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We discuss the connection between the Fock space introduced by Ashtekar and Pierri for Einstein-Rosen
waves and its perturbative counterpart based on the concept of a particle that arises in linearized gravity with
a de Donder gauge. We show that the gauge adopted by Ashtekar and Pierri is indeed a generalization of the
de Donder gauge to fuli.e., non-linearizegdcylindrical gravity. This fact allows us to relate the two descrip-
tions of the Einstein-Rosen waves analyzed Hére perturbative one and that made by Ashtekar and Pierri
by means of a simple field redefinition. Employing this redefinition, we find the highly non-linear relation that
exists between the annihilation and creation-like variables of the two approaches. We next represent the
particle-like variables of the perturbative approach as regularized operators, introducing a cutoff. These can be
expanded in powers of the annihilation and creation operators of the Ashtekar-Pierri quantization, each addi-
tional power being multiplied by an extra square root#fiines the three-dimensional gravitational constant,

JG. In principle, the perturbative vacuum may be reached as the limit of a state annihilated by these regular-
ized operators when the cutoff is removed. This state can be written as the vacuum of the Ashtekar-Pierri
quantization corrected by a perturbative serie§@ with no contributions from particles with energies above

the cutoff. We show that the first-order correction is in fact a state of infinite norm. This result is interpreted as
indicating that the Fock quantizations in the two approaches are unitarily inequivalent and, in any case, proves
that the perturbative vacuum is not analytic in the interaction constant. Therefore a standard perturbative
guantum analysis fails.
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I. INTRODUCTION these cylindrical wavels]. A key remark in this discussion
is that the dynamics of the ER spacetimes is equivalent to

Solutions to general relativity in vacuo with whole cylin- that of a cylindrically symmetric, massless scalar field propa-
drical symmetry seem to have been first found by BEldk gating on an auxiliary Minkowski background. Thanks to
and then rediscovered by Einstein and Ro$ER) in the this fact, one can recast the system as three-dimensional
search for spacetimes that could describe the propagation gfavity coupled to a scalar field with rotational symmetry.
gravitational wave$2]. By whole cylindrical symmetry3]  This was precisely the approach followed by Allen to further
we understand the existené@ topologically trivial space- explore the quantization of the model, studying regulariza-
times of two linearly independent, commuting, and hyper-tion issues and the relevance of the quantum fluctuations
surface orthogonal Killing vector fields, one of them rota-around the vacuuri7].
tional and the other translational. Among the motivations for Employing this three-dimensional formulation, a consis-
the study of these solutions was Einstein’s belief that one ofent and essentially complete quantization of the ER waves
the fundamental problems of physi¢at least at his time was obtained some years ago by Ashtekar and P{aR)
was the lack of a satisfactory theory of radiation, especiallyf8]. This quantization was achieved after a careful treatment
in the presence of the gravitational figi]. of the regularity conditions at the symmetry axis, on the one

The ER solutions are cylindrical gravitational waves with hand, and of the boundary conditions at spatial infinity that
linear polarization. Cylindrical waves with general polariza- ensure asymptotic flatness in cylindrical gravi8;17], on
tion, whose Killing vector fields are not hypersurface or-the other. The quantization accounts as well for certain func-
thogonal, were originally analyzed by Jordan, Ehlers andional analytic subtleties that arise in the regularization of
Kundt and by Kompanee{&]. metric operators. Actually, some of these subtleties were later

The ability to provide a model with the field complexity revisited by Varadarajaf9]. The definition and regulariza-
of general relativity, but with known exact solutions which tion of the metric operators, not from the perspective of
describe gravitational waves, has endowed the family of ERhree-dimensional gravity coupled to a scalar field, but from
spacetimes with a prominent role in the analysis of the quana purely gravitational, four-dimensional perspective was dis-
tization of gravitational system6—16]. Kuchar pioneered cussed in Ref{10].
this line of work by discussing the canonical quantization of This quantum framework has allowed to show that there
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exist unexpectedly large quantum effects in the model, agravity), the relation between the AP and the perturbative
least in the asymptotic regiofl1-13 and the cylindrical treatments will straightforwardly follow from the transfor-
axis[10]. A more detailed study of the consequences of thenation on the configuration space that connects the metric
vacuum fluctuations for microcausality, including the smear-variables used in each of the two descriptions. In particular,
ing of light cones all over the spacetime and the blurring ofthis transformation, when completed into a canonical one,
the symmetry axis, has recently been carried out in Rei. will provide the relation between the particle-like variables
In the quantization proposed by Ashtekar and Pierri, the?f the two formalisms. . _
Hilbert space is the Fock space corresponding to the rotation- 1he plan of the work is as follows. We first review the ER
ally symmetric scalar field that propagates in the three-_mOdel and the most important aspects of th'e AP quantization
dimensional, auxiliary Minkowski spacetime. There existin S€c. II. In Sec. Ill we introduce a description of the ER
two relevant notions of evolution in this Hilbert space: oneWaves in terms of fields that are linear in the excess of the
associated with the auxiliary Minkowski time and anotherMetric around the Minkowski background and translate to

with the physical timd8,14]. In the former case, the dynam- them the AP gauge fixing. In Sec. IV we adapt to this de-
ics is dictated by the Hamiltonian of the axi- scription the discussion of Reff14] about the linearization

symmetric, massless scalar fieldy, while in the latter the of the model. Section V proves that the linearization of the

Hamiltonian is a non-linear, bounded function of it, AP gauge is a de Donder gauge. Furthermore, while in gen-
H=(1—e 4GsH0)/(4G,) [18-20. Here, G; is the three- eral relativity the de Donder gauge leaves some ambiguity in

dimensional gravitational constant or, equivalently, the effecth® choice of coordinatei23], the gauge is completely de-

tive Newton constant per unit length in the direction of the!€'mined in linearized ER gravity when one imposes suitable
axis[10]. regularity conditions, corresponding to a fixed location of the

The difference between the dynamical generators arisesMMetry axis. Employing the transformation that maps the

because the presence of energy in the gravitational waveasic metric field of the reduced ER model in our description

causes a deficit angle at spatial infinity that affects the nornt/in€ar in the excess around Minkowsko the axisymmetric

of the asymptotic, time-like Killing vector. Since this norm Scalar field of the AP approach, we find in Sec. VI the rela-
must be unity for the physical time, one must consider arfion between the creation and annihilation variables associ-

energy dependent change of time that leads to the abowded with each of the two fields consider_ed. These variables

transformation in the Hamiltonian. In fact, the emergence oftf® Promoted to regularized operators in Sec. VII. Using

a bounded physical Hamiltonian proportional to the deficitthem, We try to determine the perturbative vacuum in Sec.

angle produced by the wave is a feature not just of ER gra VIII. In particular, we investigate wh_ether this vacuum can

ity, but of cylindrical gravitational waves with general polar- P& réached from the non-perturbative one by means of a

ization (even in the presence of spinning stringal,22. series expansion ifthe square root othe grawtgtlonal con-
Regardless of which Hamiltonian is considered to goverrﬁta”t- The answer turns out to be in _the negative, because the

the quantum dynamic$],, or H, the Fock spaces and quan- f|rs'F cpr_recnon to the non—perturbat_we vacuum would have

tizations obtained in both cases are equivalent, in as much &% infinite norm, even if ultraviolet d_|vergences are.regulated

the corresponding evolution operators are unitary and th&ith @ cutoff. Finally, Sec. IX contains the conclusions.

