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Scattering of scalar particles by a black hole

M. Yu. Kuchiev* and V. V. Flambaum†

School of Physics, University of New South Wales, Sydney 2052, Australia
~Received 14 December 2003; published 18 August 2004!

The absorption cross section for scalar particle impact on a Schwarzschild black hole is found. The process
is dominated by two physical phenomena. One of them is the well-known greybody factor that arises from the
energy-dependent potential barrier outside the horizon that filters the incoming and outgoing waves. The other
is related to the reflection of particles on the horizon~M.Yu. Kuchiev, gr-qc/0310008,@19,20#!. This latter
effect strongly diminishes the cross section for low energies, forcing it to vanish in the infrared limit. It is
argued that this is a general property, the absorption cross section vanishes in the infrared limit for scattering
of particles of arbitrary spin.
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I. INTRODUCTION

This work presents new qualitative features for scatter
of particles by black holes. Interest in the scattering probl
was first inspired long ago by the discovery of the Penr
process@1#, which allows an impact particle to bring energ
out of the Kerr black hole. After the works of Zel’dovich@2#
and Misner@3# it became clear that the energy extracti
from the Kerr black hole can be described in terms of sup
radiant scattering. The corresponding amplification fac
was calculated numerically by Press and Teukolsky@4,5# and
analytically by Starobinsky@6# for the scalar field and Star
obinsky and Churilov@7# for electromagnetic and gravita
tional waves. Independently, in parallel with this line of r
search, Unruh@8# found the absorption cross section f
scalar and fermion particles scattered off a Schwarzsc
black hole. The results of these and related works are w
known, being summarized in books@9–11# that provide also
further references on the subject.

An important qualitative feature of the scattering proble
is related to the well-known greybody factors that arise fr
energy-dependent potential barriers outside the horizon
filter the incoming and outgoing waves producing a stro
impact on the cross section. In particular, they make the
sorption cross sections finite, proportional to the event h
zon area in the infrared region@12#. The greybody factors
also manifest themselves in the Hawking radiation proc
@13,14# filtering the initially blackbody spectrum emanatin
from the horizon. References@15# describe a number of dif
ferent aspects relevant to the greybody effect. Similarly,
potential barriers manifest themselves in the effect of gra
tational lensing~for theory and references see the book@16#!
that, in particular, can be caused by strong bending of ligh
the vicinity of r 5(3/2)r g.r g @17#.

The necessity to take another look at the scattering p
lem is prompted by Refs.@18–20# that claim that the horizon
has a new unexpected property: it is able to partially refl
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the incoming and outgoing waves. In other words, the eve
that take place on the horizon mix the incoming and out
ing waves. In simple physical terms this means that a part
approaching the vicinity of the horizon can bounce back i
the outside world. We will call this property thereflection
from the horizon~RH!. The effect, which is strong for low-
energy particles, has a purely quantum origin; classically,
particle penetrates the horizon smoothly.

The fact that the RH takes place strictly on the horiz
distinguishes it from the greybody effect, which happens o
side of the horizon. This difference becomes particula
prominent for low energies of the incoming particle, wh
the greybody effect manifests itself at very large distanc
much larger than the radius of the horizon. Another distin
tive feature of the RH is its universal nature. The probabil
that a particle is reflected from the horizon is governed
only two parameters, the Hawking temperature and the
ergy of the incoming particle@24#, being independent of the
particle spin. This is different from the greybody effect th
strongly depends on the spin of a particle. The fact tha
appears that the Hawking temperature is not coincidental,
RH can be used for alternative derivation of the Hawki
radiation effect.~Reversing this argument, one can claim th
the Hawking radiation supports the validity of the RH.!

The existence of the RH should strongly manifest itself
scattering, making it necessary to reexamine the scatte
abilities of black holes. This paper addresses this prob
considering scattering of scalar particles by the Schwa
child black hole. The problem is solved analytically for low
impact energies and numerically for arbitrary energies. T
analysis presented reveals that the RH reduces the absor
cross section. In particular, it forces the absorption cross
tion to vanish in the infrared regimesabs}« when «
!\c/r g. It is argued that this is a general feature, t
absorption cross section vanishes in the infrared region
scattering of any particle off an arbitrary black hole.

