PHYSICAL REVIEW D 70, 044027 (2004

Birkhoff’s theorem for three-dimensional AdS gravity
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All three-dimensional matter-free space-times with negative cosmological constant, compatible with cyclic
symmetry, are identified. The only cyclic solutions are thel2(BTZ) black hole withSO(2) X R isometry,
and the self-dual Coussaert-Henneaux space-times, with isometry g®0(3)x SO(2,1) or SOQ(2)
XSO(2).
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[. INTRODUCTION cussed for arbitranD. However, those general discussions
leave out the three-dimensional case. This case is exceptional

Three-dimensional space-times satisfying the vacuunand should be treated separately becaus®feB3 the group
Einstein equations have constant curvature—positive, neg@f spatial rotations is Abelian. This means, in particular, that
tive or zero, depending on the value of the cosmologicaPnly for 2+1 dimensions “spherical symmetry” is compat-
constant. In view of this, it might seem surprising to find aiPle with nonvanishing angular momentum and therefore off-
number of nontrivial 2-1 geometries, analogous to four- diagonal components in the metric must be allowed.
dimensional space-timg4,2]. The key to understand this is N this paper it is shown that, apart from the black hole
the number of identifications that can be made on the maxid€ometry with two Killing vectors, cyclic symmetfynvari-

mal covering space. This is most dramatically observed iphce under the action §Q(2)] in 2+1 dimensions also

the case of 2 1 black hole, which can be obtained via iden- QHOWS f_or the S(_elf-dual Coussaert-Hennea®H) space-
tifications on AdS [3,4]. times with four Killing vectorq16], and also for a different

A similar discussion also applies to higher dimensionals'e'f'duaI geometry with only two Killing vectors. These non-
space-times. I1i5] and[6], it was shown that, under a suit- black-hole geometries are analogous to the Nariai solution,
able identifi(.:ation the énalogue of the nc’)nrotatingjz which exists in four dimensions with positive cosmological
black hole can be,obtained it3L dimensions. Similar so- cpnstaql[l?] (see[18]_ an_d references therein_for the higher
lutions were constructed through identifications in higher di_dlmen&ongl ge_ryerghzanohsThe CH spacetimes are ob-
mensional AdS spacetimég,8]. Very recently, the general tained as |d_ent|f|cat|ons of A@S’c_)y self-dual generator_s of
problem of identifications in Adghas been discussed in th_e two copies 05Q(2,1) of the isomeiry group of anti—de .
[9,10], and the conclusion is that the only possible bIaCkSltter space, and have been recently shown to be relevant in
holes that can be obtained as quotients are the higherFe context OflAd.S/dCFT ccc)irretslpon[;jte([aéd]. T.rt\ktla.CI;]s%ace'-l_
dimensional generalizations of the nonrotating black hole i Imes were aiso independently oblained within the families

2+1 dimensions[11]. Other physically acceptable space- of SOIUti.Or.IS de_zrived in Refl20], but their properties were
times have also been obtained through identifications iﬁ]otl_?])ép“;'tlgrqlssglsszﬁq éze;ifollo < In Sec. Il the Einstein
Minkowski space as Kaluza-Klein reductions of supersym- S Paper IS organize WS- ' : !
metric vacuasee[12] for a classification equatlons Wlt_h a nega_tlve cosmological constant fquz 3
Although the three dimensional black hole has been eXg:ychc spacetimes are integrated. Three cases are identified
tensively studied over the past decade, the issue of itgepending on whether the normy)(of a certain gradient is

uniqueness has not been completely exhausted. One mRgsitive, negative or null. In Sec. Ill the isometries for each

ask, for instance, what family of geometries is determined b)P (tjhezseocases are SJUd'zqf'f concludmﬁ thatf tEe BCET&ZEf))I K
a given set of symmetries, analogous to Birkhoff’s theoremand »*<0 correspond to different patches of the ac

H H 2 __
which states that any spherically symmetric solution of Ein-10!€ With isometrySO(2) X R. The casev”=0 corresponds

stein's equations in empty space in four dimensions is dif{© the self-dual CH spacetimes havir(2)x SO(2,1)

feomorphic to the maximally extended Schwarzschild solyisometry. The last derivation involves an analysis of the Kill-

tion in an open selt13]. ing equations, which for this case cannot be solved in closed

Recent generalizations of Birkhoff's theorem to higherform in general. In Sec. IV it is shown that a further identi-

dimensions and to include matter sources as well as an ef@tion can be performed to produce a new self-dual time-

tensive list of references can be found [in4]. In this dependent spacetime witB(2)xS((2) isometry group

reference—as in many others, liKe5|—spherical symmetry and without closed causal curves. Finally, Sec. V contains
[invariance underSO(D —1)] ,has been extensively dis- the conclusions and discussion. Some detailed calculations

are included as Appendices.

