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Birkhoff’s theorem for three-dimensional AdS gravity
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All three-dimensional matter-free space-times with negative cosmological constant, compatible with cyclic
symmetry, are identified. The only cyclic solutions are the 211 ~BTZ! black hole withSO(2)3R isometry,
and the self-dual Coussaert-Henneaux space-times, with isometry groupsSO(2)3SO(2,1) or SO(2)
3SO(2).
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I. INTRODUCTION

Three-dimensional space-times satisfying the vacu
Einstein equations have constant curvature—positive, ne
tive or zero, depending on the value of the cosmologi
constant. In view of this, it might seem surprising to find
number of nontrivial 211 geometries, analogous to fou
dimensional space-times@1,2#. The key to understand this i
the number of identifications that can be made on the m
mal covering space. This is most dramatically observed
the case of 211 black hole, which can be obtained via ide
tifications on AdS3 @3,4#.

A similar discussion also applies to higher dimensio
space-times. In@5# and @6#, it was shown that, under a sui
able identification, the analogue of the nonrotating 211
black hole can be obtained in 311 dimensions. Similar so
lutions were constructed through identifications in higher
mensional AdS spacetimes@7,8#. Very recently, the genera
problem of identifications in AdSd has been discussed i
@9,10#, and the conclusion is that the only possible bla
holes that can be obtained as quotients are the hig
dimensional generalizations of the nonrotating black hole
211 dimensions@11#. Other physically acceptable spac
times have also been obtained through identifications
Minkowski space as Kaluza-Klein reductions of supersy
metric vacua~see@12# for a classification!.

Although the three dimensional black hole has been
tensively studied over the past decade, the issue of
uniqueness has not been completely exhausted. One
ask, for instance, what family of geometries is determined
a given set of symmetries, analogous to Birkhoff’s theore
which states that any spherically symmetric solution of E
stein’s equations in empty space in four dimensions is
feomorphic to the maximally extended Schwarzschild so
tion in an open set@13#.

Recent generalizations of Birkhoff’s theorem to high
dimensions and to include matter sources as well as an
tensive list of references can be found in@14#. In this
reference—as in many others, like@15#—spherical symmetry
@invariance underSO(D21)] has been extensively dis
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cussed for arbitraryD. However, those general discussio
leave out the three-dimensional case. This case is except
and should be treated separately because forD53 the group
of spatial rotations is Abelian. This means, in particular, th
only for 211 dimensions ‘‘spherical symmetry’’ is compa
ible with nonvanishing angular momentum and therefore o
diagonal components in the metric must be allowed.

In this paper it is shown that, apart from the black ho
geometry with two Killing vectors, cyclic symmetry@invari-
ance under the action ofSO(2)] in 211 dimensions also
allows for the self-dual Coussaert-Henneaux~CH! space-
times with four Killing vectors@16#, and also for a different
self-dual geometry with only two Killing vectors. These no
black-hole geometries are analogous to the Nariai solut
which exists in four dimensions with positive cosmologic
constant@17# ~see@18# and references therein for the high
dimensional generalizations!. The CH spacetimes are ob
tained as identifications of AdS3 by self-dual generators o
the two copies ofSO(2,1) of the isometry group of anti–d
Sitter space, and have been recently shown to be releva
the context of AdS/CFT correspondence@19#. The CH space-
times were also independently obtained within the famil
of solutions derived in Ref.@20#, but their properties were
not explicitly discussed there.

The paper is organized as follows: In Sec. II the Einst
equations with a negative cosmological constant for 211
cyclic spacetimes are integrated. Three cases are ident
depending on whether the norm (n) of a certain gradient is
positive, negative or null. In Sec. III the isometries for ea
of these cases are studied, concluding that the casesn2.0
andn2,0 correspond to different patches of the BTZ bla
hole with isometrySO(2)3R. The casen250 corresponds
to the self-dual CH spacetimes havingSO(2)3SO(2,1)
isometry. The last derivation involves an analysis of the K
ing equations, which for this case cannot be solved in clo
form in general. In Sec. IV it is shown that a further iden
fication can be performed to produce a new self-dual tim
dependent spacetime withSO(2)3SO(2) isometry group
and without closed causal curves. Finally, Sec. V conta
the conclusions and discussion. Some detailed calculat
are included as Appendices.

II. CYCLIC VACUUM SOLUTIONS

Matter-free 211 gravity in the presence of a negativ
cosmological constant is described by the action
©2004 The American Physical Society27-1
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S5
1

2kE d3xA2g~R12l 22!, ~1!

where L52 l 22 and k are the cosmological and gravita
tional constants, respectively. The corresponding Eins
field equations are

Gm
n5 l 22dm

n . ~2!

In this section cyclic symmetric configurations satisfyi
Eqs.~2! will be discussed. A spacetime is calledcyclic sym-
metric if it is globally invariant under the action of the one
parameter groupSO(2) @21#. The corresponding Killing vec-
tor field, m5­f , has normgff.0 and the most genera
metric with this symmetry can be written, in appropriate c
ordinates, as

g52N~ t,r !2F~ t,r !dt2

1
dr2

F~ t,r !
1Y~ t,r !2~df1W~ t,r !dt!2, ~3!

where part of the freedom under coordinate transformati
has been used to eliminategtr andgfr . With this choice, the
vacuum Einstein equations~2! can be readily integrated~see
Appendix A!. The solutions fall into different cases depen
ing on the relative signs ofF and the norm of the gradien
¹mY,

n2[¹mY¹mY5FS ~] rY!22
~] tY!2

N2F2 D . ~4!

