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Conformal quantum gravity with the Gauss-Bonnet term
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Conformal gravity is one of the most important models of quantum gravity with higher derivatives. We
investigate the role of the Gauss-Bonnet term in this theory. The coincidence limit of the second coefficient of
the Schwinger-DeWitt expansion is evaluated in an arbitrary dimemsiomthe limit n=4 the Gauss-Bonnet
term is topological and its contribution cancels. This cancellation provides an efficient test for the correctness
of calculation and, simultaneously, clarifies the long-standing general problem concerning the role of the
topological term in quantum gravity. Far+#4 the Gauss-Bonnet term becomes dynamical in the classical
theory and relevant at the quantum level. In particular, the renormalization group equations in dinmension
=4— e manifest new fixed points due to quantum effects of this term.

DOI: 10.1103/PhysRevD.70.044024 PACS nuni®er04.60—m, 04.50:+h, 11.10.Hi

|. INTRODUCTION 1

S\N=—f d4x\/—_g[§c2+ nE+OR}]. )
At both classical and quantum levels, local conformal
symmetry plays a special role in theories of gravity and theirHere
applicationg 1-3]. One of the most interesting issues is the
violation of this symmetry at the quantum level. For the B uvaB B 2
guantum theory of matter fields in curved space-time the E=RuapR —ARpR™AR ©)
violation of conformal symmetry is related to the well-
known trace anomalysee, e.g., Refg1,3] for the review. is the integrand of the Gauss-Bonnet topological term. The
The important feature of the conformal anomaly is its uni-action(2) is conformal invariant, for it satisfies the confor-
versality for the mattefscalar, spinor, and vectofields that ~ mal Noether identity
contribute with the same sign to two of three terms of the

anomaly. The opposite sign of the contributions takes place ) 5Sw
for the unphysical higher-derivative scalars and fermions ——gM,,5—=O. (4)
[4,5]. In principle, one can choose the number of these V-9 Yo

higher derivative fields in such a way that they cancel the

contributions of the matter fields. In this case the conformaBy dimensional reasons one can introduce into act®ran
symmetry holds at the one-loop level. The cancellation of theextra terméd- [ —gR?. However, this expression possesses
anomaly cannot be achieved in the known versions of conenly global and non local conformal symmetry and hence it
formal supergravity{6], and therefore the relation between will not be included in the action. In order to complete the
the cancellation of conformal anomaly and what is supposegicture, let us note that a finité- [—gR? term may be

to be the fundamental theofe.g., supergravity, which may generated as a quantum anomaly-induced correction, e.g.,
be a low-energy limit of thésupejstring/M theory remains  due to the renormalization of the/—gdR term in(2). The
unclear within the semiclassical approach. anomalous violation of local conformal symmetry in the fi-

The violation of the conformal symmetry in quantum nite part of the one-loop effective action may produce the
gravity is much less studied. One of the simpler theories ohonconformal divergences beyond the one-loop level. This
gravity that possesses local conformal symmetry is based osffect has been investigated in R7] for the conformal
the Weyl actionf d*x\/—gC?, where scalar field and there are no reasons to expect that the situa-
tion for the conformal quantum gravity will be different.

The main purpose of the present paper is the one-loop
renormalization and renormalization group in conformal
quantum gravity. The renormalization structure depends on
the form of divergences and corresponding counterterms. Ac-
cording to the standard expectations, despite the anomaly
is the square of the Weyl tensoriin=4 dimensions. In order results from the one-loop renormalization, one-loop diver-
to provide renormalizability, one has to include topologicalgences in conformal quantum gravity must be conformally
and surface terms. In this way we arrive at the action invariant. This property holds in all known examples of con-

formal matter fields, and one can expect that the same should
be true for the Weyl quantum gravity based on actigh

1
C?=CrurapCH P =Ry agR*" ™ = 2R gR™+ ZR? (1)
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At first sight there is not much difference whether theanomaly which we know. Furthermore, despite the choice of

/\—gR? term shows up in one-loop divergences or atg ,, as a background metric being mathematically consistent,
higher loops. However, this may be relevant for some applijt js not very appealing because, in particular, it eliminates
cations of quantum gravity. If nonconformal divergences apthe Einstein-Hilbert action. Consequently, the theory based
pear only at higher loops, the conformal symmetry may b, this metric may not have a consistent nonrelativistic limit.
considered as a good approximation. For example, the ongs general the whole procedure appears to be an artificial
Iqo_p_ renormalizability of conf(_)rm_al gravity provides the POS- addition to the background field method. If we really want to
sibility of the successful realization of the anomaly—mducedleam the role of conformal symmetry in quantum gravity, it

inflation schemédsee the discussion in RdB]) in the pres- .. . —
ence of quantum gravity. At the same time, if the nonconfor-> |mport_ant to know !f the appearance of ig—gR coun- -
prterm is a calculational error or it is caused by inconsis-

mal divergence emerges at one-loop order, the conformd

symmetry cannot be considered a reasonable approximatioff"¢Y ©f the background field method applied to Weyl quan-
because the running of the coefficightwill be much stron- tum gravity. The last option has been partially explored in

ger in this case. In this situation a quantized conformal matRef. [16], where the possible conflict between diffeomor-
ter on a curved classical background also cannot be consid@ism and conformal gauge-fixing conditions has been dis-
ered as an approximation to the full theory involving cussed. It turned out that the countertef—gR? is gauge-
quantum gravity(see, e.g., the discussion in Refd,9]).  fixing independent, exactly due to the renormalization of the
Finally, we need to be sure whether the nonconformal diverterms [ /—gC? and f /—gE. On the other hand, the coun-
gence is present at the one-loop level in the Weyl quantunerterm [ /—gCIR is not protected from the gauge-fixing
gravity. dependence and can be modified or even eliminated by the
The first explicit derivation of the one-loop divergences in appropriate choice of the parameters of gauge fixing.
the Weyl quantum gravity has been performed by Fradkin The second explicit derivation of the one-loop diver-
and Tseytlin[10] in the framework of background field gences in Weyl quantum gravity has been performed by
method, properly modified for the higher-derivative theoriesAntoniadis, Mazur, and Mottolfl7] using methods devel-
[11]. The fJ—gR?-type divergence has been encounteredoped in Ref[10]. The correctness of thé functions for the
and the conformal invariance of the counterterms has beetoefficients\ and » calculated in Ref[10] has been con-
achieved through the use of the special procedure of confoffirmed. At the same time, the paper in Rgif7] did not come
mal regularization. This regularization is nothing but the speqcross the suspiciot,fs\/—_ng counterterm. Indeed, this re-
cific reparametrization of the background metric inventedsult coincides with our general expectations discussed above,
earlier in Ref[12] (see also Refd13] and[14]). According  but the situation with the two conflicting results does not
to this procedure metrig,,, has to be replaced by conformal |ook acceptable. In what follows we shall perform a more
metric E]W:gWPZ[gW], where scalar metric-dependent general quantum calculation using dimensional regulariza-
quantityP[g,,,] is defined as a solution of the equation tion, starting from the actiof®). In this way we will be able,
in particular, to check the previous calculatiofid)] and
[17]. Even more important, we may achieve a better under-
standing of the role of the Gauss-Bonnet term in quantum
gravity inn=4 andn=4- e dimensions.
When performing a local conformal transformation of the As one of our objectives is to perform a very complicated
original metric calculation in conformal quantum gravity, we have to pro-
vide maximal safety with respect to possible calculational
gﬂvegbvzgwez"(x), errors. Thus we shall use a new way of organizing calcula-
tions, which guarantees an efficient automatic verification of
the quantityP[g,,] transforms aP—P'=Pe ™ such our result. Simultaneously, we shall resolve another long-
that the metricg,, remains invariant. Another important Standing problem of quantum gravity. In the well-known pa-

property of the metricf;,w is that the corresponding scalar per[18], Capper and Kimber noticed that the Gauss-Bonnet

