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Conformal quantum gravity with the Gauss-Bonnet term

Guilherme de Berredo-Peixoto* and Ilya L. Shapiro†

Departamento de Fı´sica–ICE, Universidade Federal de Juiz de Fora, Juiz de Fora, CEP: 36036-330, MG, Brazil
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Conformal gravity is one of the most important models of quantum gravity with higher derivatives. We
investigate the role of the Gauss-Bonnet term in this theory. The coincidence limit of the second coefficient of
the Schwinger-DeWitt expansion is evaluated in an arbitrary dimensionn. In the limit n54 the Gauss-Bonnet
term is topological and its contribution cancels. This cancellation provides an efficient test for the correctness
of calculation and, simultaneously, clarifies the long-standing general problem concerning the role of the
topological term in quantum gravity. FornÞ4 the Gauss-Bonnet term becomes dynamical in the classical
theory and relevant at the quantum level. In particular, the renormalization group equations in dimensionn
542e manifest new fixed points due to quantum effects of this term.
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I. INTRODUCTION

At both classical and quantum levels, local conform
symmetry plays a special role in theories of gravity and th
applications@1–3#. One of the most interesting issues is t
violation of this symmetry at the quantum level. For t
quantum theory of matter fields in curved space-time
violation of conformal symmetry is related to the we
known trace anomaly~see, e.g., Refs.@1,3# for the review!.
The important feature of the conformal anomaly is its u
versality for the matter~scalar, spinor, and vector! fields that
contribute with the same sign to two of three terms of
anomaly. The opposite sign of the contributions takes pl
for the unphysical higher-derivative scalars and fermio
@4,5#. In principle, one can choose the number of the
higher derivative fields in such a way that they cancel
contributions of the matter fields. In this case the conform
symmetry holds at the one-loop level. The cancellation of
anomaly cannot be achieved in the known versions of c
formal supergravity@6#, and therefore the relation betwee
the cancellation of conformal anomaly and what is suppo
to be the fundamental theory@e.g., supergravity, which ma
be a low-energy limit of the~super!string/M theory# remains
unclear within the semiclassical approach.

The violation of the conformal symmetry in quantu
gravity is much less studied. One of the simpler theories
gravity that possesses local conformal symmetry is base
the Weyl action*d4xA2gC2, where

C25CmnabCmnab5RmnabRmnab22RabRab1
1

3
R2 ~1!

is the square of the Weyl tensor inn54 dimensions. In order
to provide renormalizability, one has to include topologic
and surface terms. In this way we arrive at the action
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SW52E d4xA2gH 1

2l
C21hE1thRJ . ~2!

Here

E5RmnabRmnab24RabRab1R2 ~3!

is the integrand of the Gauss-Bonnet topological term. T
action ~2! is conformal invariant, for it satisfies the confo
mal Noether identity

2
2

A2g
gmn

dSW

dgmn
50. ~4!

By dimensional reasons one can introduce into action~2! an
extra termu•*A2gR2. However, this expression possess
only global and non local conformal symmetry and hence
will not be included in the action. In order to complete th
picture, let us note that a finiteu•*A2gR2 term may be
generated as a quantum anomaly-induced correction,
due to the renormalization of the*A2ghR term in ~2!. The
anomalous violation of local conformal symmetry in the
nite part of the one-loop effective action may produce
nonconformal divergences beyond the one-loop level. T
effect has been investigated in Ref.@7# for the conformal
scalar field and there are no reasons to expect that the s
tion for the conformal quantum gravity will be different.

The main purpose of the present paper is the one-l
renormalization and renormalization group in conform
quantum gravity. The renormalization structure depends
the form of divergences and corresponding counterterms.
cording to the standard expectations, despite the anom
results from the one-loop renormalization, one-loop div
gences in conformal quantum gravity must be conforma
invariant. This property holds in all known examples of co
formal matter fields, and one can expect that the same sh
be true for the Weyl quantum gravity based on action~2!.
The most natural result would be to meet the renormaliza
of the coefficientsh,l,t but not the*A2gR2-type counter-
term.

c-
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At first sight there is not much difference whether t
*A2gR2 term shows up in one-loop divergences or
higher loops. However, this may be relevant for some ap
cations of quantum gravity. If nonconformal divergences
pear only at higher loops, the conformal symmetry may
considered as a good approximation. For example, the
loop renormalizability of conformal gravity provides the po
sibility of the successful realization of the anomaly-induc
inflation scheme~see the discussion in Ref.@8#! in the pres-
ence of quantum gravity. At the same time, if the nonconf
mal divergence emerges at one-loop order, the confor
symmetry cannot be considered a reasonable approxima
because the running of the coefficientu will be much stron-
ger in this case. In this situation a quantized conformal m
ter on a curved classical background also cannot be con
ered as an approximation to the full theory involvin
quantum gravity~see, e.g., the discussion in Refs.@1,9#!.
Finally, we need to be sure whether the nonconformal div
gence is present at the one-loop level in the Weyl quan
gravity.

The first explicit derivation of the one-loop divergences
the Weyl quantum gravity has been performed by Frad
and Tseytlin @10# in the framework of background field
method, properly modified for the higher-derivative theor
@11#. The *A2gR2-type divergence has been encounte
and the conformal invariance of the counterterms has b
achieved through the use of the special procedure of con
mal regularization. This regularization is nothing but the s
cific reparametrization of the background metric inven
earlier in Ref.@12# ~see also Refs.@13# and@14#!. According
to this procedure metricgmn has to be replaced by conform
metric g̃mn5gmnP2@gmn#, where scalar metric-depende
quantityP@gmn# is defined as a solution of the equation

hP5
1

6
RP. ~5!

When performing a local conformal transformation of t
original metric

gmn→gmn8 5gmne2s(x),

the quantityP@gmn# transforms asP→P85Pe2s(x), such
that the metricg̃mn remains invariant. Another importan
property of the metricg̃mn is that the corresponding scala
curvature is zeroR̃5R(g̃mn)50. Therefore, after the origi
nal metricgmn is replaced byg̃mn , the divergent*A2gR2

counterterm disappears and the expected invariant form
divergences gets restored. The procedure of confor
‘‘regularization’’ has been generalized for the conform
quantum gravity coupled to conformal quantum matter fie
in Ref. @14#.

Is it correct to consider the replacementgmn→g̃mn as a
kind of conformal regularization for the divergent part of t
effective action of quantum gravity? It is easy to see that
procedure eliminates also the anomaly in the finite part of
effective action@15#. Therefore, this choice of backgroun
metric does not fit with numerous applications of conform
04402
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anomaly which we know. Furthermore, despite the choice

g̃mn as a background metric being mathematically consist
it is not very appealing because, in particular, it elimina
the Einstein-Hilbert action. Consequently, the theory ba
on this metric may not have a consistent nonrelativistic lim
In general, the whole procedure appears to be an artifi
addition to the background field method. If we really want
learn the role of conformal symmetry in quantum gravity,
is important to know if the appearance of the*A2gR2 coun-
terterm is a calculational error or it is caused by incons
tency of the background field method applied to Weyl qua
tum gravity. The last option has been partially explored
Ref. @16#, where the possible conflict between diffeomo
phism and conformal gauge-fixing conditions has been
cussed. It turned out that the counterterm*A2gR2 is gauge-
fixing independent, exactly due to the renormalization of
terms*A2gC2 and*A2gE. On the other hand, the coun
terterm *A2ghR is not protected from the gauge-fixin
dependence and can be modified or even eliminated by
appropriate choice of the parameters of gauge fixing.