II. MODIFICATION OF THE S-MATRIX DUE
TO REFLECTION FROM HORIZON

Consider the scalar fieldf(x) in the vicinity of the con-
ventional Schwarzschild black hole with the metric
:

©2004 The American Physical Society22-1
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ds252S 12
1

r Ddt21
dr2

121/r
1r 2dV2, ~2.1!

wheredV25du21sin2udw2. The relativistic units\5c51
are used and supplemented by the condition 2GM51 on the
gravitational constantG and the mass of the black holeM,
the Schwarzschild radius in these units readsr g[2GM
51. The Klein-Gordon equation2]m(A2ggmn]nf)
5A2gm2f for the field f(x) in the Schwarzschild metric
allows the separation of variables f(x)
5exp(2i«t)Ylm(u,w)fl(r), where«,l ,m are the energy, mo
mentum and its projection, whilef l(r ) is a radial function
that satisfies

f l91S 1

r
1

1

r 21Df l81S p21
«21p2

r 21
1

«2

~r 21!2

2
l ~ l 11!

r ~r 21!D f l50. ~2.2!

Herep is the momentum at infinity. Let us describe with th
help of Eq.~2.2! the scattering of the scalar particle by th
black hole. At large radiusesr @1 Eq. ~2.2! reduces to a
Coulomb-type equation with the effective Coulomb char
Z5(«21p2)/25«2(11v2)/2, wherev is the velocity of the
impact particle at infinity@25#. Therefore, at large distance
the solution can be presented as

f l~r !→ 1

r
@Alexp~ iz!1Blexp~2 iz!#, ~2.3!

wherez5pr1n ln(2pr)1dl
(C)1lp/2 and

d l
(C)5argG~ l 112 in! ~2.4!

is the Coulomb phase. Heren5Z/p5v«(111/v2)/2 is the
conventional Coulomb parameter. Clearly the two terms
Eq. ~2.3! describe the incoming and outgoing waves. T
scattering properties can be expressed via theS-matrix that
can be written as the ratio of the coefficients in front of t
incoming and outgoing waves@21# that, accordingly, equals

Sl5~21! l 11
Al

Bl
exp~2id l

(C)!. ~2.5!

The event horizonr 51 is a regular singular point of Eq
~2.2!. In its vicinity the solution can be presented asf l
'exp@7i« ln(r21)#. Here the waves with minus and plu
signs describe the incoming and outgoing waves, resp
tively. Since absorption of particles by the black hole is co
sidered, it appeared appropriate to discard the outgo
wave, imposing the conditionf l(r )→exp@7i« ln(r21)# on
the horizonr→1, see Ref.@8#. However, recent Refs.@18–
20# argue that this condition should be modified. The wa
function describing the incoming particle should necessa
include an admixture of the outgoing wave

f l~r !→exp@2 i« ln~r 21!#1R exp@ i« ln~r 21!#.
~2.6!
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These works interpreted this boundary condition as a st
ment that the event horizon is able to partially reflect p
ticles. The absolute value of the reflection coefficientR
found in @18–20# reads

uRu5exp@2«/~2T!#, ~2.7!

where T is the Hawking temperature,T51/4p for the
Schwarzschild black hole. The origin and physical mean
of the RH were discussed in detail in the mentioned wor
Here only brief comments are appropriate. Reference@18#
derives Eq.~2.6! from the general symmetry properties of th
Schwarzschild geometry. The two disconnected areas
describe the outer region~areas I and III on the Kruska
plane@22#, see@23#! are physically identical. Therefore, ther
is a discrete symmetry that relates values of the wave fu
tion in these two regions. It is shown in@18# that the incom-
ing wave by itself, i.e., the first term in Eq.~2.6!, cannot
satisfy this symmetry condition, whereas a linear combi
tion of the incoming and outgoing waves complies with
provided the reflection coefficient obeys Eq.~2.7!. Another
way to derive this result was suggested in@19#. We will
discuss and use it below in order to find the phase of
reflection coefficient~proving it to be zero for low-energy
particles!.

Let us find the relation between theS-matrix and the re-
flection coefficientR. Since the latter decreases expone
tially with energy we will consider first the low-energy re
gion «!1, where the RH is prominent, restricting ou
attention to the most important for this region casel 50 and
denoting the s-wave asf(r )[f0(r ).