. ~ ~ .. term may, in principle, play a significant role in quantum
curvature is zer®R=R(g,,) =0. Therefore, after the origi- 4.ty Usually this term is disregarded because it is topo-
nal metricg,, is replaced byg,,,, the divergent/—~gR?  |ogical and does not affect the classical equations of motion.
counterterm disappears and the expected invariant form afiowever, this conclusion is true only if the Bianchi identity
divergences gets restored. The procedure of conforma$ satisfied. This implies the diffeomorphism invariance of
“regularization” has been generalized for the conformalthe theory. However, when the theory is quantized through
quantum gravity coupled to conformal quantum matter fieldghe Faddeev-Popov procedure, the diffeomorphism invari-
in Ref. [14]. _ ance is broken and the vector space extends beyond the

Is it correct to consider the replacemeg)t,—g,, as a physical degrees of freedom. In other words, after quantiza-
kind of conformal regularization for the divergent part of the tion not only the spin-2 but also the spin-1 and spin-0 com-
effective action of quantum gravity? It is easy to see that thigponents of the quantum metric become relevant, and the to-
procedure eliminates also the anomaly in the finite part of thgpological term may produce new vertices of interaction
effective action[15]. Therefore, this choice of background between these components. As a result, the quantum-
metric does not fit with numerous applications of conformalgravitational loops may be, in principle, affected by the pres-

1
OP=¢RP. (5)
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ence of the topological term. Of course, this output does nospecial parametrization of the metric

look probable, because if we include the topological term

into the classical action, the gauge-fixing condition should 9uv—0,,=9uvt Ny, (6)

modify and eventually compensate the new vertices. But this

is a belief that is always good to verify. Such a verification isIn the right-hand sidér.h.s) of the last formulag,,, is the

one of the purposes of the present paper. background metric and,,, is the quantum fieldintegration
We shall perform the one-loop calculation starting fromvariable in the path integralThe one-loop contributiofi *)

the full action(2), taking the topological term into account. to the effective action of quantum gravity is defined as fol-

As it was predicted in Ref{18], the contributions of this |ows [10]:

term penetrate all vertices or, in other words, all elements of

the background field method technique. However, despite ) [ A B N

many intermediate formulas that strongly depend on the co- 1 [9u]= 5 InDetH— 5 InDetY*”—iIn DetHyp,

efficient #, this dependence completely disappears in the (7)

final expression for the divergent part of the effective action

in the n—4 limit. This cancellation provides a negative an- \where? is the bilinear(in quantum fieldsform of the action

swer to the hypothesis raised by Capper and Kinfd&l.  (2) together with the gauge-fixing term
Moreover, it provides a very strong test for the correctness of

the calculation. On the other hand, the dependence is I aB
present in then#4 expression. Therefore, derivation of the Ser=p f A"V =X Y xp - ®)
relevant part of the effective action in an arbitrary dimension

n#4 opens the way for constructing the complete & e operatori,y, is a bilinear form of the action of the
reno.rmahzauon group equations in the conformal quantuniaddeev-Popov ghosts and is the dimensional constant
gravity theory(2). As it will be shown below, the quantum (renormalization parameter in the dimensional regulariza-
effect of the Gauss-Bpnnet term leads to new fixed pomtsiion)_ Expression(7) includes also In DeY®#, whereY® is
that have no analogs in the=4 case. , the weight function. In the case of higher-derivative gravity
The paper is organized as follows: In the next section Wepeory, this term gives a relevant contribution to the effective
shall briefly describe the Lagrange quantization of thé@jy  5ction, becaus¥®? is a second order differential operator
One can find a detailed description of this subject in Refs[lo]_
[2,19,19,2@. In Sec. Il the details of the bilinear expansion Introducing the gauge-fixing terrt8), one is fixing the
of higher-derivative gravity are presented. Some of the bulkyjitteomorphism invariance. However, in the theory under
expressions corresponding to this section are collected in Apsonsideration this is not sufficient, because there is another
pendix A. Our expansions are more general than those th@fassical symmetry—local conformal invariance, which
were known befor¢2,20,21, because they are performed for |gaqs to a degeneracy even after the té8nis introduced.
all higher-derivative terms including— gE and without tak-  Hence one has to choose the second gauge fixing condition.
ing into accoqnt th_e gonformal gaugt_a—ﬁxmg condition. This Following Fradkin and Tseytlifi10], we fix the conformal
enables one, in principle, to derive divergences not only fo%ymmetry by imposing the constraiht=h“=0. The inter-
the conformal case, but also for the general higher-derivativg,rence between the two gauge-fixing gonditions may take
quantum graviyf10,21,22. In the present paper we perform pjace pecause the terf8) breaks the conformal symmetry in
only the calculation for the Weyl theory and expect to reporthe background fields sectdlL6]. However, this breaking
the results for the general case later on. In Sec. IV we derivgannot Jead to the nonconformal counterterms, because the
the coincidence limit of thea,(x,x’) coefficient of the |51er can be shown to be insensitive to the choice of the
Schwinger-DeWitt expansion. The expression is obtained fo{ijauge—fixing condition. The general gauge-fixing condition

the generaln-dimensional space-time, in order t0 see the(here we restrict our attention to the linear background
effect of the Gauss-Bonnet term more explicitly. After that, gauges has the form

we derive the divergences of the Weyl gravityrat-4 and
establish their independence on the parametein Sec. V "=V, h M+ BV Hh,
the renormalization group in the4e dimensions is consid-

ered, and a number of new UV-stable and UV-unstable fixed 1

points (due to the quantum effects of the topological term Y= ;(QWD +yV,V,—V,V,

are described. In the course of the calculations in Secs. IV

and V we use the computer algebra progreipPLE (see, +p1R,,+P2RY,,), 9

e.g., Ref[23]). Finally, in the last section we draw our con-
clusions and discuss the possible form of the nonconformakhere «, 3,7y, 8,p,,p, are arbitrary parameters. The action

finite contributions to the one-loop effective action. of the Faddeev-Popov ghosts has the form
II. QUANTIZATION AND GAUGE-FIXING DEPENDENCE Sgh:J d4x,/_gCM(th);Cw (10)

