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Local conservation law and dark radiation in cosmological braneworld
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In the context of the Randall-Sundrum~RS! single-brane scenario, we discuss the bulk geometry and
dynamics of a cosmological brane in terms of the local energy conservation law which exists for the bulk that
allows slicing with a maximally symmetric three-space. This conservation law enables us to define a local mass
in the bulk. We show that there is a unique generalization of the dark radiation on the brane, which is given by
the local mass. We find there also exists a conserved current associated with the Weyl tensor, and the corre-
sponding local charge, which we call the Weyl charge, is given by the sum of the local mass and a certain linear
combination of the components of the bulk energy-momentum tensor. This expression of the Weyl charge
relates the local mass to the projected Weyl tensor,Emn , which plays a central role in the geometrical
formalism of the RS braneworld. On the brane, in particular, this gives a decomposition of the projected Weyl
tensor into the local mass and the bulk energy-momentum tensor. Then, as an application of these results, we
consider a null dust model for the bulk energy-momentum tensor and discuss the black hole formation in the
bulk. We investigate the causal structure by identifying the locus of the apparent horizon and clarify possible
brane trajectories in the bulk. We find that the brane stays always outside the black hole as long as it is
expanding. We also find an upper bound on the value of the Hubble parameter in terms of the matter energy
density on the brane, irrespective of the energy flux emitted from the brane.
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I. INTRODUCTION

The braneworld scenario has attracted much attentio
recent years@1#. In this scenario, our Universe is assumed
be on a ~mem!brane embedded in a higher-dimension
spacetime. There are many models of the braneworld
nario and corresponding cosmologies. One of them that
been extensively studied is the braneworld cosmology ba
on a model proposed by Randall and Sundrum~RS! @2#, in
which a single positive tension brane exists in a fiv
dimensional spacetime~called the bulk! with negative cos-
mological constant, the so-called RS2 model. In this pa
we focus our discussion on this single-brane model.

In many cases, the five-dimensional bulk geometry is
sumed to be anti–de Sitter~AdS! or AdS-Schwarzschild
@3–5#:

ds252S K1
r 2

,2
2

M0

r 2 D dt21S K1
r 2

,2
2

M0

r 2 D 21

dr2

1r 2dV (K,3)
2 , ~1.1!

where,ªA26/L5 is the AdS curvature radius,M0 is the
black hole mass, anddV (K,3)

2 is the maximally symmetric
~constant curvature! three-space withK521, 0, or11. The
brane trajectory in the bulk, (t,r )5(t(t),r (t)), is deter-
mined by the junction condition@6#. As usual, we impose the
reflection symmetry with respect to the brane. Then, we
tain the effective Friedmann equation on the brane as@4,5#

S ṙ
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wheres and r are the brane tension and energy density

the matter on the brane, respectively, andṙ 5dr/dt with t
being the proper time on the brane. The final term is prop
tional to the mass of the bulk black hole and is often cal
the ‘‘dark radiation’’ since it behaves as the ordinary rad
tion. Geometrically, it comes from the projected Weyl tens
in the bulk, denoted commonly byEmn @7#. If we apply Eq.
~1.2! to the real Universe, the values ofs, ,, and M0 are
constrained by observations of the cosmological parame
@8#.

When the bulk ceases to be pure AdS-Schwarzschild
when there exists a dynamical degree of freedom other t
the metric, the parameterM0 is no longer constant in gen
eral, but becomes dynamical. For instance, this is the cas
the so-called bulk inflaton model@9–13#, or when the brane
radiates gravitons into the bulk@15#. In particular, in Ref.
@10#, the dynamics of a bulk scalar field is investigated in t
context of the bulk inflaton model under the assumption t
the backreaction of the scalar field on the geometry is sm
and it is found that there exists an interesting integral exp
sion for the projected Weyl tensor in terms of the energ
momentum tensor of the scalar field. This suggests the e
tence of a local conservation law in the bulk that direc
relates the dark radiation on the brane to the dynamics in
bulk.

In this paper, we investigate the case when there is n
trivial dynamics in the bulk, and clarify the relation betwee
the bulk geometry and the dynamics of the brane. We fo
on the case of isotropic and homogeneous branes and h
assume the existence of slicing by the maximally symme
three-space as in Eq.~1.1!. In this case, we can derive a loc
energy conservation law in the bulk, in analogy with sphe
cal symmetric spacetimes in four dimensions@16#. Then, this
©2004 The American Physical Society21-1
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conservation law can be used to relate the brane dynami
the geometrical properties of the bulk, especially with t
projected Weyl tensor in the bulk.

The paper is organized as follows. In Sec. II, we der
the local energy conservation law in the bulk and discuss
general property of the bulk geometry and cosmology on
brane. We show that there exists a unique generalizatio
the dark radiation that is directly related to the local mass
the bulk. We also find that there exists another conser
current associated with the Weyl tensor, as a nonlinear
sion of what was found in Ref.@10#. In a vacuum~Ricci flat!
spacetime, the local charge for this current is found to
equivalent to the local mass. Let us call this the Weyl char
The difference between the local mass and Weyl charg
given by the linear combination of certain components of
bulk energy-momentum tensor, and the projected Weyl t
sor that appears in the effective Friedmann equation on
brane is indeed given by this Weyl charge. Thus we hav
unique decomposition of the projected Weyl tensor term i
the part due to the bulk mass that generalizes the dark ra
tion term and the part due to the bulk energy-moment
tensor. In Sec. III, as an application of the conservation
derived in Sec. II, we consider a simple null dust model a
discuss the black hole formation in the bulk. We identify t
location of an apparent horizon and analyze possible tra
tories of the brane in the bulk. We show that the brane st
always outside of the apparent horizon of the black hole
long as the brane is expanding. In Sec. IV, we summarize
work and mention future issues.

II. LOCAL CONSERVATION LAW IN A SPACETIME
WITH MAXIMALLY SYMMETRIC THREE-SPACE

In this section, we discuss the general property of a
namical bulk spacetime with a maximally symmetric thre
space, and consider cosmology on the brane. First, we de
a local conservation law in the bulk, as a generalization
the local energy conservation law in a spherically symme
spacetime in four dimensions@16#. Namely, we show that a
locally conserved energy flux vector exists in spite of t
absence of a timelike Killing vector field. This enables us
define a local mass in the bulk spacetime. We also show
there exists a conserved current associated with the W
tensor. This gives rise to a locally defined Weyl charge. I
shown that the Weyl charge and the local mass are clo
related to each other.

Next, we introduce the brane as a boundary of the
namical spacetime. The effective Friedmann equation, is
termined via the junction condition, and it is shown that t
local mass corresponds to the generalized dark radiation
nally, we show that the projected Weyl tensor on the bran
uniquely related to the local mass.