) II. CYCLIC VACUUM SOLUTIONS
*Electronic address: ayon@cecs.cl

"Electronic address: martinez@cecs.cl Matter-free 2+1 gravity in the presence of a negative
*Electronic address: jz@cecs.cl cosmological constant is described by the action
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1 r2 J2 r2 32\t
S=—J d*xy—g(R+2172), @ =—| 5 -M+— NP+ | = —M+—]| dr?
2K g |2 4r2 ( ) |2 4r2
where A=—1"2 and « are the cosmological and gravita- J 2
tional constants, respectively. The corresponding Einstein +r2 dep+Wo(t)dt— — N(t)dt| , (7)
field equations are 2r
GMV:|—25#V_ ) where the radial coordinate lies in the regign<r_}

U{r>r,}. The spacetime described by EJ) is locally

In this section cyclic symmetric configurations satisfying €duivalent to the regions outside the outer horizor (,)
Egs.(2) will be discussed. A spacetime is callegclic sym-  OF inside the inner horizonr(<r_) of the 2+ 1 black hole
metricif it is globally invariant under the action of the one- [3:4]- This can be made explicit performing the following
parameter groug O(2) [21]. The corresponding Killing vec-  €oordinate transformation:

tor field, m=d,, has normg,,>0 and the most general

metric with this symmetry can be written, in appropriate co- (t,r,¢)»%( f N(t)dt, r, ¢+f Wo(t)dt), (8)
ordinates, as

g=—N(t,r)2F(t,r)de that respects the gauge choigg=0=0,, 9ss=r>.

r? ) ) B. Caser?<0: black hole regionsr _<r<r
+ =y TY(Lr)(de+W(t,r)dh, () , , .
F(t,r) In the caseV,YV#Y<O0 the time coordinate can be iden-
) _ tified with Y(t,r)= —t. Then, as can be seen from Appendix
where part of the freedom under coordinate transformationg hjs impliesN(t,r)=N(r) and

has been used to eliminagg andg,, . With this choice, the

vacuum Einstein equatior{g) can be readily integrate@ee
Appendix A). The solutions fall into different cases depend- ‘]f N(r)dr
ing on the relative signs df and the norm of the gradient W(tr)=— —————+Wy(t), 9
V.Y, t
3,Y)? _

v?=V,YV*Y=F (arv)z—% : (4) F(tr)= NOET (10
Assuming F>0, three cases can be distinguished, and inWherer(t) Is an arbitrary function, and
each case a different choice of coordinates can be made to 2 32
render the metric in a more conventional form. Changing the fl)=—=+M—- —, (12)
sign of F, correspond to reversing the sign of, so it is 12 4t?

sufficient to analyze the case of positiFeonly. . .
whereM andJ are integration constants. In order to preserve

the condition F(t,r)>0, f(t) must be positive as well.

Hence, the above solution is valid tn <t<t,_, wheret.
If V,YV#Y>0, the radial coordinate can be chosen asare the positive roots of the equatibft)=0. Thus, the met-

Y(t,r)=r. This coordinate measures the perimetery 20f  ric takes the form

the closed integral curves of the cyclic Killing fielch

A. Caser?>0: black hole regionsr<r_ or r>r,

=d,4. With this choice forY, the Einstein equationésee t? 32\ 7t 2 t? 2 b
Appendix A are easily integrated yielding ==~ |_2+M - dtt| - |—2+M e N(r)“dr
IN() 2
W) = = =2+ Wolt), (5) Jj N(r)dr
' +12 depe Wi (D) dt————dt | , (12)
l,2 JZ

(6) with t _<t<t, . Finally, performing the coordinate transfor-

F(t,r)=F(r)=—-M+
| mation

whereW,(t) is an arbitrary functionN(t,r)=N(t), andM

andJ are integration constants which are assumed to satisfy (t,r,d)—
|J|<MI in order to avoid naked singularities. The function

F(r) is positive forr<r _ orr>r, , wherer .. are the posi- 3
tive roots of the equatiof (r)=0. In this way, the metric +_J N(r)dr), (13)
takes the general form 2t2

r,t,¢+J Wl(t)dt—f Wy (r)dr
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the above metric takes the same fofi, but with r?/1?
—M+J%/4r2<0, or equivalently, forr_<r<r, . Hence,
the spacetime satisfying(t,r)>0 andV,YV#Y<Q0 is lo-
cally equivalent to the patch of thet2l black hole between
the inner and outer horizons.

C. Caser?=0: self-dual Coussaert-Henneaux space-times
The conditionV,YV#Y =0 implies

9 Y=FNa,Y. (14)

Combining the Einstein equatioridla), (Alb), and (Ald)
with this condition implies

2

r t_ J 1
G, +FNG, VIR (15

which means tha¥ (t,r)2=1|J|/2=a2, and the angular mo-

PHYSICAL REVIEW D 70, 044027 (2004

diffeomorphic to the CH solution, but the coordinate trans-
formation that relates the two metrics is far from obvious
(see Appendix D B

