

0

`

dRF4GPc̄
2

R
1

R~ c̄8!2

16G
2PḡPr̄1N̄C̄l1N̄RC̄l

RG .

~4.2!

Here, theP’s denote the canonical momenta in the lineariz
model and, in terms of time derivatives of the metric, ta
the expressions

Pḡ5
N̄R

8G
2 ṙ̄, Pr̄52~N̄R!82 ġ̄, Pc̄5

R

8G
ċ̄. ~4.3!

In addition, the linearized Hamiltonian and radial constrai
are

C̄l52r̄92
ḡ8

8G
, C̄l

R5
Pr̄

8G
22Pḡ

8 . ~4.4!

It has recently been shown@14# that the gauge freedom o
the linearized system can be completely removed by
manding that

x̄ l
R
ª r̄50, x̄ lªPḡ50.

We point out that these conditions are just the linearization
the gauge fixing requirements~3.5! imposed on the full ER
model or, equivalently, of the gauge fixing~2.7! introduced
by Ashtekar and Pierri. The subsequent reduction can be
ried out exactly as explained in Ref.@14#. The degrees of
freedom of the system arec̄ and its momentum. The reduce
action is
8-5
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S̄25E
t1

t2
dtF2H01E

0

`

dRPc̄ċ̄G .
Here,H0 is again the Hamiltonian of a massless scalar fi
with rotational symmetry in three dimensions, and can
identified withg` /(8G3) if, in Eq. ~2.8!, one evaluatesg at
the canonical pair (c̄,Pc̄). At quadratic order in these fields
we see from Eq.~3.7! that H0 coincides as well with
ḡ` /(8G3). Thus, the free-field Hamiltonian provides the r
duced Hamiltonian of the model in linearized gravity.

Moreover, in the selected gauge, the three-dimensio
metric of the linearized model is just Minkowski. The sca
field c̄ determines the norm of the Killing vector]Z , and
appears in the reduced four-dimensional metric of the line
ized theory in the form

dsl
25~12c̄ !~2dT21dR21R2du2!1~11c̄ !dZ2.

~4.5!

We have renamedT the time coordinate of the linearize
system to emphasize that it can be identified with the au
iary time of the reduced ER model analyzed in Sec. II, in
much as they are both Minkowskian in three dimensions
the corresponding evolution is generated by the free-fi
HamiltonianH0 in both cases.

V. de DONDER GAUGE

We want to prove now that the gauge chosen by Ashte
and Pierri is a higher-order generalization of the de Don
gauge for linearized gravity, i.e. that the linearization of t
AP gauge~which is precisely that imposed in Sec. IV t
reduce the linearized system! is of de Donder type. Let us
start with some notation. We callhmn5gmn2hmn the differ-
ence between the actual spacetime metricgmn and the flat
metric hmn of the Minkowski background @hmn

5(21,1,1,1) in a Cartesian coordinate system#. Standard
perturbative approaches to gravity analyze the gravitatio
interaction by means of an expansion in

h̄mn5hmn2
h

2
hmn

where h5hmnhmn is the trace ofhmn . In a first-order ap-
proximation~namely, in linearized gravity!, only terms up to
quadratic inh̄mn are maintained in the action. To go beyon
that approximation, higher-order terms are treated pertu
tively as interactions.

In the linearized theory, a frequently followed approach
to ~partially! remove the gauge freedom by introducing a
of conditions that simplify the equations of motion forh̄mn ,
transforming them into wave equations@23#, namely

h̄mn,dhnd5h̄mn,
n50.
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These conditions are known as de Donder~or Lorentz!
gauge, and provide an acceptable gauge fixing in lineari
gravity, although they still leave some freedom in the cho
of coordinates@23#.

The most straightforward way to elucidate whether t
gauge imposed in the AP analysis of the ER waves i
higher-order generalization of a de Donder gauge is to
culate the value ofh̄mn,

n in the reduced model of Sec. III. I

h̄mn,
n vanishes at first order in the fields, then the lineariz

tion of our gauge fixing conditions is indeed a de Dond
gauge.

Changing from cylindrical coordinates (R,u) to Cartesian
ones (x,y) and employing that, for any cylindrically sym
metric field f,

]xf 5
x

R
f 8, ]yf 5

y

R
f 8, ]Zf 50,

a direct calculation shows thath̄Zn,
n50 and

h̄tn,
n52

1

2 F ḡ`

11ḡ`

~ ġ̄2 ċ̄ !1
ċ̄ c̄~21c̄ !

~11c̄ !2 G ,

h̄xn,
n5

x

2RF ḡ`

11ḡ`

~ ḡ82c̄8!2
c̄8c̄~21c̄ !

~11c̄ !2 G
1

x

R2 S ḡ2
c̄2

11c̄
D , ~5.1!

with a similar expression forh̄yn,
n replacingx with y in the

last equation. Here,ḡ is determined in terms ofc̄ and its
momentum by Eq.~3.6!. In particular, this value ofḡ is at
least quadratic in the fields of the reduced model.