two initial time copies are exactly the sarfiel]. However, a In the rest of the paper, we caB=Ggfi, and adopt a

question that has not been addressed yet in the literature §YStem of units in whicth =c=1, with 2 being Planck con-

whether the Fock space employed in the AP quantization i§tant andc the speed of light. Note thas is an inverse

the kind of Fock space that one would introduce in a pertur€n€rgy, wherea& has dimensions of length.

bative treatment of the ER model and, if they differ, what

relation exists between them. The main aim of this article is Il. ASHTEKAR-PIERRI QUANTIZATION

to discuss this issue. This is a fundamental question in order

to answer whether one can attain or not the correct non- The ER waves are linearly polarized, cylindrical waves in

perturbative results by adopting a perturbative approach. vacuum general relativity. They can be described by the met-
In a perturbative formalism, one would adopt as metricfic [8,10]

variables linear combinations of the difference between the

Minkowski background and the actual spacetime metric, ex- ds?=e™ Y[ — N2dt?+e¥(dR+ NRdt)2+ (8Gr)?d 6?]

panding the gravitational action in powers of them. The qua- o2

dratic term provides the action of linearized gravity, while +erdz”. 2.

the higher-order terms can be regarded as describing interac-

tions. At this stage, it is convenient to adopt a gauge thaHere,Ze R is the coordinate of the symmetry axige S*

simplifies the linearized equations. A frequently used gaugeorresponds to the axial coordinales R™ will be called the

is the de Donder or Lorentz gauf@3], in which the linear-  radial coordinateN® describes the radial component of the

ized gravitational equations reduce to wave equations, so thahift vector and\ is the lapse function. Owing to the cylin-

one easily arrives at a notion of particle. drical symmetry, all metric function®®, N, ¢, r, and y
We will see that the gauge fixing introduced by Ashtekardepend only on the timeand on the radial coordinate We

and Pierri is nothing but a generalization of the de Dondefollow the convention that the dimensionality of the space-

gauge from linearized to full ER gravity. Therefore, adoptingtime interval is carried by the coordinatesR, andZ, while

it as a valid gaugéwith a clear interpretation in linearized the metric fields are dimensionlef4].
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The gravitational action, endowed with surface terms suit- _ R .
able for a fixed metric on the boundariggmmely, the initial 4 R),f dRNFCR} | N®)'|z=0=0, (2.6
and finalt sections and an exterior cylind®&=R; in the R=0
limit Ry—c [10]), takes the forn6,17] where the curved brackets denote Poisson brackets.

6 As shown by Ashtekar and Piefi8], the gauge freedom

s:f dt (2.2 corresponding to the Hamiltonian and radial constraints can
ty be totally removed by imposing, respectively, the conditions

where thep’s are the momenta canonically conjugate to the R

metric fields, the overdot stands for the derivative with re- xRe=r———= 3G =0, x:=p,=0. 2.7

spect tot, and’ is the total Hamiltonian:

—H+ fo dR(p,y+pr +pu¥) |,

1 In this way, one arrives at a reduced model whose only de-
H=—(1—e" «/x/2)+J dR[NC+NRCR]. gree of freedom is the scalar fielll The reduced metric is
4G3 given by Eq.(2.1) with NRF=0, 8Gr=R and

The first contribution is a boundary term at infinity, with R (8G p )2
Vooi= ’)/(.R—NX.?). Besideg, the Hami.ltonREan constrai@t and yzj (¢ )2+ ‘f’ (2.9
the (radia)) diffeomorphism constrain€"™ are
i pd, r(y')? The reduced dynamics in the tinteis generated by the
C=e "2r"=y'r'=pypt 5 +—5—|, physical Hamiltonian H=(1—e 4©s"0)/(4G;), where
Ho:=v../(8G3) is (up to a constant factpthe Hamiltonian
CR=—2p/+p,y +p +pyi'. that would correspond to a free, axisymmetric, massless sca-
lar field ¢ in three dimensions.
The prime denotes the derivative with respecRto The evolution of the field) gets considerably simplified

The Lagrangian of the model can be straightforwardlyif one introduces the energy dependent change of time
obtained by means of a Legendre transformation using th&=e~*sHot. In this auxiliary time, the dynamics is dictated
relation between momenta and time derivatives of the metriprecisely by the free-field Hamiltoniad,, so the equation

that the Hamilton equations provide of motion for ¢ is just a wave equation with rotational sym-
_ metry in a three-dimensional Minkowski spacetime with co-
p,Ne" Y2= —r+NRr’, ordinates T,R, ). The classical solutions with regularity at

_ the axis have the form
prNefyIZZ _ ‘}/+2(NR),_NR /,

_ - —ikT At ikT
D Ne - Ny 23 $(R,T) JEfokoO(Rk)[A(k)e +AT(k)ekT,

All metric fields, as well as their momenta, are subject towhereJ, is the zeroth-order Bessel functip®6]. The func-
boundary conditions that ensure the regularity at the symmeton A(k) and its complex conjugata’(k) are fixed by the
try axis, the asymptotic flatness at spatial infinityith a initial conditions and play the role of annihilation and cre-
possible deficit angle and a well-posed Hamiltonian dy- ation variables. In terms of them, the free-field Hamiltonian
namics. We refer to the work of Ashtekar and Pi¢&j for  can be written aﬁozfgodkkAT(k)A(k).
details about these conditions. In particular, we assume that The quantization of the reduced ER model can be carried
all fields areC™ everywhere, that at the axis out following standard techniques. We introduce a Fock

P RiD_ space in which/(R,0), the quantum counterpart ¢{ R,0),
7(R=0)=0, N*(R=0)=0, is an operator-valued distributiof27]. Its action is deter-
p(R=0)=0, p'(R=0)=0, (2.4 mined by those oA(k) andA"(k), annihilation and creation

operators with non-vanishing commutators:
where we have calleg:=r—R/(8G), and that at spatial R o _
infinity, [Ak),AT(K)]=6(k,K). (2.9

1 Explicitly,

w=0(§), p=0(1). 25
.y _ A At

We say that a functiohis of asymptotic orde©(R™?) if the Y(RO= \/EJO dkb(RILA)+AYK)] (2.10
productsR?f, R** 1’ andR®"2f” admit limits asR tends to
infinity [8]. In addition, we note that, for the stability under and the Fock space is constructed over the Hilbert space of
diffeomorphisms of the regularity condition thatvanish at square integrable functions on the positive real axis,
the axis, one must further restrict the shift vector to satisfyL2(R*,dk). In this space, the free-field Hamiltonian is rep-
[25] resented by the self-adjoint operator

044028-3



BARBERO G., MENA MARUG;AN, AND VILLASEN OR PHYSICAL REVIEW D70, 044028 (2004

” :dek”AT(k)A(k). NR= NTR_ (3.3
0 1+y—4¢

Via the spectral theorem, we can then promote the physicah principle, if one insists on imposing that the fields on the
Hamiltonian to a bounded operatb. The evolution in the left hand side be real, the range of the new metric fields
time parameteré’ andt are thus respectlvely given by the should be properly restricted. Note also that the transforma-
unitary operatorsJo(T) e~iTHo andU(t)=e ", tion is always well definedeven with these reality condi-

In order to arrive at a well-defined operator fgr it is  tions) in a neighborhood of the Minkowski solution, i.e., for
necessary to regularize the quantum fi€d10 [10]. This  small over-barred fields and hence for the linearized theory.