The second explicit derivation of the one-loop dive
gences in Weyl quantum gravity has been performed
Antoniadis, Mazur, and Mottola@17# using methods devel
oped in Ref.@10#. The correctness of theb functions for the
coefficientsl and h calculated in Ref.@10# has been con-
firmed. At the same time, the paper in Ref.@17# did not come
across the suspicious*A2gR2 counterterm. Indeed, this re
sult coincides with our general expectations discussed ab
but the situation with the two conflicting results does n
look acceptable. In what follows we shall perform a mo
general quantum calculation using dimensional regular
tion, starting from the action~2!. In this way we will be able,
in particular, to check the previous calculations@10# and
@17#. Even more important, we may achieve a better und
standing of the role of the Gauss-Bonnet term in quant
gravity in n54 andn542e dimensions.

As one of our objectives is to perform a very complicat
calculation in conformal quantum gravity, we have to pr
vide maximal safety with respect to possible calculatio
errors. Thus we shall use a new way of organizing calcu
tions, which guarantees an efficient automatic verification
our result. Simultaneously, we shall resolve another lo
standing problem of quantum gravity. In the well-known p
per @18#, Capper and Kimber noticed that the Gauss-Bon
term may, in principle, play a significant role in quantu
gravity. Usually this term is disregarded because it is to
logical and does not affect the classical equations of mot
However, this conclusion is true only if the Bianchi identi
is satisfied. This implies the diffeomorphism invariance
the theory. However, when the theory is quantized throu
the Faddeev-Popov procedure, the diffeomorphism inv
ance is broken and the vector space extends beyond
physical degrees of freedom. In other words, after quant
tion not only the spin-2 but also the spin-1 and spin-0 co
ponents of the quantum metric become relevant, and the
pological term may produce new vertices of interacti
between these components. As a result, the quant
gravitational loops may be, in principle, affected by the pr
4-2
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ence of the topological term. Of course, this output does
look probable, because if we include the topological te
into the classical action, the gauge-fixing condition sho
modify and eventually compensate the new vertices. But
is a belief that is always good to verify. Such a verification
one of the purposes of the present paper.

We shall perform the one-loop calculation starting fro
the full action~2!, taking the topological term into accoun
As it was predicted in Ref.@18#, the contributions of this
term penetrate all vertices or, in other words, all elements
the background field method technique. However, des
many intermediate formulas that strongly depend on the
efficient h, this dependence completely disappears in
final expression for the divergent part of the effective act
in the n→4 limit. This cancellation provides a negative a
swer to the hypothesis raised by Capper and Kimber@18#.
Moreover, it provides a very strong test for the correctnes
the calculation. On the other hand, theh dependence is
present in thenÞ4 expression. Therefore, derivation of th
relevant part of the effective action in an arbitrary dimens
nÞ4 opens the way for constructing the complete 42e
renormalization group equations in the conformal quant
gravity theory~2!. As it will be shown below, the quantum
effect of the Gauss-Bonnet term leads to new fixed po
that have no analogs in then54 case.

The paper is organized as follows: In the next section
shall briefly describe the Lagrange quantization of theory~2!.
One can find a detailed description of this subject in Re
@2,10,19,20#. In Sec. III the details of the bilinear expansio
of higher-derivative gravity are presented. Some of the bu
expressions corresponding to this section are collected in
pendix A. Our expansions are more general than those
were known before@2,20,21#, because they are performed f
all higher-derivative terms includingA2gE and without tak-
ing into account the conformal gauge-fixing condition. Th
enables one, in principle, to derive divergences not only
the conformal case, but also for the general higher-deriva
quantum gravity@10,21,22#. In the present paper we perform
only the calculation for the Weyl theory and expect to rep
the results for the general case later on. In Sec. IV we de
the coincidence limit of thea2(x,x8) coefficient of the
Schwinger-DeWitt expansion. The expression is obtained
the generaln-dimensional space-time, in order to see t
effect of the Gauss-Bonnet term more explicitly. After th
we derive the divergences of the Weyl gravity atn→4 and
establish their independence on the parameterh. In Sec. V
the renormalization group in the 42e dimensions is consid
ered, and a number of new UV-stable and UV-unstable fi
points ~due to the quantum effects of the topological ter!
are described. In the course of the calculations in Secs
and V we use the computer algebra programMAPLE ~see,
e.g., Ref.@23#!. Finally, in the last section we draw our con
clusions and discuss the possible form of the nonconfor
finite contributions to the one-loop effective action.

II. QUANTIZATION AND GAUGE-FIXING DEPENDENCE

The quantum gravity calculation in the background fie
method~see, e.g., Ref.@2# for the introduction! implies the
04402
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special parametrization of the metric

gmn→gmn8 5gmn1hmn . ~6!

In the right-hand side~r.h.s.! of the last formulagmn is the
background metric andhmn is the quantum field~integration
variable in the path integral!. The one-loop contributionḠ (1)

to the effective action of quantum gravity is defined as f
lows @10#:

Ḡ (1)@gmn#5
i

2
ln DetĤ2

i

2
ln DetYab2 i ln DetĤgh ,

~7!

whereĤ is the bilinear~in quantum fields! form of the action
~2! together with the gauge-fixing term

SGF5mn24E dnxA2gxaYabxb . ~8!

The operatorĤgh is a bilinear form of the action of the
Faddeev-Popov ghosts andm is the dimensional constan
~renormalization parameter in the dimensional regulari
tion!. Expression~7! includes also ln DetYab, whereYab is
the weight function. In the case of higher-derivative grav
theory, this term gives a relevant contribution to the effect
action, becauseYab is a second order differential operato
@10#.

Introducing the gauge-fixing term~8!, one is fixing the
diffeomorphism invariance. However, in the theory und
consideration this is not sufficient, because there is ano
classical symmetry—local conformal invariance, whi
leads to a degeneracy even after the term~8! is introduced.
Hence one has to choose the second gauge fixing condi
Following Fradkin and Tseytlin@10#, we fix the conformal
symmetry by imposing the constrainth5hm

m50. The inter-
ference between the two gauge-fixing conditions may t
place because the term~8! breaks the conformal symmetry i
the background fields sector@16#. However, this breaking
cannot lead to the nonconformal counterterms, because
latter can be shown to be insensitive to the choice of
gauge-fixing condition. The general gauge-fixing conditi
~here we restrict our attention to the linear backgrou
gauges! has the form

xm5¹lhlm1b¹mh,

Ymn5
1

a
~gmnh1g¹m¹n2d¹n¹m

1p1Rmn1p2Rgmn!, ~9!

wherea,b,g,d,p1 ,p2 are arbitrary parameters. The actio
of the Faddeev-Popov ghosts has the form

Sgh5E d4xA2gC̄m~Hgh!m
n Cn , ~10!

where
4-3
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Ĥgh5~Hgh!m
n 52dm

n h2¹n¹m22b¹m¹n. ~11!