It is easy to check that, while the metric derivativesh̄mn,
n

do not generally vanish according to Eq.~5.1!, their value is
in fact equal to zero at linear order after the reduction of
system. As a consequence, the gauge that we have chose
the analysis of the ER waves in linearized gravity is a
Donder gauge, and the gauge fixing selected by Ashtekar
Pierri is a valid generalization of it to the full~i.e., non-
linearized! model. In fact, a straightforward computation u
ing the reduced metric~4.5! of the linearized model leads t
the conclusion thath̄mn52c̄dm

Zdn
Z . Since cylindrical symme-

try guarantees the independence of the fieldc̄ on theZ co-
ordinate, we see that our gauge for the linearized theory
isfies the de Donder conditions, in agreement with o
comments above.

Actually, the relation between the linearization of the A
gauge, on the one hand, and the de Donder gauge for
linearized ER model, on the other, is even tighter. In gene
relativity, the de Donder conditions select not just one, bu
family of gauges, leaving a remaining freedom in the cho
of coordinates@23#. For ER waves in linearized gravity, how
ever, it is possible to see that the de Donder gauge is un
8-6
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if one fixes the location of the symmetry axis atR50 and
imposes there~the linearized counterpart of! the regularity
conditions~2.4! and ~2.6!.

Let us prove this assertion. From Eq.~4.1! and the com-
ments above it, we see that, at linear order in the fields,
regularity conditions~2.4! amount to

r̄~R50!5 r̄8~R50!5ḡ~R50!5N̄R~R50!50.
~5.2!

Besides, the stability under diffeomorphisms of the regula
conditions demands the restriction~2.6!, which translates
into

~N̄R!8~R50!50. ~5.3!

On the other hand, the de Donder conditionsh̄mn,
n50 for the

cylindrically symmetric metric~3.1! are equivalent to the
equations

~N̄R!81 Ṅ̄2
ġ̄

2
2

8Gṙ̄

R
50, ~5.4!

Ṅ̄R1N̄82
ḡ8

2
2

ḡ

R
1

8Gr̄8

R
1

8Gr̄

R2
50. ~5.5!

The linearized Hamiltonian constraint in Eq.~4.4! and the
regularity conditions~5.2! imply that

ḡ516Gr̄8. ~5.6!

Recalling the Hamilton equations~4.3!, the radial constraint
of the linearized theory is then straightforwardly satisfied.
addition, differentiating Eqs.~5.4! and~5.5! with respect toR
and t, respectively, subtracting the results, and substitut
relation ~5.6!, we arrive at

~N̄R!92 N̈̄R50.

So N̄R can be expanded in terms of ‘‘plane’’ waveseik(t1R)

andeik(t2R), with kPR. But the only superposition of thes
waves that satisfies the conditionsN̄R5(N̄R)850 at R50
for all times @see requirements~5.2! and ~5.3!# is the zero
field. For N̄R50 and ḡ516Gr̄8, the de Donder equation
~5.4! and ~5.5! reduce simply to

N̄58Gr̄81
8Gr̄

R
1c, ~5.7!

with c being a constant.
We have not used yet the equation of motion forr̄ in the

linearized system. This equation can be easily deduced f
the linearized action~4.2!, taking into account the Hamilton
equations~4.3! and the form of the linearized constraints:

8Gr̈̄2N̄82 Ṅ̄R50.
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It is possible to see that, given relation~5.6!, the only other
independent equation of motion left in the system is that
the field c̄, which percolates to the reduced model. W
N̄R50 and formula~5.7!, the above equation forr̄ translates
into

r̈̄5 r̄91
r̄8

R
2

r̄

R2
,

which admits solutions of the formeiktJ1(Rk) and
eiktY1(Rk), kPR, in terms of first-order Bessel function
@26#. Again, the only solution of this type allowed by ou
regularity conditions at the axis, which demand thatr̄ andr̄8

vanish atR50, is the zero function. Sincer̄ vanishes, Eq.
~5.7! implies then thatN̄ must be constant. This constant ca
be set equal to zero by requiring a vanishing excess of
lapse with respect to the Minkowski background, either
the symmetry axis or at spatial infinity.

In conclusion, we have shown that the de Donder con
tions, together with our regularity requirements atR50,
completely determine the gauge choice for ER waves in
earized gravity. The gauge fixing is such that all metric fie
vanish exceptc̄. The resulting reduced metric is just th
found in Sec. IV for the linearized model, namely the met
obtained with the linearization of the gauge conditions
lected by Ashtekar and Pierri. As a consequence, the ga
chosen in the AP formulation is a valid generalization of t
de Donder gauge from the linearized to the full ER mode

VI. ANNIHILATION AND CREATION VARIABLES

In order to discuss the connection between the Fock sp
employed in the AP quantization of the ER model and t
which would arise in its perturbative quantization, we w
analyze in this section the relation between the annihilat
and creation variables that are associated with each of t
two approaches.

As we have commented, the basic metric fields in st
dard perturbative treatments of gravity,h̄mn , are linear in the
excess of the metric around Minkowski. In the lineariz
theory, one chooses a gauge that simplifies the correspon
equations of motion, for instance a de Donder gauge. W
the linearized description is modified by allowing the pre
ence of gravitational interactions, this gauge can be corre
with terms that are of higher order in the fields, both
ensure that the gauge continues to be well posed and to
cilitate the analysis of the system. In Sec. V we showed t
the gauge choice made by Ashtekar and Pierri is precise
modified de Donder gauge of this type. We will therefo
select it as a valid gauge to compare the results of the AP
the perturbative approaches to the quantization of the
model.