can be done by smearing the Bessel functig{Rk) with a The above transformation can be easily completed into a
square integrable functiope L2(R*,dk): canonical one. Old and new momenta are related by
- o R . — — R_ )
#(Rlg)= v46f0 dkg(k)Jo(RK[A(K) +AT(K)]. Py= 1+ )Py + (24— y)Py+ | gg¥—P | Py,
(2.11

p,=(1+y=9)py,
It is then possible to define meaningful metric operators, e.g. 7 7
for the diagonak and # componentsat the initial timg, by

exponentiating the regulated version of the fiedd,/(R19 p=\1- ¢+166—p P (3.9
[10]. For simplicity, we will restrict in the following to regu- R i+ v

lators that correspond to a cutddf, so that
Using these expressions, it is not difficult to write the

1 if k=skg, constraints of the ER model in terms of the new canonical
9=V i koK. (212 variables. The associated gauge freedom can be eliminated
¢ by imposing conditions equivalent to those employed by
In particular, we have?(k) =g(k). Ashtekar and Pierri, namely
_ __ R _ _
IIl. NEW METRIC FIELDS XR=(1+¢)p— @¢2=0, x:=p,=0. (3.5

We will introduce now a different field parametrization
for the Einstein-Rosen metric such that the new fields ar@aking into account relation@.2), (3.3), and(3.4), one can
linear in the metric excess around Minkowski spacetime: check that these conditions are identical to the gauge fixing
requirementg2.7) except for metric-dependent, global mul-
ds?=—(1-2N— g)dt?+ 2NRdtdR+ (1 + y— ¢)dR? tiplicative factors that differ from zero for almost all values
o o o of the metric fields and, in particular, in a neighborhood of
+(R?>—R?)+16GRp)d 6%+ (1+ y)d Z°. (3.) their origin (the Minkowski background
The reduction of the model can be carried out by the same
Obviously, when all the fieldsN,NR, ,p, y) vanish, we re-  procedure followed by Ashtekar and Pierri, translated to the
cover the Minkowski solution. Moreover, our new parametri-new variables, so we will not repeat the details here. Perhaps
zation is specially suited for the study of linearized gravity,the only noticeable point is that, owing to the dependence of
since it reproduces the linearization of the spacetime metrighe gauge fixing condltlop( on ¢, the momentum canoni-
(2.1) around the Minkowski backgrourid4] [apart from the 41y conjugate toy after reduction P, does not coincide
notation with over-bars and with=r —R/(8G)]. Hence, at \yith the original “onepy; (in other words, the Poisson and

first order one can interpret our new metric fields as th
linearization of those used in the AP formulation. “Dirac brackets of/ andpy, differ). One finds instead

The exact relation between both sets of fields is found by —
identifying the metric expressions. One gets P _2(1@ -
21+ )+ Ry (2+ ¢)

d=In(1+ ), (3.2
The only physical degree of freedom is describedyby
=In[(1+ ) (1+y— )], The reduced metric, regular at the axis and with asymptoti-
cally unit lapse, takes the form

8Gr=\1+ ¢VR?—R%y+ 16GRy,

_ - ( R)Z
N=\/1+¢\/1+2N - ==

1+y—¢ +(1+y¢)dz2,

2
— +dR?| +
+ Vs

2
—dg?
1+

ds?=(1+y—¢)| —
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with y given by ploying the Hamilton equation@.3). Next, one expresses it
in terms of our new metric fields employing the transforma-
2 tions (3.2) and (3.3), and expands the result in powers of
those fields. As we have commented, the ac®pis given
by the terms quadratic in the fields. In deducing this action,
one can get rid of several boundary terms by using the regu-
]. (3.9 larity and asymptotic condition§2.4) and (2.5). Together
with our field redefinitions, the latter of these sets of condi-
tions implies that, at spatial infinity, the limits af, Ry’,
p/R, andp’ vanish. The regularity condition®.4) guaran-
tee in turn thaffor generic values ofs(R=0)] NR andp
vanish at the axis and

Y
0 1+Z

- R _R
A+ y—¢)(1+p)=ex JdRE

+

8GP,\°
= 1+¢)?
= ) (1+4)

In the reduced metricy.. denotes the limit wheR— = of y.
Recalling conditiong2.5) and relationg3.3), which in par-

ticular imply thati..=0, one easily checks that

2

_ = Rl ¢ —
1+y,.,=e’=ex f dR> l//—_ _ _ J*(R=0)
o 2|1ty ¥(R=0)=16Gp' (R=0)=————— . (4.1)
1+ ¢(R=0)
—\2
GP, —,
+ R (1% - (3.7 We notice also that the strict linearization of these relations
between field values leads td R=0)=p'(R=0)=0.
Finally, the action of the reduced model is Writing back the action in Hamiltonian form by means of
a Legendre transformation, one ggtgl]
t2 1 C——
S=| dt| - 1- _+deP—¢. [t _ % .
ty 4G3 Vit vy, 0 v S= 2dt[—H|+f dR(Pyy+Pp+Pyi) |,
The first contribution is therefore minus the reduced Hamil-
tonian. In fact, as one could expect, the above expressions v | 4G P% R(y')2 _
for the reduced metric and action reproduce exactly those H|=j dR R + 16G — PP+ NC|+NREF .
obtained in the AP treatment of the ER model, provided that 0 4.2

the basic fields) andEare related by,/len(1+$) [see Eq.

(3-2] and their canonical momenta by Here, theP’s denote the canonical momenta in the linearized

— — model and, in terms of time derivatives of the metric, take
Py=Py1+4). 3-8 the expressions

This is precisely the change of momentum needed to com- —
plete our field redefinition into a canonical transformation for N
the reduced system. In other words, instead of changing the v 8G P
metric fields for the ER waves, completing the transforma-
tion into a canonical one, and reducing the system, one caj addition, the linearized Hamiltonian and radial constraints
simply proceed to redefine the fieldin the reduced model gre
while preserving its canonical symplectic structure.

It is worth noting that, if one insists that the induced met- i -

ric of the reduced model be positive, one should demand that Elzzﬁ_y_ Eﬁ:&_zp’—_ (4.4
Y

the field ¢ be real or, equivalently,_thaf> —1. In a pertur- 8G 8G

bative analysis, however, the field is directly assumed to
be small and so the above reality condition would be obvi
ated in practice.

_ . R —
P,=2(NF)’ —y, Pg=£¢. 4.3

It has recently been showi4] that the gauge freedom of
‘the linearized system can be completely removed by de-
manding that

IV. EINSTEIN-ROSEN WAVES IN LINEARIZED GRAVITY ;IR‘ — 0, —I:: P—=0.

Let us consider the linearization of the ER model around
the Minkowski solution. Since our new parametrization of We point out that these conditions are just the linearization of
the metric is linear in the excess around the flat backgroundhe gauge fixing requiremen(8.5 imposed on the full ER
the action of the linearized theo§ can be obtained from Mmodel or, equivalently, of the gauge fixing.7) introduced
that in general relativity by keeping only up to quadratic by Ashtekar and Pierri. The subsequent reduction can be car-
terms in our fields. Our discussion will essentially follow the fied out exactly as explained in Refl4]. The degrees of
lines presented in Refl14]. One starts with the Lagrangian freedom of the system aggand its momentum. The reduced
form of the action(2.2), which can be easily deduced em- action is
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These conditions are known as de Donder Lorent?
gauge, and provide an acceptable gauge fixing in linearized
gravity, although they still leave some freedom in the choice
of coordinateg23].