A. Local conservation law

We assume that the bulk allows slicing by a maxima
symmetric three-space. Then, the bulk metric can written
the double-null form
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ds25
4r ,ur ,v

F
dudv1r ~u,v !2dV (K,3)

2 , ~2.1!

where we refer tov andu as the advanced and retarded tim
coordinates, respectively. In Appendix A, the explicit com
ponents of the connection and curvature in
(n12)-dimensional spacetime with maximally symmetr
n-space are listed.

The five-dimensional Einstein equations are given by

Gab1L5gab5k5
2Tab1Sabd~y2y0!, ~2.2!

where the indices$a,b% run from 0 to 3, and 5, andL5 and
k5

2 are the five-dimensional cosmological constant and gra
tational constant, respectively. The brane is introduced a
singular hypersurface located aty5y0, wherey denotes a
Gaussian normal coordinate in the direction of the extra
mension in the vicinity of the brane, andSab denotes the
energy-momentum tensor on the brane. The spacetime i
sumed to be reflection symmetric with respect to the bra

First, we consider the Einstein equations in the bulk. Th
are given by

3
r ,u

r S logUr ,v

F U D
,u

5k5
2Tuu , 3

r ,v

r S logUr ,u

F U D
,v

5k5
2Tvv ,

6
r ,ur ,v

r 2 S 12
K

F D13
r ,uv

r
5k5

2Tuv2
2r ,ur ,v

F
L5 , ~2.3!

H r 2F

2r ,ur ,v
F S logUr ,ur ,v

F U D
,uv

14
r ,uv

r G2~K2F!J g i j

5k5
2Ti j 2r 2g i j L5 ,

whereg i j is the intrinsic metric of the maximally symmetri
three-space.

Now, we derive the local conservation law. We introdu
a vector field in five-dimensional spacetime as

ja5
1

2
FS 2

1

r ,v

]

]v
1

1

r ,u

]

]uD a

. ~2.4!

From the form of the metric~2.1!, we can readily see thatja

is conserved:

A2gja
;a5~A2gja! ,a52Ag@~r 3r ,u! ,v2~r 3r ,v! ,u#50,

~2.5!

whereg5detg i j . Note that, for an asymptotically consta
curvature spacetime, the vector fieldja becomes asymptoti
cally the timelike Killing vector field2(]/]t)a.

With this vector fieldja, we define a new vector field,

S̃a5jbT̃b
a, ~2.6!

where
1-2
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T̃ab5Tab2
1

k5
2
L5gab . ~2.7!

Using the Einstein equations, the components of the ve
field S̃a are given by

k5
2A2gS̃v5

3

2
@r 2~K2F!# ,uAg,

k5
2A2gS̃u52

3

2
@r 2~K2F!# ,vAg. ~2.8!

Then, we have the local conservation law as

S̃a
;a50. ~2.9!

Sinceja is conserved separately, the conservation ofS̃a im-
plies that we have another conserved currentSa defined by

Sa
ªjbTb

a S 5S̃a1
1

k5
2
L5jaD . ~2.10!

Thus we have the local conservation law for the ener
momentum tensor in the bulk.

From Eqs.~2.8!, we readily see the local mass corr
sponding toS̃a is given by@16#

M̃ª~K2F!r 2, ~2.11!

where the factor 3/2 in the original expression forS̃a is
eliminated for later convenience. Alternatively, correspon
ing to Sa, we have another local mass that excludes the c
tribution of the bulk cosmological constant,

MªM̃2
1

6
L5r 45~K2F!r 22

1

6
L5r 4. ~2.12!

In what follows, we focus on the matter partM, rather than
on the whole massM̃ . It may be noted, however, that th
decomposition ofM̃ to the cosmological constant part an
the matter part is rather arbitrary, as in the case of a b
scalar field. Here we adopt this decomposition just for c
venience. For example, this decomposition is more us
when we consider small perturbations on the static A
Schwarzschild bulk. We note that, in the case of a spheric
symmetric asymptotic flat spacetime in four dimensio
~hence K511 and with no cosmological constant!, this
function M agrees with the Arnowitt-Deser-Misner~ADM !
energy or the Bondi energy in the appropriate limits.

B. Local mass and Weyl charge

From the five-dimensional Einstein equations~2.3!, we
can write down the local conservation equation forM in
terms of the bulk energy-momentum tensor explicitly as
04402
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M ,v5
2

3
k5

2r 3~Tu
vr ,u2Tv

vr ,v!,

M ,u5
2

3
k5

2r 3~Tv
ur ,v2Tv

vr ,u!, ~2.13!

or in a bit more concise form,

dM5
2

3
k5

2r 3~Tu
vr ,udv1Tv

ur ,vdu2Tv
vdr !. ~2.14!

Using the above, we can immediately write down two in
gral expressions forM given in terms of flux crossing the
u5const hypersurfaces fromv1 to v2, and flux crossing the
v5const hypersurfaces fromu1 to u2, respectively, as

M ~v2 ,u!2M ~v1 ,u!

5
2

3
k5

2E
v1

v2
dvr 3~Tv

ur ,u2Tv
vr ,v!U

u5const.

,

M ~v,u2!2M ~v,u1!

5
2

3
k5

2E
u1

u2
dur3~Tu

vr ,v2Tv
vr ,u!U

v5const.

.

~2.15!

Finally, let us consider the Weyl tensor in the bulk. In t
present case of a five-dimensional spacetime with maxim
symmetric three-space, there exists only one nontrivial co
ponent of the Weyl tensor, sayCvu

vu. The explicit expres-
sions for the components of the Weyl tensor are given
Appendix A, Eqs.~A7!. Using the Bianchi identities and th
Einstein equations, we have@26#

Cabcd
;d5Jabc , ~2.16!

where

Jabc5
2~n21!

n
kn12

2 S Tc[a;b]1
1

~n11!
gc[bT;a] D .

~2.17!

From this, we can show that there exists a conserved cur

Qa5r ,bncJ
bca, Qa

;a50, ~2.18!

where ,a and na are a set of two hypersurface orthogon
null vectors,

,a5A2

F
~2r ,vdv !a , ,a52A1

2
F

1

r ,u
S ]

]uD a

,

na5A2

F
~r ,udu!a , na5A1

2
F

1

r ,v
S ]

]v D a

.

~2.19!

The nonzero components are written explicitly as

Qu52rJvu
v , Qv52rJvu

u , ~2.20!
1-3
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and we have

~r 4Cvu
vu! ,v5r 4Jv

vv ,

~r 4Cvu
vu! ,u5r 4Ju

uu . ~2.21!

These are very similar to Eqs.~2.8!. It is clear thatr 4Cvu
vu

defines a local charge associated with this conserved cur
that is, the Weyl charge.

Using the Einstein equations, we then find that the W
charge can be expressed in terms ofM and the energy-
momentum tensor as

r 4Cvu
vu53M̃1

r 4

6
~6Gv

v2Gi
i !53M1

k5
2

6
r 4~6Tv

v2Ti
i !.