From this perspective, the relation between the two
proaches is based just on a field redefinition, namely
transformationc5 ln(11c̄) mapping the fieldc of the AP
formulation to the fieldc̄, which describes the differenc
with respect to the Minkowski background of the diagonaZ
8-7
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component of the metric. In the reduced ER model, this fi
redefinition becomes a canonical transformation when c
pleted with the momentum change~3.8!. The relation that we
are interested in is that between the annihilation and crea
variables associated with each of the canonical pairs (c,pc)
and (c̄,P̄c̄).

Although the fields considered are time dependent,
will see below that, for our purposes, it will suffice to stud
their relation on the initial time surface. If we wanted
analyze the dynamics using the standard techniques of
turbative gravity, we would be forced to consider the evo
tion in the auxiliary timeT of the ER model, rather than in
the physical timet, at least in a first step. The reason is th
the Lagrangian of the reduced model is local only in t
former case. For the physical time, the action can be
garded as the sum of a local, a bilocal, and in general m
local terms of all orders. Once we had dealt with the gra
tational interactions in the auxiliary time by perturbati
methods, we could change the dynamical description to
physical time in a second step, taking into account the ba
reaction produced by the presence of gravitational wave
the form of a deficit angle at spatial infinity, accompanied
a modification of the norm of the asymptotic time-like Kil
ing vector.

This philosophy is in fact similar to that adopted in th
discussion of cylindrical gravitational waves with gene
polarization as a sigma model@28,29# ~proposed as an alter
native approach to other quantization schemes@30#!. In this
case, the gravitational action has also been made local
the choice of an auxiliary time whose norm at spatial infini
though constant in the evolution, differs from the unity. T
change to the physical time is energy dependent, and lea
a multi-local action.

It is instructive to see the expression of the reduced ac
of the ER model corresponding to the auxiliary timeT in
terms of the two types of fields employed to describe
system, namelyc and c̄. Remembering that, in the timeT,
the dynamical generator is the HamiltonianH05g` /(8G3)
and using relation~2.8!, one can check that the associat
reduced Lagrangian is

L05
1

8G3
E

0

`

dR
R

2
@2~c8!21~]Tc!2#

5
1

8G3
E

0

`

dR
R

2~11c̄ !2
@2~ c̄8!21~]Tc̄ !2#.

Thus, while the AP formulation consists of a free-field p
rametrization of the reduced system, described byc, the
other parametrization, natural from the viewpoint of a p
turbative approach, leads to a fieldc̄ with self-interactions of
all orders, namely

L05 (
n50

`

~21!n
~n11!

8G3
E

0

`

dR
R

2
c̄n@2~ c̄8!21~]Tc̄ !2#.

In this sense, one can interpret the AP formulation as a f
field realization of the ER model.
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Regardless of the time parameter selected to describe
evolution of the ER model~the auxiliary or the physica
one!, the initial time section of the system coincides in bo
cases, since the times differ only by a positive normalizat
factor. When quantizing the system, a Fock space is assig
to this initial section. This space being the same for the t
natural choices of Hamiltonian, both lead to unitarily equiv
lent Fock quantizations@14#. Therefore, in order to study th
relation between the Fock spaces of the AP and the pe
bative approaches, we can restrict all considerations jus
the initial time surfaceT5t50, as we anticipated. Thus
from now on, byc(R), pc(R), c̄(R), and P̄c̄(R) we will
understand the initial values of these fields.

In the AP description, one introduces annihilation and c
ation variables,A(k) andA†(k) (kPR1), corresponding to
the expansion of the cylindrically symmetric fieldc in terms
of zeroth-order Bessel functions. Employing the form ofc
on classical solutions given in Sec. II, the Hamiltonian eq
tion ]Tc58Gpc /R and the identity

E
0

`

dRRkJ0~Rk!J0~Rk̃!5d~k,k̃!, ~6.1!

one can check that

A~k!5E
0

`

dR
J0~Rk!

2A4G
@Rkc~R!1 i8Gpc~R!#. ~6.2!

The complex conjugate of this relation providesA†(k).
In fact, recalling thatc and pc are a canonical pair o

cylindrically symmetric fields, it is not difficult to see jus
from Eq. ~6.2! that the only non-vanishing Poisson bracke
of A(k) andA†(k) are really

$A~k!,A†~ k̃!%52 id~k,k̃!.

Therefore, without appealing to the explicit form of the cla
sical solutions, we can regard formula~6.2! and its complex
conjugate as the definition of a set of annihilation and c
ation variables corresponding to the fieldc. Furthermore, the
same arguments apply exactly as well to any other cylin
cally symmetric field and its momentum as far as they fo
a true canonical pair. For instance, we can adopt the poin
view of the perturbative approach and consider the p
(c̄,P̄c̄) as the fundamental canonical fields. Associated w
them, we then introduce the following type of annihilatio
variables:

a~k!5E
0

`

dR
J0~Rk!

2A4G
@Rkc̄~R!1 i8GP̄c̄~R!#, ~6.3!

with their complex conjugates providing the creation va
ablesa†(k).

