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Scattering of scalar particles by a black hole
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The absorption cross section for scalar particle impact on a Schwarzschild black hole is found. The process
is dominated by two physical phenomena. One of them is the well-known greybody factor that arises from the
energy-dependent potential barrier outside the horizon that filters the incoming and outgoing waves. The other
is related to the reflection of particles on the horizdmYu. Kuchiev, gr-qc/0310008,19,20). This latter
effect strongly diminishes the cross section for low energies, forcing it to vanish in the infrared limit. It is
argued that this is a general property, the absorption cross section vanishes in the infrared limit for scattering
of particles of arbitrary spin.
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I. INTRODUCTION the incoming and outgoing waves. In other words, the events
that take place on the horizon mix the incoming and outgo-
This work presents new qualitative features for scatteringng waves. In simple physical terms this means that a particle
of particles by black holes. Interest in the scattering problenapproaching the vicinity of the horizon can bounce back into
was first inspired long ago by the discovery of the Penros¢he outside world. We will call this property theflection
procesd 1], which allows an impact particle to bring energy from the horizon(RH). The effect, which is strong for low-
out of the Kerr black hole. After the works of Zel'dovi¢B]  energy particles, has a purely quantum origin; classically, the
and Misner[3] it became clear that the energy extractionparticle penetrates the horizon smoothly.
from the Kerr black hole can be described in terms of super- The fact that the RH takes place strictly on the horizon
radiant scattering. The corresponding amplification faCtordistinguishes it from the greybody effect, which happens out-
was calculated numerically by Press and Teuko[gk§] and  sjge of the horizon. This difference becomes particularly
analytically by Starobinsky6] for the scalar field and Star- prominent for low energies of the incoming particle, when
obinsky and Churiloy7] for electromagnetic and gravita- the greybody effect manifests itself at very large distances,
tional waves. Independently, in parallel with this line of re- mych Jarger than the radius of the horizon. Another distinc-
search, Unruh8] found the absorption cross section for tiye feature of the RH is its universal nature. The probability
scalar and fermion particles scattered off a Schwarzschilghat 5 particle is reflected from the horizon is governed by
black hole. The results of these and related works are We[!,my two parameters, the Hawking temperature and the en-
known, being summarized in book8-11] that provide also  ergy of the incoming particl24], being independent of the
further references on the subject. _ particle spin. This is different from the greybody effect that
An important qualitative feature of the scattering problemstrong|y depends on the spin of a particle. The fact that it
is related to the well-known greybody factors that arise fromy, pears that the Hawking temperature is not coincidental, the
energy-dependent potential barriers outside the horizon anflH can be used for alternative derivation of the Hawking
filter the incoming and outgoing waves producing a strongggiation effect(Reversing this argument, one can claim that
impact on the cross section. In particular, they make the abye Hawking radiation supports the validity of the RH.
sorption cross sections finite, proportional to the event hori-  The existence of the RH should strongly manifest itself in
zon area in the infrared regidii2]. The greybody factors scattering, making it necessary to reexamine the scattering
also manifest themselves in the Hawking radiation procesgpjjities of black holes. This paper addresses this problem
[13,14 filtering the initially blackbody spectrum emanating considering scattering of scalar particles by the Schwarzs-
from the horizon. Referenc¢45] describe a number of dif-  cpilg plack hole. The problem is solved analytically for low-
ferent aspects relevant to the greybody effect. Similarly, thgmpact energies and numerically for arbitrary energies. The
potential barriers manifest themselves in the effect of gravianalysis presented reveals that the RH reduces the absorption
tational lensingfor theory and references see the b¢d&])  cross section. In particular, it forces the absorption cross sec-
that, !n_p_artlcular, can be caused by strong bending of light ifjon to vanish in the infrared regimer,ece when ¢
the vicinity of r =(3/2)ry>r g [17]. . <fhclrg. It is argued that this is a general feature, the
The necessity to take another look at the scattering probapsorption cross section vanishes in the infrared region for