~2.22!

This is one of the most important results in this paper. As
shall see below, the Weyl componentCvu

vu is directly re-
lated to the projected Weyl tensorEmn , and hence this rela
tion gives explicitly how the local massM and the local
value of the energy-momentum tensor affects the brane
namics.

C. Apparent horizons

As in the conventional four-dimensional gravity, th
gravitational dynamics may lead to the formation of a bla
hole in the bulk. Rigorously speaking, the black hole form
tion can be discussed only by analyzing the global cau
structure of a spacetime. Nevertheless, we discuss the b
hole formation by studying the formation of an apparent h
rizon.

In four dimensions, an apparent horizon is defined a
closed two-sphere on which the expansion of an outgoing~or
ingoing! null geodesic congruence vanishes. Here, we ext
the definition to our case and define an apparent horizon
three-surface on which the expansion of a radial null geo
sic congruence vanishes. Note that ‘‘radial’’ here means s
ply those congruences that have only the (v,u) components;
hence an apparent horizon will not be a closed surfaceK
50.

The expansions of the congruence of null geodesics fo
ing the u5const andv5const hypersurfaces, respective
are given by@16#

ru52
1

2
u;a

;a52
1

2r

F

r ,u
, rv52

1

2
v ;a

;a52
1

2r

F

r ,v
.

~2.23!

Naively, if F50, one might think that bothru andrv van-
ish. However, from the regularity condition of the metr
~2.1!, we have

24
r ,ur ,v

F
.0. ~2.24!

Hence, it must be thatr ,u50 or r ,v50 if F50. If F5r ,v
50, we haveru50 and an apparent horizon for the outg
04402
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ing null geodesics is formed, whereas ifF5r ,u50, we have
rv50 and an apparent horizon for the ingoing null geodes
is formed.

D. Brane cosmology

We now consider the dynamics of a brane in a dynam
bulk with maximally symmetric three-space@3#. The brane
trajectory is parametrized as (v,u)5(v(t),u(t)). Taking t
to be the proper time on the brane, we have

4
r ,ur ,v

F
u̇v̇521 ~2.25!

on the brane, whereu̇5du/dt and so on. The unit vecto
tangent to the brane~i.e., the five-velocity of the brane! is
given by

va5S v̇
]

]v
1u̇

]

]uD a

, va5
2r ,ur ,v

F
~ u̇dv1 v̇du!a ,

~2.26!

and the unit normal to the brane is given by

na5S 2 v̇
]

]v
1u̇

]

]uD a

, na5
2r ,ur ,v

F
~ u̇dv2 v̇du!a .

~2.27!

The components of the induced metric on the brane are
culated as

qmn5
]xa

]ym

]xb

]yn
gab , ~2.28!

wherem, n run from 0 to 3 andym are the intrinsic coordi-
nates on the brane withy05t and yi5xi ( i 51,2,3). Then
the induced metric on the brane is given by

ds(4)
2 52dt21r ~t!2dV (K,3)

2 . ~2.29!

The trajectory of the brane is determined by the junct
condition under theZ2 symmetry with respect to the brane
The extrinsic curvature on the brane is determined as

Kmn52
k5

2

2 S Smn2
1

3
SqmnD , ~2.30!

whereSmn is assumed to take the form

Sn
m5diag~2r,p,p,p!2sdn

m , ~2.31!

with s and r being the tension and energy density of t
matter on the brane, respectively, as introduced previou
andp being the isotropic pressure of the matter on the bra
Substituting the induced metric~2.29! in Eq. ~2.30!, we ob-
tain

r ,uu̇52
r

2 Fk5
2

6
~r1s!2HG , ~2.32!
1-4
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r ,vv̇5
r

2 Fk5
2

6
~r1s!1HG , ~2.33!

whereH5 ṙ /r . Multiplying the above two equations and u
ing the normalization condition~2.25!, we then obtain the
effective Friedmann equation on the brane:

H21
K

r 2 5S k5
4

36
s22

1

l 2D 1
k5

4

18
~2sr1r2!1

M

r 4 .

~2.34!

We see thatM is a natural generalization of the dark radi
tion in the AdS-Schwarzschild case to a dynamical bulk.

For a dynamical bulk,M varies in time. The evolution o
M is determined by Eq.~2.14!, and on the brane it gives

Ṁ5M ,vv̇1M ,uu̇

5
2

3
k5

2r 4FTvvS 1

6
k5

2~r1s!2H D v̇2

2TuuS 1

6
k5

2~r1s!1H D u̇2G2
2

3
k5

2r 4HTv
v .

~2.35!

This result is consistent with Refs.@12,15#. From the Co-
dacci equation on the brane@7#,

DnKn
m2DmKn

n5k5
2Tabn

bqa
m , ~2.36!

whereDm is the covariant derivative with respect toqmn and
Kmn is the extrinsic curvature of the brane, we obtain t
equation for the energy transfer of the matter on the bran
the bulk,

ṙ13H~r1p!52~2Tvvv̇21Tuuu̇
2!. ~2.37!

Equations~2.34!, ~2.35!, and ~2.37! determine the cosmo
logical evolution on the brane, once the bulk geometry
solved. These equations will be applied to a null dust mo
in the next section. The case of the Einstein-scalar theor
the bulk is briefly discussed in Appendix B.

Now we relate the above result to the geometrical
proach developed in Ref.@7#, in particular with theEmn term
on the brane. The projected Weyl tensor

Emn5Cambnnanb ~2.38!

has only one nontrivial component as

Ett5Cabcdn
ancvbvd54Cuvuvu̇2v̇252Cvu

vu. ~2.39!

Using Eq.~2.22!, this can be uniquely decomposed into t
part proportional toM and the part due to the projection o
the bulk energy-momentum tensor on the brane. We find

Ett52
3M̃

r 4
1

1

6
~Gi

i26Gv
v!52

3M

r 4
1

k5
2

6
~Ti

i26Tv
v!.

~2.40!
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If we eliminate theM /r 4 term from Eq.~2.34! by using this
equation, we recover the effective Friedmann equation on
brane in the geometrical approach@7#,

H21
K

r 2 5S k5
4

36
s22

1

l 2D 1
k5

4

18
~2sr1r2!1k5

2Ttt
(b)2

Ett

3
,

~2.41!

where Ttt
(b) comes from the projection of the bulk energ

momentum tensor on the brane and is given in the pre
case by

Ttt
(b)5

1

6
Ti

i2Tv
v . ~2.42!

Finally, from the brane point of view, it may be worth
while to give the expressions for the effective total ener
density and pressure on the brane. They are given by

r (tot)5r (brane)1r (bulk), p(tot)5p(brane)1p(bulk),
~2.43!

where

k4
2r (brane)53F1

6
k5

2~r1s!G2

,

k4
2p(brane)5

1

12
k5

4~r1s!~r2s12p!,

k4
2r (bulk)5

3M̃

r 4
,

k4
2p(bulk)5

M̃

r 4
1

1

3
k5

2S 2
u̇

v̇
T̃u

v2
v̇

u̇
T̃v

u12T̃v
vD ,

~2.44!

where M̃ is given by Eq.~2.11! and T̃a
b is defined by Eq.