Following the approach of Ref.@8# consider three regions
of distances. Region 1 we choose in the vicinity of the ho
zon r→1. The wave function here is given in Eq.~2.6!. As
region 2, we take those ‘‘intermediate’’ distances 1,r ,`,
where one can neglect the low energy and momentum in
~2.2!. The solution of this simplified equation can be writte
as

f~r !5a ln
r 21

r
1b. ~2.8!

Compare now Eq.~2.6! with ~2.8! in the region of distances
close, but notvery close to the horizonr 21!1, i.e., the
region where one can expand the incoming and outgo
waves in Eq.~2.6! exp@7i« ln(r21)#.17i« ln(r21) and use
simultaneously the asymptotic relation ln@(r21)/r#.ln(r21)
in Eq. ~2.8!. This procedure allows us to find the coefficien
in Eq. ~2.8!

a52 i«~12R!, b511R. ~2.9!

Consider now region 3, the region of large separationr
@1. The wave-function behavior here is governed by
effective Coulomb problem. Introducing the regularF(r )
and singularG(r ) solutions of the Coulomb problem, se
@21#, one can present the wave function here as their lin
combination
2-2
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f~r !5
1

r
@aF~r !1bG~r !#. ~2.10!

Taking r reasonablylarge one makes Eqs.~2.8! and ~2.10!
valid simultaneously. Eqs.~2.8! and ~2.9! give

f~r !.11R1 i«~12R!
1

r
. ~2.11!

On the other hand, since« is low we can assume thatpr
!1 and use the asymptotic relations for small distance
the wave functions of the Coulomb problem

F~r !.Cpr, G.1/C, ~2.12!

see@21#, where

C25
2pn

12exp~22pn!
. ~2.13!

Equation~2.10! then gives

f~r !.apC1
b

Cr
. ~2.14!

Comparing Eqs.~2.11! and ~2.14! we find the s-wave coef
ficients in Eq.~2.10!

a5
11R
pC

, b5 i«C~12R! ~2.15!

Thus Eqs.~2.15! and ~2.10! define the behavior of the wav
function at large distances. In the asymptotic regionr→`
we can use the known formulas, see@21#, for the Coulomb
functions

F~r !.sinz, G~r !.cosz, ~2.16!

where z5pr1n ln 2pr1d0
(C) , that allow us to present Eq

~2.10! in an asymptotic form~2.3!. As a result we find the
coefficientsA0 ,B0 in the latter

A05
b2 ia

2i
5

1

2ipC
@11R2p«C2~12R!#,

B05
b1 ia

2i
5

21

2ipC
@11R1p«C2~12R!#.

~2.17!

The correspondingS-matrix Eq.~2.5! for the s-wave reads

S05
11R2v«2C2~12R!

11R1v«2C2~12R!
exp~2id0

(C)!. ~2.18!

The factorR in this formula arises from the RH. If on
wishes to neglect this phenomenon, one can putR50 in Eq.
~2.6! and, correspondingly, in theS-matrix ~2.18!. Then Eq.
~2.18! reproduces the results of@8#, see discussion of Eq
~4.7!. The factorsv«2C2 in the S-matrix originate from the
greybody effect; they are present even in theR50 approxi-
04402
in

mation. They arise due to those events that take place at l
separationsr;1/Z52/@v2«2(111/v2)#@1. This is in con-
trast with the RH, which happens strictly at the horizonr
51. Thus Eq.~2.18! accounts for both the greybody facto
and the effect of the RH.

Using conventional expression for the inelastic cross s
tion, see e.g.,@21#, we find from Eq.~2.18! the absorption
cross section in the s-wave that dominates the process in
low-energy limit.

sabs5
p

p2
~12uS0u2!5

4pjC2

v~11jv«2C2!2
, ~2.19!

j5
12R

11R
. ~2.20!

III. REFLECTION COEFFICIENT OF THE HORIZON

The absolute value of the reflection coefficientR is given
in Eq. ~2.7!. In order to find its phase we follow the approac
of Ref. @20#. Consider first the incoming wave in the outsid
region in the close vicinity of the horizon,f in(r )
5exp@2i« ln(r21)# for r→1, r .1. Continue it into the in-
terior regionr ,1 using an analytical continuation over th
variabler into the lower semiplane of the complex planer.
This procedure allows one to find the incoming wave in t
interior region in the vicinity of the horizon,r→1, r ,1,

f in~r !5uRu1/2exp@2 i« ln~12r !#. ~3.1!