lem is prompted by Ref$18-20 that claim that the horizon = gcattering of any particle off an arbitrary black hole.
has a new unexpected property: it is able to partially reflect
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dr? These works interpreted this boundary condition as a state-
dt?+ T—1r +r2dQ?, (2.1))  ment that the event horizon is able to partially reflect par-
ticles. The absolute value of the reflection coefficigtt
wheredQ?=d 6%+ sirféde?. The relativistic unitsh=c=1  found in[18-2Q reads
are used and supplemented by the conditi@V2=1 on the
gravitational constan® and the mass of the black holié, |R|=exd —&/(2T)], (2.7)
the Schwarzschild radius in these units reads=2GM
=1. The Klein-Gordon equation—d,(v—99""d,¢) where T is the Hawking temperatureT=1/47 for the
= J—gm?¢ for the field ¢(x) in the Schwarzschild metric Schwarzschild black hole. The origin and physical meaning
allows the  separation of  variables ¢(x)  of the RH were discussed in detail in the mentioned works.
=exp(—iet)Yim(6,¢)#(r), wheree,l,m are the energy, mo- Here only brief comments are appropriate. Refereridy
mentum and its projection, whiley(r) is a radial function derives Eq(2.6) from the general symmetry properties of the
that satisfies Schwarzschild geometry. The two disconnected areas that
describe the outer regiofareas | and Il on the Kruskal
1 1 ) ) g2+ p? g2 plane[22], se€[23]) are physically identical. Therefore, there
P ﬁ) G+ p+ —1 (1) is a discrete symmetry that relates values of the wave func-
tion in these two regions. It is shown 8] that the incom-

4=

1
1— =
r

'+

I(1+1) ing wave by itself, i.e., the first term in Ed2.6), cannot
————| ¢=0. (2.2)  satisfy this symmetry condition, whereas a linear combina-
rr=1 tion of the incoming and outgoing waves complies with it,

. o . ) provided the reflection coefficient obeys EG.7). Another
Herep is the momentum at infinity. Let us describe with the way to derive this result was suggested[i8]. We will

help of Eq.(2.2) the scattering of the scalar particle by the yiscyss and use it below in order to find the phase of the

black hole. At large radiuses>1 Eq. (2.2) reduces to @ refiection coefficientproving it to be zero for low-energy
Coulomb-type equation with the effective Coulomb Chargeparticles).
Z=(e*+p?)/2=¢*(1+0v?)/2, wherev is the velocity of the Let us find the relation between ti®matrix and the re-
impact particle at infinity 25]. Therefore, at large distances fiection coefficientR. Since the latter decreases exponen-
the solution can be presented as tially with energy we will consider first the low-energy re-
1 gion ¢<1, where the RH is prominent, restricting our
&(r)— —[Aexpiz) +Bexp —iz)], 2.3 attention to the most important for this region cased and
r denoting the s-wave a$(r)= ¢q(r).
Following the approach of Reff8] consider three regions
of distances. Region 1 we choose in the vicinity of the hori-
5,(C)=argI‘(I +1-iv) 2.4 zon_rel. The wave func“t.ion here-is gﬂivgn in EQ.6). As
region 2, we take those “intermediate” distances <o,
is the Coulomb phase. Hene=Z/p=ve(1+1/v?)/2 is the where one can'neglect .the_low_ejnergy anq momentum .in Eq.
conventional Coulomb parameter. Clearly the two terms ir(2.2). The solution of this simplified equation can be written
Eq. (2.3 describe the incoming and outgoing waves. The&S
scattering properties can be expressed viaSieatrix that

wherez=pr+ v In(2pr)+ & +I=7/2 and

can be written as the ratio of the coefficients in front of the o r—1 n 58
incoming and outgoing wavd&1] that, accordingly, equals $(r)=aln r B 2.8
S=(— l)'“gexp(Zi 5. (2.5  Compare now Eq(2.6) with (2.8) in the region of distances
|

close, but notvery close to the horizom—1<1, i.e., the

. . . . region where one can expand the incoming and outgoing
The event hO.I’I.ZO.IT=1 IS a rggular singular point of Eq. waves in Eq(2.6) exd FieIn(r—1)]=1%ieIn(r—1) and use
(2.2. In its vicinity the solution can be presented &g simultaneously the asymptotic relatiorfin-1)/rJ=In(r —1)

f~v_exp[1is|n_(r—1)]. I—_|ere t_he waves With_ minus and plus in Eq. (2.8). This procedure allows us to find the coefficients
signs describe the incoming and outgoing waves, respegz Eq. (2.8