The parameterb is fixed in the conformal case due to th
conformal symmetry conditionhm

m50; hence b521/n.
Other parameters may take different values and their ch
may influence, in principle, the one-loop divergences. T
general analysis@16# shows that theC2,E, andR2 counter-
terms cannot depend on these parameters while thehR-type
counterterm may have such a dependence. In what foll
we shall use these data extensively, namely, we will not
attention to the irrelevant*A2ghR counterterm and, on the
other hand, we shall choose the gauge-fixing parame
a,g,d,p1 ,p2 such that the calculation of other counterterm
becomes simpler. Let us note that the dependence on
parametersp1 ,p2 has been explored and found irrelevant
Ref. @22# for the nonconformal version of the highe
derivative quantum gravity.

III. BILINEAR EXPANSION

The action~2! includes only higher-derivative conforma
invariant and surface terms. There are no Einstein-Hilb
cosmological, and*A2gR2 terms in the action, becaus
none of them possesses local conformal symmetry. But
the sake of completeness, the bilinear expansions for
these terms will be given too. The parametrization of
quantum metrichmn will be chosen according to~6!. Let us
note that the relevant divergences in the theory~2! are inde-
pendent of the choice of parametrization for the quant
metric @16#. When making the expansions of the elements
the gravitational action, we keep in mind that the relev
terms are of second order inhmn . Hence we shall pay mos
attention to this order of the expansion. In what follows w
indicate all quantities constructed from the total metricgmn8
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by primes~e.g.,g8mn, A2g8, G8mn
g , R8mbn

a etc.!, and reserve
simpler notations~e.g.,gmn, A2g, Gmn

g , R mbn
a etc.! for the

quantities constructed from the background metricgmn .
For g8mn andA2g8 the expansions can be presented a

g8mn5gmn2hmn1hl
mhln2hl

mht
lhtn1•••

5g(0)
mn1g(1)

mn1g(2)
mn1g(3)

mn1••• ~12!

and

A2g85A2gS 11
1

2
h1

1

8
h22

1

4
hmnhmn1••• D . ~13!

For the coefficients of the affine connection, using~12!, we
arrive at the expansion

G8mn
a 5Gmn

a 1dGmn
a , dGmn

a 5 (
n51

`

dG (n)
mn
a . ~14!

Here the tensorsdG (n)
mn
a are given by the expressions

dG (n)
mn
a 5

1

2
g(n21)

ab ~¹mhbn1¹nhbm2¹bhmn!. ~15!

For the curvature tensor one can establish the following g
eral expression:

R8bmn
a 5Rbmn

a 1¹ndGbm
a 2¹mdGbn

a 1dGbn
l dGlm

a 2dGbm
l dGln

a

5Rbmn
a 1 (

n51

`

R(n)
bmn
a . ~16!

In the first and second orders in the quantum metric,hmn , we
obtain the following expressions for the Riemann tensor:
R bmn
~1! a 5

1

2
~¹m¹bhn

a2¹n¹bhm
a1¹n¹ahbm2¹m¹ahbn1Rlmn

a hb
l2Rbmn

l hl
a!,

R bmn
~2! a 5

1

2
hal~¹m¹lhnb1¹n¹bhml1¹n¹mhlb!1

1

4
@¹mhal~¹lhnb2¹bhnl2¹nhbl!

1¹bhn
l~¹lhm

a2¹ahlm!1¹nhb
l~¹lhm

a2¹ahlm!1¹lhmb~¹lhn
a2¹ahln!#2~m↔n!. ~17!

For the Ricci tensor, similar expansions have the form

Rmn
(1)5

1

2
~¹l¹mhn

l1¹l¹nhm
l 2¹m¹nh2hhmn!,

Rmn
(2)5

1

2
hab~¹a¹bhmn1¹m¹nhab2¹a¹mhnb2¹a¹nhmb!1

1

2
¹ahab~¹bhmn2¹mhnb2¹nhmb!

1
1

2
¹ahmb~¹ahn

b2¹bhn
a!1

1

4
¹mhab¹nhab1

1

4
¹bh~¹mhnb1¹nhmb2¹bhmn!. ~18!

For the scalar curvature we have the following expansions:
4-4
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R(1)5¹m¹nhmn2hh2hmnRmn,

R(2)5hab~¹a¹bh1hhab2¹a¹lhb
l2¹l¹ahb

l !1¹ahal~¹lh2¹bhl
b!

2
1

4
¹lh¹lh1halhb

lRab1
3

4
¹lhab¹lhab2

1

2
¹ahlb¹bhal. ~19!
tio
t

a

n

le

i-
in
h-

ss-
the
o-

u-

of
ies

oth
-
nt

oth

.

With these expansions, we can derive part of the ac
that is quadratic in the quantum fields. It proves useful
consider an alternative version of the action~2!,

SW~n!52m (n24)E dnxA2g$xRmnab
2 1yRmn

2 1zR2

1thR%, ~20!

where the new parametersx, y, andz are related toh andl
as follows:

x5
1

2l
1h, y52

2

~n22!l
24h,

z5h1
1

l~n21!~n22!
. ~21!

After some algebra we arrive at the formula

S(2)52m (n24)E dnx$x~A2gRmnab
2 !(2)1y~A2gRmn

2 !(2)

1z~A2gR2!(2)%, ~22!

where the complicated expressions for the bilinear forms
collected in Appendix A.

Starting from the expression~22!, and using~A4!, ~A5!,
and ~A6!, one can easily find the bilinear form of the actio
~20!. The operatorĤ depends on the gauge fixing term~8!.
The gauge-fixing parametersa,b,g,d,p1 ,p2 in ~9! will be
chosen in such a way that the operator takes the simp
minimal form

Ĥ5K̂h21O~¹2!, ~23!

whereK̂ is a nondegeneratec-number operator. Two of the
possible nonminimal fourth derivative termsgmn¹ah¹b and
gab¹mh¹n vanish due to the conformal gauge-fixing cond
tion hm

m50. The simplest choice of the parameters provid
the cancellation of the remaining nonminimal fourt
derivative structures¹m¹n¹a¹b andgnb¹mh¹a is the follow-
ing:

a5
2

y14x
, g5

2x22z

y14x
,

d51, p15p250, ~24!

with b521/n defined by the conformal gauge fixing~as
already noted!. Let us remark that this ‘‘minimal’’ choice of
04402
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g

the gauge fixing is sensitive to the introduction of the Gau
Bonnet term, as we expected. On the other hand, if we fix
value ofh such that the sum of the Weyl term and the top
logical term gives

C22E52W52S Rmn
2 2

1

3
R2D , ~25!

the gauge-fixing condition~24! coincides with that of Refs.
@10,17#.

After some algebraic calculations and using the comm
tators~A3!, we find

@S1Sg f#
(2)5hmnĤhab,

Ĥ5K̂h21D̂rl¹r¹l1N̂m¹m2~¹mẐm!1Ŵ,
~26!

and K̂, D̂rl, N̂m¹m , ¹mẐm and Ŵ are matrices in the
hmn-space. In order to derive an explicit form ofN̂m andẐm

one has to extend the derivation of bilinear expressions
the Appendix A. However, the derivation of these quantit
does not have much meaning, because the termsN̂m¹m and
(¹mẐm) may be safely disregarded. The reason is that b
expressionsN̂m and Ẑm are covariant derivatives of curva
tures. Therefore they may contribute only to the irreleva
gauge-fixing-dependent*A2ghR-type counterterm, which
we are not calculating here. Below we shall simply set b
terms to zero.