Ill. GLOBAL STRUCTURE

The scope of Birkhoff’s theorem in-81 dimensions and
above is to identify the local geometries of the space-times
compatible with some starting symmetry. In this same spirit,
the previous analysis yields the local geometric features of
cyclically symmetric space-times inH21 dimensions. How-
ever, since in 21 dimensions all solutions of the matter-
free Einstein equations are locally diffeomorphic, this is in-
sufficient to determine the space-time geometry at large. In
this section, the global structure of the physical space-times
consistent with the conditions of Birkhoff’s theorem is ana-
lyzed. The problem is to identify all thglobal isometries
compatible with the cyclic symmetry, that is, to find all glo-

mentum is completely determined by the constant norm ohally defined Killing vector field, which in the ¢,r,¢)

the cyclic Killing field. Hence, the 2 1 geometry(3) has the
form

9= 9@+ a%(dep+ Wdt)2. (16)

coordinate basis read

K=K'(t,r,$)d+K'(t,r,0) 9+ K (t,r, )0y, (22)

Furthermore, in this case the only nontrivial Einstein equa-

tion reads

12’

11 _ ) 1 (1 )
NN T TN N (NF) (17)
which just states that the metrig® describes a two-
dimensional spacetime of constant negative curvatafe,
- 812

Choosing the simple gaudeé(t,r)=1, Eq.(17) can be
integrated at once for the functidx

N(t,r)=Ngp(t)cosh2r/I+H(t)], (18

whereNg(t) andH(t) are integration functions. Hence, Eq.
(A2) can also be integrated giving

No(t)
W(t,r)= sinh 2r/1+H(t) ]+ Wp(t). (19
Then, making the coordinate transformation
(t,r,¢)»e(f No(t)dt,r,¢+fwo(t)dt , (20

and the rescalingt(r, ¢)—(2t/1,2r/1,2a¢/1) the metric be-
comes

|2

g= —(—dt?+dr’+ 2 sinf(r + H)dtd¢+ d¢p?).

7 (21)

satisfying the Killing equation,

(91aVut 9uaV)K*=0. (23

As shown above, the 21 geometries compatible with
cyclic symmetry are either a portion of thetZ black hole
[Eq. (7), for v?#0], or of the CH self-dual space-tini&q.
(22), for »*=0]. The question is whether those solutions can
be globally identified with those space-times or they are just
locally diffeomorphic but globally inequivalent. The point is
that coordinate transformations such as E@®3, (13), and
(20) in general change the identification in the covering AdS
space.

In order to address the question, the global isometries of
the solutions will be identified, which amounts to finding the
Killing fields of the geometry explicitly. Assuming the metric
(7), the Killing equation(23) can be fully integrated giving
two independent, globaffydefined, mutually commuting
Killing vector fields. These fields span the isometry algebra
so(2)®R. In the case of the metri(21) the Killing equa-
tions (23) cannot be reduced to quadratures in general due to
the presence of the arbitrary functid(t). Although this
obscures the problem, it is still possible to identify the sym-
metry generated by the Killing algebra as(2)®so0(2,1),
or upon one further identification, aso(2)®so(2)
(see Sec. V.

This metric describes a class of space-times of constantlyye restrict our attention to space-times without naked singulari-

negative curvature with a cyclic Killing field of constant
norm. The stationary cask,= const, corresponds to the self-

ties or closed timelike curves.
2The term “global” is redundant, but is used here to emphasize

dual space-times constructed by Coussaert and Henneathat these Killing fields are defined throughout space-time and are
[16]. For nonconstank(t), the geometry can be seen to be not just solutions of Eq(23) in an open neighborhood.

044027-3



AY()N-BEATO, MART’INEZ, AND ZANELLI PHYSICAL REVIEW D 70, 044027 (2004

A. 2+1 black hole: SO(2) XIR isometry of the systen(29), andK 1, andKg, 1, are the correspond-
The isometries of the metri€7) are found by directly ing Killing fields, the following commutator algebra is
solving the Killing equation$23) (for a detailed discussion, found,
see Appendix B The general conclusion of this analysis is
that, apart from the cyclic Killing vector, [Ke, 1, Ke, 1,1=Ke, 1y (303
m=dy, (24 [Ke, 1, Ke, 1,15 C1Ke 1, —C1iKe, 7,0 (30b)
the geometry possesses another, globally defined, indepen-

dent commuting Killing field, [KFsst'KFZ'Tz] =Coe, 1, = C1Ke, 7 (309

where the structure functions are given by,

k= W(at_wo(t)alp)- (25)  =41"%g(Ke, 1K, 1)), C22=41"%d(Ke, 1,.Ke, 1,), and
Cio=4l 729(KF1'T1'KF2,T2)' Since these scalars are constants
In adapted coordinates, given by and in particular, independent bf(t), the Lie algebrg30)

is the same as fo (t)=0, which is theso(2,1) isometry
~ ~ subalgebra of the CH space-time. This is a strong indication
t(t,¢):f N(t)dt, ¢(t1¢):¢+f Wo(t)dt, (26)  that the metriq21) must be diffeomorphic to the CH metric,

2
the Killing fields (24) and(25) can be written in the form 9= Z(—dfz+d?2+2 sinht didgp+ db?). (31)

m=a;, k=d;. 27 ] | .
The explicit form of the coordinate transformation,

The fieldsm andk obviously generate th8§(2) xR isom-  (t.r,¢)—(t.r,¢), relating these two metrics as well as the

etry algebra as in the BTZ geometry. The coordinate transdetails of the above proof are exhibited in Appendix D.