tively. Since absorption of particles by the black hole is con-
sidered, it appeared appropriate to discard the outgoing
wave, imposing the conditiow,(r)—exd *ieIn(r—1)] on

the horizonr — 1, see Ref[8]. However, recent Ref$18— ) , , )
20] argue that this condition should be modified. The waveConsider now region 3, the region of large separations
function describing the incoming particle should necessarily” 1 The wave-function behavior here is governed by the

a=—ie(1-R), B=1+R. (2.9

include an admixture of the outgoing wave effective Coulomb problem. Introducing the regulatr)
and singularG(r) solutions of the Coulomb problem, see
¢(r)—exd—ieIn(r=1)]+RexdieIn(r—1)]. [21], one can present the wave function here as their linear

(2.6 combination
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1 mation. They arise due to those events that take place at large
¢(r)=—[aF(r)+bG(r)]. (210  separations ~1/Z=2v%c?(1+1/?)]>1. This is in con-
trast with the RH, which happens strictly at the horizon
Taking r reasonablylarge one makes Eq$2.8) and (2.10  =1. Thus Eq.(2.18 accounts for both the greybody factor
valid simultaneously. Eq$2.8) and(2.9) give and the effect of the RH.

Using conventional expression for the inelastic cross sec-
tion, see e.g.[21], we find from Eq.(2.18 the absorption
cross section in the s-wave that dominates the process in the
low-energy limit.

¢(r)zl+R+is(1—R)%. (2.12

On the other hand, since is low we can assume thair

<1 and use the asymptotic relations for small distances in 47r§C?

ar
the wave functions of the Coulomb problem O —(1-|S|Y) = ——————, (2119
p abs pz( |SO| U(l+§v£202)2
F(r)=Cpr, G=1/C, (2.12
1-R
see[21], where ¢&=11R (2.20
2Ty
o — 2.13
1—exp—27v) lll. REFLECTION COEFFICIENT OF THE HORIZON

The absolute value of the reflection coefficigis given
in Eq.(2.7). In order to find its phase we follow the approach
b of Ref.[20]. Consider first the incoming wave in the outside
$(r)=apC+ = . (214  region in the close vicinity of the horizong(r)
=exd—ieIn(r—1)] for r—1,r>1. Continue it into the in-
Comparing Eqs(2.11) and (2.14) we find the s-wave coef- terior regionr<1 using an analytical continuation over the

Equation(2.10 then gives

ficients in Eq.(2.10 variabler into the lower semiplane of the complex plane
This procedure allows one to find the incoming wave in the
1+R ) interior region in the vicinity of the horizormr,—1, r<1,
a=p—C, bZISC(l—R) (2.15)
bin(r)=|R|"%exd —ie In(1-r)]. 3.0

Thus Egs(2.19 and(2.10 define the behavior of the wave . .
function at large distances. In the asymptotic regienc It IS/SUDDFGSSGd compared to the outside region by a factor
we can use the known formulas, ged], for the Coulomb |R|12= exp(—me). Continue now the incoming wave further

functions into the interior regiorr <1 using the differential equation
_ (2.2). In the vicinity of the originr—0 the equation simpli-
F(r)=sinz, G(r)=cosz, (2.16  fies; its solution here can be presented as
where z=pr+vIn2pr+ 4, that allow us to present Eq. dn(H)=ulnr+uv, 3.2
(2.10 in an asymptotic form(2.3). As a result we find the
coefficientsAq, B in the latter whereu,v are constants defined below. We assume that the
b i total wave function should satisfy the conventional regular
0= _a:__[1+R_ peC4(1-R)], condition ¢(r)—const at the origin. Since the incoming
2i  2ipC wave by itself exhibits a singulaxinr behavior, there
) should exist the outgoing wave that compensates the singu-
_ b+ia -1 larity in the vicinity of the origin. Thus we find the outgoing

_ 201 _
Bo= 37— = zipcl LT RFPeCHI-R)].