AssumingF.0, three cases can be distinguished, and
each case a different choice of coordinates can be mad
render the metric in a more conventional form. Changing
sign of F, correspond to reversing the sign ofn2, so it is
sufficient to analyze the case of positiveF only.

A. Casen2Ì0: black hole regionsrËrÀ or rÌr¿

If ¹mY¹mY.0, the radial coordinate can be chosen
Y(t,r )5r . This coordinate measures the perimeter, 2pr , of
the closed integral curves of the cyclic Killing fieldm
5­f . With this choice forY, the Einstein equations~see
Appendix A! are easily integrated yielding

W~ t,r !52
JN~ t !

2r 2
1W0~ t !, ~5!

F~ t,r !5F~r !5
r 2

l 2
2M1

J2

4r 2
, ~6!

whereW0(t) is an arbitrary function,N(t,r )5N(t), andM
andJ are integration constants which are assumed to sa
uJu<Ml in order to avoid naked singularities. The functio
F(r ) is positive forr ,r 2 or r .r 1 , wherer 6 are the posi-
tive roots of the equationF(r )50. In this way, the metric
takes the general form
04402
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g52S r 2

l 2
2M1

J2

4r 2D N~ t !2dt21S r 2

l 2
2M1

J2

4r 2D 21

dr2

1r 2S df1W0~ t !dt2
J

2r 2
N~ t !dtD 2

, ~7!

where the radial coordinate lies in the region$r ,r 2%
ø$r .r 1%. The spacetime described by Eq.~7! is locally
equivalent to the regions outside the outer horizon (r .r 1)
or inside the inner horizon (r ,r 2) of the 211 black hole
@3,4#. This can be made explicit performing the followin
coordinate transformation:

~ t,r ,f!°S E N~ t !dt, r , f1E W0~ t !dt D , ~8!

that respects the gauge choicegtr505gfr , gff5r 2.

B. Casen2Ë0: black hole regionsrÀËrËr¿

In the case¹mY¹mY,0 the time coordinate can be iden
tified with Y(t,r )52t. Then, as can be seen from Append
A, this impliesN(t,r )5N(r ) and

W~ t,r !52

JE N~r !dr

t3
1W1~ t !, ~9!

F~ t,r !5
1

N~r !2f ~ t !
, ~10!

whereW1(t) is an arbitrary function, and

f ~ t !52
t2

l 2
1M2

J2

4t2
, ~11!

whereM andJ are integration constants. In order to preser
the condition F(t,r ).0, f (t) must be positive as well
Hence, the above solution is valid int2,t,t1 , wheret6

are the positive roots of the equationf (t)50. Thus, the met-
ric takes the form

g52S 2
t2

l 2
1M2

J2

4t2D 21

dt21S 2
t2

l 2
1M2

J2

4t2D N~r !2dr2

1t2S df1W1~ t !dt2
JE N~r !dr

t3
dtD 2

, ~12!

with t2,t,t1 . Finally, performing the coordinate transfo
mation

~ t,r ,f!°S r ,t,f1E W1~ t !dt2E W0~r !dr

1
J

2t2E N~r !dr D , ~13!
7-2
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the above metric takes the same form~7!, but with r 2/ l 2

2M1J2/4r 2,0, or equivalently, forr 2,r ,r 1 . Hence,
the spacetime satisfyingF(t,r ).0 and¹mY¹mY,0 is lo-
cally equivalent to the patch of the 211 black hole between
the inner and outer horizons.

C. Casen2Ä0: self-dual Coussaert-Henneaux space-times

The condition¹mY¹mY50 implies

] tY5FN] rY. ~14!

Combining the Einstein equations~A1a!, ~A1b!, and ~A1d!
with this condition implies

Gr
r1FNGr

t5
J2

4Y4
5

1

l 2
, ~15!

which means thatY(t,r )25 l uJu/2[a2, and the angular mo
mentum is completely determined by the constant norm
the cyclic Killing field. Hence, the 211 geometry~3! has the
form

g5g(2)1a2~df1Wdt!2. ~16!

Furthermore, in this case the only nontrivial Einstein eq
tion reads

1

N
] tS 1

N
] tF

21D2
1

N
] r S 1

N
] r~N2F ! D52

8

l 2
, ~17!

which just states that the metricg(2) describes a two-
dimensional spacetime of constant negative curvature,R(2)

528/l 2.
Choosing the simple gaugeF(t,r )51, Eq. ~17! can be

integrated at once for the functionN,

N~ t,r !5N0~ t !cosh@2r / l 1H~ t !#, ~18!

whereN0(t) andH(t) are integration functions. Hence, E
~A2! can also be integrated giving

W~ t,r !5
N0~ t !

a
sinh@2r / l 1H~ t !#1W0~ t !. ~19!

Then, making the coordinate transformation

~ t,r ,f!°S E N0~ t !dt,r ,f1E W0~ t !dt D , ~20!

and the rescaling (t,r ,f)°(2t/ l ,2r / l ,2af/ l ) the metric be-
comes

g5
l 2

4
~2dt21dr212 sinh~r 1H !dtdf1df2!. ~21!

This metric describes a class of space-times of cons
negative curvature with a cyclic Killing field of constan
norm. The stationary case,H5const, corresponds to the sel
dual space-times constructed by Coussaert and Henn
@16#. For nonconstantH(t), the geometry can be seen to b
04402
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diffeomorphic to the CH solution, but the coordinate tran
formation that relates the two metrics is far from obvio
~see Appendix D 3!.