A point that is worth remarking is that the above defin
tions are the natural ones from the perspective of the per
bative approach. In the linearized gravitational theory,c̄ sat-
isfies the same cylindrical wave equation asc does in the
full reduced ER model. Thus, the associated expansion
8-8
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c̄(R,T) in terms of complex exponentials ofT and Bessel
functions ofR leads precisely to the above annihilation a
creation variables in linearized gravity. In other words, t
underlying mode decomposition of the fieldsc and c̄ is the
same at first perturbative order. Actually, since (c̄,P̄c̄) and
(c,pc) coincide at linear order, the series expansion ofA(k)
in powers of the over-barred fields leads from Eq.~6.2! to
definition ~6.3! as the leading term in a perturbative expa
sion ~the same line of reasoning applies to the complex c
jugate formulas forA† anda†).

Employing Eq. ~6.1!, the introduced definitions of cre
ation and annihilation variables can be inverted to obtain
initial values of the fields:

c~R!5A4GE
0

`

dkJ0~Rk!@A~k!1A†~k!#,

pc~R!5
iR

A16G
E

0

`

dkkJ0~Rk!@2A~k!1A†~k!#,

~6.4!

and similar expressions forc̄ and P̄c̄ . Note again that, in
arriving at these formulas, we have not used the explicit fo
of the classical solutions. They are simply Bessel expans
of the initial fields. The dynamics is encoded in the obvia
evolution of the annihilation and creation variables, whi
have been restricted in our analysis to the initial time surfa

By combining Eqs.~6.3!, ~3.2!, ~3.8!, and~6.4!, it is now
straightforward to deduce the highly non-linear relation t
exists between the particle-like variables of the AP and
perturbative approaches:

a~k!5E
0

`

dR
J0~Rk!

2A4G
@Rkc̄~RuA,A†!

1 i8GP̄c̄~RuA,A†!#,

c̄~RuA,A†!5ec(RuA,A†)21

ªexpHA4GE
0

`

dk̃J0~Rk̃!@A~ k̃!1A†~ k̃!#J
21,

i8GP̄c̄~RuA!5 i8Gpc~RuA,A†!e2c(RuA,A†)

ªA4GRE
0

`

dk̃k̃J0~Rk̃!@A~ k̃!2A†~ k̃!#

3expH 2A4GE
0

`

dk̆J0~Rk̆!@A~ k̆!

1A†~ k̆!#J , ~6.5!

while a†(k) is the complex conjugate ofa(k). Note that in
fact these definitions implement the reality conditi
04402
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c̄(RuA,A†).21 ~ensuring that the induced metric is pos
tive definite! if A(k) and A†(k) are complex conjugate to
each other, because thenc(RuA,A†) is real everywhere. On
the other hand, the inverse transformation between the
sets of particle-like variables can be obtained by substitu
the relationsc5 ln(11c̄) and pc5 P̄c̄(11c̄) in formula
~6.2! and expressing the initial values ofc̄ and P̄c̄ in terms
of a(k) anda†(k) @using the analogue of Eq.~6.4!#. Finally
we point out that, in formula~6.5!, each of the AP annihila-
tion and creation variables appears multiplied by a factor
AG. As a result, one can understand the expansion ofa(k)
and a†(k) in powers of such variables as equivalent to
perturbative expansion in powers ofAG.

VII. REGULARIZED OPERATORS

Once one has established the relation between the se
annihilation and creation variables associated with the p
turbative analysis of the system and with the AP formulatio
a natural way to elucidate whether the two schemes lea
equivalent Fock quantizations is the following. One can fi
try to implement the variablesa(k) and a†(k) ~associated
with the perturbative approach! as annihilation and creation
operators acting on the Fock space of the AP quantizat
The perturbative vacuum would then be the~unique! state
annihilated by all the operatorsâ(k). If this state is physical,
i.e., if its norm is finite, it determines the Fock space of t
perturbative approach. The two considered Fock quant
tions would then be unitarily equivalent, the equivalence
ing given by the map from the perturbative to the A
vacuum. On the contrary, the Fock quantizations would
inequivalent if the perturbative vacuum is not normalizab

Remembering relation~6.5! ~and its complex conjugate!,
we might naively attempt to promotea(k) anda†(k) to op-
erators in the AP quantization by replacing the variab
A(k) and A†(k) with their operator counterpart. Howeve
this procedure fails because, in the quantum version of
pression~6.5!, the fieldsĉ(R) and p̂c(R) that one obtains
are not proper operators, but operator-valued distributi
@10#. In particular, the exponential of6ĉ(R) is not rigor-
ously defined.

These problems can be overcome by regularizing
fields. We will only consider regularizations that consist o
cutoff kc in wave numbers~or, equivalently, in momentum
space!, so that they can be described by a regulatorg(k) of
the form ~2.12!. Recall that in this caseg2(k)5g(k). The
corresponding regularized quantum fieldĉ(Rug) is given in
Eq. ~2.11! and is self-adjoint for everykc,`. The spectral
theorem allows us then to define the exponentiale6ĉ(Rug) as
a positive operator@10#. Employing the Campbell-Bake
Hausdorff formulaeb̂1 ĉ5e2[ b̂,ĉ]/2eb̂eĉ, which is valid for
operatorsb̂ andĉ whose commutator is ac number, one can
see

e6ĉ(Rug)5e2GuuJ0(R*) guu:e6ĉ(Rug): ~7.1!

where the colon denotes normal ordering and
8-9
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uuJ0~R* !guu5E
0

`

dkuJ0~Rk!g~k!u2.