wave in the vicinity of the origin. Repeating now the argu-
(2.17 ments in the reverse order, we take this outgoing wave and
) , continue it toward the horizon using the differential equation;
The corresponding-matrix Eq.(2.9) for the s-wave reads  {hen continue it over the horizon using the analytical con-
tinuation via the lower semiplane of the compleplane. As
- C) a result there appears the outgoing wave in the outside region
exp2ioy”). (218 described by the second term in E&.6). Equation(2.7)
follows from the fact that the horizon is crossed twice, first
The factor R in this formula arises from the RH. If one by the incoming wave and then by the outgoing wave. Each
wishes to neglect this phenomenon, one carst0 in Eq.  crossing gives the suppression fact®|/? that combine to
(2.6) and, correspondingly, in th&matrix (2.18. Then Eq.  produce|R| in (2.7). The method of crossing of the horizon
(2.18 reproduces the results ¢8], see discussion of Eq. used in this derivation relies on the analytical properties of
(4.7). The factorsve?C? in the Smatrix originate from the the wave function that are related to the fundamental causal-
greybody effect; they are present even in e 0 approxi- ity principle, which makes the method reliable.

_1+R—-ve’C*(1-R)
1+ R+ve’C3(1-R)
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Consider now the incoming wave in the inside region. Its IV. ABSORPTION CROSS-SECTION
behavior in the vicinity of the horizon and at the origin is
defined by Eqgs(3.1) and(3.2). Take the “intermediate” re-
gion 0<r<1, defined in such a way that inside this region
one can neglect the small terms proportionaktp in Eq.
(2.2). The solution in this region reads

We can now substitute the reflection coefficient fr(818)
into theS-matrix in Eq.(2.18. Expanding where possible the
result in powers ot we find

_ 1-ve?C?tanh(me)

- exp(2i 657 (4.2
1-r 1+ve2C%tanh(e) P27
$in(r)=a'In——+p". (3.3
=(1-2mve3C?)exp2i 6. (4.2
Consider now the region close, but ne¢ry close to the inalv. Ea(2.19 ai h ; )
horizonr~1, where Eqs(3.1) and(3.3) are both valid. Ex- gggrespondlng Y, Eq(2.19 gives the absorption cross sec
pand Eq.(3.1) in powers of ¢ In(1-r), ¢(r)=|R|¥q1
—ieIn(r—21)] and rewrite Eq.(3.3 for this region as 4mC2tanh me)
a'In(1—r)+B'. This procedure gives the coefficients in Eq. O abs= (4.3
(3.3 v(1+ve?C?tanh 7e))?
a'=—i|R|Y%, B'=|R|Y2 (3.4 _ 4m?eC? 4732(1+ 1v?)
. . v 1—exd — mve(1+10?)]’
Consider now the region close, but ne¢ry close to the (4.4)

origin r~0, where Eqs(3.2 and (3.3) are valid, simulta-
neously. Rewriting(3.3) in this region asg;,(r)=—a’'Inr  where Eq(2.13 was used. The last equation is presented for

+B’, we find the coefficients me<1. For massless particlder any particle withme/v
<1)
u=—a'=i|R|Y%, v=p"=|R|'? (3.5
) 4’7728|'g
which define the behavior of the incoming wave at the origin Taps= 478 = hc “.9

in Eg. (3.2. It is important that the coefficient in front of

the singular term in Eq(3.2) is imaginary, whilev that de-  (the last expression in absolute upitse cross section van-
scribes the regular part of the solution is real. To see consdshes in the infrared limie—0. In contrast, for slow mas-
quences of this fact let us take the outgoing wakg(r)  sive particlesv—0 (<1, e/v>1) the cross section di-
that behaves at the horizon-1 as verges as

doulr)=|R|Y?exdie In(1—r)]. (3.6) 4mm?  Am*michrg
Tabs— 2 = 5202

: (4.6

According to Eq.(3.1), this outgoing wave is simply a com-
plex conjugate of the incoming wave. From EG.2, we  (absolute units Compare these results with the previously
find that ¢o,(r) —u*Inr+v* whenr—0. Using EQ.(3.5,  known ones. If one neglects the RH effect, puttiRg-0 in

we conclude that the wave function defined as the Smatrix (2.5) and substituting the latter into E¢2.19
then one finds the cross section
(1) = in(r) + doulr) (3.7
(rey_ A4m’e(1+1?)
is regular at the origing(r)— 2v=|R|Y? whenr—0. Us- Tabs = (4.7)