III. GLOBAL STRUCTURE

The scope of Birkhoff’s theorem in 311 dimensions and
above is to identify the local geometries of the space-tim
compatible with some starting symmetry. In this same sp
the previous analysis yields the local geometric features
cyclically symmetric space-times in 211 dimensions. How-
ever, since in 211 dimensions all solutions of the matte
free Einstein equations are locally diffeomorphic, this is
sufficient to determine the space-time geometry at large
this section, the global structure of the physical space-tim1

consistent with the conditions of Birkhoff’s theorem is an
lyzed. The problem is to identify all theglobal isometries
compatible with the cyclic symmetry, that is, to find all glo
bally defined Killing vector fieldsK, which in the (t,r ,f)
coordinate basis read

K5Kt~ t,r ,f!­t1Kr~ t,r ,f!­r1Kf~ t,r ,f!­f , ~22!

satisfying the Killing equation,

~gna¹m1gma¹n!Ka50. ~23!

As shown above, the 211 geometries compatible with
cyclic symmetry are either a portion of the 211 black hole
@Eq. ~7!, for n2Þ0], or of the CH self-dual space-time@Eq.
~21!, for n250]. The question is whether those solutions c
be globally identified with those space-times or they are ju
locally diffeomorphic but globally inequivalent. The point i
that coordinate transformations such as Eqs.~8!, ~13!, and
~20! in general change the identification in the covering A
space.

In order to address the question, the global isometries
the solutions will be identified, which amounts to finding th
Killing fields of the geometry explicitly. Assuming the metri
~7!, the Killing equation~23! can be fully integrated giving
two independent, globally2 defined, mutually commuting
Killing vector fields. These fields span the isometry algeb
so(2)% R. In the case of the metric~21! the Killing equa-
tions ~23! cannot be reduced to quadratures in general du
the presence of the arbitrary functionH(t). Although this
obscures the problem, it is still possible to identify the sy
metry generated by the Killing algebra asso(2)% so(2,1),
or upon one further identification, asso(2)% so(2)
~see Sec. IV!.

1We restrict our attention to space-times without naked singul
ties or closed timelike curves.

2The term ‘‘global’’ is redundant, but is used here to emphas
that these Killing fields are defined throughout space-time and
not just solutions of Eq.~23! in an open neighborhood.
7-3
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A. 2¿1 black hole: SO„2…ÃR isometry

The isometries of the metric~7! are found by directly
solving the Killing equations~23! ~for a detailed discussion
see Appendix B!. The general conclusion of this analysis
that, apart from the cyclic Killing vector,

m5­f , ~24!

the geometry possesses another, globally defined, inde
dent commuting Killing field,

k5
1

N~ t !
~­t2W0~ t !­f!. ~25!

In adapted coordinates, given by

t̃ ~ t,f!5E N~ t !dt, f̃~ t,f!5f1E W0~ t !dt, ~26!

the Killing fields ~24! and ~25! can be written in the form

m5­f̃ , k5­ t̃ . ~27!

The fieldsm andk obviously generate theSO(2)3R isom-
etry algebra as in the BTZ geometry. The coordinate tra
formation (t,f)°( t̃ (t,f),f̃(t,f)) is well defined since
N(t) is assumed to be nonvanishing, and this diffeom
phism is precisely the change of coordinates which turns
metric ~7! into the 211 black hole metric.

B. Coussaert-Henneaux self-dual space-time:
SO„2…ÃSO„2,1… isometry

The metric~21! has anSO(2) isometry generated by th
Killing vector m5­f . Additionally, it admits a family of
Killing fields of the form ~see Appendix C for details!

KF,T[~F1tanh~r 1H !Ṫ!­t1T­r1
Ṫ

cosh~r 1H !
­f ,

~28!

which commute withm. The functionsF(t) andT(t) satisfy
the equations

Ḟ1ḢṪ50, ~29a!

T̈1T1ḢF50, ~29b!

where the dot denotes time derivative.
As shown in Appendix D, the Killing vectorsKF,T gener-

ate theso(2,1) algebra, and additionally the geometry d
scribed by Eq.~21! is globally identical to the self-dual CH
space-time. The proof is as follows: Since the system~29!
has a three-dimensional space of solutions, the Killing v
tors ~28! span a three-dimensional family of globally defin
fields. Moreover, the norm of these vector fields and th
scalar products are constants throughout space-time. No
$F1 ,T1% and$F2 ,T2% are two linearly independent solution
04402
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of the system~29!, andKF1 ,T1
andKF2 ,T2

are the correspond
ing Killing fields, the following commutator algebra i
found,

@KF1 ,T1
,KF2 ,T2

#5KF3 ,T3
, ~30a!

@KF3 ,T3
,KF1 ,T1

#5c12KF1 ,T1
2c11KF2 ,T2

, ~30b!

@KF3 ,T3
,KF2 ,T2

#5c22KF1 ,T1
2c12KF2 ,T2

, ~30c!

where the structure functions are given byc11
54l 22g(KF1 ,T1

,KF1 ,T1
), c2254l 22g(KF2 ,T2

,KF2 ,T2
), and

c1254l 22g(KF1 ,T1
,KF2 ,T2

). Since these scalars are consta

and in particular, independent ofH(t), the Lie algebra~30!
is the same as forH(t)50, which is theso(2,1) isometry
subalgebra of the CH space-time. This is a strong indica
that the metric~21! must be diffeomorphic to the CH metric

g5
l 2

4
~2dt̂21dr̂212 sinhr̂dt̂df̂1df̂2!. ~31!