For the regularization of the producti8Gpce2c that ap-
pears in Eq.~6.5!, we choose the ordering

i8G~ p̂c~Rug!e2ĉ(Rug)!N

ª2A4GRE
0

kc
dkkJ0~Rk!@Â†~k!e2ĉ(Rug)

2e2ĉ(Rug)Â~k!#. ~7.2!

Finally, we define the following annihilation- and creatio
like operators corresponding toa(k) anda†(k) for k<kc :

â~kug!ªg~k!E
0

`

dR
J0~Rk!

2A4G
@Rkeĉ(Rug)2Rg~G!k

1 i8G~ p̂c~Rug!e2ĉ(Rug)!N#,

â†~kug!ªg~k!E
0

`

dR
J0~Rk!

2A4G
@Rkeĉ(Rug)2Rg~G!k

2 i8G~ p̂c~Rug!e2ĉ(Rug)!N#. ~7.3!

By construction, these operators are adjoint to each othe
order to account for part of the order ambiguity, we have
the freedom to representR quantum mechanically by ac
numberRg(G) that may depend on the cutoff, as well as
the quantum gravitational constantG. To recover the semi-
classical limit, we impose the condition thatRg tend toR in
the limit G→0. For simplicity, we also assume thatRg(G) is
analytic inG.

The commutators of the operators~7.3! are computed in
the Appendix. Of course, they do not depend on the form
the c numberRg(G). We will only comment two important
properties of these commutators. First, using thate6ĉ(Rug)

tends to the identity operator in the limit of vanishingG and
remembering the integral expression~6.1!, one can check
that the only non-vanishing commutators of our operat
whenG→0 are

lim
G→0

@ â~kug!,â†~ k̃ug!#5g~k!d~k,k̃!.

So, in this kind of semiclassical limit, we recover the algeb
of a set of annihilation and creation operators in the region
wave numbers to which we are restricting our analysis. S
ond, one can proceed to remove the cutoff by taking the li
g(k)→1 or, equivalently,kc→`. Assuming that this limit
can be taken inside the integrals in expression~A1! and us-
ing the identity~6.1!, a careful calculation shows that

lim
g→1

@ â~kug!,â~ k̃ug!#5 lim
g→1

@ â†~kug!,â†~ k̃ug!#50,

lim
g→1

@ â~kug!,â†~ k̃ug!#5d~k,k̃!.
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In this sense, the desired algebra of annihilation and crea
operators associated with the perturbative quantiza
scheme can be regarded as the limit of our algebra of op
tors when the cutoff is driven to infinity.

Substituting the regulated expressions~2.11! and ~7.2! in
the definition of the operatorsâ(kug) and â†(kug), it is not
difficult to obtain their expansion in powers of annihilatio
and creation operators of the AP quantization,Â(k) and
Â†(k). According to our comments at the end of Sec. VI, th
expansion reproduces the power series inAG, except for the
possibleG dependence introduced by thec numberRg(G),
which ~partially! accounts for operator ordering ambiguitie
Therefore, one can interpret the series inAG in the sense tha
each additional power corresponds~in a certain operator or-
dering! to the creation or annihilation of an extra particle
the AP quantization. Explicitly, the series will have the for

â~kug!5 (
n50

`

~G!n/2â(n)~kug!,

â†~kug!5 (
n50

`

~G!n/2â(n)
† ~kug!, ~7.4!

where now the operatorsâ(n)(kug) and their adjoints are in-
dependent of the quantum gravitational constantG.

Remembering thatRg(G) is analytic inG and equal toR
at G50, and using identity~6.1!, it is easy to find the zeroth
order contribution toâ(kug):

â(0)~kug!5g~k!E
0

`

dR
J0~Rk!

2A4G
@Rkĉ~Rug!1 i8Gp̂c~Rug!#

5g~k!Â~k!.

Similarly, â(0)
† (kug)5g(k)Â†(k). Thus, our definition of

annihilation- and creation-like operators for the perturbat
approach is such that, in the considered sector of wave n
bersk<kc , they coincide with the annihilation and creatio
operators of the AP formulation at dominant order inAG. In
other words, at first perturbative order the two types of p
ticles can be identified in the region of momentum spa
below the cutoff. Note that one can completely det
mine the particle contain in this perturbative limit b
finally proceeding to remove the regulator, i.e.Â(k)
5 limg→1limG→0â(kug) for all kPR.

VIII. PERTURBATIVE VACUUM

We have seen that the algebra ofâ(kug) and â†(kug), in
the limit of infinite cutoff, has the form of that of a set o
annihilation and creation operators. In addition, their valu
for G50 coincide with the annihilation and creation oper
tors of the AP formulation for wave numbersk smaller than
the cutoff, reproducing the whole set of those operators w
the regulator disappears. The AP vacuumu0& is hence totally
fixed by the condition that it be annihilated by the operat
8-10
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â(0)(kug) for every value of the cutoffkc or, equivalently, in
the limit kc→`. Besides, it is possible to check thatu0& is
not annihilated by all the operatorsâ(kug) for each fixed
kc.0, and so neither is it when the regulator is remov
Therefore, the AP vacuum differs from that corresponding
the perturbative approach, which we will callu0̄&.