It is suppressed compared to the outside region by a fa
uRu1/25exp(2p«). Continue now the incoming wave furthe
into the interior regionr ,1 using the differential equation
~2.2!. In the vicinity of the originr→0 the equation simpli-
fies; its solution here can be presented as

f in~r !5u ln r 1v, ~3.2!

whereu,v are constants defined below. We assume that
total wave function should satisfy the conventional regu
condition f(r )→const at the origin. Since the incomin
wave by itself exhibits a singular} ln r behavior, there
should exist the outgoing wave that compensates the sin
larity in the vicinity of the origin. Thus we find the outgoin
wave in the vicinity of the origin. Repeating now the arg
ments in the reverse order, we take this outgoing wave
continue it toward the horizon using the differential equatio
then continue it over the horizon using the analytical co
tinuation via the lower semiplane of the complexr-plane. As
a result there appears the outgoing wave in the outside re
described by the second term in Eq.~2.6!. Equation~2.7!
follows from the fact that the horizon is crossed twice, fi
by the incoming wave and then by the outgoing wave. Ea
crossing gives the suppression factoruRu1/2 that combine to
produceuRu in ~2.7!. The method of crossing of the horizo
used in this derivation relies on the analytical properties
the wave function that are related to the fundamental cau
ity principle, which makes the method reliable.
2-3
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Consider now the incoming wave in the inside region.
behavior in the vicinity of the horizon and at the origin
defined by Eqs.~3.1! and ~3.2!. Take the ‘‘intermediate’’ re-
gion 0,r ,1, defined in such a way that inside this regi
one can neglect the small terms proportional to«,p in Eq.
~2.2!. The solution in this region reads

f in~r !5a8ln
12r

r
1b8. ~3.3!

Consider now the region close, but notvery close to the
horizonr'1, where Eqs.~3.1! and~3.3! are both valid. Ex-
pand Eq. ~3.1! in powers of « ln(12r), f(r ).uRu1/2@1
2 i« ln(r21)# and rewrite Eq. ~3.3! for this region as
a8ln(12r)1b8. This procedure gives the coefficients in E
~3.3!

a852 i uRu1/2«, b85uRu1/2. ~3.4!

Consider now the region close, but notvery close to the
origin r'0, where Eqs.~3.2! and ~3.3! are valid, simulta-
neously. Rewriting~3.3! in this region asf in(r )52a8ln r
1b8, we find the coefficients

u52a85 i uRu1/2«, v5b85uRu1/2, ~3.5!

which define the behavior of the incoming wave at the ori
in Eq. ~3.2!. It is important that the coefficientu in front of
the singular term in Eq.~3.2! is imaginary, whilev that de-
scribes the regular part of the solution is real. To see con
quences of this fact let us take the outgoing wavefout(r )
that behaves at the horizonr→1 as

fout~r !5uRu1/2exp@ i« ln~12r !#. ~3.6!

According to Eq.~3.1!, this outgoing wave is simply a com
plex conjugate of the incoming wave. From Eq.~3.2!, we
find that fout(r )→u* ln r1v* when r→0. Using Eq.~3.5!,
we conclude that the wave function defined as

f~r !5f in~r !1fout~r ! ~3.7!

is regular at the origin,f(r )→2v5uRu1/2 when r→0. Us-
ing the analytical continuation described above for cross
of the event horizon, we find that in the outside regionr
.1 the wave function defined in Eq.~3.7! coincides with the
wave function in Eq.~2.7!. The fact that the coefficients in
front of the incoming and outgoing waves in Eq.~3.7! are
identical~unity! permits one to find the reflection coefficie
@19#

R5exp@2«/~2T!#5exp~22p«!. ~3.8!

The absolute value of the reflection coefficient found h
agrees with Eq.~2.7! @though Eq.~3.8! is derived in the
low-energy limit «!1, while Eq. ~2.7! remains valid for
arbitrary energies; compare@18,20# for alternative methods
of derivation of Eq.~2.7!#.
04402
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IV. ABSORPTION CROSS-SECTION

We can now substitute the reflection coefficient from~3.8!
into theS-matrix in Eq.~2.18!. Expanding where possible th
result in powers of« we find

S05
12v«2C2tanh~p«!