Here,Hq is again the Hamiltonian of a massless scalar field The most straightforward way to elucidate whether the
with rotational symmetry in three dimensions, and can begauge imposed in the AP analysis of the ER waves is a
identified withy,,/(8Gy) if, in Eq. (2.8), one evaluatey at  higher-order generalization of a de Donder gauge is to cal-

the canonical pair,P). At quadratic order in these fields, culate the value OF’W'V in the reduced model of Sec. Ill. If

we see from Eq.(3.7) that Ho coincides as well with '  * vanishes at first order in the fields, then the lineariza-
¥-1(8G3). Thus, the free-field Hamiltonian provides the re- tion of our gauge fixing conditions is indeed a de Donder
duced Hamiltonian of the model in linearized gravity. gauge.

Moreover, in the selected gauge, the three-dimensional Changing from cylindrical coordinate®(6) to Cartesian
metric of the linearized model is just Minkowski. The scalarones §,y) and employing that, for any cylindrically sym-
field ¢ determines the norm of the Killing vectar,, and  metric fieldf,
appears in the reduced four-dimensional metric of the linear-
ized theory in the form

J— ty o e
S,= t1o|t[—Ho+ fo dRP,|.

X ! y !
ﬁxfzﬁf y (9yf=§f y ﬁzf:O,
ds’=(1—)(—dT?+dR?+R2d6?) + (1+ ¢)d 2% _
(4.9  adirect calculation shows that, "=0 and

We have renamed the time coordinate of the linearized 1 ; lﬂlﬂ(z lﬂ)
system to emphasize that it can be identified with the auxil- _tV V= — (y_ ¢) ,
iary time of the reduced ER model analyzed in Sec. Il, inas- 2[1+7y. (1+ 1,0)2
much as they are both Minkowskian in three dimensions and
the corresponding evolution is generated by the free-field - D U2+ D
HamiltonianH, in both cases. h,, "= Rall i (v —')— vty
2R| 1+, (1+y)?
V. de DONDER GAUGE X [— 2 6.9
We want to prove now that the gauge chosen by Ashtekar R? 1+Z , .

and Pierri is a higher-order generalization of the de Donder

gauge for linearized gravity, i.e. that the linearization of theyith a similar expressmn foIn ” replacingx with y in the
AP gauge(which is precisely that imposed in Sec. IV to last i H det din t 7 and it
reduce the linearized systgns of de Donder type. Let us ast equation. Herey is de errmne n .erms op in_ IS

start with some notation. We cail,,=g,,— 7, the differ- ~momentum by Eq(3.6). In particular, this value ofy is at

ence between the actual spacetime megri¢ and the flat least quadratic in the fields of the reduced model._

metric 7,, of the Minkowski background [7,, It is easy to check that, while the metric derivatives, ”
=(—-1,1,1,1) in a Cartesian coordinate sys]erﬁtandard do not generally vanish according to E§.1), their value is
perturbative approaches to gravity analyze the gravitationdn fact equal to zero at linear order after the reduction of the
interaction by means of an expansion in system. As a consequence, the gauge that we have chosen for
the analysis of the ER waves in linearized gravity is a de
Donder gauge, and the gauge fixing selected by Ashtekar and
Pierri is a valid generalization of it to the fuli.e., non-
linearized model. In fact, a straightforward computation us-
ing the reduced metri¢d.5) of the linearized model leads to

whereh=h,,»** is the trace ofh,,. In a first-order ap- the conclusion tha,, =2y~ 5 . Since cylindrical symme-
proximation(namely, in linearized graviy only terms up to  try guarantees the independence of the fig¢ldn theZ co-
quadratic |nh , are maintained in the action. To go beyond ordinate, we see that our gauge for the linearized theory sat-
that apprOX|mat|on higher-order terms are treated perturbdsfies the de Donder conditions, in agreement with our
tively as interactions. comments above.

In the linearized theory, a frequently followed approach is  Actually, the relation between the linearization of the AP
to (partially) remove the gauge freedom by introducing a setgauge, on the one hand, and the de Donder gauge for the
of conditions that simplify the equations of motion ﬂ“’,&w linearized ER model, on the other, is even tighter. In general

transforming them into wave equatiof3], namely relafuwty, the de Dondt_ar cond|t|or_15_ select not ]u_st one, bu_t a
family of gauges, leaving a remaining freedom in the choice

o o of coordinate$23]. For ER waves in linearized gravity, how-
hwygn”s: h,,"=0. ever, it is possible to see that the de Donder gauge is unique

_577;“/
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if one fixes the location of the symmetry axisRt0 and It is possible to see that, given relati@®.6), the only other
imposes therdthe linearized counterpart othe regularity  independent equation of motion left in the system is that for

conditions(2.4) and (2.6). the field ¢, which percolates to the reduced model. With

Let us prove this assertion. From Bd.1) a_nd the com- NR=0 and formula5.7), the above equation fgr translates
ments above it, we see that, at linear order in the fields, thfhto

regularity conditiong2.4) amount to

p(R=0)=p'(R=0)=y(R=0)=NR(R=0)=0. _ P P
(5.2) R R?

Besides, the stability under diffeomorphisms of the regularitywhich admits solutions of the forme'*'J;(Rk) and
conditions demands the restrictid®.6), which translates €'*'Y;(RK), keR, in terms of first-order Bessel functions
into [26]. Again, the only solution of this type allowed by our
— regularity conditions at the axis, which demand thandp’
(N%)'(R=0)=0. (53 vanish atR=0, is the zero function. Since vanishes, Eq.
e (5.7) implies then thalN must be constant. This constant can
On the other hand, the de Donder conditibng "=0 forthe o et equal to zero by requiring a vanishing excess of the
cylindrically symmetric metric(3.1) are equivalent to the |5nse with respect to the Minkowski background, either at
equations the symmetry axis or at spatial infinity.
. In conclusion, we have shown that the de Donder condi-
— — vy 8Gp tions, together with our regularity requirements R0,
R =0, (5.4) completely determine the gauge choice for ER waves in lin-
earized gravity_.The gauge fixing is such that all metric fields

S Y v 8Gp’ 8Gp vanish except). The resulting reduced metric is just that
N~+N'— >R T+ — = 0. (5.5 found in Sec. IV for the linearized model, namely the metric
R obtained with the linearization of the gauge conditions se-

) ) o o lected by Ashtekar and Pierri. As a consequence, the gauge
The linearized Hamiltonian constraint in E@.4) and the  hosen in the AP formulation is a valid generalization of the

regularity conditiong5.2) imply that de Donder gauge from the linearized to the full ER model.

y=16Gp". (5.6 VI. ANNIHILATION AND CREATION VARIABLES

Recalling the Hamilton equatiortd.3), the radial constraint In order to discuss the connection between the Fock space

of the linearized theory is then straightforwardly satisfied. |nemp|0yed in the AP quantization of the ER model and that

addition, differentiating Eq¥5.4) and(5.5) with respect tR  which would arise in its perturbative quantization, we will

andt, respectively, subtracting the results, and substitutinginalyze in this section the relation between the annihilation

relation (5.6), we arrive at and creation variables that are associated with each of these
o N two approaches.
(NR)”—NR=0. As we have commented, the basic metric fields in stan-

o dard perturbative treatments of gravity,,, are linear in the
SoNR can be expanded in terms of “plane” wave&(*®  excess of the metric around Minkowski. In the linearized
ande’ =R with ke R. But the only superposition of these theory, one chooses a gauge that simplifies the corresponding
waves that satisfies the conditioh=(NR)’=0 atR=0  €quations of motion, for instance a de Donder gauge. When
for all times[see requirementés.2) and (5.3)] is the zero the linearized description is modified by allowing the pres-
field. Eor NR=0 and;: 166;’ the de Donder equations ence of gravitational interactions, this gauge can be corrected
(5.4) and (5.5) reduce simply to, with terms that are of higher order in the fields, both to
' ' ensure that the gauge continues to be well posed and to fa-
— cilitate the analysis of the system. In Sec. V we showed that
N= SG;’+ @H:’ (5.7) the gauge choice made by Ashtekar and Pierri is precisely a

modified de Donder gauge of this type. We will therefore
select it as a valid gauge to compare the results of the AP and
with ¢ being a constant. the perturbative approaches to the quantization of the ER