Provided that the latter of these vacua belongs to the F
space of the AP quantization, a way to determine it is
following. First, for each fixed cutoff, we find a stateu0̄g&
annihilated by all the operatorsâ(kug) and such that coin-
cides with the AP vacuumu0& in the limit G→0. If u0̄g& is a
physical state, one can choose it with unit norm. The vacu
u0̄& would then be attained as the limit of this normaliz
state when the regulator is removed,kc→`.

Note however that our definition~7.3! of â(kug) involves
only annihilation and creation operators of the AP formu
tion with k<kc . As a consequence, one can anticipate
existence of ambiguities in the determination ofu0̄g&, owing
to a lack of uniqueness in the allowed contributions from
sector of AP particles with wave number greater than
cutoff. Nonetheless, this ambiguity can be eliminated by
manding that the regularized perturbative vacuumu0̄g& has
no projection in that sector. This is a natural condition if w
interpret the regularization as the removal of all interactio
and particles with energies above the cutoff. In particula
is consistent with the requirement that the limit ofu0̄g& when
G tends to zero be the AP vacuumu0&, because this is the
only physical state which does not contain particles w
k.kc and is annihilated by all the operatorsâ(0)(kug)
@which are equal toÂ(k) below the cutoff and vanish other
wise#.

The computation ofu0̄g& can be carried out perturbativel
in terms of the quantum gravitational constantG. In order to
do it, one employs the series~7.4! for the annihilation-like
operatorsâ(kug) and expands the regularized vacuum a
formal power series ofAG as well:

u0̄g&5u0&1 (
n51

`

~G!n/2uFn,g&. ~8.1!

Here, we have made explicit that the dominant contribut
must be the vacuumu0&, and theuFn,g& ’s designate linear
superpositions of states with a finite, non-zero number of
particles whose wave number is bounded by the cutofk
<kc . The above formula can equivalently be regarded
providing the AP vacuumu0& as a formal series inAG in
terms of the regularized perturbative vacuum,u0&5u0̄g&
2((G)n/2uFn,g&.

By an iterative process, one can deduce the form of all
states uFn,g&. Namely, onceuFn,g& is known for every
n,m, one can determineuFm,g& from the condition that
â(kug)u0̄g& vanish for allk at orderGm/2. Let us consider the
casem51:

â(0)~kug!uF1,g&1â(1)~kug!u0&50. ~8.2!
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From Eq.~7.3! and the analyticity ofRg(G) in G, one can
see that

â(1)~kug!u0&5
g~k!

2 F E
0

`

dRJ0~Rk!kEg~R!u0&

1E
0

kc
dk1E

0

kc
dk2~k11k21k!

3F~k1 ,k2 ,k!Â†~k1!Â†~k2!u0&G ,
where we have defined the functions

Eg~R!ªuuJ0~R* !guuR2
1

2
]GRg~G50!,

F~k1 ,k2 ,k3!ªE
0

`

dRRJ0~Rk1!J0~Rk2!J0~Rk3!,

~8.3!

and we have interchanged the order of integration inR and in
(k1 ,k2). The first term inEg(R) arises from the derivative
with respect toG of the factore2GuuJ0(R*) guu, which appears in
the operatoreĉ(Rug) when expressed in normal ordering@see
Eq. ~7.1!#. On the other hand, notice that the functio
F(k1 ,k2 ,k3) is symmetric in all its arguments.

Condition ~8.2! implies then that

uF1,g&52E
0

kc
dk1

k1

2 E0

`

dRJ0~Rk1!Eg~R!Â†~k1!u0&2uYg&,

with

uYg&ªE
0

kc
dk1E

0

kc
dk2E

0

kc
dk3

~k11k21k3!

6

3F~k1 ,k2 ,k3!Â†~k1!Â†~k2!Â†~k3!u0&.

Any possible contribution touF1,g& proportional to the
vacuum has been obviated, because it is not necessa
satisfy condition~8.2!. Moreover, such a contribution ca
always be absorbed in the dominant term of the series
pansion~8.1! up to aG-dependent, global numeric factor i
u0̄g& that only changes the norm of this state.

Similar arguments can be applied to fix the next corr
tion to the AP vacuum,uF2,g&, as a superposition of state
with a finite but non-zero number of particles belonging
the sectork<kc , using the condition

â(0)~kug!uF2,g&1â(1)~kug!uF1,g&1â(2)~kug!u0&50.

Likewise, uFm,g& can be fixed from the corresponding co
dition at orderGm/2 once $uFn,g&;n,m% have been deter
mined.

Employing thatuF1,g& is the sum of a one-particle stat
and the three-particle stateuYg&, which are orthogonal to
each other and to the AP vacuum, and the fact thatuF2,g& is
a linear combination of states with non-zero particles, so t
8-11
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^0uF2,g&50, we conclude that, up to corrections of ord
Gn/2 with n>3, the norm ofu0̄g& satisfies

^0̄gu0̄g&>^0u0&1G^YguYg&511G^YguYg&.