Let us introduce the useful notation

d̄mn,ab5dmn,ab2
1

n
gmngab

for the projection operator into the traceless sector of thehmn

space. Here, as usual,

dmn,ab5
1

2
~gmagnb1gmbgna!.

Since we assume the conformal gauge-fixing conditionh

50, the tensord̄mn,ab plays the role of the identity matrix
Without this condition the identity matrix isdmn,ab . Taking
the conformal gauge into account, we find
4-5
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~K̂ !mn,ab5S y

4
1xD d̄mn,ab , ~27!

~D̂rl!mn,ab522xgnbRa
rl

m14xdn
rRl

amb1~3x1y!grlRmanb12xd̄nb,
rlRma2~4x12y!da

r Rl
mgnb

22xgnbRmagrl1
y12x

2
d̄mn,abRrl2zgnbd̄ma

rlR1
1

2
zd̄mn,abgrlR22zd̄ab

rlRmn , ~28!

and

~Ŵ!mn,ab5
3x

2
gnbRmrlsRa

rls1
x2y

2
Rr

am
lRnbrl1

5x1y

2
Rl

am
rRlnbr1

3x1y

2
Rl

m
r

nRralb1
y25x

2
RmrRr

anb

1
y12x

2
RmaRnb1

3y

2
gnbRmrRr

a1
3z

2
gnbRRam2

z

2
RRnbam1zRmnRab2

1

4
~xRrlst

2 1yRrl
2 1zR2!~ d̄mn,ab!.

~29!

In the above formulas we used special condensed notation that enables one to present the expressions in a relative
way. The idea of this condensed notation is that all the algebraic symmetries are implicit, including the symmetrization
couples of indices (ab)↔(mn), (a↔b) and (m↔n), and also in the couple (r↔l) in the operatorD̂rl. In order to obtain
the complete formula explicitly, one has to restore all the symmetries. For example,

RmrRr
anb→ 1

2
~RmrRr

anb1RarRr
mbn!

restores the (ab)↔(mn) symmetry. The same procedure has to be applied also for the other symmetries (r↔l), (a↔b),
and (m↔n).

In order to use the Schwinger-DeWitt method for the fourth-derivative operator@10#, we need to reduce it to the minima
form ~23!. To this end one has to multiply the operator~26! by the inverse matrixK̂21, given by

~K̂21!mn,ab5
4

y14x
d̄mn,ab.

Let us notice that the matrixK̂21 is a c-number operator and hence this multiplication does not affect the divergence
straightforward algebra, one can find the minimal operator

Ĥ5K̂21Ĥ51̂h21V̂rl¹r¹l1Û, ~30!

where the new expressions

V̂rl5K̂21D̂rl, Û5K̂21Ŵ ~31!

already do not possess the symmetry in (ab)↔(mn). The expressions for these two matrices are the following:

~Û !mn,ab5
4

y14x H 3x

2
gnbRmrlsRa

rls1
5x1y

2
Rl

am
rRlnbr1

3x1y

2
Rl

m
r

nRralb1
y25x

2
RmrRr

anb1
y12x

2
RmaRnb

1
3y

2
gnbRl

mRal2
1

4
~xRrlst

2 1yRrs
2 1zR2!~ d̄mn,ab!1

3z

2
gnbRRam1

x2y

2
Rr

am
lRnbrl1zRmnRab

2
z

2
RRnbamJ , ~32!

V̂rl5
4

y14x (
i 51

10

bik i , ~33!
044024-6
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where

k15gnbgrlRma , k25 d̄mn,abgrlR,

k35grlRmanb , k45dnb,
rlRma ,

k55dnb,
rlRgma , k65 d̄mn,abRrl,

k75
1

2
~dn

(rRl)
abm1db

(rRl)
mna!,

k85gnbd (m
(r Rl)

a) , k95gnbR(a
rl

m) ,

k105
1

2
~ d̄ab,

rlRmn1 d̄mn,
rlRab!, ~34!

and

b1522x, b25z/2, b353x1y,

b452x, b552z, b65x1y/2,

b7524x, b8524x22y, b9522x,

b10522z. ~35!

The above form ofV̂rl is helpful in organizing the cumber
some calculations of divergences, which will be described
the next section.

IV. DERIVATION OF DIVERGENCES

The algorithm for the one-loop divergences correspond
to the minimal fourth-order operator can be written as@10#
~here we use the Euclidean signature of the metric, in or
to be consistent with@10#!

1

2
ln DetĤudiv52

mn24

~4p!2~n24!
E dnxAg tr lim

x8→x

a2~x8,x!,

~36!

where

lim
x8→x

a2~x8,x!5
1̂

90
Rmnab

2 2
1̂

90
Rmn

2 1
1̂

36
R21

1

6
R̂mnR̂mn2Û

1
1

12
RV̂r

r2
1

6
RrlV̂rl1

1

48
V̂r

rV̂l
l

1
1

24
V̂rlV̂rl. ~37!

HereR̂mn is the commutator of the covariant derivatives a
ing in the tensorhab space,

R̂mn5@¹m ,¹n#. ~38!

The full collection of the traces of the expressions~37! is
presented in Appendix B.
04402
n

g
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It is straightforward to find the contributions of the weig
and ghost operators~the algorithm for the nonminimal vecto
operator can be found in Refs.@10,22#!

2
i

2
ln detŶudiv52

1

~n24!~4p!2E d4xA2gH 11

180
Rmnab

2

2
43

90
Rmn

2 1
1

9
R2J , ~39!

2 i ln detĤghudiv52
1

~n24!~4p!2E d4xA2gH 11

90
E

2S 1

3
j22

4

3
j1

7

15DRmn
2

2S 1

6
j22

1

3
j1

17

30DR2J , ~40!

where the parameterj is given by

j5
n22

2~n21!
. ~41!

Collecting all the results from~37!, ~39!, and~40! according
to ~7! and using the formulas from Appendix B, we arrive
the functional trace of the overall coincidence limit of th
a2(x8,x) coefficient

A2
t 5 lim

x8→x

sTra2
t ~x8,x!

5 lim
x8→x

@Tr a2~x8,x!~Ĥ!2Tr a2~x8,x!~Ŷ!

22 Tra2~x8,x!~Ĥgh!#. ~42!

The last expression can be regarded as a functional su
trace of the coincidence limit of thea2(x8,x) coefficient of
the differential operator acting in the direct product of t
tensorhmn , vector~third ghost! and vector ghost spaces. Th
sign difference between the different terms in~42! is due to
the different Grassmann parity of the fields, and the opera
Tr includes integration, as usual.

Let us present the result in terms of the parametersh
andl:

A2
t 52mn24E dnxA2g$b1~n!E1b2~n!C21b3~n!R2%,

~43!

where the coefficients (b functions! b1(n), b2(n), and
b3(n) are given by the expressions

b i~n!5d i
(0)1d i

(1)h1d i
(2)h2, i 5~1,2,3!. ~44!