We have not used yet the equation of motion foin the ~ model.
linearized system. This equation can be easily deduced from From this perspective, the relation between the two ap-
the linearized actiot4.2), taking into account the Hamilton proaches is based just on a field redefinition, namely the
equations4.3) and the form of the linearized constraints:  transformationy=In(1+ ) mapping the fieldy of the AP

L formulation to the fieldy, which describes the difference
8Gp—N’'—NR=0. with respect to the Minkowski background of the diagonal
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component of the metric. In the reduced ER model, this field Regardless of the time parameter selected to describe the
redefinition becomes a canonical transformation when comevolution of the ER modelthe auxiliary or the physical
pleted with the momentum chan@&8). The relation that we one), the initial time section of the system coincides in both
are interested in is that between the annihilation and creatiocases, since the times differ only by a positive normalization
variables associated with each of the canonical pafitg f) factor. When quantizing the system, a Fock space is assigned
and (,Py). to this initial section. This space being the same for the two

Although the fields considered are time dependent, wdatural choices of Hamiltonian, both lead to unitarily equiva-
will see below that, for our purposes, it will suffice to study lent Fock quantizationgl4]. Therefore, in order to study the
their relation on the initial time surface. If we wanted to relation between the Fock spaces of the AP and the pertur-
analyze the dynamics using the standard techniques of pepative approaches, we can restrict all considerations just to
turbative gravity, we would be forced to consider the evolu-the initial time surfaceT=t=0, as we anticipated. Thus,
tion in the auxiliary timeT of the ER model, rather than in from now on, byy(R), p,(R), #(R), andPy(R) we will
the physical timd, at least in a first step. The reason is thatunderstand the initial values of these fields.
the Lagrangian of the reduced model is local only in the Inthe AP description, one introduces annihilation and cre-
former case. For the physical time, the action can be reation variablesA(k) andAT(k) (ke R™), corresponding to
garded as the sum of a local, a bilocal, and in general multithe expansion of the cylindrically symmetric figldin terms
local terms of all orders. Once we had dealt with the gravi-of zeroth-order Bessel functions. Employing the formyof
tational interactions in the auxiliary time by perturbative on classical solutions given in Sec. Il, the Hamiltonian equa-
methods, we could change the dynamical description to théon dr¢=8Gp, /R and the identity
physical time in a second step, taking into account the back-
reaction produced by the presence of gravitational waves in
the form of a deficit angle at spatial infinity, accompanied by
a modification of the norm of the asymptotic time-like Kill-
ing vector. one can check that

This philosophy is in fact similar to that adopted in the
discussion of cylindrical gravitational waves with general *  Jo(RK) _
polarization as a sigma modgl8,29 (proposed as an alter- A(k)= fo dR 204G [Rky(R)+i8Gp,(R)]. (6.2
native approach to other quantization schefi38). In this
case, the oraviatonal acton has lso been made local Wi compex conjugat of this refaton provicki()
though constant in the evolution, differs from the unity. The In fact, recalling thas and p,, are a canonical pair of

h he physical time i q d d lead cylindrically symmetric fields, it is not difficult to see just
change to the physical time Is energy dependent, and leads {0, ,, Eq. (6.2 that the only non-vanishing Poisson brackets

fwdRqu)(Rk)Jo(R“k): 5(k,K), (6.1)
0

a multi-local action. +
It is instructive to see the expression of the reduced actior? FA(K) andA'(k) are really
of the ER model corresponding to the auxiliary tiffiein (AK),ATR) = —i (kK

terms of the two types of fields employed to describe the

system, namely) and . Remembering that, in the timB  Therefore, without appealing to the explicit form of the clas-
the dynamical generator is the Hamiltonibig=y../(8G3)  sical solutions, we can regard formu.2) and its complex
and using relatior(2.8), one can check that the associatedconjugate as the definition of a set of annihilation and cre-

reduced Lagrangian is ation variables corresponding to the fietd Furthermore, the
same arguments apply exactly as well to any other cylindri-
Lo= ifmd RB[_(¢,)2+(8T¢)2] cally symmetric field and its momentum as far as they form
8GszJo 2 a true canonical pair. For instance, we can adopt the point of
view of the perturbative approach and consider the pair
B de R [ (724 (2 —)2] (¢,P) as the fundamental canonical fields. Associated with
8G3Jo 2(1_,_%2 ¥ )7l them, we then introduce the following type of annihilation
variables:
Thus, while the AP formulation consists of a free-field pa- 34(RW
rametrization of the reduced system, describedyhythe * 0 — e
other parametrization, natural from the viewpoint of a per- a(k)= fo dR 2./4G [Rky(R)+iBGPy(R)], (6.3

turbative approach, leads to a fieﬁi/vith self-interactions of

all orders, namely with their complex conjugates providing the creation vari-
ablesa’(k).
” Z(n+1) (= R— — A point that is worth remarking is that the above defini-
LO:nZO (-1 8—G3J0 dR§’z” [= ")+ (0r)7]. tions are the natural ones from the perspective of the pertur-

bative approach. In the linearized gravitational the&ysat-
In this sense, one can interpret the AP formulation as a freesfies the same cylindrical wave equation @asloes in the
field realization of the ER model. full reduced ER model. Thus, the associated expansion of
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(R,T) in terms of complex exponentials f and Bessel #(RIA,A")>—1 (ensuring that the induced metric is posi-

functions ofR leads precisely to the above annihilation andtive definite if A(k) and A*(k) are complex conjugate to
creation variables in linearized gravity. In other words, theeach other, because theiR|A,A") is real everywhere. On
underlying mode decomposition of the fiel@nd@is the the other hand, the inverse transformation between the two

. . L —— sets of particle-like variables can be obtained by substituting
same at first perturbative order. Actually, sinag ;) and —

(¢.p,) coincide at linear order, the series expansiok) the relationsy=In(1+4) and p,=P,(1+¢) in formula

in powers of the over-barred fields leads from Eg.2) to (6.2 and expressing the initial values gfand P, in terms

definition (6.3) as the leading term in a perturbative expan-Of a(k) anda’(k) [using the analogue of E¢6.4)]. Finally

sion (the same line of reasoning applies to the complex conWe point out that, in formula6.5), each of the AP annihila-

jugate formulas foAt anda®). tion and creation variables appears multiplied by a factor of
Employing Eq.(6.1), the introduced definitions of cre- VG. As a result, one can understand the expansioa(kj

ation and annihilation variables can be inverted to obtain th@nd a'(k) in powers of such variables as equivalent to a

initial values of the fields: perturbative expansion in powers ¢6.
W(R)= TGJ dkJy(RK[A(K)+AT(K)], VII. REGULARIZED OPERATORS
0