formation ¢,¢)— (t(t,#),d(t,$)) is well defined since
N(t) is assumed to be nonvanishing, and this diffeomor- IV. FURTHER IDENTIFICATIONS
phism is precisely the change of coordinates which turns the

: : . The uni n f th tim f constant curvatur
metric (7) into the 2+ 1 black hole metric. € uniqueness of e spacetimes of constant curvature

hinges on the possibility of generating new geometries by

means of identifications. In principle, any identification that
B. Coussaert-Henneaux self-dual space-time: does not introduce closed causal curves could be acceptable

SO(2)XS0O(2,1) isometry and this restricts identifications to be along spacelike Killing

The metric(21) has anSO(2) isometry generated by the directions only. This condition, for instance, prevents further

Killing vector m=4,,. Additionally, it admits a family of identifications on the BTZ geometry to obtain new space-

Killing fields of the form (see Appendix C for details times, since in that case the isometrieg2)® R only admit
an identification along the time directiof®, producing

closed timelike curves.
The CH self-dual space-timd&81) are obtained by iden-

(29) tification of AdS; along one of the spacelike self-dual gen-

erators of the isometry algebra of anti-de Sitter space,
s0(2,2)=s0(2,1)®s0(2,1) [16]. The resulting isometry al-
gebraso(2)®so(2,1) [see Eqs(D25) for definitiong can be
further reduced by an identification along one spacelike Kill-
ing vector in the unbrokeno(2,1) subalgebra. The resulting

Ker=(F+tani(r+H)T)d+Ta,+ ma¢,

which commute wittm. The functiong=(t) andT(t) satisfy
the equations

F+HT=0, (299 space-time is also a self-dual geometry but with only two
B i Killing vectors corresponding to the isometry algebra
T+T+HF=0, (29  so(2)®so(2).2 Indeed, this can be accomplished perform-
ing the following coordinate transformation to the CH space-
where the dot denotes time derivative. time (t,r,$)— (7,1, ¢,), where
As shown in Appendix D, the Killing vector§g 1 gener-
ate theso(2,1) algebra, and additionally the geometry de- (1,1, ¢)=arcsir(sint coshr), (329

scribed by Eq(21) is globally identical to the self-dual CH

space-time. The proof is as follows: Since the syst@s)

has a three-dimensional space of solutions, the Killing vec- qSl(f,F,(}S):arctan?(
tors(28) span a three-dimensional family of globally defined

fields. Moreover, the norm of these vector fields and their

scalar products are constants throughout space-time. Now, if——

{F1,T1} and{F,,T,} are two linearly independent solutions *we thank R. Troncoso for pointing out this possibility to us.

(32b

tanhr
cost |’
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TABLE I. The 2+1 geometries of constant negative curvature lows to factor the AdS space isometry gro&®X2,2) as

consistent with cyclic symmetry.

Case Geometry Killing fields Isometry
2 BTZ
>0 (r<r_.r>r.) 2 SO(2)XR
2 BTZ
1°<0 (r_<r<r.) 2 SO(2)xR
4
2_ 4 SO(2)xS0(2,1)
=0 CH 2 SO(2)XSO2)
é-(1,1, )= ¢+ arctaniitant sinhr). (320

In these new coordinates, the spacelike Killing fielglsand
m [see Eqs(D25)] read

= 0¢1, m= 0¢2, (33)
where ¢, is a new coordinate along th8O(2) isometry
which is identified asp,= ¢,+4mal/l. The metric(31) is

transformed intd

2

g= 7 (—dr’+dgi-2sindpidep,+dg3).  (39)

Under the additional identificatio,= ¢+ 2, along »,

=4d,, , the isometry subalgebiso(2,1) has been reduced to
1

s0(2). Since the other Killing fieldsy, and %, do not com-

mute with #,, they are not Killing fields of the resulting

guotient space. Thus, the metii84) with 0<¢,;<2# and

SO(2,1)XS0O(2,1). This accident cannot be generalized for
arbitrary dimensions. Furthermore, these self-dual CH solu-
tions have a completely different topology from the-2
black hole; the product of two constant curvature spaces,
AdS,x S. In this sense, the CH solutions bear a resem-
blance with the Nariai spadel7], which exists in four di-
mensions with positive cosmological constant. It would be
interesting to investigate to what extent the Nariai solution is
compatible with Birkhoff's theorem in presence of a positive
cosmological constant.

The analysis of the’=0 case also illustrates some fea-
tures of the problem that may be of use in other cases. The
fact that the isometry algebra can be determined without
knowing the explicit form of the solutions of the Killing
equations is generic. This is a consequence of two féijts:
The commutator of two Killing vectors is necessarily a Kill-
ing vector andii) only a linear combination of Killing vec-
tors with constant coefficients is also a Killing vector. As a
consequence, the structure constants of the isometry algebra
are necessarily integration constants of the Killing equations.
This explains the “remarkable” feature that the right hand
side of Egs.(30) contains only integration constants of the
system(29), as shown in Appendix D.