The quantum gravity calculation in the background field
method(see, e.g., Ref.2] for the introduction implies the  where
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Flgh= (Hgn)=— 8.0~ V"V, 2BV,V". (11  byprimes(e.g..g"#", v=g', T"},, R"}4, etc), and reserve

simpler notationge.g.,g*”, V=g, I'},,, R 4, etc) for the

The parametep is fixed in the conformal case due to the quantities constructed from the background megrjc .
conformal symmetry conditiorh),=0; hence = —1/n. Forg’#” andJ—g’ the expansions can be presented as
Other parameters may take different values and their choice

may influence, in principle, the one-loop divergences. The g'#'=g*"—h*"+hihN —hhth™+ ...

general analysi§16] shows that theC?,E, andR? counter-

terms cannot depend on these parameters whil&ltRetype =0(0 T 9T 9 TG (12

counterterm may have such a dependence. In what follows

we shall use these data extensively, namely, we will not pa?n

attention to the irrelevant\/— gCIR counterterm and, on the 1 1 1

other hand, we shall choose the gauge-fixing parameters x/—g’=\/—_g 1+ §h+ ghz—zhwh”%--- . (13

a,v,6,p1,P2 such that the calculation of other counterterms

becomes simpler. Let us note that the dependence on the, ihe coefficients of the affine connection, usig), we

parameterp,,p, has been explored and found irrelevant in 5.rive at the expansion

Ref. [22] for the nonconformal version of the higher-

derivative quantum gravity. *
r'e,=re+ore,, ore,=2 orme (14

n=1
11l. BILINEAR EXPANSION

The action(2) includes only higher-derivative conformal Here the tensorsT"" 7/, are given by the expressions
invariant and surface terms. There are no Einstein-Hilbert, 1
cosmological, and/—gR? terms in the action, because ST ¢ =290 1)(Vuhg, +V,hg,—Vsh,,). (15
none of them possesses local conformal symmetry. But for w2
the sake of C(_)mplete_ness, the bilinear expansions for aIior the curvature tensor one can establish the following gen-
these terms will be given too. The parametrization of the

) > ) eral expression:

quantum metrid,,, will be chosen according t(). Let us P
note that the relevant divergences in the the@yare inde- e R Ly STy ST + SN sTe — TN ST

. o Burv Buv vEE B TrE By vEh Np Bu" \v
pendent of the choice of parametrization for the quantum
metric[16]. When making the expansions of the elements of N () a
the gravitational action, we keep in mind that the relevant =Rﬁw+r]§=:l R - (16)
terms are of second order ir),,. Hence we shall pay most
attention to this order of the expansion. In what follows we|n the first and second orders in the quantum melrjc,, we

indicate all quantities constructed from the total megjg, ~ obtain the following expressions for the Riemann tensor:

o

1
R = 5 (Vs = V,Vghy +V,V hg, =V, Vh, +RY

Whg— R ,h%),

Buv

1 1
R aﬁ,“,: Eh“"(VMVAhVﬁJr V,Vgh i+ V.V, hyp) + Z[Vﬂh“)‘(VAhVﬁ—VBhV”—V,,hB}‘)

+Vghl(Vihe —Vh, )+ V,h(Vhe =V h, )+ V h,5(Vhe = Veh, ) 1= (nev). (17

For the Ricci tensor, similar expansions have the form

R“)—lvvm V,V,h* -V .V h—h
,uv_z()\p.v—i_)xv,u,_,u.v_ ,u.v)a

1 1
2)_ a a
R = 5 h (Va0 VVhap= VaVihis = VaVih,e) + 5 Vah*#(Vgh,, = V0,5~ V)

1

3

B Bho L B ! B
Vah,u.ﬁ(vahv_v hV)+ZV,u.ha Vvhaﬁ+ ZV h(Vthﬂ+Vvh/J,ﬂ_Vﬁhyy) (18)

For the scalar curvature we have the following expansions:
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RM=V,V,h**—~Oh—h,, R,

R®)=h*#(V,Vgh+0h,z— Y,V hj =V, V,h}) + V,h* (Vh—Vghf)

1 3 1
- ZV)\hV)\h‘l' ha)\hl)éRaﬁ‘i‘ZV)\haBV)\haﬁ_ EVah)\ﬁV’Bha)\.

(19

With these expansions, we can derive part of the actiorthe gauge fixing is sensitive to the introduction of the Gauss-
that is quadratic in the quantum fields. It proves useful toBonnet term, as we expected. On the other hand, if we fix the

consider an alternative version of the acti@,

Swu(n)= —,u(”*“)f d"%\ = g{XR’,, 5+ YR, + 2R
+70R}, (20

where the new parametexsy, andz are related top and\
as follows:

1
T2

2

X yz—m—4ﬂ,

+n,

1

7 -2

(21
After some algebra we arrive at the formula
§= 9 [ AR, P+ (=GR

+2(J—gR?)®)}, (22)

value of » such that the sum of the Weyl term and the topo-
logical term gives

1
2_E_ow— 2 2
C —E—2W—2(RW—§R ) (25)
the gauge-fixing conditioni24) coincides with that of Refs.
[10,17.
After some algebraic calculations and using the commu-
tators(A3), we find

[S+ Sy 1@ =h#rTthe?,

H=RO?+ DV, Y, + N4V, — (V,24) + W, -

and K, D”, N*V,, V,Z* and W are matrices in the
h#”-space. In order to derive an explicit form &f* and Z#
one has to extend the derivation of bilinear expressions of

where the complicated expressions for the bilinear forms arégne Appendix A. However, the derivation of these quantities

collected in Appendix A.

Starting from the expressiof22), and using(A4), (A5),
and (A6), one can easily find the bilinear form of the action
(20). The operatof{ depends on the gauge fixing teiid).
The gauge-fixing parameters,3,v,5,p1,p2 in (9) will be

chosen in such a way that the operator takes the simple

minimal form
H=KO%+0O(V?), (23)

whereK is a nondegeneratenumber operator. Two of the
possible nonminimal fourth derivative terrgg, V,[1V,; and

9.4V,0V, vanish due to the conformal gauge-fixing condi-
tion h#=0. The simplest choice of the parameters providing

the cancellation of the remaining nonminimal fourth-
derivative structure¥,V,V,V; andg,V,0V,, is the follow-
ing:
2
“Tyrax

B 2X—22
Coy+4x ]

Y

6:11 pl:p2:01 (24)
with 8= —1/n defined by the conformal gauge fixings

already noted Let us remark that this “minimal” choice of

does not have much meaning, because the tém& and
(VMZ”) may be safely disregarded. The reason is that both
expressiond\* and Z* are covariant derivatives of curva-
tures. Therefore they may contribute only to the irrelevant
gﬁtuge-fixing-dependerﬁ\/—gD R-type counterterm, which
we are not calculating here. Below we shall simply set both
terms to zero.

Let us introduce the useful notation

1
5;LV,aB: 5,u1/,a,8_ ﬁg,u,vgaﬁ

for the projection operator into the traceless sector ohtte
space. Here, as usual,

1
5ﬂv,a[§:§(gﬂagvﬁ+ gﬂﬁgya)'

Since we assume the conformal gauge-fixing condition

=0, the tensoﬁmaﬁ plays the role of the identity matrix.