The coefficientsd j
( i )are the following functions:
4-7
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d1
(0)52

15n6186n51201n424842n318104n216624n29648

2880~n21!~n23!2
,

d1
(1)52

~n24!~n22!~n528n4139n3240n22196n1192!l

48n~n21!~n23!2
,

d1
(2)52

~n24!2~n319n2114n112!~n22!2l2

48~n23!2n2
,

d2
(0)5

~n22!~5n61299n521162n422570n3115056n2218528n16720!

960n~n21!~n23!2
,

d2
(1)5

~n24!~n423n3150n236!~n22!2l

48n~n21!~n23!2
,

d2
(2)5

~n24!~n3110n2110n124!~n22!3l2

48~n23!2n2
,

d3
(0)5

~n24!~5n5122n41179n32930n22112n1816!

960~n21!2~n23!
,

d3
(1)5

~n24!~n424n32n2110n212!~n22!2l

24n~n21!2~n23!
,

d3
(2)5

~n24!2~n11!~n212n112!~n22!3l2

96~n21!~n23!n2
. ~45!
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The above coefficients, despite their chaotic appeara
provide a lot of important information. First, they show th
for nÞ4 the Gauss-Bonnet topological term contributes
the effective action in a nontrivial way and in particular pr
duces the*A2gR2-type term. On the other hand, it is re
markable that alld i

(1) andd i
(2) coefficients are proportional to

n24. Hence, forn54 one can see that theh dependence
completely disappears, and the final result, Eq.~43!, be-
comes very simple. Let us write down the expression for
one-loop divergences

Gdiv
(1)52

mn24

~4p!2~n24!
E dnxA2gH 137

60
E1

199

15
WJ

5
mn24

~4p!2~n24!
E dnxA2gH 87

20
E2

199

30
C2J , ~46!

where we used Eq.~25! and the pseudo-Euclidean signatu
The expression~46! coincides with that derived by Antonia
dis, Mazur, and Mottola in Ref.@17#. Both coefficients in
~46! also coincide with those derived by Fradkin and Tsey
in Ref. @10#. However, we do not meet the pathologic
*A2gR2-type divergence@10# and hence there is no need
apply the conformal regularization@12,13# discussed in the
04402
e,

o

e

.

Introduction. As long as our calculation is seriously tested
the cancellation of the numeroush-dependent terms in the
n→4 limit, we strongly believe in its correctness. Thus, t
*A2gR2-type one-loop divergence does not show up in
one-loop effective action of Weyl quantum gravity.

The expression~46! does not contain the divergences
the cosmological constant and of the Einstein-Hilbert ty
This fact is due to our choice of the regularization procedu
As long as we start from the conformally invariant actio
the theory does not possess dimensional parameters
therefore the divergences of these two sorts may be o
quartic and quadratic divergences. Of course, in the dim
sional regularization that we are using here, the quartic
quadratic divergences do not appear. However, one can
ily see the cosmological divergences and those linear inR in
other regularization schemes, for example in the covar
cutoff @10# or in the covariant Pauli-Villars@8# regulariza-
tions. Of course, the logarithmic divergences~46! that we
have calculated do not depend on the choice of the regu
ization scheme.

Including the matter fields one meets additional contrib
tions to the divergent coefficients in~46!. As it was already
noticed in the Introduction, the conventional scalars, ferm
ons, and vectors give contributions of the same sign to b
4-8
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b1 andb2, while the contributions of higher-derivative sc
lar and fermion have opposite sign@4–6#. The sign of the
coefficients in~46! coincides with that of the conventiona
fields. Hence, since the*R2-type divergence is absent, on
can use the method of Ref.@5# and adjust the number o
higher-derivative scalars and fermions such that the one-
divergences completely cancel. In a more complicated si
tion, when the matter coupled to quantum gravity posses
self-interaction, the quantum gravitational effects modify t
divergences and the renormalization group trajectories
in the matter sector of the theory. This issue has been stu
in detail@14,24,25# for the case of the higher-derivative gra
ity @26#. In both conformal@14# and general@24,25# cases the
effect of quantum gravity is rather smooth and always fav
the asymptotic freedom in the matter fields sector. Due to
absence of the*R2-type divergence the investigation for th
conformal case can indeed be performed without the spe
conformal regularization~which we discussed in the Intro
duction!, while the quantum-gravitational corrections to t
b functions in the matter sector are exactly those derived
Ref. @14# ~see also Ref.@2#!. The reason is that theseb func-
tions do not depend on the scalar curvature and hence ar
affected by the conformal regularization.

V. RENORMALIZATION GROUP EQUATIONS

The renormalization group~RG! equations for the theory
~2! may be considered in two different ways@27#. The first
possibility is to take usualn54 b functions; in this case we
meet exactly the same RG equations as in Ref.@10#. It proves
useful to introduce a new parameterr521/h. Let us re-
mark that the choice ofl as a coupling constant in the actio
~2! is fixed, because~i! l is a parameter of the loop expan
sion in this theory and~ii ! one cannot change the sign ofl
without changing the positivity of the graviton energy. At th
same time there are no similar constraints for the coeffic
of the Gauss-Bonnet term and therefore the choice can
made according to convenience. The usualn54 renormal-
ization group equations forl andr have the form

dl

dt
5m

dl

dm U
n54

5bl~4!52a2l2, l~0!5l0 ,

dr

dt
5m

dr

dm U
n54

5br~4!52b2r2, r~0!5r0 ,

~47!

where

a25
199

15~4p!2
, b25

261

60~4p!2
. ~48!

The above equations indicate the UV asymptotic freedom
both parameters. In other words, there is a single fixed p
l5r50 and it is stable in the high energy limitt→`.

Let us now consider a more complicated version of
renormalization group equations, taking the dimensionn
542e for 21<e,1. Mathematically this means that w
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do not take the limitn→4 in Eqs.~47!. The renormalization
group equations that emerge as a result of this procedure
be different from~47! and one can expect to see qualitati
effects of the Gauss-Bonnet term in this framework.

A similar approach to the renormalization group prov
fruitful in the two-dimensional quantum gravity@28#, due to
its relation to the concept of asymptotic safety@29# and to the
discussion of the universality classes of quantum grav
theories@30#. The main idea of 22e quantum gravity is the
following. In the preciselyn52 dimensions, quantum grav
ity is a topological theory similar to that which we meet
n54 starting from the pure Gauss-Bonnet term. However
we generalize the theory forn522e, there is a dynamics
~different from the Gauss-Bonnet theory, where the propa
tor does not appear even fornÞ4) and at the quantum leve
one meets a nontrivial UV fixed point of the renormalizati
group@28–30#. Keeping this example in mind, it is natural t
expect that the effect of the Gauss-Bonnet term on the re
malization group equations inn542e may be nontrivial
and in particular may produce new fixed points.

Consider the renormalization group equations forl andr
in n542e dimension. The naive form of theb functions
would be based on the ‘‘standard’’ expressions~47!,

bl52el1bl~4!, br52er1br~4!, ~49!

indicating the one extra nonzero fixed point for each of
effective chargesl(t) and r(t). Indeed, the fixed pointl
5r50 remains stable in UV fore.0. However, this naive
consideration is incorrect because the Gauss-Bonnet
gets dynamical fornÞ4, affecting the renormalization grou
equations in a nontrivial way. Using the expressions~45!, we
arrive at the following correct form of the renormalizatio
group equations, quite different from~49!:

dr

dt
52er1

1

~4p!2
~ f 1r22 f 2lr1 f 3l2!,

dl

dt
52el2

2l2

~4p!2 S g12g2

l

r
1g3

l2

r2D . ~50!