The other interesting feature is related with the old prob-
lem of determining if two apparently different space-times
having the same invariant quantities, including their isometry
algebras, are the same space-time in different coordinates or
not. For example, metrig21) and(31) both represent spaces
of constant negative curvature and isometry gr&@(2)

X S((2,1). The approach we follow here rests on the fact
that the coordinate transformation relating the two metrics, if
it exists, must also relate the isometry algebras. Hence, the

0= ¢,=<4mall corresponds to a different time-dependentigengification of the two families of Killing vectors leads to a

self-dual space-time with isometnsOQ(2)XSO(2) and

class of transformations including the relevant one. The

without closed causal curves. This space-time is geodesicallyhove process involves the integration of a linear PDE sys-
incomplete and the singularity is not hidden by a horizon agem, If the number of Killing vectors is sufficient, all the

it occurs atr =0 in the massless BTZ geometfry.

V. DISCUSSION AND CONCLUSIONS

arbitrary functions that arise in the integration process are
determined and the coordinate transformation is uniquely
fixed, as in the present cagsee Appendix DB On the

contrary, the nonexistence of solutions of the PDE system
‘would imply that the space-times under study must be differ-
ent.

The 2+1 geometries of constant negative curvature con
sistent with cyclic symmetry are given in Table I.

This table exhausts all possiblet2d geometries and no
further identifications can be made on them, lest naked sin-
gularities or closed causal curves are introduced.

Unlike in higher dimensions, where Birkhoff’s theorem
assumes spherical symmetry, the solutions in12dimen- We are thankful to M. Bustamante, A. Gomberoff, M.
sion are not restricted to have zero angular momentum, as igassaine, G. Kofinas, O. NMisvic, S. Ross, C. Teitelboim,
exhibited by the 2- 1 black hole ¢?#0). This explain why and R. Troncoso for many enlightening and helpful discus-
previous results on Birkhoff’s theorem does not apply to thissions. This work was partially funded by FONDECYT
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APPENDIX A: EINSTEIN EQUATIONS K1 1 1 1 1 1

FOR CYCLIC SYMMETRY — + + + ——,
Kr 2\r+ry r—ry r+r_ r—r_J r
For a metric of the forn{3), the vacuum Einstein equa- (B1)
tions for 2+ 1 gravity (2) take the following form:

which can be integrated as

2Y(G,'-WG, HY=2FY"+ Yown?
e - 7
’ 2N? , [(r2=rf)(?=r?)2
K'(t,r,¢)= p F'(t,¢), (B2
F 2Y
+ ——+Y'F=—, (Ala)
N7F ! whereF'=F'(t, ) is an integration function. Similarly, the
o Killing equations fork!' andK¢ imply
. (FY") Y
2YG'=— —1 =0, (A1b) , ,
F2 N?F I“r[A%(t, ) r<+Ba(t,¢)]
K= 2_ .2 2_,24\132 a=t,¢ (B3
[(re=ri)(re=r2)]
Y3w/ ’
2YNG, '= =0, (Alc)
N where the function®\* andB? are defined as
Y\’ Y\’ 2 r r
t_ t_~n_| 2p2| | _ 1“(dF"—=Wqgd 4F")
YNKG'-WG, '=G,")=| 5| +N?F (N> 0, Al(t, )= —— = o) (B4a)
(Ald)
YW’ - Irr_d,F'
—2YNG¢r=(T) =0, (Ale) Bi(t.¢)=—7 (B4b)
(F™h (N?F)"\’ 12W, "—oF"
¢ ty_ (Wpd 4F"—o:F")
2N(G S+ WG, ") = ( TR A, )= ——2 °N¢2 =9 ,F, (B4o)
3Y2(W/)2
2N Ir . r_(3F"—2Wqd ,F"
BA(t, )= — (% N ik )+(r2++r2,)a(,,|=f.
2N
- (A1) (B4d

|_2|
From Eq.(B3) the r-dependence oK' and K¢ can be ex-

where (..) and (...} denote time and radial derivatives, Plicitly found,
respectively. From EqgAlc) and (Ale) it is clear that the

quantity Ka(t,r,¢)=F2(t,¢p) —{[(r? +r2)A%+2B?]r?
3 —2r2r2 pA2—(r2 +r2)B2
I= W, (A2)
" 12 1

is an integration constaiigngular momentui The remain- (r3=r2)2[(r2=r3)(r2=r?)]*
ing equations determine the form &Y¥(t,r), F(t,r), and
N(t,r), while Y(t,r) is fixed by appropriate coordinate a=t,¢ (B5)
choices.

where F'=F(t,¢) and F®=F%(t,¢) are integration func-
APPENDIX B: KILLING FIELDS FOR THE 2= +1 BLACK tions. The explicit dependence orin the remaining Killing
HOLE equations allows us to finally conclude that

1. Generic case . #r_#0
C1Wo(t)

The isometries of metri€7) are found by directly solving FU(t, )= S Fo(t, )= — N
) ) t

the Killing equationg23). Redefining the mass and angular N(t)’
momentum in terms of th@ositive zerosr .. of the function

(6), M :(ri+r2,)/lz and J=2r,r_/I, the Killing equa- whereC; andC, are integration constant. Finally, the gen-
tions for the radial component of the Killing vector becomeseral form of expression of' is