The explicit form of the coordinate transformatio
(t,r ,f)°( t̂ , r̂ ,f̂), relating these two metrics as well as th
details of the above proof are exhibited in Appendix D.

IV. FURTHER IDENTIFICATIONS

The uniqueness of the spacetimes of constant curva
hinges on the possibility of generating new geometries
means of identifications. In principle, any identification th
does not introduce closed causal curves could be accep
and this restricts identifications to be along spacelike Killi
directions only. This condition, for instance, prevents furth
identifications on the BTZ geometry to obtain new spa
times, since in that case the isometriesso(2)% R only admit
an identification along the time directionR, producing
closed timelike curves.

The CH self-dual space-times~31! are obtained by iden-
tification of AdS3 along one of the spacelike self-dual ge
erators of the isometry algebra of anti–de Sitter spa
so(2,2)5so(2,1)% so(2,1) @16#. The resulting isometry al-
gebraso(2)% so(2,1) @see Eqs.~D25! for definitions# can be
further reduced by an identification along one spacelike K
ing vector in the unbrokenso(2,1) subalgebra. The resultin
space-time is also a self-dual geometry but with only t
Killing vectors corresponding to the isometry algeb
so(2)% so(2).3 Indeed, this can be accomplished perform
ing the following coordinate transformation to the CH spac
time (t̂ , r̂ ,f̂)°(t,f1 ,f2), where

t~ t̂ , r̂ ,f̂ !5arcsin~sin t̂ coshr̂ !, ~32a!

f1~ t̂ , r̂ ,f̂ !5arctanhS tanhr̂

cost̂
D , ~32b!

3We thank R. Troncoso for pointing out this possibility to us.
7-4
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f2~ t̂ , r̂ ,f̂ !5f̂1arctanh~ tant̂ sinhr̂ !. ~32c!

In these new coordinates, the spacelike Killing fieldsh2 and
m @see Eqs.~D25!# read

h25­f1
, m5­f2

, ~33!

where f2 is a new coordinate along theSO(2) isometry
which is identified asf25f214pa/ l . The metric~31! is
transformed into4

g5
l 2

4
~2dt21df1

222 sintdf1df21df2
2!. ~34!

Under the additional identificationf15f112p, along h2
5­f1

, the isometry subalgebraso(2,1) has been reduced t

so(2). Since the other Killing fieldsh0 andh1 do not com-
mute with h2, they are not Killing fields of the resulting
quotient space. Thus, the metric~34! with 0<f1<2p and
0<f2<4pa/ l corresponds to a different time-depende
self-dual space-time with isometrySO(2)3SO(2) and
without closed causal curves. This space-time is geodesic
incomplete and the singularity is not hidden by a horizon
it occurs atr 50 in the massless BTZ geometry.5

V. DISCUSSION AND CONCLUSIONS

The 211 geometries of constant negative curvature c
sistent with cyclic symmetry are given in Table I.

This table exhausts all possible 211 geometries and no
further identifications can be made on them, lest naked
gularities or closed causal curves are introduced.

Unlike in higher dimensions, where Birkhoff’s theore
assumes spherical symmetry, the solutions in 211 dimen-
sion are not restricted to have zero angular momentum, a
exhibited by the 211 black hole (n2Þ0). This explain why
previous results on Birkhoff’s theorem does not apply to t
case.

The self-dual space-times of Coussaert and Henne
(n250) arise from the accident in 211 dimensions that al-

4This metric can also be obtained from the self-dual CH spacet

~31! through the double Wick rotationt̂→ıf1 , r̂→ıt.
5We thank S. Ross for pointing out this to us.

TABLE I. The 211 geometries of constant negative curvatu
consistent with cyclic symmetry.

Case Geometry Killing fields Isometry

n2.0
BTZ

(r ,r 2 ,r .r 1)
2 SO(2)3R

n2,0
BTZ

(r 2,r ,r 1)
2 SO(2)3R

4

n250 CH
4
2

SO(2)3SO(2,1)
SO(2)3SO(2)
04402
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lows to factor the AdS space isometry groupSO(2,2) as
SO(2,1)3SO(2,1). This accident cannot be generalized
arbitrary dimensions. Furthermore, these self-dual CH so
tions have a completely different topology from the 211
black hole; the product of two constant curvature spac
AdS23S1. In this sense, the CH solutions bear a rese
blance with the Nariai space@17#, which exists in four di-
mensions with positive cosmological constant. It would
interesting to investigate to what extent the Nariai solution
compatible with Birkhoff’s theorem in presence of a positi
cosmological constant.

The analysis of then250 case also illustrates some fe
tures of the problem that may be of use in other cases.
fact that the isometry algebra can be determined with
knowing the explicit form of the solutions of the Killing
equations is generic. This is a consequence of two facts~i!
The commutator of two Killing vectors is necessarily a Ki
ing vector and~ii ! only a linear combination of Killing vec-
tors with constant coefficients is also a Killing vector. As
consequence, the structure constants of the isometry alg
are necessarily integration constants of the Killing equatio
This explains the ‘‘remarkable’’ feature that the right ha
side of Eqs.~30! contains only integration constants of th
system~29!, as shown in Appendix D.