_ _ 2y1’
ing the analytical continuation described above for crossing 1=exd = mve(1+17)]
of the event horizon, we find that in the outside region that was first derived by Unruf8]. Comparing Eqs(4.4)

>1 the wave function defined in E(B.7) coincides with the 5,4 (4.7), we see that for low-energy particles the effect of
wave function in Eq(2.7). The fact that the coefficients in ha RH reduces the cross section by a factor mf

front of the incoming and outgoing waves in E.7) are =mery/hic<1, which is particularly important for massless
identical (unity) permits one to find the reflection coefficient particles in the infrared region where E@.7) predicts the
[19] constant cross section

R=exd —e/(2T)]=exp —2me). (3.8 O o™ 47rr§, (4.9

The absolute value of the reflection coefficient found hergabsolute units which differs qualitatively from Eq(4.5
agrees with Eq(2.7) [though Eq.(3.8) is derived in the that describes the vanishing cross section. Let us repeat that
low-energy limit e<1, while Eq. (2.7) remains valid for the arguments df18—-20, some of which are partially repro-
arbitrary energies; compafé8,2(q for alternative methods duced above, indicate that the horizon possesses the reflec-
of derivation of Eq.(2.7)]. tive property that inevitably leads to EGt.4).

044022-4



SCATTERING OF SCALAR PARTICLES BY A BLACK HOLE PHYSICAL REVIEW Dr0, 044022 (2004

2 #=5V=-09""(¢" 0,0 = ¢39,¢") (5.9
1.5 Near the horizon forr>1 the incoming wave function
2 din(r)=exd —ieIn(r—1)] gives the following current com-
w 1f ponents
i r
0.5 jozsr_l\/— , (5.2
0.2 0.4 0.6 0.8 1 . 1
E er—SF\/—g. (5.3

FIG. 1. The absorption cross sectiBg,(in units of the horizon
area,S,pe= 0 aps (477[’5)) for the s-wave scatterind € 0) of mass-

less scalar particles by the Schwarzschild black hole versus thE locity of th ticldin th f f f th
energy of the particl& (dimensional unit€=er4/4c). Solid line: ero velocity o . € particigin the re eref‘c_e _rame of the
external observelis compensated by the infinite density.

the reflection on the horizon is taken into account; at low-energy, . . L
Egs.(4.4) and(4.5) of this work are valid. Dashed line: the reflec- Consider now the current near horizon inside the black

tion on the horizon is not taken into account; at low energy, thishole for the incoming waveb(r) = VIR|exd —igIn(1-r)]
cross section agrees with Ed@4.7) and(4.8) derived by UnruH8].

We see that for the considered stationary solution the radial
current does not have any singularity at the horizenl.

;

J°=—8|R|ﬁ\/—_, (5.9
The approach described above was also implemented nu-

merically. The differential equatiof2.2) was solved sepa-

ratel_y in t_he region 6cr <o, usi_ng the discussed a_naly‘gical i'=—¢|R] E\/__g (5.5)

continuation over the event horizon to match solutions in the r

inside and outside aread.he regular at the origin solution is _ S

presented as a linear combination of the incoming and outThe radial current is still dlre.Cted toward thg_center. .HOW'

going waves; each wave is continued over the horizon usin§Ver. the zeroth component, i.e., the probability density, be-

the analytical continuation into the lower semiplane of theComes negative. A possible interpretation of this result can be

complexr-plane) The numerical method permits one to find related to a state of the “hole”_ that is produced inside. We

the cross section for arbitrary, not necessarily low energiesc@ll here by the hole a negative-energy state of the scalar

Generally speaking, such analysis needs higher multipoles ¢#€!d. Another popular way to call this state is to dub it as the

the wave function to be included. However, for energies antiparticle with negative energy.TThe hole considered

<1, the s-wave alone should give reasonable results. Figuféeré should not, of course, be confused with itheck hole

1 presents our results for the s-wave absorption cross sectidigelf.) Propagation of the hole from the origin=0 to the

of massless scalar particles. For<1 they reproduce Eq. horizon creates.the radial curren.t toward the origin. Similarly