Without this condition the identity matrix i§,,, .. Taking
the conformal gauge into account, we find

044024-5
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. y =
(K)/.Lv,aB: Z+X 5/41/,(13! (27)
(f)”")ﬂ,,,aﬁ=—2giBRa”"M+4x6‘V’R}‘Wﬁ+(3x+y)gP"RWVﬁ+ZXEV,;YP}‘RW—(4x+2y)6‘;R"#gVﬂ
J2N y+2X_ 12N S ph 1 J2N 'S ph
—2X9,5R,.9 +T‘s,uv,a,8R —20,80 0 R+§zéwaﬁg R—=226,5""R,,, (28

and

~ 3X oy XY o0 oxty ) 3x+y | ) y—5x )
(W)Mv,aﬁz?gvﬁRup)\o’Ra + TR ap Rvﬁp)\+ TR ap R)\VBp+ TR 1 VRpa)\B+ TRMpR avf

y+2X 3y 3z 1 ) 5 —
> ——Ru.Rupt > > 9 weRupR et & > 9 weRR— RR,,ﬁaM+zRM Rag— 4(xRpMTerRpx+zR2)(5M,,,aB).

(29

In the above formulas we used special condensed notation that enables one to present the expressions in a relatively compac
way. The idea of this condensed notation is that all the algebraic symmetries are implicit, including the symmetrizations in the

couples of indices¢B) < (uv), (e B) and (u< v), and also in the couplepé-N) in the operatoﬁf’". In order to obtain
the complete formula explicitly, one has to restore all the symmetries. For example,

1
R.pR’ avp— 2 (RupR% 4T RoyR?u6,)

restores the¢B) < (nv) symmetry. The same procedure has to be applied also for the other symmetriag ,((a< B8),
and (u<v).

In order to use the Schwinger-DeWitt method for the fourth-derivative opefra@rwe need to reduce it to the minimal
form (23). To this end one has to multiply the operat@6) by the inverse matrixX ~*, given by

(R*l),u,v,aﬁ_ 5,U,V B

y+4x

Let us notice that the matrik ~* is a c-number operator and hence this multiplication does not affect the divergences. By
straightforward algebra, one can find the minimal operator

H=K 'H=10%+V"V, v, + 0, (30)
where the new expressions

VP =K~1DP,  U=K W (31)

already do not possess the symmetry B« (uv). The expressions for these two matrices are the following:

N 4 [3x oo SX+y ) 3X+y A p y—5Xx ) y+2X
(U)ﬂv,a,@:m 7gVﬂRMP)\(TRLY + R ap R)\Vﬁp+ TR i VRpa)\ﬁ+TRMpR avﬁ+ TR,u,aRV,B
3y 3z X—y
+?gV,BR)\[LRQ/)\ (XRZ)\UT+yR2 +ZR2)(5[LV a,B) ?gV,BRRC!M—’_ TRPHM)\RVBp)\+ZRMVRaB
V4
~ SRR (32
Vph_y+4x 2 biki (33

044024-6
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where It is straightforward to find the contributions of the weight
_ and ghost operatofshe algorithm for the nonminimal vector
klzgyﬁgP”RW, ko= 5MV’aﬁgP*R, operator can be found in Reflsl0,22)
ks=9"Ryuavp,  Ka=08,5" Rya, i 1 11
B —5n detY|q4,=— zf d4x\/—g(180waaB
kszﬁvﬁ,p)\Rg,u,a! k6=5;w,aBRp)\y (n_4)(477)
1 43R2 ! RZ] (39
o= 3 ORY R, 0" 9 )
ke=8,500RY ). Ko=8,sRW™M ). i Vg ! f 4 ,/_( 11
9 a vp —ilndetHyp|gv=——"—""—"—=] d*xv—0{ ==E
. gh|d|v (n—4)(477)2 g 90
kip= E(Eaﬁ,p)\RﬂV—'—guy,p)\Raﬁ)’ (34 B 352_ f§+ 1 =2
3 3 15/ #¥
and
1 ) 1 17 )
b1=—2X, b2:Z/2, b3 3X+y, - 66 _§§+ % R, (40)
by=2x, bs=-2,  bg=x+y/2, where the parametef is given by
b;=—4x, bg=—4x—-2y, bg=-—-2X, n_2
=—. 41

The above form of/** is helpful in organizing the cumber- Collecting all the results froni37), (39), and(40) according
some calculations of divergences, which will be described irfo (7) and using the formulas from Appendix B, we arrive at
the next section. the functional trace of the overall coincidence limit of the
a,(x',x) coefficient
IV. DERIVATION OF DIVERGENCES

. . , AL= lim sTraj(x’,x)
The algorithm for the one-loop divergences corresponding

to the minimal fourth-order operator can be written[&6] o . .
(here we use the Euclidean signature of the metric, in order = lim [Tray(x',x)(H) —Tray(x',x)(Y)
to be consistent witi10]) X' =X
1 . —2 Tray(X',X)(Hgn) ]. (42
Eln DetH|g,=— 2—f d"x /g tr lim ay(x’,x),
(4m)"(n—4) X —x The last expression can be regarded as a functional super-
(38 trace of the coincidence limit of the,(x’,Xx) coefficient of
where the differential operator acting in the direct product of the
tensorh,,,,, vector(third ghosj and vector ghost spaces. The
i i i 1. sign difference between the different terms(42) is due to
lim a,(x’ ,x)= 5 ;waﬁ % w+36R2+ 6R’”R -0 the different Grassmann parity of the fields, and the operator
X' X Tr includes integration, as usual.
Let us present the result in terms of the parameters
+—RV LR e andx:
12 6~ 48" »° A
Mt vSVEN 37) Atz:—n”"‘f d"x\/— g{ B1(N)E+ B,(n)C2+ B3(n)R?},
24°° (43)

HereR , is the commutator of the covariant derivatives act-

ing in the tensoh®? space, where the coefficients £ functiong B;(n), B»(n), and

B3(n) are given by the expressions
Ruv=[V,,V,]. (38

The full collection of the traces of the expressiaids) is _
presented in Appendix B. The coefficientss{"are the following functions:

Bi(n) =60+ n+sPy2,  1=(1,23. (44
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15n8486n°+ 201In* — 48413+ 8102+ 6624 — 9648

SO= _
1 > s
288Qn—1)(n—23)

SU_ (n—4)(n—2)(n°-8n*+39,3—40n?— 1960+ 192\
! 48n(n—1)(n—3)2 !
521 (n—4)2(n®+9n%+14n+12)(n—2)2\?
' 48(n—3)%n? '
SO0 (n—2)(5n°+29MN°~ 116"~ 257+ 15056 — 18528 + 6720
2 96 (n—1)(n—3)2 ’
SO (n—4)(n*-3n3+50n—36)(n—2)°\
2 48n(n—1)(n—3)2 ’
52 (N—4)(n3+10n%+10n+24)(n—2)3\2
2 48(n—3)n? ’
S0 (N—4)(5n°+22n*+ 1713~ 930~ 1120 + 816)
° 960n—1)%(n—3) !
SU_ (n—4)(n*=4n3~n?+10n—12)(n—2)?\
: 24n(n—1)2(n—3) ’

n—4)2(n+1)(n?+2n+12)(n—2)3\?
5%,2)=( )7(n+1)( )(n—2) . 5

96(n—1)(n—3)n?