~2.7!, and both contain the contribution from the bulk co
mological constant. It may be noted that, unlike the effect
energy density, the effective pressure contains a part com
from the bulk that cannot be described by the local m
alone. The contracted Bianchi identity implies the conser
tion law for the total effective energy-momentum on t
brane:

ṙ (bulk)13H~r (bulk)1p(bulk)!

52 ṙ (brane)23H~r (brane)1p(brane)!. ~2.45!

This is mathematically equivalent to Eq.~2.35!. However,
these two equations have different interpretations. From
bulk point of view, Eq.~2.35! is more relevant, which de
scribes the energy exchange between the brane and the
whereas a natural interpretation of Eq.~2.45! is that it de-
scribes the energy exchange between two different ma
on the brane: the intrinsic matter on the brane and the b
matter induced on the brane. The important point is, as m
tioned above, that the pressure of the bulk matter has co
1-5
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butions not only from the local mass but also from a proj
tion of the bulk energy-momentum tensor, which makes
equation of state different fromp(bulk)5r (bulk)/3, i.e., that of
a simple dark radiation.

III. APPLICATION TO THE NULL DUST MODEL

In this section, by using the local mass derived in t
preceding section, we discuss the bulk geometry and b
cosmology in the context of a null dust model. Especially,
pay attention to the gravitational collapse due to the emiss
of energy from the brane. Namely, we consider an ingo
null dust fluid emitted from the brane@15,17,18#.

A. Setup

The energy-momentum tensor of a null dust fluid tak
the form @24#,

Tab5m1,a,b1m2nanb , ~3.1!

where,a andna are the ingoing and outgoing null vector
respectively, introduced in Eqs.~2.19!. If we require that the
energy-momentum conservation law is satisfied for the in
ing and outgoing null dust independently, we have

m15
F

~r ,v!2r 3

f ~v !

2
, m25

F

~r ,u!2r 3

g~u!

2
, ~3.2!

where f (v) and g(u) are arbitrary functions ofv and u,
respectively, and have the dimension (G53mass)21. We as-
sume the positive energy density, i.e.,f (v)>0 and g(u)
>0. Thus, the nontrivial components of the energ
momentum tensor are

Tvv5
f ~v !

r 3 , Tuu5
g~u!

r 3 . ~3.3!

To satisfy the local conservation law in an infinitesim
interval (u,u1du) and (v,v1dv), we find that the intensity
functions f (v) andg(u) have to satisfy the relation

f ~v !S F

r ,v
D

,u

5g~u!S F

r ,u
D

,v

. ~3.4!

In general, if bothf (v) and g(u) are nonzero, it seems a
most impossible to find an analytic solution that satisfies
~3.4!. Hence we choose to set eitherf (v)50 or g(u)50. In
the following discussion, we focus on the case thatg(u)
50, that is, the ingoing null dust.

B. Bulk geometry of the null dust collapse

For g(u)50, Eqs.~2.14! give

M ,v5
1

3
k5

2 F

r ,v
f ~v !, M ,u50. ~3.5!

The second equation impliesM5M (v). Substituting Eq.
~3.3! into the Einstein equations~2.3!, we find
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F

r ,v
5eF(v), ~3.6!

where the functionF(v) describes the freedom in the resca
ing off the null coordinatev. This equation is consistent with
Eq. ~3.4!. Thus, we obtain the solution as

F5r ,veF(v)5K1
r 2

,2
2

M ~v !

r 2 ,

M ~v !5
1

3
k5

2E
v0

v
dveF(v) f ~v !1M0 , ~3.7!

where we have assumed thatf (v)50 for v,v0, that is,v0
is the epoch at which the ingoing flux is turned on. F
definiteness, we assume that the bulk is pure AdS atv,v0
and setM050 in what follows.

Transforming the double-null coordinates (v,u) to the
half-null coordinates (v,r ) as

r ,udu5dr2r ,vdv, ~3.8!

the solution is expressed as

ds2524F~r ,v !e22F(v)dv214e2F(v)dvdr1r 2dV (K,3)
2 ,

~3.9!

whereF is given by the first of Eqs.~3.7!. This is an ingoing
Vaidya solution with a negative cosmological consta
@15,17#. For an arbitrary intensity functionf (v), this is an
exact solution for the bulk geometry. Note that if we resc

v as dv→dv̄5e2Fdv, f (v) scales as f (v)→ f̄ (v)
5e22F f (v), which manifestly shows the invariance of th
solution under this rescaling.

An apparent horizon for the outgoing radial null congr
ence is located on the three-space, satisfying

F5r ,v50, while r ,u5finite. ~3.10!

This gives

r 25
,2

2 SAK214
M ~v !

,2
2K D . ~3.11!

The direction of the trajectory of the apparent horizon
given by

dr

dv
5

M ,v,2r

2~r 41M,2!
5

k5
2f ~v !eF(v),2r

6~r 41M,2!
. ~3.12!

Thus, for f (v).0, dr/dv is positive, which implies that the
trajectory of the apparent horizon is spacelike.

For the case ofK511 or K50, the apparent horizon
originates fromr 50, while it originates fromr 5, for K
521. A schematic view of the null dust collapse is show
in Fig. 1. We assume that the brane emits the ingoing fl
during a finite interval~bounded by the dashed lines in th
figures! and no naked singularity is formed. For all the cas
1-6
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FIG. 1. ~Color online! Causal structure of a spacetime with ingoing null dust for the cases ofK511, 0 and21. In each figure, The
~almost vertical! wavy curve represents the brane trajectory and the dotted line is the locus of the apparent horizon. The thick horizo
at r 50 represents the spacelike curvature singularity formed there. The ingoing flux is assumed to be emitted during a finite
bounded by the dashed lines.
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le.
the causal structures after the onset of emission are
similar. The spacelike singularity is formed atr 50, but it is
hidden inside the apparent horizon.

C. Brane trajectory in the bulk

In the null dust model, using Eq.~2.25!, the proper time
on the brane is related to the advanced time in the bulk
@18#

v̇65eF(v)
ṙ 6Aṙ 21F

2F
. ~3.13!

To determine the appropriate sign in the above, we req
that the brane trajectory is timelike, hencev̇.0, and exam-
ine the signs ofv̇6 for all possible cases:

~1! ṙ .0, F.0→ v̇1.0, v̇2,0.

~2! ṙ .0, F,0→ v̇1,0, v̇2,0.
04402
ry

s

re

~3! ṙ ,0, F.0→ v̇1.0, v̇2,0.