Once one has established the relation between the sets of
iR e annihi_lation and_ creation variables as_sociated with the per-
py(R) = _f dkkd(RK[—AK) +AT(K)], turbative analysis of the system and with the AP formulation,
V16GJo a natural way to elucidate whether the two schemes lead to
(6.4  equivalent Fock quantizations is the following. One can first
_ _ try to implement the variablea(k) anda'(k) (associated
and similar expressions fap and P,,. Note again that, in  with the perturbative approaglas annihilation and creation
arriving at these formulas, we have not used the explicit formpperators acting on the Fock space of the AP quantization.
of the classical solutions. They are simply Bessel expansionmshe perturbative vacuum would then be thmique state

of the initial fields. The dynamics is encoded in the obviated, inilated by all the operato?se(k). If this state is physical,

evolution of the annihilation and creation variables, which; o it its norm is finite. it determines the Fock space of the

have been restricted in our analysis to the initial time S“rfaceper’turbative approachj The two considered Fock quantiza-
By combining Eqs(6.3), (3.2), (3.8), and(6.4), itis noW  {j5ns \would then be unitarily equivalent, the equivalence be-

straightforward to deduce the highly non-linear relation thating given by the map from the perturbative to the AP

exists between the particle-like variables of the AP and thgo-,ium. on the contrary, the Fock quantizations would be
perturbative approaches: inequivalent if the perturbative vacuum is not normalizable.
Remembering relatiof6.5 (and its complex conjugale

a(k)= J'wd RJO(RK) [RkZ(R|A,A*) we migh_t naively attempt to promoua(k) an_daT(k) to op-
0 24G erators in the AP quantization by replacing the variables
_ A(k) and AT(k) with their operator counterpart. However,
+i8G PJ(RlA,AT)], this procedure fails because, in the quantum version of ex-
_ b HRIAAT) pression(6.9), the fields(R) and p,(R) that one _obt_alns_
y(RIAAT)=e 1 are not proper operators, but operator-valued distributions
. [10]. In particular, the exponential of #(R) is not rigor-
=exp V4G f dkJo(RR[AK)+AT(K)] ously defined. _
0 These problems can be overcome by regularizing the
fields. We will only consider regularizations that consist of a
-1 cutoff k; in wave numbergor, equivalently, in momentum
o _ B T space, so that they can be described by a regulafds) of
i8GP(R|A)=i8Gp,(RIA,AT)e (RAA) the form (2.12. Recall that in this casg?(k)=g(k). The
" corresponding regularized quantum fiéi(jR|g) is given in
= /4G Rf dkkJo(RR[AK)—AT(k)] Eq. (2.1]) and is self-adjoint for everk.<e«. The spectral
0 theorem allows us then to define the exponereiat®R9 as
© . . a positive operatof10]. Employing the Campbell-Baker
xexp{ - \/4Gf0 dkJo(RK)[A(K) Hausdorff formulae®*¢=e~[P.12ebeC which is valid for
operatorsh andc whose commutator is @number, one can
+AT<R>]] , 65
o= WRI9) = g2GI3o(RM) gl|- o = UA(RIY). 7.2)

while a'(k) is the complex conjugate af(k). Note that in
fact these definitions implement the reality conditionwhere the colon denotes normal ordering and

044028-9



BARBERO G., MENA MARUG;AN, AND VILLASEN OR PHYSICAL REVIEW D70, 044028 (2004

o In this sense, the desired algebra of annihilation and creation
[[3o(R*)gl|= f dk|Jo(RK)g(k)|?. operators associated with the perturbative quantization
0 scheme can be regarded as the limit of our algebra of opera-
tors when the cutoff is driven to infinity.

Substituting the regulated expressid@sll) and(7.2) in

the definition of the operatom(k|g) anda’(k|g), it is not

For the regularization of the produ8G p(,,e“” that ap-
pears in Eq(6.5), we choose the ordering

iSG(ﬁw(R|g)e‘&’(R|g))N difficult to obtain their expansion in powers of annihilation
‘ ) and creation operators of the AP quantizatidx(k) and
=— /4G Rf “dkkI(RK[AT(k)e™ #R9 AT(K). According to our comments at the end of Sec. VI, this
0

expansion reproduces the power serie§@, except for the
P ‘?’(R‘Q)A(k)] 72 possibleG dependence introduced by tbenumberRy(G),
' ' which (partially) accounts for operator ordering ambiguities.

Finally, we define the following annihilation- and creation- Therefore, one can interpret the series/@ in the sense that

like operators corresponding &fk) andaf(k) for k<k,: each additional power correspon(s a certain operator or-
dering to the creation or annihilation of an extra particle in

R = Jo(RK) . the AP quantization. Explicitly, the series will have the form
a(k|g>==g(k)J dR———[Rke&/R9—R (G)k
o 2V4G

. A Kk _ G ni2; N Kk ,
HBG(Py(RIg)e-H) a(k|g) n§=)0( )" (klg)

o]

- = Jo(RK) ; ot ni2at
T(k|g):= kf dR———=[Rke/R9—R (G)k a'(klg)= 2 (G)"af,(Kg), (7.9
a( |g) g( ) 0 Zm[ g( ) =0 (n)

—i8G(p,(Rlg)e” W(RI9)) 7. (7.3 where now the operatogs,,,(k|g) and their adjoints are in-

dependent of the quantum gravitational constant
By construction, these operators are adjoint to each other. In. Remembering thaRy(G) is analytic inG and equal tR

order to account for part of the order ambiguity, we have leftat G=0, and using identity6.1), it is easy to find the zeroth-
the freedom to represef quantum mechanically by a order contribution tcfa(k|g):

numberRy(G) that may depend on the cutoff, as well as on
the quantum gravitational consta@t To recover the semi- w
classical limit, we impose the condition thay tend toR in é_(o)(k|g)=g(k)j dR
the limit G—0. For simplicity, we also assume tHR§(G) is 0
analytic inG.

The commutators of the operatdi.3) are computed in =g(k)A(K).
the Appendix. Of course, they do not depend on the form of
the ¢ numberRy(G). We will only comment two important - Similarly, a(o,(k|g)=g(k)A'(k). Thus, our definition of
properties of these commutators. First, using #af(Rl9)  annihilation- and creation-like operators for the perturbative
tends to the identity operator in the limit of vanishi@gand  approach is such that, in the considered sector of wave num-
remembering the integral expressi¢d.1), one can check bersk=<k., they coincide with the annihilation and creation
that the only non-vanishing commutators of our operator®perators of the AP formulation at dominant order/i&. In

Jo(RK)

2y4G

[Rki}(R|g)+i8Gp,(R|g)]

whenG—0 are other words, at first perturbative order the two types of par-
. o 5 ticles can be identified in the region of momentum space
lim[a(k|g),a’(k|g)]1=g(k) 8(k,Kk). below the cutoff. Note that one can completely deter-