+C,, (B6)
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r.—r r.+r 3. Zero angular momentum caser _=0
F'(u,v)=kyexp ———u| +k.exg ———v . . . .
’ ! I I In this case, the integration yields
re—r_ re+r_ ry
+kzexp — I u|+ksexp — U/ F'(t,)=Fq(t)ex I ¢> +F,y(t)exp — |—¢ ,
(B7) (B13)

whereF, andF, are integration constants. Again, the global
wherek,, k,, ks, andk, are integration constants and the identification ¢= ¢+ 2 required by cyclic symmetry im-

coordinatess andv are given by pliesK'=0.
4. Zero mass casé.,.=r_=0
sz [~ N(t) +Wo(t)]dt + ¢, In this case, direct integration yields
F'=K;t+kop+Ks, (B14)
v=f [17IN(t) — Wo(t) ]dt— ¢. (B8)

F'IN=— %('ferIZZSZ)—(kz'f—I2k4)<~;$—k3~t+C1,

. e . . (B15
The identificationd = ¢+ 27 following from cyclic symme-

try is respected by the Killing field only ik;=k,=kz=Kk, K,
=0. This means that the metric does not admit Killing vec- F¢+ Ftyw,=— —(t2+l %) — (k1t+k3)d>+ kyt+Cy,
tor fields with radial components, and the general forni of 212

for spacetimes?) is (B16)

wherek,, ks, ks, ks, C1, andC, are integration constants,
and the coordinatesand ¢ are defined in Eqi26). As in the
previous cases, cyclic symmetry implidg=k,=k;=k,
=0. Thus, in all BTZ geometriek"'=0 and the general
form of the Killing fields is given by Eq(B9).

K Cy ( C1Wp(1)

N N +C2>0¢. (B9)

2. Extreme caser .=r_

The integration that yields EqB5) cannot be done for APPENDIX C: KILLING FIELDS FOR THE SELF-DUAL
the extreme case, =r _=r, or|J|=MI, and the treatment SPACE-TIMES
for this case is different from the previous one. However, a

similar analysis leads to the following expressions: The Killing equations(23) for the metric(21) read

F'=kyu+ Ko+ keexp(2vr /1) 9,K'=0, (C1a
3, K= =0, (C1b

cosfu

FiIN= k s
N d,K"+sinhug,K"

B 2re aKe 2 = o, (C10

|2k cosﬁu

-3 (B12)

Fe 9,K?+sinhud K'=0, (Cld
dK'=sinhug,K#=0, (Cle

ki 'S
F‘/’+FtW0=§u +k2u—2—exp(2vre/|)
Fe 9 K?—3,K'+sinhu( K"+ 9 45K ?)

Ik .
+ 2—r46><p(—2vrell )+Co, (B12 +coshu(K"+HK"Y =0, (C1f)
e

where u=r+H. Equation (Clg implies K'(t,r,¢)
wherek;, k», k3, ks, C;, andC, are integration constants. =K'(t,¢), and integration of Eq¥C1b) and(C1g directly
As in the generic case, periodicity i impliesK'=0, and  Yields
the functionsF' and F# are given by Eq(B6) as in the
generic case. This allows to write the same general form
(B9) for the Killing fields in the extreme case.

9 4K"+sinhugK"
coshu

K'(t,r,)=F'(t,¢)+ , (C2
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9 K" =sinhug 4K"

Ko(t,r, ) =F(t, )+ coshu

(C3

whereF' andF ¢ are integration functions. Substituting these

expressions, Eq$C1d—(C1f) take the form
a(t,d)+ B(t,d)sinhu+ y(t, d)coshu=0. (Cq

Since these equations must be satisfied for anythe

(t,¢)-dependent coefficients must vanish independentl

which implies the following system of equations:

d4,F?=a,F?=0, (C53

J4F'=0, (C5b)

Je4K'=0, (C50)

HF +HaK =0, (C50

IaK"— 35 K+ K +HF'=0. (C58

From these equations it follows thaF?(t,¢)=C,,
Fi(t,¢)=F(t), K'(t,¢)=T(t) + P(¢), and

. . d?
T+T+HF=——-0. (Co)
dep?
This equation fixes the angular dependence as
O () =kiexp(¢) +koexp(— @) +Ks, (C7

which is consistent with the identificatiogh= ¢+ 4mall
only if k;=k,=0, and® is an irrelevant constant. Combin-
ing this with Eqgs.(C5d and(C6) yields

F+HT=0, (C8a

T+T+HF=0. (C8b

Thus, the general form of a Killing field for the metii2l) is

K=(F+tanir+H)T)d+Td,+| C,+

3y,
(C9

coshr+H)

whereF andT are solutions of EqgC83), (C8b) for a given
function H(t), as stated in Eq28).