The above coefficients, despite their chaotic appearancéntroduction. As long as our calculation is seriously tested by
provide a lot of important information. First, they show that the cancellation of the numerougdependent terms in the
for n#4 the Gauss-Bonnet topological term contributes ton— 4 limit, we strongly believe in its correctness. Thus, the
the effective action in a nontrivial way and in particular pro- J\/— gR?-type one-loop divergence does not show up in the
duces thef y—gR’-type term. On the other hand, it is re- one-loop effective action of Weyl quantum gravity.
markable that als") and5{*) coefficients are proportionalto  The expressiorf46) does not contain the divergences in
n—4. Hence, fom=4 one can see that thg dependence the cosmological constant and of the Einstein-Hilbert type.
completely disappears, and the final result, E48), be-  Thjs fact is due to our choice of the regularization procedure.
comes very simple. Let us write down the expression for thexs |ong as we start from the conformally invariant action,
one-loop divergences the theory does not possess dimensional parameters and

n_a 137 199 therefore the divergenges of these two sorts may bg only
r=_ '“—J d“x\/—_g[—E+ —W} quartic and quadratic divergences. Of course, in the dimen-
(47)%(n—4) 60 15 sional regularization that we are using here, the quartic and
quadratic divergences do not appear. However, one can eas-
o f o — 8_7E_ @Cz (46) ily see the cosmological divergences and those line& im
B (4m)2(n—4) *N79) 20 30 ' other regularization schemes, for example in the covariant
cutoff [10] or in the covariant Pauli-Villar$8] regulariza-
where we used Ed25) and the pseudo-Euclidean signature.tions. Of course, the logarithmic divergencgs) that we
The expressior46) coincides with that derived by Antonia- have calculated do not depend on the choice of the regular-
dis, Mazur, and Mottola in Refl17]. Both coefficients in ization scheme.
(46) also coincide with those derived by Fradkin and Tseytlin  Including the matter fields one meets additional contribu-
in Ref. [10]. However, we do not meet the pathological tions to the divergent coefficients {@6). As it was already
f V= gR?-type divergenc€10] and hence there is no need to noticed in the Introduction, the conventional scalars, fermi-
apply the conformal regularizatidri2,13 discussed in the ons, and vectors give contributions of the same sign to both
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B1 and B,, while the contributions of higher-derivative sca- do not take the limih—4 in Eqgs.(47). The renormalization

lar and fermion have opposite sigd—6]. The sign of the group equations that emerge as a result of this procedure will
coefficients in(46) coincides with that of the conventional be different from(47) and one can expect to see qualitative
fields. Hence, since thfR?*-type divergence is absent, one effects of the Gauss-Bonnet term in this framework.

can use the method of Ref5] and adjust the number of A similar approach to the renormalization group proved
higher-derivative scalars and fermions such that the one-loofsuitful in the two-dimensional quantum gravif28], due to
divergences completely cancel. In a more complicated situaits relation to the concept of asymptotic safg29] and to the
tion, when the matter coupled to quantum gravity possessetiscussion of the universality classes of quantum gravity
self-interaction, the quantum gravitational effects modify thetheories[30]. The main idea of 2 € quantum gravity is the
divergences and the renormalization group trajectories alsfmllowing. In the preciselyn=2 dimensions, quantum grav-

in the matter sector of the theory. This issue has been studiaty is a topological theory similar to that which we meet in
in detail[14,24,25 for the case of the higher-derivative grav- n=4 starting from the pure Gauss-Bonnet term. However, if
ity [26]. In both conforma[14] and generdl24,25 cases the we generalize the theory for=2—¢, there is a dynamics
effect of quantum gravity is rather smooth and always favorgdifferent from the Gauss-Bonnet theory, where the propaga-
the asymptotic freedom in the matter fields sector. Due to théor does not appear even fort 4) and at the quantum level
absence of thg R>-type divergence the investigation for the one meets a nontrivial UV fixed point of the renormalization
conformal case can indeed be performed without the specigjroup[28—30. Keeping this example in mind, it is natural to
conformal regularizatiorfwhich we discussed in the Intro- expect that the effect of the Gauss-Bonnet term on the renor-
duction, while the quantum-gravitational corrections to the malization group equations in=4—¢ may be nontrivial

B functions in the matter sector are exactly those derived irand in particular may produce new fixed points.

Ref.[14] (see also Ref.2]). The reason is that thegefunc- Consider the renormalization group equationsNandp
tions do not depend on the scalar curvature and hence are riot n~=4— e dimension. The naive form of thg functions
affected by the conformal regularization. would be based on the “standard” expressigA3),

V. RENORMALIZATION GROUP EQUATIONS Br=—€ex+B\(4), B,=—eptB,(4), (49

The renormalization groufRG) equations for the theory indica_ting the one extra nonzero fixed point for each of the
(2) may be considered in two different waja7]. The first ~ effective charges\(t) and p(t). Indeed, the fixed poink
possibility is to take usual=4 8 functions; in this case we =p =0 remains stable in UV foe>0. However, this naive
meet exactly the same RG equations as in Ref. It proves conS|derat|qn is incorrect be_cause the Gauss-Bonnet term
useful to introduce a new parametet —1/7. Let us re- gets qynamlcal fon#}, affectmg.the renormahzgtlon group
mark that the choice of as a coupling constant in the action €duations in a nontrivial way. Using the expressi¢s), we
(2) is fixed, becausé) \ is a parameter of the loop expan- &rfive at the_ foIIOW|r_19 correct form of the renormalization
sion in this theory andii) one cannot change the signof  9roup equations, quite different fro(d9):
without changing the positivity of the graviton energy. At the
same time there are no similar constraints for the coefficient d_p:_6 + 1 (f1p2— fohp+fa02)
of the Gauss-Bonnet term and therefore the choice can be dt P 20 2P TR
made according to convenience. The uswual4 renormal-

ization group equations for andp have the form dn 202 ( \ )\2>
=N —— 1 01— 02~ +t03— |- (50
dv o da dt (4)2 p T p?
—=u—1| =B(4H=—2a2\Z A(0)=\,, . -
dt “duf _, The coefficientsf, , 3 and g3 ,5 may be expressed via the
coefficientss{" from (45) as
do_ 9Pl 4= b2 p(0)= (0) () 2)/\2
dt_Md/.L n=4_ﬁp - [l P _p01 f1:51 y f2:51 /)\, f3:51 /)\ y
“n 0:=60, g= 8V, gs= 3PN\ (50
where
One can note thét, , 3andg; , 3 depend only on the param-
5 etere and not on the couplings. In the limi=0 we come
a2= 199 2_ 61 _ (48) back to Egqs(47). The renormalization group equatiof&0)
15(4m)%’ 60(47)? are nonlinear and do not admit a simple analytic solution.