The coefficientsf 1,2,3 and g1,2,3 may be expressed via th
coefficientsd j

( i ) from ~45! as

f 15d1
(0) , f 25d1

(1)/l, f 35d1
(2)/l2,

g15d2
(0) , g25d2

(1)/l, g35d2
(2)/l2. ~51!

One can note thatf 1,2,3 andg1,2,3 depend only on the param
etere and not on the couplings. In the limite50 we come
back to Eqs.~47!. The renormalization group equations~50!
are nonlinear and do not admit a simple analytic soluti
For this reason we shall start from the search of the fix
points that are the values ofl andr for which bothb func-
tions vanish. Consequently, we explore the stability of th
fixed points and establish the renormalization group flo
for some particular values ofe.

In order to find fixed points, we consider the particul
values of the parameter,e50.9, e50.1, e50.01, e
4-9
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TABLE I. Numerical values of the coefficients for the particular values ofe.

e f 1 f 2 f 3 g1 g2 g3

0.9 216.77 228.73 236.48 2.359 242.51 246.98
0.1 24.301 0.08 20.016 6.385 20.174 20.318
0.01 24.344 0.008 20.0001 6.608 20.016 20.03
20.01 24.356 20.008 20.0001 6.659 0.016 0.03
20.1 24.416 20.086 20.013 6.902 0.146 0.286
21 25.416 20.947 20.81 9.98 1.087 2.526
e
T
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t

l-
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il
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ts
it

,
e a

ion

is

ons
520.01,e520.1, ande521. The numerical values of th
coefficients for these cases are presented in Table I.
point e50.9 is numerically close toe51 (n53), where the
expressions for theb functions become singular.

The numerical analysis shows that for each of the cho
e50.9, e50.1, ande50.01 there are four fixed points tha
are new compared to thee50 case; while for the valuese
520.01,20.1,21, there are two new fixed points. The va
ues of the parameters corresponding to these fixed point
shown in Table II.

The stability properties of the fixed points can be eas
investigated in the linear approximation. The result is that
the casese50.9, e50.1, and e50.01, the fixed points
(l1 ,r1) and (l2 ,r2) are saddle points while the fixed poin
(l3 ,r3) and (l4 ,r4) are absolutely unstable in the UV lim
04402
he

s

re

y
n

t→`. It is worth noticing the contrast with thee50 renor-
malization group equations~47! with a single UV stable
fixed point l5r50. In the n.4 casese520.01, e
520.1, ande521 there are only two extra fixed points
one of them UV stable and IR unstable and another on
saddle point~unstable in both UV and IR regimes!. As
shown in the Figs. 1 and 2, there are no additional~compared
to the standarde50 case! UV-stable fixed points for positive
e, and at the same time, for negativee there is always one
additional fixed point with stability in the UV domain.

An interesting observation concerning the renormalizat
group trajectories is that none of them crosses the linel
50. In other words, the renormalization group flow in th
theory is divided into two separate parts: one withl.0
corresponds to the positively defined energy of the gravit
m has
TABLE II. Numerical values of the parameters corresponding to the new fixed points. None of the
an analog in thee50 case.

Fixed point fore50.9 1 2 3 4

l i 0 26.817 25.945 1.807
r i 28.475 210.75 212.52 23.05

Fixed point fore50.1 1 2 3 4

l i 0 214.421 21.232 16.236
r i 23.671 23.159 23.647 23.706

Fixed point fore50.01 1 2 3 4

l i 0 25.228 20.119 5.457
r i 20.364 20.351 20.363 20.371

Fixed point fore520.01 1 2 3 4

l i 0 — — 0.1186
r i 0.3625 — — 0.3628

Fixed point fore520.1 1 2 3 4

l i 0 — — 1.147
r i 3.576 — — 3.597

Fixed point fore521 1 2 3 4

l i 0 — — 8.001
r i 29.157 — — 30.239
4-10
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~massless spin-2 mode! and another one to the unphysic
graviton sector withl,0. There are examples of the qua
tatively new UV-stable fixed points withl.0 ~see Figs. 3
and 4!. At the same time there are no such examples for
casel,0. One can suppose that this property of the fix
points is related to the limite→0, where all new UV-stable
fixed points presumably should tend tol50.

It is obvious that none of the fixed points that we ha
found so far coincides with the standard onel5r50 of the
n54 renormalization group. The natural question is whet
it is true that the effect of the Gauss-Bonnet term is to elim
nate the asymptotic freedom inn542e dimensions. The
answer to this question is definitely not. The source of
failure to see the standard fixed point is that we have u
only the algebraic equationsbl5br50 and due to the non
polynomial form of thebl function ~50! one cannot see th
fixed point withr50 in this way. So, in order to complet
our study we have to consider, especially, the possibility
simultaneousl→0 andr→0. Using elementary transforma
tions, one can check that the regimesl!r andr!l lead to

FIG. 1. Diagrams fore50.9. They axis represents the couplin
l and thex axis, the couplingr, as well as in all subsequent plo
tings. The left diagram shows the fixed points 1 and 4, and the o
shows the points 2 and 3. The labels of the fixed points corresp
to the numeration in Table II. The arrows indicate the direction
the renormalization group trajectory at the given point~we have
also drawn some trajectories for illustrative purposes!. One can dis-
tinguish stable, completely unstable, and saddle fixed points at t
and further diagrams.
04402
e
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contradictions. Therefore, we consider, additionally, the p
sibility of the special solutionr5kl, wherek is a constant.
Under this assumption, Eqs.~50! are consistent if

f 1k31~2g12 f 2!k21~ f 322g2!k12g350, ~52!

with an additional restriction

b5
2

~4pk!2
~g1k22g2k1g3!.0, ~53!

dictated by the asymptotic freedom, in the UV regime. T
origin of this condition is the following. After the relation
r5k•l is imposed, the equation forl becomes

dl

dt
52el2bl2. ~54!

The general solution of this equation has the form

l~ t !5
e

b~eet21!
, l~ t0!.0. ~55!

It is easy to see that the asymptotic freedom in the UV lim
t→1` holds for e.0 and ~53! is satisfied. Fore,0 and
condition ~53! satisfied, the situation is more complicate

er
nd
f

se

FIG. 2. The fixed points 1 and 3 are shown for the casee
50.1 ~left! and e50.01 ~right!. Clearly, point 1 is a saddle poin
~unstable! and point 3 is UV unstable. Points 2 and 4 are simi
~saddle and UV unstable, respectively! and are not plotted.
4-11
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because the UV-stable fixed point is nonzerol(t→`)
52e/b.0. However, this fixed point tends to zero whe
e→0, and we can consider that the theory is asymptotic
free in this sense. At the same time, independent on the
of e, the theory withb,0 does not manifest the asympto
cally free behavior in the UV limit.