~4! ṙ ,0, F,0→ v̇1.0, v̇2.0.

From these, we can conclude the following. For an expa
ing brane,ṙ .0, the brane exists always outside the horizo
F.0, andv̇ is given byv̇1 . On the other hand, a contrac
ing brane, ṙ ,0, can exist either outside or inside of th
horizon. Thus, if the brane is expanding initially, the traje
tory is given byv̇5 v̇1 , and it stays outside the horizon unt
it starts to recollapse, if ever. If the brane universe starts
recollapse, which is possible only in the caseK511, by
continuity, the trajectory is still given byv̇5 v̇1 , and the
brane universe is eventually swallowed into the black ho

From the above result, we find

r ,uu̇5 ṙ 2r ,vv̇5
r 2̇Aṙ 21F

2
,0. ~3.14!
1-7
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Using Eq.~2.32!, this gives an upper bound of the Hubb
parameter on the brane as

H,
1

6
k5

2~r1s!. ~3.15!

Let us now turn to the effective Friedmann equation
the brane. For simplicity, we tune the brane tension to
Randall-Sundrum value,k5

2s56/,. The effective Friedmann
equation on the brane is

H21
K

r 2 5
1

18
k5

4rs1
1

36
k5

4r21
M ~t!

r 4 , ~3.16!

whereM (t)5M „v(t)… for notational simplicity. From Eq.
~2.37!, the energy equation on the brane is given by

ṙ13
ṙ

r
~r1p!522

f ~t!

r 3
v̇2, ~3.17!

where f (t)5 f „v(t)…. From Eq.~2.35!, the time derivative
of M is given by

Ṁ5
2

3
rk5

2F1

6
k5

2~r1s!2HG f ~t!v̇2. ~3.18!

Thus, from Eq.~3.15!, M continues to increase on the bran
The advanced time in the bulk is related to the pro

time on the brane byv̇1 in Eq. ~3.13!. Specifically, using the
equality,

F5K1
r 2

,2
2

M

r 2
5r 2S k5

4

36
~r1s!22H2D ~3.19!

on the brane, we have

v̇5
eF(v)

2r S k5
2

6
~r1s!2H D 21

. ~3.20!

Note that the productf v̇2 is invariant under the rescaling o
v. Oncef (t) is given, we can solve the system of equatio
~3.16!–~3.18! self-consistently for a given initial condition
and determine the bulk geometry and the brane dynamic
the same time@15#. A quantitative analysis of the brane co
mology is left for future work.

D. Formation of a naked singularity

In the previous subsections, we assumed that there i
naked singularity in the bulk. However, it has been sho
that a naked singularity can be formed in the null dust c
lapse@19–25#. For instance, a naked singularity exists in
Vaidya spacetime when the flux of radiation rises from z
sufficiently slowly. We expect the same is true in the pres
case.

Without loss of generality, we seteF(v)52. We consider
the following situation. Forv,0, the bulk geometry is
purely AdS. The radiative emission from the brane begin
v50. We choose the intensity function as
04402
e
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f ~v !5
2l

k5
2 v, ~3.21!

wherel is a positive constant. This corresponds to the s
similar Vaidya spacetime if the cosmological constant w
absent@19#. The brane ceases to emit radiation atv5v0 and
the bulk becomes static AdS-Schwarzschild forv.v0. Thus
the local mass is given by

M ~v !55
0 ~v,0!

2

3
lv2 ~0<v<v0!

2

3
lv0

2 ~v0,v !.

~3.22!

The singularity is formed at (r ,v)5(0,0), and it is naked
if there exists a future-directed radial null geodesic eman
ing from it. The null geodesics then form a Cauchy horizo
The trajectory of a radial null geodesic is determined by
equation

dr

dv
5

1

2 S K1
r 2~v !

,2
2

M ~v !

r 2~v ! D . ~3.23!

Let us analyze the above equation in the vicinity ofv50. A
future-directed radial null geodesic exists ifx
ª limv→0dr/dv is positive. Using L’Hôpital’s theorem, we
obtain

x5 lim
v→0

r ~v !

v
5 lim

v→0

dr

dv
5

1

2 S K2
2l

3x2D . ~3.24!

It is clear that the above equation has no solution whenK
50 or K521. Hence no naked singularity is formed fo
K50 or K521. Therefore, we consider the caseK51. We
introduce a function,

Q~x!53x32
3

2
x21l. ~3.25!

Then, the condition for the naked singularity formation
that Q(x)50 has a solution for a positivex. The function
Q(x) has a minimal point atx51/3. Therefore, the singular
ity is naked if

Q~1/3!52
1

18
1l<0, ~3.26!

that is,

0,l<
1

18
. ~3.27!

Thus, the bulk has a naked singularity for small values ofl,
i.e., for the flux of radiation which rises slowly enough.
1-8
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Our next interest is whether the naked singularity is lo
or global. If it is globally naked, it may be visible on th
brane. To examine this, we integrate Eq.~3.23!. In the vicin-
ity of v50, we find

r null~v !5x0vS 11b
v2

,2
1••• D , ~3.28!

wherex0 is the largest positive root ofQ(x)50;

x05
1

6
$11@1236l1 i6A2l~1218l!#1/3

1@1236l2 i6A2l~1218l!#1/3% ~3.29!

and

b5
x0

2

2~5x021!
. ~3.30!

From the form ofQ(x), we readily see thatx0 monotonically
decreases from 1/2 to 1/3 asl increases from 0 to 1/18, an
henceb is positive definite. We compare this trajectory wi
the trajectory of the apparent horizon. It is given by E
~3.11! with K511. In the vicinity ofv50, it gives

r app~v !5A2l

3
vS 12

l

8

v2

,2
1••• D . ~3.31!

Sincex0.A2l/3 for all the values ofl in the range 0,l
<1/18, anddrapp/dv is a decreasing function ofv while
drnull /dv is an increasing function ofv, it follows that the
null geodesic lies in the exterior of the apparent horizon a
the difference in the radius at the samev increases asv
increases, at least whenv is small. This suggests that th
singularity is globally naked.

In Fig. 2, we plot the loci of the null geodesic and th
apparent horizon. The result is clear. The null geodesic
ways stays outside of the apparent horizon, thus outsid

FIG. 2. ~Color online! The loci of the null geodesic~the solid
curve! and the apparent horizon~the dotted curve! on the (v,r )
plane, scaled in units of the AdS radius,, in the critical casel
51/18. Their behaviors are qualitatively the same for all the ot
values ofl in the range 0,l,1/18.
04402
l

.

d

l-
of

the final event horizon atv5v0. Mathematically, this is due
to the cosmological constant term in Eq.~3.23!, which
strongly drives the null geodesic trajectory to larger values
r. Thus, we conclude that the naked singularity is global a
visible on the brane. The causal structure in this case is
lustrated in Fig. 3. Investigations on the effect of the visib
singularity on the brane are necessary, but they are left
future work.