For this reason we shall start from the search of the fixed
The above equations indicate the UV asymptotic freedom impoints that are the values afandp for which bothg func-
both parameters. In other words, there is a single fixed poirtions vanish. Consequently, we explore the stability of these
A=p=0 and it is stable in the high energy linit> . fixed points and establish the renormalization group flows
Let us now consider a more complicated version of thefor some particular values af.
renormalization group equations, taking the dimension In order to find fixed points, we consider the particular
=4—¢ for —1<e<1. Mathematically this means that we values of the parametere=0.9, €=0.1, €=0.01, €
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TABLE I. Numerical values of the coefficients for the particular values.of

€ fy fa f3 g1 92 (SK]
0.9 —-16.77 —28.73 —36.48 2.359 —42.51 —46.98
0.1 —4.301 0.08 —0.016 6.385 —-0.174 —-0.318
0.01 —4.344 0.008 —0.0001 6.608 —0.016 —-0.03
—-0.01 —4.356 —0.008 —0.0001 6.659 0.016 0.03
-0.1 —4.416 —0.086 -0.013 6.902 0.146 0.286
-1 —5.416 —0.947 -0.81 9.98 1.087 2.526

=-0.01,e=—0.1, ande= —1. The numerical values of the t—oo. It is worth noticing the contrast with the=0 renor-
coefficients for these cases are presented in Table |. Thealization group equation$47) with a single UV stable
point e=0.9 is numerically close te=1 (n=3), where the fixed point A\=p=0. In the n>4 casese=-0.01, €
expressions for th@ functions become singular. =-0.1, ande=—1 there are only two extra fixed points,

The numerical analysis shows that for each of the choicesne of them UV stable and IR unstable and another one a
€=0.9, e=0.1, ande=0.01 there are four fixed points that saddle point(unstable in both UV and IR regimesAs
are new compared to the=0 case; while for the values  shown in the Figs. 1 and 2, there are no additignampared
=-0.01-0.1—-1, there are two new fixed points. The val- to the standar@=0 case¢ UV-stable fixed points for positive
ues of the parameters corresponding to these fixed points aeg and at the same time, for negatieehere is always one
shown in Table II. additional fixed point with stability in the UV domain.

The stability properties of the fixed points can be easily An interesting observation concerning the renormalization
investigated in the linear approximation. The result is that, ingroup trajectories is that none of them crosses the Aine
the casese=0.9, €=0.1, and e=0.01, the fixed points =0. In other words, the renormalization group flow in this
(N 1,p1) and (\,,p,) are saddle points while the fixed points theory is divided into two separate parts: one wikh-0
(\3,p3) and (\4,p4) are absolutely unstable in the UV limit corresponds to the positively defined energy of the gravitons

TABLE Il. Numerical values of the parameters corresponding to the new fixed points. None of them has
an analog in the=0 case.

Fixed point fore=0.9 1 2 3 4

N 0 —6.817 —5.945 1.807

pi —8.475 -10.75 —-12.52 -3.05
Fixed point fore=0.1 1 2 3 4

\i 0 —14.421 -1.232 16.236

pi -3.671 —3.159 —3.647 —3.706
Fixed point fore=0.01 1 2 3 4

\i 0 —5.228 -0.119 5.457

pi —0.364 —0.351 —0.363 -0.371
Fixed point fore=—0.01 1 2 3 4

\i 0 — — 0.1186

pi 0.3625 — — 0.3628
Fixed point fore=—0.1 1 2 3 4

\i 0 — — 1.147

pi 3.576 — — 3.597
Fixed point fore=—1 1 2 3 4

\i 0 — — 8.001

pi 29.157 — — 30.239
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FIG. 2. The fixed points 1 and 3 are shown for the cases
=0.1 (left) and €=0.01 (right). Clearly, point 1 is a saddle point
nstable and point 3 is UV unstable. Points 2 and 4 are similar
addle and UV unstable, respectiveand are not plotted.

FIG. 1. Diagrams foe=0.9. They axis represents the coupling
\ and thex axis, the coupling, as well as in all subsequent plot-
tings. The left diagram shows the fixed points 1 and 4, and the otheE:
shows the points 2 and 3. The labels of the fixed points correspon

to the numeration in Table Il. The arrows indicate the direction of tradicti Theref id dditi Iv. th
the renormalization group trajectory at the given pdine have contradictions. Therefore, we consider, additionally, thé pos-

also drawn some trajectories for illustrative purpgs€sne can dis- sibility of_the specia_l solutiop =k, Wher_ek is a constant.
tinguish stable, completely unstable, and saddle fixed points at theddNder this assumption, EqES0) are consistent if

and further diagrams. £1k3+ (291 — F)k2+ (f3— 2g,)K+2g3=0, (52)

(massless spin-2 mogand another one to the unphysical with an additional restriction

graviton sector withh<0. There are examples of the quali-

tatively new UV-stable fixed points with >0 (see Figs. 3 5

and 4. At the same time there are no such examples for the b= (4qu)2(glk ~92K+93)>0, (53
case\<0. One can suppose that this property of the fixed

points is related to the limig— 0, where all new UV-stable dictated by the asymptotic freedom, in the UV regime. The

fixed points presumably should tendXe=0. origin of this condition is the following. After the relation
It is obvious that none of the fixed points that we havep=k.\ is imposed, the equation for becomes

found so far coincides with the standard one p=0 of the

n=4 renormalization group. The natural question is whether dA B 2

it is true that the effect of the Gauss-Bonnet term is to elimi- F T bA, (54

nate the asymptotic freedom im=4-—¢ dimensions. The

answer to this question is definitely not. The source of ourThe general solution of this equation has the form

failure to see the standard fixed point is that we have used

only the algebraic equation®, = 8,=0 and due to the non- A1) = € A(to)

polynomial form of theB, function (50) one cannot see the b(et—1)" 0

fixed point withp=0 in this way. So, in order to complete

our study we have to consider, especially, the possibility oft is easy to see that the asymptotic freedom in the UV limit

simultaneoua. — 0 andp— 0. Using elementary transforma- t— +oo holds for e>0 and(53) is satisfied. Fore<0 and

tions, one can check that the regimesp andp<<\ lead to  condition (53) satisfied, the situation is more complicated,

>0. (55)
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UV stable, contrary to the analogous points with positve

because the UV-stable fixed point is nonzexgt— o)
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numerical computations show that fe=—0.01-0.1, and
—1, Eq.(52) has only one real root and that this root satis-
fies the conditior{53). On the other side, fo¢=0.9,0.1, and
0.01, Eq.(52) has three distinct real roots, one of them vio-
lating condition(53) for each case. Thus, there are solutions
of the equationp=k\ and(52) that do not satisfy Eq53).

Let us note that, in all cases we examined, there are also
solutions with the UV-stable fixed point (0,0). However, the
asymptotic freedom depends on the choice of the initial con-
dition on thex-p plane. In some cases, when E§3) does
not hold on the special solution of Eq®0), the (0,0) point

is not stable in the UV region.

Looking at Figs. 1—-4, one can observe the renormaliza-
tion group trajectoriegfor the e>0 case linking the IR-
stable point §3,p3) to the UV-stable point (0,0), or alterna-
tively the IR-stable pointX,,p,4) to (0,0). The situation is
similar for e<0, but here the renormalization group flow is
inverted, linking the IR-stable point (0,0) to the UV-stable

point (A4,pa4).