APPENDIX D: THE so(2,1) ISOMETRY SUBALGEBRA
GENERATED BY Kg 1

The general solution of the systef®9) can be formally

written as
F(t) t Fo
T(t) =7>exp(f|v|(t'>dt'” To|, (DY
T(1) ’ To

PHYSICAL REVIEW D 70, 044027 (2004

where P stands for the path-ordered product, and

0 0 —H(t)
M(t)= 0 0 -1 (D2)
-HMt 1 0

The operatoM (t) is a linear combination 080(2,1) gen-
erators M (t)=o,— Ho. The Killing fields (28) can be ex-

yPressed as
Ke r=Fey+Te +Te,, (D3)
where the components are given by EQ1) and
9
=90, e=2d, e2=tanhu0t+m, (D4)

form an orthonormal frame for the spacetini2l), i.e.,
g(e,,8,)=(1%/4)n,,, 0<a<2. Hence, the formal solution
(D1) can be interpreted as the evolution of the veétpk in
the orthonormal basi€D4) under a time-dependent Lorentz
rotation acting on the vector of initial valuds,=Fyg,

+T0e1+T0e2. The norm of the Killing vectors is

2

I .
g(KF,T1KF,T):Z(_F2+T2+T2)- (D5)

This expression is independent of the functlaft), which
reflects the fact thal can be gauged away by a change of
coordinates, as will be shown shortly. Since the b3 is
orthonormal, the above norm is preserved under time-
dependent Lorentz rotations. Hence, the right hand side of
Eq. (D5) is constant in time, as can be directly checked from
Egs. (29. Thus, the norm of the Killing vector,
9(Kg 1,Kg 1), is equal to the norm of the corresponding vec-
tor of initial values,g(Kq,Kp). This also shows explicitly
that the space of Killing vectors in the fami(p3) is three-
dimensional and in one to one correspondence with the vec-
tors of initial valuesK,. Consequently, given two Killing
vectors K 1, and Ke, 1, their scalar product,

2
9K, 7Kk, 1) :Z( —FF,+ T T,+T,T,), (D6)

is also time independent, as can also be directly verified from
Eq. (29). Thus, given a set of Killing fields, the norm of each
vector and their scalar products are fixed everywhere by their
values at one point. In particular, the Killing fields are lin-
early independent everywhere if and only if the correspond-
ing initial value vectors are linearly independent as well.
Although the Killing fields Kg + cannot be written in
closed form for a generiti(t), the isometry algebra they
generate can be identified from the properties of E9).
Let{F,,T,} and{F,,T,} be two linearly independent solu-
tions of the system(29). Then, the corresponding Killing
fields Ke, .1, and Ke, 1, are also linearly independent, and

their norms and scalar product are the constants
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|2 orthogonal thercs;=0 and K, T, cannot be linearly inde-
9(Ke, 1 Key 1) =7 Caa, (D78 pendent from the other two.
2 1. Simple casec;3#0
I(Ke, 7, K, 1,)= 7 €22, (D7b) If cs5#0, using the systert29) it can be proved that the
vectorsKe, 1, Kg, 1,, and Kg, 7, satisfy the following
12 commutator algebPa
9Kg, 7..Kg, 1.)=—C15. (D70
vt e 4 [Ke, 1K 1,15 C1Ke 1 —CuaKe 1, (D133

Since Killing vectors form a Lie algebra under commutation,

K K =C,K —C1.K . (D13b)
their commutator is also a solution of E@3), [Ke, 7o Ke, 1,] = Codte, 1y~ CaKe,

This applies to the two possibilities included in cadlgsand

[Ke, 7. Ke, ,1=KE, 7, (D8) (1) above: two spacelike and one timelike vector, or two null
and one spacelike vector.
where the functiongF 3, T,} are also solutions of E¢29), Since the structure constants in the right hand side are
given by seen from Eq(D7) to be independent dfi(t), this algebra

must be the same as that fek=0, which is theso(2,1)
isometry subalgebra of the self-dual CH spacetime. This can

Fa=TaT,—ToTy, (D9 be made more explicit if the Killing fields are properly or-
thonormalized as
T3=F,T,—F,Ty, (D9b)
A (D143
. 170: l
T3: Fle_ F1T2 . (DQC) \ Cll
The norm of the new Killing vector is C1Ke, 7, —C1iKe, 7,
m= , (D14b
2 V= C11VC33
(Ke, 7, Ke, 7,)= 7 Cs3 (D10)
KFs!Ts
. . 7= : (D149
which is also a constant of motion related to the other con- Ca3

stants by
(HereKg 1, has been assumed to be timelkéhen, from

C33=C122— C11C0p. (D11) Egs. (D8) and (D13) the commutation relations of the self-
dual generators a$0(2,1) are recovered,

The Killing fields Ke, 7 Ke, 1,0 and Ke, 1, are linearly _
independent if and only if the determinant of their compo- L0, m1= 2
nents[K2 ], Osas<2, 1=i=<3,
FiTi L7, m2]=— o, (D15

de(K,"’éi ,Ti]=—033, (D12 L72,m0]= 1.