In fact, there is no guarantee that the condition~53! is
satisfied for every choice ofe and all real roots of~52!. The

FIG. 3. Fixed points 1 and 4 for the casese520.01 ~left! and
e520.1 ~right!. Point 1 is a saddle point~unstable! and point 4 is
UV stable, contrary to the analogous points with positivee.

FIG. 4. The casee521, with a saddle point~1! and a UV-
stable one~4!.
04402
ly
gn

numerical computations show that fore520.01,20.1, and
21, Eq. ~52! has only one real root and that this root sat
fies the condition~53!. On the other side, fore50.9,0.1, and
0.01, Eq.~52! has three distinct real roots, one of them vi
lating condition~53! for each case. Thus, there are solutio
of the equationsr5kl and~52! that do not satisfy Eq.~53!.
Let us note that, in all cases we examined, there are
solutions with the UV-stable fixed point (0,0). However, th
asymptotic freedom depends on the choice of the initial c
dition on thel-r plane. In some cases, when Eq.~53! does
not hold on the special solution of Eqs.~50!, the (0,0) point
is not stable in the UV region.

Looking at Figs. 1–4, one can observe the renormali
tion group trajectories~for the e.0 case! linking the IR-
stable point (l3 ,r3) to the UV-stable point (0,0), or alterna
tively the IR-stable point (l4 ,r4) to (0,0). The situation is
similar for e,0, but here the renormalization group flow
inverted, linking the IR-stable point (0,0) to the UV-stab
point (l4 ,r4).

VI. CONCLUSIONS AND DISCUSSIONS

We have calculated the one-loop effective action for
Weyl gravity with the Gauss-Bonnet term. In then→4 limit
the quantum effects of the Gauss-Bonnet term cancel. T
cancellation may be seen as a negative answer to the pro
raised in Ref.@18#. This result is valid, at least, in the frame
work of the conformal quantum gravity. Another remarkab
fact is that, in agreement with Ref.@17#, there is no infinite
*A2gR2 counterterm. Other sectors of the divergent part
the effective action are in perfect agreement with both ear
calculations@10,17#.

Despite the one-loop divergences being conformal inv
ant, this symmetry may be broken at the one-loop level in
finite part of the effective action. The divergences of t
*A2gC2- and *A2gE-type produce the anomalous viola
tion of the Noether identity~4!, and as a result the finite pa
of the one-loop effective action contains usual nonlocal@31#
anomaly-induced terms@4#. There may also be a loca
*A2gR2-type contribution that deserves special discussi
It is easy to see that there are two different possible sou
of this term in the Weyl quantum gravity:

~i! If the calculation is performed in a dimensional reg
larization, thed3

(0) andd3
(1) terms in~45! are proportional to

n24 and therefore they produce the finite*A2gR2 term
directly from A2

t . It is remarkable that this contribution de
pends on the coefficienth of the Gauss-Bonnet term. Ac
cording to Ref.@8#, this contribution is a subject of stron
ambiguity typical for the dimensional regularization. In ge
eral, the dimensional regularization is unable to predict a
definite value for the coefficient of the finite*A2gR2 term.

~ii ! The infinite *A2ghR-type counterterm, which we
did not calculate here, may produce a contribution to
conformal anomaly and eventually to the finite*A2gR2

term. However, this contribution is plagued by double am
guities. First, the*A2ghR-type counterterm itself is gauge
fixing dependent@16#. As already explained above, this is th
reason why we did not calculate this counterterm. The s
4-12
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ond source of ambiguity is the derivation of anomaly and
the anomaly-induced effective action. In relation to t
*A2gR2 term these procedures may be ambiguous. Deta
discussions of this issue have recently been given in Ref.@8#,
where the ambiguity has been confirmed not only for
traditional version of the dimensional regularization~where
it is completely out of control! but also in a more physically
covariant Pauli-Villars regularization with nonminimal scal
massive regulators. It is worth noticing that the status of t
last ambiguity in the Weyl quantum gravity is quite differe
from that one in the semiclassical approach. In the last c
the ambiguity is always reduced to the freedom of adding
*A2gR2 term to the classical action of vacuum, while in th
former case this operation would increase the numbe
physical degrees of freedom~see, e.g., Ref.@2# and refer-
ences therein! and hence cannot be seen as the legal op
tion for the theory~2!.

In any case the local conformal invariance in Weyl grav
is violated at the one-loop level by quantum correctio
Hence, despite the fact that the general higher-deriva
quantum gravity is indeed renormalizable@19,32#, the par-
ticular conformal version is multiplicatively nonrenormali
able at higher loops. Our results show, however, that
conformal quantum gravity can be regarded as a good
proximation. The corresponding procedure means that
04402
f

d

e

is

se
e

of

a-

.
e

e
p-
ne

can start from the theory with a very small coefficient of t
*A2gR2 term. Due to the one-loop renormalizability of th
conformal theory this coefficient will remain very small
the quantum level. If we consider the conformal quantu
gravity in this framework, the problem of ambiguity of th
anomalous*A2gR2 term is irrelevant and we can regar
this theory as a useful particular example of the high
derivative quantum gravity models.

One of the outcomes of our investigation is new fix
points of the renormalization group flows that appear due
quantum effects of the topological Gauss-Bonnet term in
2e dimensions@33#. One can expect even a greater numb
of nontrivial fixed points for a general higher-derivativ
quantum gravity, with the Einstein-Hilbert, cosmologica
and*R2 terms included.
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APPENDIX A: BILINEAR EXPANSIONS QUADRATIC IN CURVATURE TERMS

In this appendix we collect the cumbersome expressions with bilinear expansions of the relevant terms of the seco
in curvature. Furthermore, we present the transformation of these terms to the form that is useful for the derivatio
effective action. The initial set of the bilinear expansions has the following form:

~A2gRmnab
2 !(2)5A2ghmnH dmn,abh22gma¹bh¹n1¹a¹b¹m¹n2gma¹r¹b¹n¹r14Rr

anb¹m¹r1dmn,abRrl¹r¹l1Rmanbh

22Rr
man¹b¹r22gmnRralb¹l¹r24gnbRarlm¹l¹r1

7

2
gnaRmrltRb

rlt1gmnRrltaRrlt
b

2
1

4 S dmn,ab2
1

2
gmngabDRrltu

2 2
1

2
RmarlRnb

rlJ hab,

~A2gRmn
2 !(2)5A2ghmnH 1

2
¹a¹m¹b¹n1

1

4
dmn,abh21

1

2
gna¹r¹m¹b¹r2

1

2
gab¹r¹m¹n¹r2

1

2
gmn¹a¹r¹b¹r

1
1

4
gmngab¹rh¹r2

1

2
gan¹b¹mh1

1

2
gmn¹a¹bh2

1

2
gnah¹b¹m22gnaRr

b¹m¹r1
1

2
dmn,abRrl¹r¹l

1gabRr
n¹r¹m2Rmb¹a¹n1gnaRmbh12gnaRr

m¹r¹b1gmnRr
b¹a¹r2

1

2
gmngabRrl¹r¹l22gmbRr

n¹a¹r

1
1

8
~gmngab22dmn,ab!Rrl

2 1RmaRnb12gnaRmrRr
b2gabRmrRr

nJ hab, ~A1!

and
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~A2gR2!(2)5A2ghmnH ¹m¹n¹a¹b2gab¹m¹nh2gmnh¹a¹b1gmngabh22gnaR¹b¹m22Rmn¹a¹b1gmnR¹a¹b

12gabRmnh1
1

2
~dmn,ab2gmngab!Rh12RgnbRma2gmnRRab1

1

8
~gmngab22dmn,ab!R21RmnRabJ hab.