VI. CONCLUSIONS AND DISCUSSIONS

We have calculated the one-loop effective action for the
Weyl gravity with the Gauss-Bonnet term. In the=-4 limit
the quantum effects of the Gauss-Bonnet term cancel. This
cancellation may be seen as a negative answer to the problem
raised in Ref[18]. This result is valid, at least, in the frame-
work of the conformal quantum gravity. Another remarkable
fact is that, in agreement with RgfL7], there is no infinite
[—gR? counterterm. Other sectors of the divergent part of
the effective action are in perfect agreement with both earlier
calculationg10,17.

Despite the one-loop divergences being conformal invari-
ant, this symmetry may be broken at the one-loop level in the

=~ €/b>0. However, this fixed point tends to zero when ginite part of the effective action. The divergences of the

e—0, and we can consider that the theory is asymptotically,
free in this sense. At the same time, independent on the si
of €, the theory witho<<O does not manifest the asymptoti-

cally free behavior in the UV limit.

In fact, there is no guarantee that the conditi@3) is
satisfied for every choice af and all real roots 0t52). The

m;\\\\\\\\\\\\\\
] e e e e N S N
] e N

] N L -
e T T Y e e e e

28 285 29

FIG. 4. The case=—1, with a saddle poinfl) and a UV-

295 30 305 31

X

stable ong4).

g%b\/—gcz- and [ —gE-type produce the anomalous viola-
i

n of the Noether identity4), and as a result the finite part
of the one-loop effective action contains usual nonl¢&4]
anomaly-induced term$4]. There may also be a local
[ \/—gR?-type contribution that deserves special discussion.
It is easy to see that there are two different possible sources
of this term in the Weyl quantum gravity:

(i) If the calculation is performed in a dimensional regu-
larization, thes{) and &%) terms in(45) are proportional to
n—4 and therefore they produce the finife/—gR? term
directly from A} . It is remarkable that this contribution de-
pends on the coefficieny of the Gauss-Bonnet term. Ac-
cording to Ref.[8], this contribution is a subject of strong
ambiguity typical for the dimensional regularization. In gen-
eral, the dimensional regularization is unable to predict any
definite value for the coefficient of the finiyéJTng term.

(i) The infinite //—gOR-type counterterm, which we
did not calculate here, may produce a contribution to the
conformal anomaly and eventually to the finifa/—gR?
term. However, this contribution is plagued by double ambi-
guities. First, the \/— gIR-type counterterm itself is gauge-
fixing dependenf16]. As already explained above, this is the
reason why we did not calculate this counterterm. The sec-
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ond source of ambiguity is the derivation of anomaly and ofcan start from the theory with a very small coefficient of the
the anomaly-induced effective action. In relation to thef./—gR? term. Due to the one-loop renormalizability of the
JJ—gR? term these procedures may be ambiguous. Detailedonformal theory this coefficient will remain very small at
discussions of this issue have recently been given in[B&f.  the quantum level. If we consider the conformal quantum
where the ambiguity has been confirmed not only for thegravity in this framework, the problem of ambiguity of the
traditional version of the dimensional regularizatiowhere anomalousf —gR? term is irrelevant and we can regard

it is completely out of contrglbut also in a more physically tnjs theory as a useful particular example of the higher-
covariant Pauli-Villars regularization with nonminimal scalar gerjvative quantum gravity models.

massive regulators. It is worth noticing that the status of this  one of the outcomes of our investigation is new fixed
last ambiguity in the Weyl quantum gravity is quite different points of the renormalization group flows that appear due to
from that one in the semiclassical approach. In the last casgantum effects of the topological Gauss-Bonnet term in 4
the ambiguity is always reduced to the freedom of adding the_ ¢ gimensiong33]. One can expect even a greater number
[\—gR? term to the classical action of vacuum, while in the of nontrivial fixed points for a general higher-derivative

former case this operation would increase the number ofuantum gravity, with the Einstein-Hilbert, cosmological,
physical degrees of freedofsee, e.g., Refl2] and refer-  and [R? terms included.

ences therelnand hence cannot be seen as the legal opera-
tion for the theory(2).

In any case the local conformal invariance in Weyl gravity
is violated at the one-loop level by quantum corrections.
Hence, despite the fact that the general higher-derivative One of the author$l.Sh) is grateful to I.L. Buchbinder
guantum gravity is indeed renormalizaljl&9,32, the par- and I.V. Tyutin for numerous discussions of the Weyl quan-
ticular conformal version is multiplicatively nonrenormaliz- tum gravity in the period between 1981 and 1993. The work
able at higher loops. Our results show, however, that thef the authors has been supported by a research grant from
conformal quantum gravity can be regarded as a good ag~APEMIG and by grants from FAPEMIG5.B.P) and CNPq
proximation. The corresponding procedure means that on@.Sh).
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APPENDIX A: BILINEAR EXPANSIONS QUADRATIC IN CURVATURE TERMS

In this appendix we collect the cumbersome expressions with bilinear expansions of the relevant terms of the second order
in curvature. Furthermore, we present the transformation of these terms to the form that is useful for the derivation of the

effective action. The initial set of the bilinear expansions has the following form:

(\/—gR,iwﬁ)(Z): \/—gh’”[ 810.ap 2= 0, VOV, + Vo, V5V, V, =0, V, VeV, VP + 4R, sV, V,+ 8, 0sRA VPV R 0,50

7
A A AT AT
_ZRpuavvﬁVp_Zg,uvaa)\BV Vp_4gVBRap}\,u,V Vit EgvaR;Lp)\TRBP +gp,VRp)\7aRp B

1

—Zls _E R? —ER R .PMpeB
4 uv,af Zg,uvgaﬁ pNTO 2 pnaph' v '

1 1 1 1 1
(V-gR.,) @)=~ gh’”[ AN T aie A A A AL T A A AT PR AA /A
1 1 1 1 1 N
+ Zgﬂvgaﬁvpmvp_ EgaVVIBV/LD + Eg,uVVaVﬁD - EgvaDVBV#_ZgVaRpBVMVP—’_ EﬁﬂvraﬁRp VPV)\
1
+9asR VY~ RupVaV+ 0,aRu g0+ 20,0R7,V, Vs + 0,,R? VY, ~ 50,,80sR™ V%~ 20,,5R", V.Y,

1
2 a
+ g(g,uvgaﬁ_za,uv,aﬁ)Rp)\_l—R;LaRVﬁ+ngaR,upRp,B_ga,BRp,pRpV h ,B' (Al)

and
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(V=gR)®@=—gh**{ V,V,V, V5= 09,,V,V,0-0,,0V,Vs+09,,0.,50%-9,,RV;V,— 2R,V Vs+0,,RV,V;

1 1
2 a
+zgaBR;.wD+E(g,u.v,aﬁ_g/.wgaﬁ)RD+2RgVﬁR,ua_g,uvRRa,8+g(g,uvgaﬁ_za,uu,aﬁ)R +R,u.VRa,B hef.
(A2)

It proves necessary to establish some commutation relations between covariant derivatives. In the expressions below we
have omitted those terms that may contribute only to the total derivatives in the effective action. Also, for the sake of brevity
we broke the symmetries in the pairs of indices3) and (wv). These symmetries must be restored for practical calculations.