The other interesting feature is related with the old pro
lem of determining if two apparently different space-tim
having the same invariant quantities, including their isome
algebras, are the same space-time in different coordinate
not. For example, metrics~21! and~31! both represent space
of constant negative curvature and isometry groupSO(2)
3SO(2,1). The approach we follow here rests on the f
that the coordinate transformation relating the two metrics
it exists, must also relate the isometry algebras. Hence,
identification of the two families of Killing vectors leads to
class of transformations including the relevant one. T
above process involves the integration of a linear PDE s
tem. If the number of Killing vectors is sufficient, all th
arbitrary functions that arise in the integration process
determined and the coordinate transformation is uniqu
fixed, as in the present case~see Appendix D 3!. On the
contrary, the nonexistence of solutions of the PDE syst
would imply that the space-times under study must be diff
ent.
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APPENDIX A: EINSTEIN EQUATIONS
FOR CYCLIC SYMMETRY

For a metric of the form~3!, the vacuum Einstein equa
tions for 211 gravity ~2! take the following form:

2Y~Gt
t2WGf

t!52FY91
Y3~W8!2

2N2

1
ẎḞ

N2F2
1Y8F85

2Y

l 2
, ~A1a!

2YGr
t5

~FY8!

N2F2
1S Ẏ

N2F
D 8

50, ~A1b!

2YNGf
t5S Y3W8

N D 8
50, ~A1c!

YNF~Gt
t2WGf

t2Gr
r !5S Ẏ

N
D .

1N2F2S Y8

N D 8
50,

~A1d!

22YNGf
r5S Y3W8

N D .

50, ~A1e!

2N~Gf
f1WGf

t!52S ~F21!

N D1S ~N2F !8

N D 8

2
3Y2~W8!2

2N

5
2N

l 2
, ~A1f!

where ( . .˙ . ) and ( . . . )8 denote time and radial derivative
respectively. From Eqs.~A1c! and ~A1e! it is clear that the
quantity

J5
Y3

N
W8, ~A2!

is an integration constant~angular momentum!. The remain-
ing equations determine the form ofW(t,r ), F(t,r ), and
N(t,r ), while Y(t,r ) is fixed by appropriate coordinat
choices.

APPENDIX B: KILLING FIELDS FOR THE 2 ¿1 BLACK
HOLE

1. Generic caser¿ÅrÀÅ0

The isometries of metric~7! are found by directly solving
the Killing equations~23!. Redefining the mass and angul
momentum in terms of the~positive! zerosr 6 of the function
~6!, M5(r 1

2 1r 2
2 )/ l 2 and J52r 1r 2 / l , the Killing equa-

tions for the radial component of the Killing vector becom
04402
] rK
r

Kr
5

1

2 S 1

r 1r 1
1

1

r 2r 1
1

1

r 1r 2
1

1

r 2r 2
D2

1

r
,

~B1!

which can be integrated as

Kr~ t,r ,f!5
@~r 22r 1

2 !~r 22r 2
2 !#1/2

r
Fr~ t,f!, ~B2!

whereFr5Fr(t,f) is an integration function. Similarly, the
Killing equations forKt andKf imply

] rK
a5

l 2r @Aa~ t,f!r 21Ba~ t,f!#

@~r 22r 1
2 !~r 22r 2

2 !#3/2
, a5t,f ~B3!

where the functionsAa andBa are defined as

At~ t,f![
l 2~] tF

r2W0]fFr !

N2
, ~B4a!

Bt~ t,f![
lr 1r 2]fFr

N
, ~B4b!

Af~ t,f![
l 2W0~W0]fFr2] tF

r !

N2
2]fFr , ~B4c!

Bf~ t,f![
lr 1r 2~] tF

r22W0]fFr !

N
1~r 1

2 1r 2
2 !]fFr .

~B4d!

From Eq.~B3! the r-dependence ofKt and Kf can be ex-
plicitly found,

Ka~ t,r ,f!5Fa~ t,f!2$@~r 1
2 1r 2

2 !Aa12Ba#r 2

22r 1
2 r 2

2 Aa2~r 1
2 1r 2

2 !Ba%

3
l 2

~r 1
2 2r 2

2 !2

1

@~r 22r 1
2 !~r 22r 2

2 !#1/2
,

a5t,f ~B5!

whereFt5Ft(t,f) and Ff5Ff(t,f) are integration func-
tions. The explicit dependence onr in the remaining Killing
equations allows us to finally conclude that

Ft~ t,f!5
C1

N~ t !
, Ff~ t,f!52

C1W0~ t !

N~ t !
1C2 , ~B6!

whereC1 andC2 are integration constant. Finally, the ge
eral form of expression ofFr is
7-6
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Fr~u,v !5k1expS r 12r 2

l
uD1k2expS r 11r 2

l
v D

1k3expS 2
r 12r 2

l
uD1k4expS 2

r 11r 2

l
v D ,

~B7!

wherek1 , k2 , k3, andk4 are integration constants and th
coordinatesu andv are given by

u5E @ l 21N~ t !1W0~ t !#dt1f,

v5E @ l 21N~ t !2W0~ t !#dt2f. ~B8!

The identificationf5f12p following from cyclic symme-
try is respected by the Killing field only ifk15k25k35k4
50. This means that the metric does not admit Killing ve
tor fields with radial components, and the general form oK
for spacetimes~7! is

K5
C1

N~ t !
­t1S 2

C1W0~ t !

N~ t !
1C2D­f . ~B9!

2. Extreme caser¿ÄrÀ

The integration that yields Eq.~B5! cannot be done for
the extreme caser 15r 2[r e, or uJu5Ml , and the treatmen
for this case is different from the previous one. However
similar analysis leads to the following expressions:

Fr5k1u1k21k3exp~2vr e/ l !

1k4exp~22vr e/ l !, ~B10!