Finally, let us mention the strength of the naked singul
ity as we approach it along a radial null geodesic. Letw be
an affine parameter of the geodesic,w50 be the singularity,
and the tangent vector be denoted byka5dxa/dw. We ex-
amineRabk

akb andCvu
vu. From Eq.~3.3! and the Einstein

equations, we have

Rabk
akb5

k5
2f ~v !

r 3 S dv
dwD 2

5
2lv

r 3 S dv
dwD 2

→
w→0

2l

x0~12x0!2
w22. ~3.32!

Also, from Eq.~2.22!, we have

Cvu
vu5

3M

r 4
5

2lv2

r 4
→

w→0

2l

x0
4 v22}w22x0 /(12x0).

~3.33!

r

FIG. 3. ~Color online! Causal structure of a spacetime with in
going null dust when a naked singularity is formed. The wavy a
almost vertical curve represents the brane trajectory and the do
line is the locus of the apparent horizon. A naked singularity
formed atr 50 along thev50 null line. A radial, future-directed
null geodesic originating from the naked singularity~the right-
pointed thick line! stays outside of the apparent horizon and reac
the brane.
1-9
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Thus the Ricci tensor and the Weyl tensor diverge asw22

and w22x0 /(12x0), respectively, which is a sign of a stron
curvature singularity.

IV. CONCLUSION

In this paper, in the context of the RS2 type branewo
we discussed the dynamics of the bulk and the effective c
mology on the brane in terms of the local conservation l
that exists in the bulk spacetime with a maximally symme
three-space. First, we formulated the local conservation
in the dynamical bulk. We found that the bulk geometry
completely described by the local massM and it is directly
related to the generalized dark radiation term in the effec
Friedmann equation. We also found that there exists a c
served current associated with the Weyl tensor and the
jected Weyl tensor that appears in the geometrical appro
is just the local charge for this current, and it can be
pressed in terms ofM and a certain linear combination of th
components of the bulk energy-momentum tensor.

Next, as an application of our formalism, we adopted
simple null dust model, in which the energy emitted by t
brane is approximated by an ingoing null dust fluid, a
investigated the general properties of the bulk geometry
the brane trajectory in the bulk. Usually, the ingoing null du
forms a black hole in the bulk. However, in the case ofK
511, a naked singularity can be formed in the bulk wh
the flux rises from zero slower than a critical rate. We sh
that the naked singularity is global and thus it can be visi
to an observer on the brane. Studies on the implications
visible naked singularity on the brane is left for future wor

Also, we found that the brane can never enter the bl
hole horizon as long as it is expanding. In addition, we fou
an upper bound on the Hubble expansion rate, given by
energy density of the matter on the brane, for arbitrary
non-negative energy flux emitted by the brane. We also p
sented a set of equations that completely determine the b
dynamics as well as the bulk geometry.

Finally, let us briefly comment on some future issues.
this paper, we only discussed the case of null dust. Howe
this is too simplified to be realistic. As a realistic situation
will be interesting to consider a bulk scalar field such a
dilaton or a moduli field. In this case, it will be necessary
solve the bulk and brane dynamics numerically in gene
Another interesting issue will be the evaporation of a b
black hole by the Hawking radiation and its effect on t
brane dynamics. We plan to come back to these issue
future publications.
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APPENDIX A: GEOMETRICAL QUANTITIES AND
LOCAL CONSERVATION LAWS IN „N¿2… DIMENSIONS

In this appendix, we give useful formulas in a
(n12)-dimensional spacetime with constant curvatu
n-space, and generalize the expression for the local mass
Weyl charge.

We consider the metric in the double-null form,

ds25
4r ,ur ,v

F
dudv1r ~u,v !2dV (K,n)

2 , ~A1!

whereK511, 0, or 21, corresponding to the sphere, fl
space, and hyperboloid, respectively. We denote the me
tensor of the constant curvature space asg i j . The explicit
expressions for the geometrical quantities in this spacet
are as follows.

The Christoffel symbol is

Guu
u 5S logUr ,ur ,v

F U D
,u

, Gvv
v 5S logUr ,ur ,v

F U D
,v

,

G i j
u 52

rF

2r ,u
g i j , G i j

v 52
rF

2r ,v
g i j , ~A2!

Gu j
i 5

r ,u

r
d i j , Gv j

i 5
r ,v

r
d i j , G jk

i 5 nG jk
i .

The Riemann tensor is

Ru
uuv5Rvvu

v 52S logUr ,ur ,v

F U D
,uv

,

Ru
iu j5F2

1

2
r S F

r ,u
D

,u

2
rF

2r ,u
S logUr ,ur ,v

F U D
,u
Gg i j ,

Rv
iv j5F2

1

2
r S F

r ,v
D

,v

2
rF

2r ,v
S logUr ,ur ,v

F U D
,v
Gg i j ,

Ri
u ju5F2

r ,uu

r
1

r ,u

r S logUr ,ur ,v

F U D
,u
Gd j

i , ~A3!

Ri
v j v5F2

r ,vv

r
1

r ,v

r S logUr ,ur ,v

F U D
,v
Gd j

i ,

Ri
v ju5Ri

u jv52
r ,uv

r
d j

i ,

Ri
jkl5~K2F!~dk

i g j l 2d l
ig jk!.

The Ricci tensor is

Ruu5n
r ,u

r S logUr ,v

F U D
,u

, Rvv5n
r ,v

r S logUr ,u

F U D
,v

,

Ruv52S logUr ,ur ,v

F U D
,uv

2n
r ,uv

r
, ~A4!
1-10
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Ri j 5F2
rr ,uv

r ,ur ,v
F12~n21!~K2F!Gg i j .

The scalar curvature is

R52
F

r ,ur ,v
S logUr ,ur ,v

F U D
,uv

22n
Fr ,uv

rr ,ur ,v

1
n~n21!

r 2 ~K2F!. ~A5!

The Einstein tensor is

Guu5Ruu ,Gvv5Rvv ,

Guv5n~n21!
r ,ur ,v

r 2 S 12
K

F D1n
r ,uv

r
, ~A6!

Gi j 5H r 2F

2r ,ur ,v
F S logUr ,ur ,v

F U D
,uv

12~n21!
r ,uv

r G
2

~n22!~n21!

2
~K2F!J g i j .

The Weyl tensor is

Cuvu
u5

n21

n11S logUr ,ur ,v

F U D
,uv

2
r ,uv

r
2

r ,ur ,v

r 2F
~K2F!,

Ciu j v5
1

n
r 2g i j Cuvu

u, ~A7!

Ci jkl 52
2

n~n21!
r 4~g ikg j l 2g i l g jk!Cuv

vu.