11v«2C2tanh~p«!
exp~2id0

(C)! ~4.1!

.~122pv«3C2!exp~2id0
(C)!. ~4.2!

Correspondingly, Eq.~2.19! gives the absorption cross se
tion

sabs5
4pC2tanh~p«!

v~11v«2C2tanh~p«!!2
~4.3!

.
4p2«C2

v
5

4p3«2~111/v2!

12exp@2pv«~111/v2!#
,

~4.4!

where Eq.~2.13! was used. The last equation is presented
p«!1. For massless particles~or any particle withp«/v
!1)

sabs.4p2«[
4p2«r g

3

\c
, ~4.5!

~the last expression in absolute units! the cross section van
ishes in the infrared limit«→0. In contrast, for slow mas
sive particlesv→0 («!1, «/v@1) the cross section di
verges as

sabs5
4p3m2

v2
[

4p3m2c4r g
4

\2v2
, ~4.6!

~absolute units!. Compare these results with the previous
known ones. If one neglects the RH effect, puttingR50 in
the S-matrix ~2.5! and substituting the latter into Eq.~2.19!
then one finds the cross section

sabs
(R50)5

4p2«~111/v2!

12exp@2pv«~111/v2!#
, ~4.7!

that was first derived by Unruh@8#. Comparing Eqs.~4.4!
and ~4.7!, we see that for low-energy particles the effect
the RH reduces the cross section by a factor ofp«
[p«r g /\c!1, which is particularly important for massles
particles in the infrared region where Eq.~4.7! predicts the
constant cross section

sabs54pr g
2 , ~4.8!

~absolute units!, which differs qualitatively from Eq.~4.5!
that describes the vanishing cross section. Let us repeat
the arguments of@18–20#, some of which are partially repro
duced above, indicate that the horizon possesses the re
tive property that inevitably leads to Eq.~4.4!.
2-4
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The approach described above was also implemented
merically. The differential equation~2.2! was solved sepa
rately in the region 0,r ,`, using the discussed analytic
continuation over the event horizon to match solutions in
inside and outside areas.~The regular at the origin solution i
presented as a linear combination of the incoming and
going waves; each wave is continued over the horizon us
the analytical continuation into the lower semiplane of t
complexr-plane.! The numerical method permits one to fin
the cross section for arbitrary, not necessarily low energ
Generally speaking, such analysis needs higher multipole
the wave function to be included. However, for energies«
<1, the s-wave alone should give reasonable results. Fi
1 presents our results for the s-wave absorption cross se
of massless scalar particles. For«!1 they reproduce Eq
~4.4!. Figure 1 also presents results of similar calculations
the cross section when one neglects the reflective ability
the horizon, puttingR50 in Eq. ~2.6! ~which allows one to
formulate the problem entirely in the outside region!. Figure
1 shows that the reflective ability of the horizon strong
diminishes the cross section in the low-energy region p
ducing smaller impact for higher energies. This fact agr
qualitatively with Eq.~2.7!, which states that the reflectio
coefficient diminishes exponentially with the energy i
crease.

V. DISCUSSION

As is known, a classical particle cannot reach the horiz
during a finite interval of time in the reference frame of t
external observer described by the metric Eq.~2.1!. In this
~restrictive! sense, the horizon represents an impenetra
barrier for the incoming particle. In the quantum proces
role of the horizon is more subtle. One can look at it cons
ering the conserving current corresponding to the Kle
Gordon equation2]m(A2ggmn]nf)5A2gm2f:

FIG. 1. The absorption cross sectionSabs~in units of the horizon
area,Sabs[sabs/(4pr g

2)) for the s-wave scattering (l 50) of mass-
less scalar particles by the Schwarzschild black hole versus
energy of the particleE ~dimensional unitsE[«r g /\c). Solid line:
the reflection on the horizon is taken into account; at low-ene
Eqs.~4.4! and ~4.5! of this work are valid. Dashed line: the reflec
tion on the horizon is not taken into account; at low energy, t
cross section agrees with Eqs.~4.7! and~4.8! derived by Unruh@8#.
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2i
A2ggmn~f* ]nf2f]nf* ! ~5.1!