FtN5
lk1

2
u21 lk2u1

l 2k3

2r e
exp~2vr e/ l !

2
l 2k4

2r e
exp~2vr e/ l !1C1 , ~B11!

Ff1FtW05
k1

2
u21k2u2

lk3

2r e
exp~2vr e/ l !

1
lk4

2r e
exp~22vr e/ l !1C2 , ~B12!

wherek1 , k2 , k3 , k4 , C1, andC2 are integration constants
As in the generic case, periodicity inf implies Kr50, and
the functionsFt and Ff are given by Eq.~B6! as in the
generic case. This allows to write the same general fo
~B9! for the Killing fields in the extreme case.
04402
-

a

m

3. Zero angular momentum caserÀÄ0

In this case, the integration yields

Fr~ t,f!5F1~ t !expS r 1

l
f D1F2~ t !expS 2

r 1

l
f D ,

~B13!

whereF1 andF2 are integration constants. Again, the glob
identification f5f12p required by cyclic symmetry im-
plies Kr50.

4. Zero mass caser¿ÄrÀÄ0

In this case, direct integration yields

Fr5k1 t̃ 1k2f̃1k3 , ~B14!

FtN52
k1

2
~ t̃ 21 l 2f̃2!2~k2 t̃ 2 l 2k4!f̃2k3 t̃ 1C1 ,

~B15!

Ff1FtW052
k2

2l 2
~ t̃ 21 l 2f̃2!2~k1 t̃ 1k3!f̃1k4 t̃ 1C2 ,

~B16!

wherek1 , k2 , k3 , k4 , C1, andC2 are integration constants
and the coordinatest̃ andf̃ are defined in Eq.~26!. As in the
previous cases, cyclic symmetry impliesk15k25k35k4
50. Thus, in all BTZ geometriesKr50 and the genera
form of the Killing fields is given by Eq.~B9!.

APPENDIX C: KILLING FIELDS FOR THE SELF-DUAL
SPACE-TIMES

The Killing equations~23! for the metric~21! read

] rK
r50, ~C1a!

] rK
t2

] tK
r2sinhu]fKr

cosh2u
50, ~C1b!

] rK
f1

]fKr1sinhu] tK
r

cosh2u
50, ~C1c!

]fKf1sinhu]fKt50, ~C1d!

] tK
t2sinhu] tK

f50, ~C1e!

] tK
f2]fKt1sinhu~] tK

t1]fKf!

1coshu~Kr1ḢKt!50, ~C1f!

where u5r 1H. Equation ~C1a! implies Kr(t,r ,f)
5Kr(t,f), and integration of Eqs.~C1b! and~C1c! directly
yields

Kt~ t,r ,f!5Ft~ t,f!1
]fKr1sinhu] tK

r

coshu
, ~C2!
7-7
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Kf~ t,r ,f!5Ff~ t,f!1
] tK

r2sinhu]fKr

coshu
,

~C3!

whereFt andFf are integration functions. Substituting the
expressions, Eqs.~C1d!–~C1f! take the form

a~ t,f!1b~ t,f!sinhu1g~ t,f!coshu50. ~C4!

Since these equations must be satisfied for anyr, the
(t,f)-dependent coefficients must vanish independen
which implies the following system of equations:

]fFf5] tF
f50, ~C5a!

]fFt50, ~C5b!

] tf
2 Kr50, ~C5c!

] tF
t1Ḣ] tK

r50, ~C5d!

] tt
2Kr2]ff

2 Kr1Kr1ḢFt50. ~C5e!

From these equations it follows thatFf(t,f)5C4 ,
Ft(t,f)5F(t), Kr(t,f)5T(t)1F(f), and

T̈1T1ḢF5
d2F

df2
2F. ~C6!

This equation fixes the angular dependence as

F~f!5k1exp~f!1k2exp~2f!1k3 , ~C7!

which is consistent with the identificationf5f14pa/ l
only if k15k250, andF is an irrelevant constant. Combin
ing this with Eqs.~C5d! and ~C6! yields

Ḟ1ḢṪ50, ~C8a!

T̈1T1ḢF50. ~C8b!

Thus, the general form of a Killing field for the metric~21! is

K5~F1tanh~r 1H !Ṫ!­t1T­r1S C41
Ṫ

cosh~r 1H !
D ­f ,

~C9!

whereF andT are solutions of Eqs.~C8a!, ~C8b! for a given
function H(t), as stated in Eq.~28!.

APPENDIX D: THE so„2,1… ISOMETRY SUBALGEBRA
GENERATED BY KF ,T

The general solution of the system~29! can be formally
written as

S F~ t !

T~ t !

Ṫ~ t !
D 5PFexpS E

0

t

M ~ t8!dt8D GS F0

T0

Ṫ0

D , ~D1!
04402
y,

whereP stands for the path-ordered product, and

M ~ t !5S 0 0 2Ḣ~ t !

0 0 21

2Ḣ~ t ! 1 0
D . ~D2!

The operatorM (t) is a linear combination ofSO(2,1) gen-
erators,M (t)5s02Ḣs1. The Killing fields ~28! can be ex-
pressed as

KF,T5Fe01Te11Ṫe2 , ~D3!

where the components are given by Eq.~D1! and

e05­t , e15­r , e25tanhu­t1
­f

coshu
, ~D4!

form an orthonormal frame for the spacetime~21!, i.e.,
g(ea ,eb)5( l 2/4)hab , 0<a<2. Hence, the formal solution
~D1! can be interpreted as the evolution of the vectorKF,T in
the orthonormal basis~D4! under a time-dependent Loren
rotation acting on the vector of initial valuesK0[F0e0

1T0e11Ṫ0e2. The norm of the Killing vectors is

g~KF,T ,KF,T!5
l 2

4
~2F21T21Ṫ2!. ~D5!