From these formulas, we can show the existence o
conserved current in the same way as given in the t
Namely, with the timelike vector fieldja defined by Eq.
~2.4!, the currentsS̃a5jbT̃b

a and Sa5jbTb
a are separately

conserved, and the corresponding local masses are g
respectively, by

M̃5r n21~K2F! ~A8!

and

M5M̃2
2

~n21!~n22!
Ln12r n21. ~A9!

The v and u derivatives ofM are given by the energy
momentum tensor as

M ,v5kn12
2 2r n

n
~Tv

ur ,u2Tv
vr ,v!,

M ,u5kn12
2 2r n

n
~Tu

vr ,v2Tv
vr ,u!. ~A10!
04402
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Let us now turn to the conserved current associated w
the Weyl tensor. We start from the equation that results fr
the Bianchi identities@26#,

Cabcd
;d5Jabc , ~A11!

where

Jabc5
2~n21!

n
kn12

2 S Tc[a;b]1
1

~n11!
gc[bT;a] D .

~A12!

From this equation, we can show the existence of a loc
conserved currentQa given by

Qa5r ,bncJ
bca, Qa

;a50, ~A13!

where,a andna are the null vectors defined in Eqs.~2.19!.
The nonzero components are explicitly written as

Qu52rJvu
v , Qv52rJvu

u . ~A14!

We then find the following relations,

~r n11Cvu
vu! ,v5r n11Jv

vv ,

~r n11Cvu
vu! ,u5r n11Ju

uu . ~A15!

These relations are generalization of Eqs.~2.21!, and imply
that the Weyl componentr n11Cvu

vu is the local charge asso
ciated with this conserved current.

Using the explicit form ofCvu
vu in Eqs. ~A7! and the

Einstein equations, we can relate the Weyl charge to the lo
mass. We find

r n11Cvu
vu

5
n~n21!M̃

2
2

n21

n~n11!
r n11~Gi

i22nGv
v!

5
n~n21!M

2
2

n21

n~n11!
kn12

2 r n11~Ti
i22nTv

v!.

~A16!

Finally, we note that this equation implies that the line
combination of the energy-momentum tensor,

r n11~Ti
i22nTv

v!, ~A17!

plays the role of a local charge as well. Therefore, the
havior of this quantity is constrained nonlocally by the int
gral of the flux given by the corresponding linear combin
tion of the currentsSa andQa. Although we do not explore
it here, this fact may be useful in an analysis of the behav
of the bulk matter.

APPENDIX B: EINSTEIN-SCALAR THEORY
IN THE BULK

In this appendix, we apply the local conservation law
the five-dimensional Einstein-scalar theory. We assume
there is no matter on the brane, but we take account o
coupling of the bulk scalar field to the brane tension. In t
1-11
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case, the energy exchange between the brane and the
hence the time evolution ofM, occurs through the coupling

We first consider a general bulk scalar field. Then, a
special case, we analyze the local mass on the brane fo
exact dilatonic solution discussed by Koyama and Takah
@13#. Finally, we clarify the relation between the local ma
and the term that is identified as the dark radiation term
the effective four-dimensional approach in which the con
bution of the scalar field energy-momentum to the brane
required to take the standard four-dimensional form@11#.

1. Setup

We consider a theory described by the action

S5E d5xA2gF 1

2k5
2

R2
1

2
]af]af2V~f!G

2E d4xA2qs~f!. ~B1!

For the bulk with the metric given by Eq.~2.1!, the energy-
momentum tensor in the bulk is given by

Tvv5f ,v
2 , Tuu5f ,u

2 ,

Tuv52
2r ,ur ,v

F
V~f!,

Ti j 52r 2F F

2r ,ur ,v
f ,uf ,v1V~f!Gg i j . ~B2!

On the brane, the first derivatives of the scalar field t
gent and normal to the brane are expressed, respectivel

f8ªf ,ana52f ,vv̇1f ,uu̇,

ḟªf ,ava5f ,vv̇1f ,uu̇. ~B3!

The Codacci equation~2.36! gives, via the coupling to the
brane tension, the boundary condition at the brane,

f85
1

2

d

df
s~f!. ~B4!

In the present case, the effective Friedmann equation indu
on the brane, Eq.~2.34!, becomes

3FH21
K

r 2G5
1

12
k5

2s21
3M

r 4 . ~B5!

The time evolution of the local massM on the brane is given
by

Ṁ52
1

3
k5

2r 4HF ḟ222V1
1

4 S d

df
s D 2G2

1

36
k5

4r 4ḟ
d

df
s2.

~B6!
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From the brane point of view, as given by Eqs.~2.43! in
the text, the effective energy density and pressure are c
posed of the brane tension and the bulk matter induced
the brane as

r (tot)5r (T)1r (B), p(tot)5p(T)1p(B), ~B7!

where

k4
2r (T)5

1

12
k5

4s2, k4
2p(T)52

1

12
k5

4s2,

k4
2r (B)5

3M

r 4 ,

k4
2p(B)5

M

r 41
1

3
k5

2F ḟ222V1
1

4S d

df
s D 2G , ~B8!

where Eq.~B4! is used. From the Bianchi identity on th
brane, the conservation law for the total effective ener
momentum on the brane is obtained as

ṙ (B)13H~r (B)1p(B)!52 ṙ (T). ~B9!

The above relation is mathematically equivalent to Eq.~B6!.
As discussed after Eq.~2.45! in the text, Eq.~B9! gives

the point of view from the brane, and it is naturally inte
preted as the equation describing the energy exchange
tween the brane tension and the bulk matter induced on
brane. On the other hand, the time variation of the local m
along the brane, Eq.~B6!, gives the point of view from the
bulk, and it contains not only the energy transfer from t
brane tension to the bulk~the last term! but also the energy
flow of the bulk scalar field at the location of the bran
which is nonvanishing in general even if the scalar field h
no coupling to the brane tension.

2. Dilatonic exact solution

In the caseK50, and for special forms ofV(f) and
s(f), an exact cosmological solution is known, as a reali
tion of the bulk inflaton model@13#. The forms of the poten-
tial and brane tension are

k5
2V~f!5S D

8
1d Dl0

2e22A2bk5f, ~B10!

k5
2s~f!5A2l0e2A2bk5f, ~B11!

whered, b, andl0 are constant and are all assumed to
non-negative, and

D54b22
8

3
. ~B12!

If d50, there exists a static, Minkowski brane solution@14#.
In order to avoid the presence of a naked singularity,
dilatonic couplingb2 is assumed to be smaller than 1/6@13#.
This implies thatD is negative and is in the range
1-12
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2<~2D!<
8

3
. ~B13!

The exact solution takes the form

ds25e2W(z)~2dt21e2a(t)d i j dxidxj1e2A2bk5f(t)dz2!,

f5f~t!1J~z!, ~B14!

with the brane located atz5z0 and it is assumed tha
J(z0)50 without loss of generality. The scale factor of th
brane and the scalar field on the brane are given by

r ~t!5ea(t)5~H0t!1/6b2
, eA2bk5f(t)5H0t, ~B15!

where

H05S D1
8

3Dl0A d

2D
54b2l0A d

2D
. ~B16!