~A2!

It proves necessary to establish some commutation relations between covariant derivatives. In the expressions
have omitted those terms that may contribute only to the total derivatives in the effective action. Also, for the sake of
we broke the symmetries in the pairs of indices (ab) and (mn). These symmetries must be restored for practical calculati
We can write

gnb¹l¹m¹a¹lhab5~gnbRrm¹r¹a1Rnblm¹l¹a1gnb¹mh¹a1gnbRl
a¹l¹m1Rnbal¹l¹m!hab,

gnbh¹a¹mhab5~gnbRmah1Rnbamh1gnb¹mh¹a1gnbRrm¹r¹a12Rnblm¹l¹a!hab,

gnb¹l¹a¹m¹lhab5S gnbRrm¹r¹a1Rnblm¹l¹a1gnb¹mh¹a1gnbRl
a¹l¹m1Rnbal¹l¹m1gnbRmah

1Rnbamh1
1

2
gnbRmtrlRa

trl1
1

2
Ram

rlRnbrlDhab,

gnb¹ah¹mhab5~2gnbRr
alm¹r¹l12Rnblm¹a¹l1Rmabnh1gnb~2Rra¹m¹r1Ramh1¹mh¹a

12Rbnla¹m¹l!hab,

gab¹r¹l¹r¹lhab5~Rrl¹r¹l1h2!h, ~A3!

¹a¹m¹b¹nhab5~Rr
abn¹r¹m1Rnb¹a¹m12Rma¹n¹b2Rr

nam¹r¹b1¹m¹n¹a¹b!hab,

¹a¹b¹m¹nhab5@¹m¹n¹a¹b14Rma¹n¹b2Rr
nam~¹r¹b1¹b¹r!12Rr

abm¹r¹n#hab,

¹l¹m¹l¹nh5~Rmr¹r¹n2Rrnlm¹l¹r1¹mh¹n!h,

h¹m¹nh5~2Rr
mn

l¹r¹l1Rrm¹r¹n1¹mh¹n!h,

¹a¹l¹b¹lhab5~Rrb¹a¹r1Rr
ab

l¹r¹l1¹ah¹b!hab.

Using these relations, we can rewrite the bilinear expansions in a more useful form,

~A2gRmnab
2 !(2)5A2ghmnH dmn,abh21gnbRa

rl
m~2¹r¹l24¹l¹r!2Rnblm~¹l¹a22¹a¹l!13Rmanbh15Rranb¹m¹r

2gnbRra~¹m¹r1¹r¹m!2gnbRrm~¹a¹r1¹r¹a!22gnb¹mh¹a22gnbRmah1¹m¹n¹a¹b

13gnbRmtrlRa
trl1dmn,abRrl¹r¹l2gmn~2Rralb¹l¹r1RrltaRrlt

b!1
1

8
Rrslt

2 ~gmngab22dmn,ab!

12Rmn~¹n¹b1¹b¹n!J hab, ~A4!

~A2gRmn
2 !(2)5A2ghmnH 1

2
¹m¹n¹a¹b2

1

2
gmn¹ah¹b2

1

2
gnb¹mh¹a1

1

4
~dmn,ab1gmngab!h21

1

2
Rnb¹a¹m

2
1

2
gnbRrm~¹r¹a13¹a¹r!1

3

2
gabRrm¹r¹n2Rmabnh1

1

4
~2dmn,ab2gmngab!Rrl¹r¹l1RlmnaRb

l

1RmrlnRa
rl

b2
1

8
~2dmn,ab2gmngab!Rrl

2 1RmaRnb12gnbRmrRr
a2gabRmrRr

nJ hab, ~A5!
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~A2gR2!(2)5A2ghmnH ¹m¹n¹a¹b22gab¹mh¹n1gabRln¹m¹l1gmnRlb¹l¹a1gmngabh22gnbR¹a¹m22Rmn¹a¹b

12gabRmnh1gmnR¹a¹b1
1

2
~dmn,ab2gmngab!Rh2gmnRRab1

1

8
~gmngab22dmn,ab!R2

12RgnbRma1RmnRabJ hab. ~A6!

APPENDIX B: PARTICULAR RESULTS OF THE CALCULATIONS IN THE BACKGROUND FIELD METHOD

In this appendix one can find the results for the particular elements of the expression~37!. One can easily find the
contribution of the commutator~38!

1

6
tr R̂mnR̂mn52

n12

6
Rmnab

2 . ~B1!

After tedious algebra, we arrive at the following result:

tr Û5aRmnab
2 1bRmn

2 1cR2, ~B2!

where

S a

b

c
D 5

1

2n~y14x! S 5xn2126xn224x2xn316yn

5yn2110yn224y2yn3124xn18zn

2yn14xn16zn224z15zn22zn3
D . ~B3!

Other relevant traces are the following:

tr~RV̂r
r!5~n12!@~n21!~a11na2!2a3#R2, ~B4!

where

S a1

a2

a3

D 5
2

n~y14x! S nb11b41b82b9

nb21b51b6

nb32b7

D ;

also

tr~RrsV̂rs!5a4Rmn
2 1a5R2, ~B5!

where

Fa4

a5
G5

2

n~y14x! F ~n22!b41~n21n22!~nb61b82b9!1~n12!b712nb10

~n21n22!~b11nb21b5!2~n12!b31nb422b10
G ,

tr~V̂r
r!2512

~3nx1ny14x!2

~y14x!2
Rmnab

2 1
16

~y14x!2n
$n4x218n3x216n2x214n3xy16n2xy1y2n2110y2n28y2

216nx2232x2132yx%Rmn
2 1

2

~y14x!2n2
$224n3xy248n2xy132nxy28z2n2112z2n31n6z2

23n5z21n4y2211n3y22128yx248n2x2132y224n4x2236n3x222y2n2216y2n214n4zy

1128x222z2n424n5zx28n4zx232zny156zn2y12n5zy164znx132zn2x24n4xy%R2, ~B6!

and finally

tr~V̂rsV̂rs!5c1Rmnab
2 1c2Rmn

2 1c3R2, ~B7!

where the constantsc1 , c2 andc3 are given by
044024-15
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c15
12~24nx218nxy112n2x2232x216n2xy1y2n2!

~y14x!2n
, ~B8!

c25
2

~y14x!2n2
$24n4x2196n3x2172n2x22192nx2148y2n210y2n22128yx2192nxy140n2xy232zn3x1128znx

132zn2x264zny116zn3y116zn2y152n3xy112n4xy1128x213n4y21n3y218z2n418z2n3132y2%, ~B9!

and

c35
4

~y14x!2n2
$24n3xy12n2xy24nxy18zn3x2zn3y24z2n229z2n31n5z21n3y2132x2116yx216n2x2216y2

28n3x228y2n24nx213n4zy24zny248znx124zn2x224zn2y14nz2148zy296zx%. ~B10!
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