is nonvanishing. Starting with two linearly independent Kill- Alternatively, if c;;=0=c,, (then necessarilg,,#0) and
ing fieldsKg_ 1 andKg, 1, three situations can be distin- the algebraD13) reduces to

guished according to whether the plane spanned by their tan-

gents is timelike, spacelike, or null: [Key 7y Key m,]=Cae, r, (D163
(I A timelike plane is spanned by one timelike and the

other spacelike, or by two null vectors. In both cagesl) [Ke, 1, Ke, 1,17 —C1Ke, 1.,

implies c33>0. Hence, one timelike and two spacelike vec- (D16b

tors, or two null and one spacelike vector.
(') A spacelike plane requires both fields to be spacelikewhich is the samao(2,1) algebrgD15) in a different basis.
Then, Schwarz’s inequality implies;3<0. That is, one The corresponding orthonormalization is
timelike and two spacelike vectors.
(M) A null plane is spanned by a null and a spacelike
vector. Since without loss of generality they can be chosen %We thank M. Bustamante for helping us to elucidate this point.
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1
= (K +K ), (D174
o \/TC:LZ Fy. Ty F,. T,
Ke, .7
m=-—, (D17b)
C12
1
(D170

= ———(Ke, 1, Ke, 1)
72 \/TC]_Z( Fi. Ty Fo. Ty

where it has been assumed that the null fields are both futur\,(\e/here the commutation relatiofd18) has been used. The

directed or past directed(,<0). If these field were to point

in opposite directionsd;,>0), the sign inside the square
root must be reversed, and exchange the definitionggof

and 7.

2. Degenerate caseczz=0

If the fields Ke, .1, and Ke, 1, are null €4,=0) and

spacelike €,,>0) respectively, they span a null plajease
(I1") abovd. In this casecs3=0, and thereforeKFl,Tl,

Ke, 1, and [KFl,Tl,KFZ,TZ] are not linearly independent.

However, it is possible to find another independent null Kill-

ing vector which, together WitKFl,Tl and Ke, 1,, generate
the sameso(2,1) algebra.

Without loss of generality thej;(Fl,Tl and Ke, 1, can be
taken to be orthogonatg,=0), and their commutator is not
linearly independent, but is given by

[Ke, 1. Ke, 1,15 VC2KE, 1, (D18)

Let K; be another linearly independent null field not con-

tained in the plane generated K¥1VT1 and Ke, 1, and or-
thogonal toKg, 1,. It can be then shown tha; is also a

Killing field. The scalar products between this null field and

the two Killing fields are

2

Ke, 1, Ke= 7 kia, (D19

2

KFZ'TZ. ng Zkzgz O (DZO)

Since the fieIdsKFlyTl, Ke, 1, andK; are a local basis in

the tangent space the metric can be written in this basis as

4 Ke 1,0Ks

g=—| 2 KFz'T2® K':2-T2
|2

., (D2))

ki3 C22

where ® ¢ stands for the symmetrized tensor product. Since

Ke, 7, andKg, 1, are Killing fields they must obey

PHYSICAL REVIEW D 70, 044027 (2004

|2k13
OZT£KF1'T1g
=K Ke o Ka]+ -2
= Fl,Tl®s[ Fpo Ty 3l \/0_22 FyuTy |
(D223
|2k13
0="5 %x, 1,9
=Kg, 1,94[Kg, 1,,Kz] = VC22K3), (D22b)

resulting conditions are both of the fomh;l@sX:O, and
using the orthogonality properties of the basis they are

equivalent to haveXx=0. Hence, the fact tthFl,Tl and

KFZ,TZ are Killing fields together with their commutation re-
lation (D18) imply additional commutation relations. In or-

der to show thakK; is also a Killing field we calculate the Lie
derivative of the metric along this field

8 [[Ks.Ke, 1,]0K3

[Ks.Ke, 7,]9KE, 1,
K39=|_2 =0

C22

(D23)

kl3

where the last equality follows from the commutation rela-
tions implied by Eq.(D22). The commutation relations

(D15) are recovered changing the basis to

1
=——=(K +Kj3), D24
7o \/Tklg( Fl,Tl 3) ( @

KF2 Ty

m= ’
T ez

(D24b)

(D249

1
7= m(KFI,Tl—Ks)-

3. Coordinate transformation

Since the solutiorf21) and the self-dual CH space-times
possess the same isometrs&ag2)®so(2,1), this is a strong
indication that these metrics should only differ in the choice
of coordinates. For the self-dual CH spaceti(8®) its isom-
etry is spanned by the Killing fieldsi= g, and

=07, (D253
S . cost
m=tanhr costd;+sintd;+ =04,
coshr
(D25b)
S R sint
7= —tanhr sintd;+costd;— ——=dy.
coshr
(D250
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In particular, the coordinate transformation that relates the A y( F sinhu+T coshu
metrics should be the same that relates the Killing vectors r(t,r,¢)=arcsin )
fields characterizing the same global isometries in the differ- J-c
ent coordinate bases. Using the above hint, it can be seen that
the coordinate transformatiom,(,¢)'—>(f,F,§§), T
. ’( J—c(F coshu+ T sinhu) HLr.é)=¢ arctan?( F coshu+T sinhu) ’
t(t,r,¢)=arcta : -
T(F sinhu+T coshu)
whereu=r+H and the paifF,T} is any solution to equa-
f \/_CF tions (29) with c=— F2+ T2+ T2<0, maps Eq(21) into the
c— T2 self-dual CH metria31).
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