Near the horizon forr .1 the incoming wave function
f in(r )5exp@2i« ln(r21)# gives the following current com-
ponents

j 05«
r

r 21
A2g, ~5.2!

j r52«
1

r
A2g. ~5.3!

We see that for the considered stationary solution the ra
current does not have any singularity at the horizonr 51.
Zero velocity of the particle~in the reference frame of the
external observer! is compensated by the infinite density.

Consider now the current near horizon inside the bla
hole for the incoming wavef in(r )5AuRuexp@2i« ln(12r)#

j 052«uRu
r

12r
A2g, ~5.4!

j r52«uRu
1

r
A2g. ~5.5!

The radial current is still directed toward the center. Ho
ever, the zeroth component, i.e., the probability density,
comes negative. A possible interpretation of this result can
related to a state of the ‘‘hole’’ that is produced inside. W
call here by the hole a negative-energy state of the sc
field. Another popular way to call this state is to dub it as t
‘‘antiparticle with negative energy.’’~The hole considered
here should not, of course, be confused with theblack hole
itself.! Propagation of the hole from the originr 50 to the
horizon creates the radial current toward the origin. Simila
we can consider the outgoing wave insidefout(r )
5AuRu exp@i« ln(12r)#, which describes the current directe
from the origin to the horizon. In this wave the hole is pr
duced on the horizonr 51 and moves toward the originr
50. The fact that the wave function inside Eq.~3.7! includes
both the incoming and outgoing waves shows that the s
of the hole inside produces zero radial current. To finish
argument, the outgoing wave in the outside regionfout(r )
5uRuexp@i« ln(r21)# obviously describes the outgoing pa
ticle that moves from the horizonr 51 to infinity.

Combining all pieces together, one can say that the h
zon is responsible for the creation of a particle-hole pair a
for the annihilation of another particle-hole pair. It creat
the incoming hole that moves inside and the outgoing p
ticle that moves from the horizon to infinity. The hole creat
on the horizon moves toward the origin and is reflected th
back toward the horizon, where its encounter with the
coming particle results in their mutual annihilation. The n
result is the outgoing particle outside, which is exactly t
RH.

Here we find again a certain similarity between the Haw
ing radiation and the RH. In both phenomena the horiz

he

y,

s
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creates the particle-hole pair with the probability that d
pends exponentially on«/T. There is also a distinction. In
the RH phenomenon a creation of one pair is accompa
by annihilation of another pair on the horizon, which sho
that it is a more complicated phenomenon compared to
Hawking radiation.

VI. CONCLUSION

We discussed above two effects that combine togethe
make the absorption cross section small at low energies.
first one is the known greybody effect that takes place o
side of the event horizon, at the radius of the Coulomb z
that is large,r @r g , for low energies. In the Coulomb zone
the semiclassical approximation is violated making poss
the reflection of the incoming wave. This reflection reduc
the absorption cross section, making it finite, proportiona
the area of the horizon in the infrared limit.

Another opportunity for the reflection is presented by t
RH effect that takes place strictly on the horizon. It reduc
the cross section further, forcing it to vanish in the infrar
limit. Importantly, one can expect that this is a general pr
erty of the cross section that is valid for the scattering
particles of arbitrary spins. This expectation is based on
s

,

04402
-

d
s
e

to
he
t-
e

le
s
o

s

-
f
e

fact that Refs.@18–20# appeal to the semiclassical nature
the radial wave function in the vicinity of the horizon, bein
valid for the scattering of particles of arbitrary spins. There
a subtlety here, to verify this expectation one needs to pr
that the phase of the reflection coefficient turns either 0 op
@which makesj in Eq. ~2.20! @either 0 or`], in the infrared
region for arbitrary spins. This is a very plausible oppor
nity, but, strictly speaking, the present work does not disc
it. It is also plausible that a similar more general statem
can be formulated for scattering of particles of any cha
and spin off a general Kerr-Newman black hole. The refl
tion coefficient in this case@20# can be large,uRu51 for
particular values of energy, charge, and spin of the imp
particle, which makes the reflection perfect and absorpt
impossible~though, again, to prove this result the particu
phase conditions should be verified!. Several last remarks
provide possible ways for further study.

In conclusion, it is shown that the reflection on the ho
zon strongly influences the absorption cross section o
black hole, forcing it to vanish in the infrared limit.
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