This expression is independent of the functionH(t), which
reflects the fact thatH can be gauged away by a change
coordinates, as will be shown shortly. Since the basis~D4! is
orthonormal, the above norm is preserved under tim
dependent Lorentz rotations. Hence, the right hand side
Eq. ~D5! is constant in time, as can be directly checked fro
Eqs. ~29!. Thus, the norm of the Killing vector
g(KF,T ,KF,T), is equal to the norm of the corresponding ve
tor of initial values,g(K0 ,K0). This also shows explicitly
that the space of Killing vectors in the family~D3! is three-
dimensional and in one to one correspondence with the v
tors of initial valuesK0. Consequently, given two Killing
vectors,KF1 ,T1

andKF2 ,T2
, their scalar product,

g~KF1 ,T1
,KF2 ,T2

!5
l 2

4
~2F1F21T1T21Ṫ1Ṫ2!, ~D6!

is also time independent, as can also be directly verified fr
Eq. ~29!. Thus, given a set of Killing fields, the norm of eac
vector and their scalar products are fixed everywhere by t
values at one point. In particular, the Killing fields are li
early independent everywhere if and only if the correspo
ing initial value vectors are linearly independent as well.

Although the Killing fields KF,T cannot be written in
closed form for a genericH(t), the isometry algebra they
generate can be identified from the properties of Eqs.~29!.
Let $F1 ,T1% and$F2 ,T2% be two linearly independent solu
tions of the system~29!. Then, the corresponding Killing
fields KF1 ,T1

and KF2 ,T2
are also linearly independent, an

their norms and scalar product are the constants
7-8



n

on

o

ll-
-
ta

he

c

ike

ike
se

ull

are

can
r-

f-

t.

BIRKHOFF’S THEOREM FOR THREE-DIMENSIONAL . . . PHYSICAL REVIEW D 70, 044027 ~2004!
g~KF1 ,T1
,KF1 ,T1

![
l 2

4
c11, ~D7a!

g~KF2 ,T2
,KF2 ,T2

![
l 2

4
c22, ~D7b!

g~KF1 ,T1
,KF2 ,T2

![
l 2

4
c12. ~D7c!

Since Killing vectors form a Lie algebra under commutatio
their commutator is also a solution of Eq.~23!,

@KF1 ,T1
,KF2 ,T2

#5KF3 ,T3
, ~D8!

where the functions$F3 ,T3% are also solutions of Eq.~29!,
given by

F35T1Ṫ22T2Ṫ1, ~D9a!

T35F1Ṫ22F2Ṫ1, ~D9b!

Ṫ35F2T12F1T2 . ~D9c!

The norm of the new Killing vector is

g~KF3 ,T3
,KF3 ,T3

![
l 2

4
c33, ~D10!

which is also a constant of motion related to the other c
stants by

c335c12
22c11c22. ~D11!

The Killing fields KF1 ,T1
, KF2 ,T2

, andKF3 ,T3
are linearly

independent if and only if the determinant of their comp
nents@KFi ,Ti

a #, 0<a<2, 1< i<3,

det@KFi ,Ti

a #52c33, ~D12!

is nonvanishing. Starting with two linearly independent Ki
ing fields KF1 ,T1

and KF2 ,T2
, three situations can be distin

guished according to whether the plane spanned by their
gents is timelike, spacelike, or null:

~I ! A timelike plane is spanned by one timelike and t
other spacelike, or by two null vectors. In both cases~D11!
implies c33.0. Hence, one timelike and two spacelike ve
tors, or two null and one spacelike vector.

~II ! A spacelike plane requires both fields to be spacel
Then, Schwarz’s inequality impliesc33,0. That is, one
timelike and two spacelike vectors.

~III ! A null plane is spanned by a null and a spacel
vector. Since without loss of generality they can be cho
04402
,

-

-

n-

-

.

n

orthogonal thenc3350 andKF3 ,T3
cannot be linearly inde-

pendent from the other two.

1. Simple case:c33Å0

If c33Þ0, using the system~29! it can be proved that the
vectors KF1 ,T1

, KF2 ,T2
, and KF3 ,T3

satisfy the following
commutator algebra6

@KF3 ,T3
,KF1 ,T1

#5c12KF1 ,T1
2c11KF2 ,T2

, ~D13a!

@KF3 ,T3
,KF2 ,T2

#5c22KF1 ,T1
2c12KF2 ,T2

. ~D13b!

This applies to the two possibilities included in cases~I ! and
~II ! above: two spacelike and one timelike vector, or two n
and one spacelike vector.

Since the structure constants in the right hand side
seen from Eq.~D7! to be independent ofH(t), this algebra
must be the same as that forH50, which is theso(2,1)
isometry subalgebra of the self-dual CH spacetime. This
be made more explicit if the Killing fields are properly o
thonormalized as

h05
KF1 ,T1

A2c11

, ~D14a!

h15
c12KF1 ,T1

2c11KF2 ,T2

A2c11Ac33

, ~D14b!

h25
KF3 ,T3

Ac33

. ~D14c!

~HereKF1 ,T1
has been assumed to be timelike.! Then, from

Eqs. ~D8! and ~D13! the commutation relations of the sel
dual generators ofso(2,1) are recovered,

@h0 ,h1#5h2 ,

@h1 ,h2#52h0 , ~D15!