(4.4). Figure 1 also presents results of similar calculations foWe _can consider the outgoing wave inside(r)

the cross section when one neglects the reflective ability off VIR| exilie In(1—r)], which describes the current directed

the horizon, puttingR =0 in Eq. (2.6) (which allows one to from the origin to the horizon. In this wave the hole is pro-

formulate the problem entirely in the outside regiofigure ~ duced on the horizon=1 and moves toward the origin

1 shows that the reflective ability of the horizon strongly =0. The fact that the wave function inside E8.7) includes

diminishes the cross section in the low-energy region proboth the incoming and outgoing waves shows that the state

ducing smaller impact for higher energies. This fact agree§f the hole inside produces zero radial current. To finish the

qualitatively with Eq.(2.7), which states that the reflection argument, the outgoing wave in the outside regibn(r)

coefficient diminishes exponentially with the energy in- =|R|exdie In(r—1)] obviously describes the outgoing par-
crease. ticle that moves from the horizon=1 to infinity.

Combining all pieces together, one can say that the hori-

zon is responsible for the creation of a particle-hole pair and

V. DISCUSSION for t.he an_nihilation of another _particle-hole pair. It creates

the incoming hole that moves inside and the outgoing par-

As is known, a classical particle cannot reach the horizonicle that moves from the horizon to infinity. The hole created

during a finite interval of time in the reference frame of the on the horizon moves toward the origin and is reflected there

external observer described by the metric Ef1). In this  back toward the horizon, where its encounter with the in-

(restrictive sense, the horizon represents an impenetrableoming particle results in their mutual annihilation. The net

barrier for the incoming particle. In the quantum process aesult is the outgoing particle outside, which is exactly the
role of the horizon is more subtle. One can look at it consid-RH.

ering the conserving current corresponding to the Klein- Here we find again a certain similarity between the Hawk-

Gordon equation- d,,(\'—gg*"d,$) = —gnP¢: ing radiation and the RH. In both phenomena the horizon

044022-5
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creates the particle-hole pair with the probability that de-fact that Refs[18—2(Q appeal to the semiclassical nature of
pends exponentially oa/T. There is also a distinction. In the radial wave function in the vicinity of the horizon, being
the RH phenomenon a creation of one pair is accompaniedalid for the scattering of particles of arbitrary spins. There is
by annihilation of another pair on the horizon, which showsa subtlety here, to verify this expectation one needs to prove
that it is a more complicated phenomenon compared to thghat the phase of the reflection coefficient turns either & or
Hawking radiation. [which makes¢ in Eq. (2.20 [either 0 orx], in the infrared
region for arbitrary spins. This is a very plausible opportu-
VI. CONCLUSION nity, but, strictly speaking, the present work does not discuss

. . it. It is also plausible that a similar more general statement
We discussed above two effects that combine together t8an be formulated for scattering of particles of any charge

make the absorption cross section small at low energies. The_ | spin off a general Kerr-Newman black hole. The reflec-
first one is the known greybody effect that takes place out: |

: ) : tion coefficient in this cas¢20] can be large|R|=1 for
side of the event horizon, at the radius of the Coulomb zon : ; :
that is larger>r,, for low energies. In the Coulomb zone, %artlcular values of energy, charge, and spin of the impact

th miclassical roximation is violated makin ol article, which makes the reflection perfect and absorption
€ semiclassical approximation IS vioiated making poss impossible(though, again, to prove this result the particular
the reflection of the incoming wave. This reflection reduce

. . T . hase conditions should be verifiedseveral last remarks

the absorption cross section, making it finite, proportional t brovide possible ways for further study.
the area of the honzpn in the mfrareq '”T“t- In conclusion, it is shown that the reflection on the hori-

Another opportunity for the' reflection is prgsented by thezon strongly influences the absorption cross section of a
RH effect that takes place strictly on the horizon. It reducesDIaCk hole, forcing it to vanish in the infrared limit
the cross section further, forcing it to vanish in the infrared ' '
limit. Importantly, one can expect that this is a general prop- This work was supported by the Australian Research
erty of the cross section that is valid for the scattering ofCouncil. V.F. is grateful to the Institute for Advanced Study

particles of arbitrary spins. This expectation is based on theand Monell foundation for hospitality and support.
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