G—0 mine the particle contain in this perturbative limit by

So, in this kind of semiclassical limit, we recover the algebra‘clnally proceeding to remove the regulator, i.&(k)

of a set of annihilation and creation operators in the region of= iMg1limg _ca(k|g) for all ke R.
wave numbers to which we are restricting our analysis. Sec-

ond, one can proceed to remove the cutoff by taking the limit VIll. PERTURBATIVE VACUUM
g(k)—1 or, equivalentlyk.—%. Assuming that this limit R . _
can be taken inside the integrals in expresgiamh) and us- We have seen that the algebraatk|g) anda’(k|g), in
ing the identity(6.1), a careful calculation shows that the limit of infinite cutoff, has the form of that of a set of
annihilation and creation operators. In addition, their values
lim[a(k|g),a(k|g)]=lim[a'(k|g),a'(k|g)]=0, for G=0 coincide with the annihilation and creation opera-
g—1 g—1 tors of the AP formulation for wave numbekssmaller than
the cutoff, reproducing the whole set of those operators when
lim [é(k|g),é*(”li|g)] = 5(k,K). the regulator disappears. The AP vacui@his hence totally
g—1 fixed by the condition that it be annihilated by the operators
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a(0)(k|g) for every value of the cutofk, or, equivalently, in ~ From Eq.(7.3) and the analyticity oRy(G) in G, one can
the limit k,—c. Besides, it is possible to check tHap is ~ see that
not annihilated by all the operatoéa(k|g) for each fixed A g(k) [ [
k.>0, and so neither is it when the regulator is removed. ag)(k|g)|0)= T[f dRJ(RKKE4(R)|0)
Therefore, the AP vacuum differs from that corresponding to 0
the perturbative approach, which we will cély. Ke Ke
Provided that the latter of these vacua belongs to the Fock +f dklf dka(ky+ky+k)
space of the AP quantization, a way to determine it is the 0 0
following. First, for each fixed cutoff, we find a stal@,)
annihilated by all the operatoé;(k|g) and such that coin-
cides with the AP vacuurf0) in the limit G—0. If |0,) is a _ _
physical state, one can choose it with unit norm. The vacuur¥/here we have defined the functions
|0) would then be attained as the limit of this normalized 1
state when the regulator is removég;— . Eq(R):=[|Jo(R*)g||R— E&GRQ(G=O),
Note however that our definitiof7.3) of a(k|g) involves
only annihilation and creation operators of the AP formula- oc
tion with k<k.. As a consequence, one can anticipate the F(kl,kz,k3)::f dRR$(RK;)JIo(Rky)Jo(Rks),
existence of ambiguities in the determination/@f), owing 0 8.3
to a lack of uniqueness in the allowed contributions from the '
sector of AP particles with wave number greater than theand we have interchanged the order of integratioR and in
cutoff. Nonetheless, this ambiguity can be eliminited by detk, ,k,). The first term iNE4(R) arises from the derivative
manding that the regularized perturbative vacu@y) has  with respect taG of the factore?®I9o(R8ll which appears in
no projection in that sector. This is a natural condition if wethe operatoe?(R19 when expressed in normal orderifgge
interpret the regularization as the removal of all interactionseq. (7.1)]. On the other hand, notice that the function
and particles with energies above the cutoff. In particular, it=(k, k, ks) is symmetric in all its arguments.
is consistent with the requirement that the limit|6f) when Condition(8.2) implies then that
G tends to zero be the AP vacuu®), because this is the
only physical state which does not contain particles with|
k>k. and is annihilated by all the operatoéqo)(k|g)

[which are equal té\(k) below the cutoff and vanish other-
wisel.

The computation 0f6g> can be carried out perturbatively ke ke ke (ky+kytKkg)
|Yg>=f dklf dsz dkgT
0 0 0

><F(kl,kz,k>AT<kl>A*<kz>|0>},

ke Ky [ R
Dyg)=— fo dklflfo dRI(Rk)Eg(R)AT(kp)[0)—[Y ),
with

in terms of the quantum gravitational const&htin order to
do it, one employs the seridg.4) for the annihilation-like
operatorsa(k|g) and expands the regularized vacuum as a X F(Kq,Kp,ka)AT(kp)AT(kp)AT(k3)|0).
formal power series of/G as well:
Any possible contribution to|®;,) proportional to the
_ ~ vacuum has been obviated, because it is not necessary to
|0g)=10)+ > (G)" Dy, ). (8.)  satisfy condition(8.2). Moreover, such a contribution can
n=1 . . .
always be absorbed in the dominant term of the series ex-

Here, we have made explicit that the dominant contributior?2"S10n(8.1) up to aG-dependent, global numeric factor in
must be the vacuur0), and the|®, ,)'s designate linear |0Og) that only changes the norm of this state.
superpositions of states with a finite, non-zero number of AP Similar arguments can be applied to fix the next correc-
particles whose wave number is bounded by the cutoff, tion to the AP vacuum|®,g), as a superposition of states
<k.. The above formula can equivalently be regarded adith a finite but non-zero number of particles belonging to
providing the AP vacuunjO) as a formal series in/G in e sectoks<k., using the condition

terms of the regularized perturbative vacuuff)=|0, - A -
—3(G)"[d, ). g P 10=[0g) a0)(K|9)[P2g) +2(1)(K|9)|P1g) +a(2)(k|9)|0)=0.
By an iterative process, one can deduce the form of all thg jeyise, |®,,,) can be fixed from the corresponding con-

states|®, ). Namely, once|®yg) is known for every ition at orderG™2 once{|®, g);n<m} have been deter-
n<m, one can determingd,,) from the condition that ined. ’

a(k|g)|04) vanish for allk at orderG™2. Let us consider the Employing that|®, ¢) is the sum of a one-particle state
casem=1: and the three-particle staf&y), which are orthogonal to
R R each other and to the AP vacuum, and the fact fiat,) is
a0)(k|g)|®14)+a1)(k|g)|0)=0. (8.2  alinear combination of states with non-zero particles, so that
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(0|®,4)=0, we conclude that, up to corrections of order proceed to renormalize the perturbative vacuum. Namely,
G"2 with n=3, the norm of| 0g) satisfies one could first normalizgdg), obtaining the unit norm state
[04)=[04)[(04]04)1 ¥2 and only then consider the limit

ke— 0.

(04/04)=(0]0)+ G(Y 4| Y g) =1+ G(Y 4| Y ).

We will now show that the norm ofY ) is infinite re-

gardless of the value of the cutoff, and therefkﬁ@) is not a
physical statdat least as a power series {fG). Thus, one
cannot reach in this way a normalized perturbative vacuum We have investigated the relation between the notion of
in the limit k.—oc. This strongly indicates that the perturba- particle that arises in the quantum framework developed by
tive vacuum is not included in the Fock space of the APAshtekar and Pierri for the description of the ER waves and
formulation, implying that the two discussed approaches tahat expected in a perturbative approach to the quantization
the quantization of the ER waves are unitarily inequivalentof this system. We have started by introducing a set of metric
In any case, the non-normalizability ff ;) means that the fie|ds that are specially suitable for the analysis of the model
perturbative vacuum is not analytic N/\gg invalidating the  in linearized gravity, since the fields are linear in the excess
perturbative calculation presented above. of the metric with respect to the Minkowski background.
The norm of|Y ) is given by Using this new field parametrization of the ER spacetimes,
(k Kyt ko) we haye discussed their quantizatiqn in t_he !inearized theory
(YqlYg)= f dklf dsz R of gravity. We have shown that the linearization of the gauge
fixing conditions adopted by Ashtekar and Pierri provides the
only gauge choice of the de Donder type which respects the
regularity conditions imposed on the metric at the axis of
So, in order to obtain it, we will first calculate the integral rojuaponal symmetry, Iocgted ata f|>§ed locatiGramely, the
(8.3), which provides the functio (k;,k,,ks). This inte-  °Ni9in of the radial coordinat®). This result allows one to
gral can be computed explicitly, e.g. using the formulas ofnterpret the gauge selected by Ashtekar and Pierri as a well-

IX. SUMMARY AND CONCLUSIONS

X F2(ky,Kz,K3).