We will now show that the norm ofuYg& is infinite re-
gardless of the value of the cutoff, and thereforeu0̄g& is not a
physical state~at least as a power series inAG). Thus, one
cannot reach in this way a normalized perturbative vacu
in the limit kc→`. This strongly indicates that the perturb
tive vacuum is not included in the Fock space of the
formulation, implying that the two discussed approaches
the quantization of the ER waves are unitarily inequivale
In any case, the non-normalizability ofuYg& means that the
perturbative vacuum is not analytic inAG, invalidating the
perturbative calculation presented above.

The norm ofuYg& is given by

^YguYg&5E
0

kc
dk1E

0

kc
dk2E

0

kc
dk3

~k11k21k3!2

6

3F2~k1 ,k2 ,k3!.

So, in order to obtain it, we will first calculate the integr
~8.3!, which provides the functionF(k1 ,k2 ,k3). This inte-
gral can be computed explicitly, e.g. using the formulas
Ref. @31#. The result is

F~k1 ,k2 ,k3!5Q~k11k22k3!Q~k32uk12k2u!

3
2

pA4k1
2k2

22~k1
21k2

22k3
2!2

,

whereQ(k) is the Heaviside step function, equal to the un
if k is positive and vanishing otherwise. One therefore arri
at

^YguYg&

5E
0

kc
dk1E

0

kc
dk2E

uk12k2u

min$kc ,k11k2%
dk3

~k11k21k3!

6p2

3
1

~k11k22k3!~k32uk12k2u!~k31uk12k2u!
.

Here, min$a,b% denotes the minimum of the numbersa and
b.

Note that the integrand in the above expression is posi
in the integration region, and that the last integral ha
simple pole at the boundaryk35uk12k2u of the integration
interval for k3. As a consequence, the integral that det
mines the norm ofuYg& diverges for all positive values of th
cutoff kc . In other words, regardless of the cutoff,uYg& is
not a physical state. We thus conclude that the vacuum o
perturbative approach is not accessible as a power serie
AG in the Fock space of the AP quantization.

It is worth emphasizing that the divergence of the norm
uYg& does not arise as a result of taking the limit in which t
cutoff is removed because, if that were the case, one c
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proceed to renormalize the perturbative vacuum. Nam

one could first normalizeu0̄g&, obtaining the unit norm state

u0̃g&5u0̄g&@^0̄gu0̄g&#21/2, and only then consider the limi
kc→`.

IX. SUMMARY AND CONCLUSIONS

We have investigated the relation between the notion
particle that arises in the quantum framework developed
Ashtekar and Pierri for the description of the ER waves a
that expected in a perturbative approach to the quantiza
of this system. We have started by introducing a set of me
fields that are specially suitable for the analysis of the mo
in linearized gravity, since the fields are linear in the exc
of the metric with respect to the Minkowski backgroun
Using this new field parametrization of the ER spacetim
we have discussed their quantization in the linearized the
of gravity. We have shown that the linearization of the gau
fixing conditions adopted by Ashtekar and Pierri provides
only gauge choice of the de Donder type which respects
regularity conditions imposed on the metric at the axis
rotational symmetry, located at a fixed location~namely, the
origin of the radial coordinateR). This result allows one to
interpret the gauge selected by Ashtekar and Pierri as a w
posed generalization to the ER model of the de Don
gauge compatible with the regularity at the axis.

From this perspective, the perturbative description of
system can be made to rest on a fieldc̄, which parametrizes
the metric in the AP gauge and is linear in the excess aro
Minkowski spacetime. By contrast, the parametrization c
sen in the AP formulation is based on a fieldc that is highly
non-linear in the metric excess, but straightforwardly inc
porates the reality conditions on the metric and, more imp
tantly, is subject to a linear~reduced! dynamics. The corre-
spondence between the two fields can be completed in
canonical transformation on the phase space of the redu
ER model. This canonical transformation provides the k
relation for discussing the correspondence between
particle-like variables of the two considered descriptions.

Given a field and its canonical momentum, both posse
ing rotational symmetry and being regular at the symme
axis, it is possible to expand their initial values in terms
zeroth-order Bessel functions. Using this property, one
associate with the canonical pair of axisymmetric fields o
constant time section a set of annihilation and creation v
ables with positive wave numbers. This possibility is at ha
both for the fieldc and its momentum in the AP formulatio
and for the fieldc̄ and its momentum in the perturbative
inspired description that is linear in the metric excess. T
transformation between both pairs of fields provides the
lation between the corresponding sets of annihilation a
creation variables. Furthermore, since the linearization
both parametrizations is the same, the introduced parti
like variables coincide at linear order.