We can write

9,5V Y, VoV ™= (g,5R ), VPV, Ry VAV, + 0,5V, 00V, + 0, 5RY VAV, Ry oy VAV, W5,

9,50V, V,h*=(9,5R .0+ R, g 0+ 9,5V, 0V, G, 4R, VOV, + 2R, 5, VY, W5,
9,6V VLV, %= g, 4R, V7V, + R, 50 VAV, + 0,5V, 0V, + 0, sR VY, + R, pen VAV, 4 0 5R o0

1 7PN 1 pA af
+R D+§gVﬁRMTP}\Ra +§Raﬂ RVBP)\ h i

vBau

9,5V.0V,n*=(29,5R? 1\ .V, V*+ 2R, ) ,V.V* +R
+2Rg,0aV, VM,

0+9,5(2R,,V,V’+R,,0+V,0V,

naBv

9apV, VA VPV = (R, VPV + O2)h, (A3)
V,V,VV,hB= (R, 5,V V,+ R,V V, + 2R, ,V, Vs~ R, V,Vs+V,V,V,V,) hb,

V, VeV, V,h =V, V,V,V5+ 4R, V, V5~ R?,(V,V5+ V3V,) + 2R? 5, V,V, ],

VAV, V,V,h=(R,,V*V,~R,,, .V V+V,0V,)h,

prAp
0ov,V,h=(2rR*,, VY, +R,, V*V,+V,00V,)h,
V.V VW h*=(R ,V, VP + R,V Y, +V, 0V, hee.

Using these relations, we can rewrite the bilinear expansions in a more useful form,

(V=gR%,.p) D= \/—gh’”( 8 v.ap 0%+ 9,5R L (2V, % 4NV ) =R, 5, ,(V*V,— 2V, VM) + 3R, 4,50+ 5R 4,5V, V”
—0,4R,a(V, VP +VPV,) —g,4R, (Y, V’+V*V,) - 29,,V,00V,—29,4R, .0+ V,V,V,V,

1
T T 2
+ 3gVBR/.LTp)\Ra Py 5;J.v,aBRp)\va>\_ gMV(ZRpa)\BV}\VP+ Rp}\‘raRp)\ B) + ngo')\T(g;.wga,B_ 25,41.1/,04,8)

+2R,,(V,Vg+ VBV,,)] he?, (A4)

1 1 1 1 1
/ 2 \(2)— v 2
( _gR/J,V)( )= _ghM [EVMVVVEYVB_ Eg,uVVaDVﬂ_ EgVBV;LDVa+ Z(gyv,aﬁ+gﬂvgaﬁ)|:| + ERV,BVaV,u,
1 3 1 \ \
- EgVBRpM(VpVa_’_ 3Vavp) + EgaﬁRp,u,VpVV_ R,u,aBVD + 2(25;/,11,013_ g/.wgaB) R? VpV)\+ R)\;LvaRB
1
+ R,up)\VRDtp)\,B_ g(zzspv,aﬁ_ g,u,vga,B) Rlzj)\—'_ RMaRVﬁ+ ZgVﬁR,u,pRpa_ gaBR,u,pRpV haﬁl (AS)
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(V-gR?)®)= x/—gh”“”[ V.V Vo Vs—29,5V,0V,+0,5R V.V +0,,R, sV Vo + 0,902~ 9,5RV, Y, — 2R, V, Vs
1 1 )
+ zga,BRp.VD + g;LVRVaVﬁ+ E(é,u.v,aﬁ_ gp.vgaﬁ) RO - gp,vR Ra,8+ §(gp.vgaﬁ_ 25;;1/,01[3) R
+2Rg,sR,u+ RM,,RQB] heb, (A6)

APPENDIX B: PARTICULAR RESULTS OF THE CALCULATIONS IN THE BACKGROUND FIELD METHOD

In this appendix one can find the results for the particular elements of the expré3gjorOne can easily find the
contribution of the commutatqi38)

n+2

1 . .
v_ 2
gterR"“ __TRMVaﬁ' (Bl)
After tedious algebra, we arrive at the following result:
trU=aR?, ;+bR%, +CcR?, (B2)

where
5xn?+ 26xn—24x—xn>+6yn
5yn’+10yn— 24y —yn®+24xn+8zn | . (B3)

" 2n(y+4x
(y+4x) 2yn+4xn+6zn—24z+5zr—zn®

o T o

Other relevant traces are the following:
tr(RV?,)=(n+2)[(n—1)(a;+nay) —az]R?, (B4)

where
al 2 nbl+b4+b8_bg
nb2+ b5+ bG

a|=——
n(y-+4x)
as nb;—b;

also

tr(R,, V%) =a,R%,+asR?, (B5)

where
(n—2)by+ (N?+n—2)(nbg+bg—bg)+ (N+2)b;+2nbyg
(n2+n—2)(b;+nby,+bg)—(n+2)bg+nb,—2byy |’

8.4_ 2

" n(y+4x)

as

3nx+ny+ 4x)?
( YA o 5 {n*x?+8n3x?+ 6n2x?+ 4n3xy+ 6n°xy+y2n?+ 10y’n— 8y?

tr(V° )2=1 _
(V%) (y+4x)? #reB T (y 4 4x)2n

—16nx*— 32+ 32yx}R? , + {—24n3xy— 48n°xy+ 32nxy— 8z°n?+ 12z°n+ n®z?

(y+4x)%n?
—3n°22+ n%y?—11n3y?— 128y x— 48n°x%+ 32y2— 4n*x2— 36n°x2— 2y?n?— 16y°n— 14n*zy
+128%— 27°n*— 4n°zx— 8n“*zx— 32zny+ 56z Py + 2n°zy+ 64znx+ 32z Px— 4n*xy} R?, (B6)
and finally
tr(V,,VP)=C1R%, .5+ CoR%, +C3R?, (B7)

where the constants;, ¢, andc; are given by
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12(24n%2+ 8nxy+ 12n2x%— 322+ 6n2xy + y2n?)

C]_:

Co=——
2 (y+4x)%n?

(y+4x)2n

, (B)

{24n*x%+ 96n°x?+ 72n%x2— 1920 X%+ 48y?n— 10y2n2— 128y x— 192nxy+ 40n?xy— 32zn°x + 12& nx

+ 322X — 64zny+ 16zn’y + 16z2Py + 52n3xy+ 12n*xy+ 1282+ 3n*y2+ n3y2+ 82°n*+ 822n3+ 32y 2}, (B9)

and

4
Ca=———{—4n3xy+2n2xy—4nxy+ 8zn’x— zndy — 42°n?— 922n3+ n°22+ n3y2+ 32x%+ 16y x— 16n°x>— 16y?

(y+4x)%n?

—8n%x?—8y?n—4nx2+ 3n*zy— 4zny— 48znx+ 24z Px — 24z Py + 4nZ>+ 48z y— 96z X} (B10)
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