Ref. [31]. The result is posed generalization to the ER model of the de Donder
gauge compatible with the regularity at the axis.
F(kq,Kz,Ks) =0 (K +ky—Kg) O (Kg— | kg —Ky|) From this perspective, the pertgr_bativg description. of the
system can be made to rest on a figldwhich parametrizes
2 the metric in the AP gauge and is linear in the excess around
X w\/4k§k§—(k§+k§—k§)2' Minkowski spacetime. By contrast, the parametrization cho-

sen in the AP formulation is based on a fie;!ldhat is highly

if kis positive and vanishing otherwise. One therefore amve@orates the reality conditions on the metric and, more impor-
at tantly, is subject to a lineareduced dynamics. The corre-
spondence between the two fields can be completed into a
(Yg|Yg) canonical transformation on the phase space of the reduced
ER model. This canonical transformation provides the key
f dk f Jm'“{k "1+k2} (k1+ Ko+ Ka) relation for discussing the correspondence between the
L lky— ko) ks 672 particle-like variables of the two considered descriptions.
Given a field and its canonical momentum, both possess-
ing rotational symmetry and being regular at the symmetry
(k1+ ko—Kg)(k3—]| l_|<2|)(k3+||(1_|(2|)' axis, it is possible to expand their initial values in terms of
zeroth-order Bessel functions. Using this property, one can
Here, mifa,b} denotes the minimum of the numbexsand  associate with the canonical pair of axisymmetric fields on a
b. constant time section a set of annihilation and creation vari-
Note that the integrand in the above expression is positivables with positive wave numbers. This possibility is at hand
in the integration region, and that the last integral has doth for the fieldys and its momentum in the AP formulation

simple pole at the boundaiys=|k; k| of the integration  and for the fieldy and its momentum in the perturbatively
interval for k3. As a consequence, the integral that deterinspired description that is linear in the metric excess. The
mines the norm ofY 4) diverges for all positive values of the transformation between both pairs of fields provides the re-
cutoff k.. In other words, regardless of the cutdfi;,) is  lation between the corresponding sets of annihilation and
not a physical state. We thus conclude that the vacuum of thereation variables. Furthermore, since the linearization of
perturbative approach is not accessible as a power series poth parametrizations is the same, the introduced particle-
JG in the Fock space of the AP quantization. like variables coincide at linear order.

It is worth emphasizing that the divergence of the norm of What one gets in this way is the expression, e.g., of the
|Y4) does not arise as a result of taking the limit in which theparticle-like variables associated with the perturbative analy-
cutoff is removed because, if that were the case, one coulsis as highly non-linear functionals of the corresponding set
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of AP variables. This expression can be expanded as a powparticle state is infinite regardless of the value of the cutoff.
series in the latter set, each new particle-like variable beingherefore, no normalizable perturbative vacuum is acces-
accompanied by a factor ofG. Thus, one can regard the sible from the AP vacuum as a power series|i@.

square root of the quantum gravitational constant as the in- This result is a clear indication of the inequivalence of the
teraction constant of the model and the expansion in th&ock quantizations associated with the AP and the perturba-
number of created and annihilated particles as a perturbativitve approaches. Furthermore, the fact that the perturbative
expansion in that constant. As we have said, the expansion igacuum cannot be realized as a physical state analyt&in
such that the annihilation and creation variables of the ARrevents one from applying standard perturbative calcula-
formulation are taken as the leading contribution for smalltions based on the number of AP particles involved in the
JG; i.e., the mode decomposition is made to coincide withinteraction, so that a naive perturbative treatment of the sys-
that of the AP description at dominant perturbative order. tem is bound to fail.

We have next proceeded to consider the quantum version As we have commented, the Fock space that we have
of the relation between the variables of annihilation and creconsidered describes the reduced degrees of freedom of the
ation type for the two formulations. We have employed assystem in a section of constant initial time. In this space one
starting point the Fock space of the AP quantization, since itan introduce a quantum dynamics, which provides the evo-
provides a mathematically well-posed framework where thdution of these degrees of freedom as time progresses. In the
guantum issues can be discussed with rigor. The first probzase of the ER waves, this notion of reduced dynamics can
lem that has been necessary to overcome, in order to promoke linked to two types of quantum Hamiltonian, a local one
to meaningful operators the particle-like variables of the perthat describes the evolution in an auxiliary time, conformally
turbative scheme, is to regularize the quantum fields. Thiflat in two dimensions together with the radial coordinate,
has been done by introducing a cutoff in the model and supand a non-local one that corresponds to a physical time, nor-
pressing all particle interactions with energi@s equiva- malized to the unity at spatial infinity. The analysis of the
lently wave numbepsabove it. The resulting operators have system with the first Hamiltonian is trivial in the AP quanti-
been proved to reproduce a formal algebra of annihilatiorzation, in the sense that it leads to a free-field realization.
and creation operators in the limit in which the cutoff is The quantum evolution in the physical time, on the other
removed. In addition, the representation chosen is such thatand, is much more involved. It can also be studied by a
for vanishing quantum gravitational constdhtone exactly perturbative approach, but this time the perturbative order
recovers the annihilation and creation operators of the ARorresponds to the degree of non-locality. Aspoint contri-
guantization in the sector of particles with wave numbersbution to the Hamiltonian will be proportional to the
below the cutoff. (n—1)th power of the gravitational consta@t

Using these regularized operators, one can investigate The fact that the same constaBtplays the role of per-
whether the perturbative vacuum can be represented astarbative parameter in both types of analysese linked to
physical state in the Fock space of the AP quantization. Ithe number of AP particles involved in the local interaction
this were the case, the two considered quantum theoriesnd the other to the degree of non-locality in the dynajmics
(namely, those based on the AP and on the perturbativmay lead to some confusion. This is in part due to the fact
vacuum would be unitarily equivalent. In more detail, we that the system possesses only a fundamental constant, so
wanted to elucidate whether there exists a physical state ithat it will show up in any natural expansion. Anyway, a full
the Fock space of the AP formalism that can play the role operturbative analysis can always be made in two steps, first
vacuum in the perturbative approach and be reached in théiscussing the quantum system at a fixed instant of time, as
limit of infinite cutoff as a perturbative power series in the we have made here, and then taking into account the non-
coupling constant/G, with interacting-free ternfi.e., the locality introduced by the change from the auxiliary to the
contribution atG=0) given by the original AP vacuum. physical time. This second type of perturbative issues will be

The other terms in thigregularized series for the pertur- considered elsewhe[&2].
bative vacuum can be determined, for each fixed value of the
cutoff, by imposing the condition that they consist of linear
superpositions of states with a finite but non-zero number of
AP particles, and that they be annihilated by all the regular- The authors are greatly thankful to M. Varadarajan for
ized annihilation operators. In particular, we have studied irsuggestions and enlightening conversations. They are also
detail the first perturbative correction, proportionakf@. It  grateful to A. Ashtekar and A. Corichi for valuable questions
is formed by a three-particle and a one-particle state. Morand discussions. This work was supported by the Spanish
importantly, we have proved that the norm of the three-MCYT projects BFM2002-04031-C02 and BFM2001-0213.
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In this appendix we compute the commutators of the operét@(tg) and éT(k|g) defined in Eq(7.3). Let us introduce

the symbolic notatiom*(k|g) for both types of operators, with-(1)* equal to— 1 and 1, respectively, in the annihilation and
creation case. Using relatig@.l) and the basic commutato(2.9), one can then see that
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