What one gets in this way is the expression, e.g., of
particle-like variables associated with the perturbative ana
sis as highly non-linear functionals of the corresponding
8-12
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of AP variables. This expression can be expanded as a po
series in the latter set, each new particle-like variable be
accompanied by a factor ofAG. Thus, one can regard th
square root of the quantum gravitational constant as the
teraction constant of the model and the expansion in
number of created and annihilated particles as a perturba
expansion in that constant. As we have said, the expansio
such that the annihilation and creation variables of the
formulation are taken as the leading contribution for sm
AG; i.e., the mode decomposition is made to coincide w
that of the AP description at dominant perturbative order

We have next proceeded to consider the quantum ver
of the relation between the variables of annihilation and c
ation type for the two formulations. We have employed
starting point the Fock space of the AP quantization, sinc
provides a mathematically well-posed framework where
quantum issues can be discussed with rigor. The first p
lem that has been necessary to overcome, in order to prom
to meaningful operators the particle-like variables of the p
turbative scheme, is to regularize the quantum fields. T
has been done by introducing a cutoff in the model and s
pressing all particle interactions with energies~or equiva-
lently wave numbers! above it. The resulting operators hav
been proved to reproduce a formal algebra of annihilat
and creation operators in the limit in which the cutoff
removed. In addition, the representation chosen is such
for vanishing quantum gravitational constantG, one exactly
recovers the annihilation and creation operators of the
quantization in the sector of particles with wave numb
below the cutoff.

Using these regularized operators, one can investig
whether the perturbative vacuum can be represented
physical state in the Fock space of the AP quantization
this were the case, the two considered quantum theo
~namely, those based on the AP and on the perturba
vacuum! would be unitarily equivalent. In more detail, w
wanted to elucidate whether there exists a physical stat
the Fock space of the AP formalism that can play the role
vacuum in the perturbative approach and be reached in
limit of infinite cutoff as a perturbative power series in th
coupling constantAG, with interacting-free term~i.e., the
contribution atG50) given by the original AP vacuum.

The other terms in this~regularized! series for the pertur-
bative vacuum can be determined, for each fixed value of
cutoff, by imposing the condition that they consist of line
superpositions of states with a finite but non-zero numbe
AP particles, and that they be annihilated by all the regu
ized annihilation operators. In particular, we have studied
detail the first perturbative correction, proportional toAG. It
is formed by a three-particle and a one-particle state. M
importantly, we have proved that the norm of the thre
04402
er
g

n-
e
ve
is

P
ll
h

on
-

s
it
e
b-
ote
r-
is
p-

n

at,

P
s

te
a

If
es
ve

in
f

he

e
r
f

r-
n

re
-

particle state is infinite regardless of the value of the cut
Therefore, no normalizable perturbative vacuum is acc
sible from the AP vacuum as a power series inAG.

This result is a clear indication of the inequivalence of t
Fock quantizations associated with the AP and the pertu
tive approaches. Furthermore, the fact that the perturba
vacuum cannot be realized as a physical state analytic inAG
prevents one from applying standard perturbative calcu
tions based on the number of AP particles involved in
interaction, so that a naive perturbative treatment of the s
tem is bound to fail.

As we have commented, the Fock space that we h
considered describes the reduced degrees of freedom o
system in a section of constant initial time. In this space o
can introduce a quantum dynamics, which provides the e
lution of these degrees of freedom as time progresses. In
case of the ER waves, this notion of reduced dynamics
be linked to two types of quantum Hamiltonian, a local o
that describes the evolution in an auxiliary time, conforma
flat in two dimensions together with the radial coordina
and a non-local one that corresponds to a physical time,
malized to the unity at spatial infinity. The analysis of th
system with the first Hamiltonian is trivial in the AP quant
zation, in the sense that it leads to a free-field realizati
The quantum evolution in the physical time, on the oth
hand, is much more involved. It can also be studied b
perturbative approach, but this time the perturbative or
corresponds to the degree of non-locality. Ann-point contri-
bution to the Hamiltonian will be proportional to th
(n21)th power of the gravitational constantG.

The fact that the same constantG plays the role of per-
turbative parameter in both types of analyses~one linked to
the number of AP particles involved in the local interacti
and the other to the degree of non-locality in the dynami!
may lead to some confusion. This is in part due to the f
that the system possesses only a fundamental constan
that it will show up in any natural expansion. Anyway, a fu
perturbative analysis can always be made in two steps,
discussing the quantum system at a fixed instant of time
we have made here, and then taking into account the n
locality introduced by the change from the auxiliary to t
physical time. This second type of perturbative issues will
considered elsewhere@32#.
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APPENDIX

In this appendix we compute the commutators of the operatorsâ(kug) and â†(kug) defined in Eq.~7.3!. Let us introduce

the symbolic notationâ‡(kug) for both types of operators, with (21)‡ equal to21 and 1, respectively, in the annihilation an
creation case. Using relation~7.1! and the basic commutators~2.9!, one can then see that
8-13
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@ â~kug!,â‡~ k̃ug!#5g~k!g~ k̃!E
0

`

dR
R

2
J0~Rk!E

0

`

dR̃R̃J0~R̃k̃!E
0

kc
dk1k1J0~Rk1!E

0

kc
dk2J0~R̃k2!@~21!‡A4Gk2

3~$J0~Rk2!Â†~k1!2J0~R̃k1!Â†~k2!%e2ĉ(Rug)e2ĉ(R̃ug)1e2ĉ(Rug)e2ĉ(R̃ug)$J0~R̃k1!Â~k2!

2J0~Rk2!Â~k1!%!1d~k1 ,k2!$k̃e2ĉ(Rug)eĉ(R̃ug)1~21!‡keĉ(Rug)e2ĉ(R̃ug)%#. ~A1!
do
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