@h2 ,h0#5h1 .

Alternatively, if c11505c22 ~then necessarilyc12Þ0) and
the algebra~D13! reduces to

@KF3 ,T3
,KF1 ,T1

#5c12KF1 ,T1
, ~D16a!

@KF3 ,T3
,KF2 ,T2

#52c12KF2 ,T2
,

~D16b!

which is the sameso(2,1) algebra~D15! in a different basis.
The corresponding orthonormalization is

6We thank M. Bustamante for helping us to elucidate this poin
7-9
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h05
1

A22c12

~KF1 ,T1
1KF2 ,T2

!, ~D17a!

h152
KF3 ,T3

c12
, ~D17b!

h25
1

A22c12

~KF1 ,T1
2KF2 ,T2

!, ~D17c!

where it has been assumed that the null fields are both fu
directed or past directed (c12,0). If these field were to poin
in opposite directions (c12.0), the sign inside the squar
root must be reversed, and exchange the definitions ofh0
andh2.

2. Degenerate case:c33Ä0

If the fields KF1 ,T1
and KF2 ,T2

are null (c1150) and

spacelike (c22.0) respectively, they span a null plane@case
~III ! above#. In this casec3350, and thereforeKF1 ,T1

,

KF2 ,T2
and @KF1 ,T1

,KF2 ,T2
# are not linearly independen

However, it is possible to find another independent null K
ing vector which, together withKF1 ,T1

andKF2 ,T2
, generate

the sameso(2,1) algebra.
Without loss of generality theyKF1 ,T1

andKF2 ,T2
can be

taken to be orthogonal (c1250), and their commutator is no
linearly independent, but is given by

@KF1 ,T1
,KF2 ,T2

#5Ac22KF1 ,T1
. ~D18!

Let K3 be another linearly independent null field not co
tained in the plane generated byKF1 ,T1

and KF2 ,T2
and or-

thogonal toKF2 ,T2
. It can be then shown thatK3 is also a

Killing field. The scalar products between this null field a
the two Killing fields are

KF1 ,T1
•K3[

l 2

4
k13, ~D19!

KF2 ,T2
•K3[

l 2

4
k2350. ~D20!

Since the fieldsKF1 ,T1
, KF2 ,T2

, andK3 are a local basis in
the tangent space the metric can be written in this basis

g5
4

l 2
S 2

KF1 ,T1
^ sK3

k13
1

KF2 ,T2
^ KF2 ,T2

c22
D , ~D21!

where ^ s stands for the symmetrized tensor product. Sin
KF1 ,T1

andKF2 ,T2
are Killing fields they must obey
04402
re

s

e

05
l 2k13

8
£KF1 ,T1

g

5KF1 ,T1
^ sS @KF1 ,T1

,K3#1
k13

Ac22

KF2 ,T2D ,

~D22a!

05
l 2k13

8
£KF2 ,T2

g

5KF1 ,T1
^ s~@KF2 ,T2

,K3#2Ac22K3!, ~D22b!

where the commutation relation~D18! has been used. Th
resulting conditions are both of the formKF1 ,T1

^ sX50, and
using the orthogonality properties of the basis they
equivalent to haveX50. Hence, the fact thatKF1 ,T1

and

KF2 ,T2
are Killing fields together with their commutation re

lation ~D18! imply additional commutation relations. In or
der to show thatK3 is also a Killing field we calculate the Lie
derivative of the metric along this field

£K3
g5

8

l 2
S @K3 ,KF1 ,T1

# ^ sK3

k13
1

@K3 ,KF2 ,T2
# ^ sKF2 ,T2

c22
D 50,

~D23!

where the last equality follows from the commutation re
tions implied by Eq. ~D22!. The commutation relations
~D15! are recovered changing the basis to

h05
1

A22k13

~KF1 ,T1
1K3!, ~D24a!

h15
KF2 ,T2

Ac22

, ~D24b!

h25
1

A22k13

~KF1 ,T1
2K3!. ~D24c!

3. Coordinate transformation

Since the solution~21! and the self-dual CH space-time
possess the same isometriesso(2)% so(2,1), this is a strong
indication that these metrics should only differ in the cho
of coordinates. For the self-dual CH spacetime~31! its isom-
etry is spanned by the Killing fieldsm5­f̂ and

h05­ t̂ , ~D25a!

h15tanhr̂ cost̂­ t̂1sin t̂­ r̂1
cost̂

coshr̂
­f̂ ,

~D25b!

h252tanhr̂ sin t̂­ t̂1cost̂­ r̂2
sin t̂

coshr̂
­f̂ .

~D25c!
7-10
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In particular, the coordinate transformation that relates
metrics should be the same that relates the Killing vec
fields characterizing the same global isometries in the dif
ent coordinate bases. Using the above hint, it can be seen
the coordinate transformation (t,r ,f)°( t̂ , r̂ ,f̂),

t̂~ t,r ,f!5arctanS A2c~F coshu1Ṫ sinhu!

T~F sinhu1Ṫ coshu!
D

2E A2cF

c2T2
dt,
lli,

as

on

04402
e
rs
r-
hat

r̂ ~ t,r ,f!5arcsinhS F sinhu1Ṫ coshu

A2c
D ,

f̂~ t,r ,f!5f2arctanhS T

F coshu1Ṫ sinhu
D ,

whereu5r 1H and the pair$F,T% is any solution to equa-
tions~29! with c[2F21T21Ṫ2,0, maps Eq.~21! into the
self-dual CH metric~31!.
f
n-
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