As seen from the first of Eqs.~B15!, the power-law inflation
is realized on the brane forb2,1/6.

Let us consider the time evolution of the energy conten
this model. From the brane point of view, the time derivat
of the brane tensionr (T) is always negative:

ṙ (T)5
D

48b4dt3
,0. ~B17!

Thus, from Eq.~B9!, for an observer on the brane, there
one-way energy transfer from the brane tension to the b
matter induced on the brane. From the bulk point of vie
however, the situation is slightly more complicated. The ti
derivative of the local mass~or the generalized dark radia
tion! on the brane, Eq.~B6!, is evaluated as

Ṁ

r 4
5

1

18b6dt3 S 1

3
2b2D S D

8
1d D . ~B18!

The sign ofṀ is determined by the sign ofD/81d. Note
that the sign ofD/81d determines the sign of the bulk po
tential as well, as seen from Eq.~B10!. If D/81d.0, i.e.,
d.(2D)/85(b2/2)21/3, we haveṀ.0. SinceM is the
total bulk mass integrated up to the location of the brane,
increase inM implies an energy flow from the brane to th
bulk. Therefore, in this case, the energy in the brane ten
is transferred to the bulk scalar field and it flows out into t
bulk. In contrast, ifd,(2D)/8, we haveṀ,0. In this case,
although there is still energy transfer from the brane tens
to the bulk scalar field, the bulk energy flows onto the bra
In other words, there is a localization process of the b
energy onto the brane that overwhelms the energy rele
from the brane tension.

3. Local mass and the effective four-dimensional description

In the bulk inflaton model with a quadratic potenti
@9–12#, it has been shown that the bulk scalar field projec
on the brane behaves exactly like a four-dimensional field
04402
n

lk
,
e

e

n

n
.

k
ed

d
n

the low energy limit,H2,2!1, whereH is the Hubble pa-
rameter of the brane, and the leading order correction g
the gradual energy loss from the scalar field to the bu
giving rise to the dark radiation term@9,11#. Here, we discuss
the relation between the dark radiation term appearing in
effective four-dimensional description and the generaliz
dark radiation term given by the local mass in the bulk.

From the geometrical description@7#, the induced Einstein
equation on the brane is written as

(4)Gmn52
1

12
k5

4s2qmn1k5
2T̃mn

(b)2Emn , ~B19!

where

T̃mn
(b)5

2

3 F T̃abqm
a qn

b2S T̃abn
anb2

1

4
T̃abg

abDqmnG ,
~B20!

is the projected tensor of the bulk energy-momentum o
the brane that includes the contribution of the cosmolog
constant; see Eq.~2.7!. For a homogeneous and isotrop
brane, the nonvanishing components are

T̃tt
(b)52T̃v

v1
1

6
T̃i

i ,

T̃(b) i
i5

1

6
T̃i

i2
u̇

v̇
T̃v

u2
v̇

u̇
T̃u

v1T̃v
v . ~B21!

Let us decomposeEmn as

Emn5Emn
(b)1Emn

(d) , ~B22!

whereEmn
(b) is to be expressed in terms of the bulk energ

momentum tensor in such a way that the effective fo
dimensional description is recovered, andEmn

(d) is the part that
should be identified as the dark radiation term in this eff
tive four-dimensional approach. To be in accordance w
Ref. @11#, we choose the components ofEmn

(b) as

2Ett
(b)52

1

8
k5

2S u̇

v̇
T̃v

u1
v̇

u̇
T̃u

vD 1
1

12
k5

2~ T̃i
i23T̃v

v!

52E(b) i
i , ~B23!

and identify the remaining part with the dark radiatio
term,X,

2Ett
(d)5X52E(d) i

i . ~B24!

In the effective four-dimensional description, the Einste
equation on the brane takes the form,

(4)Gmn5k4
2Tmn

(eff)2Emn
(d) , ~B25!

whereTmn
(eff) is the effective energy-momentum tensor on t

brane,
1-13
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k4
2Tmn

(eff)52
1

12
k5

4s2qmn1k5
2T̃mn

(b)2Emn
(b) , ~B26!

and k4
2 is the four-dimensional gravitational constant th

should be appropriately defined to agree with the conv
tional four-dimensional Einstein gravity in the low energ
limit. In the present case of homogeneous and isotropic c
mology, the only nontrivial components are the effective e
ergy density and pressure, which are given explicitly by

k4
2r (eff)52k4

2T̃(eff)t
t5

1

12
k5

4s22
5

4
k5

2T̃v
v1

1

4
k5

2T̃i
i

2
1

8
k5

2S u̇

v̇
T̃v

u1
v̇

u̇
T̃u

vD ,

k4
2p(eff)5

1

3
k4

2T̃(eff) i
i52

1

12
k5

4s21
1

4
k5

2T̃v
v1

1

12
k5

2T̃i
i

2
3

8
k5

2S u̇

u̇
T̃v

u1
v̇

u̇
T̃u

vD . ~B27!

The effective Friedmann equation on the brane is written

3FH21
K

r 2G5k4
2r (eff)2Ett

(d)

5
1

12
k5

4s22
5

4
k5

2T̃v
v1

1

4
k5

2T̃i
i

2
1

8
k5

2S u̇

v̇
T̃v

u1
v̇

u̇
T̃u

vD 1X. ~B28!
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Applying this to a bulk scalar field with the action~B1!, we
find r (eff) andp(eff) are given by those of a four-dimension
scalar fieldw with the potential,

k4
2V(eff)~w!5k5

2S 1

2
V~f!1

k5
2

12
s2~f!2

1

16
s8 2~f! D ,

~B29!

wherew5Ak5
2/k4

2f. From the contracted Bianchi identity
we obtain

DmTmt
(eff)5 ṙ (eff)13H~r (eff)1p(eff)!52

1

k5
2

1

r 4
~r 4X!.

~B30!

Unfortunately, as we can see from Eqs.~B27!, there is no
simplification in the energy equation in terms of the fiv
dimensional energy-momentum tensor.

From the effective four-dimensional point of view, wh
happens is the conversion of the scalar field energy on
brane to the dark radiation via the coupling to the bra
tension. From the bulk point of view, a natural interpretati
is to regard the local massM on the brane as the generalize
dark radiation. These two different identifications of the da
radiation term on the brane coincide only when the bulk is
vacuum andM is constant. Comparison of the above deco
position of Ett with Eq. ~2.40!, we find the difference be-
tween the dark radiation in the four-dimensional descript
and the generalized dark radiation in terms of the local m
M as

3M̃

r 4
5

1

4
k5

2~ T̃i
i25T̃v

v!2
1

8
k5

2S u̇

v̇
T̃u

v1
v̇

u̇
T̃v

uD 1X.

~B31!
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