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Local conservation law and dark radiation in cosmological braneworld
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In the context of the Randall-SundrufRS) single-brane scenario, we discuss the bulk geometry and
dynamics of a cosmological brane in terms of the local energy conservation law which exists for the bulk that
allows slicing with a maximally symmetric three-space. This conservation law enables us to define a local mass
in the bulk. We show that there is a unique generalization of the dark radiation on the brane, which is given by
the local mass. We find there also exists a conserved current associated with the Weyl tensor, and the corre-
sponding local charge, which we call the Weyl charge, is given by the sum of the local mass and a certain linear
combination of the components of the bulk energy-momentum tensor. This expression of the Weyl charge
relates the local mass to the projected Weyl ten&yy,, which plays a central role in the geometrical
formalism of the RS braneworld. On the brane, in particular, this gives a decomposition of the projected Weyl
tensor into the local mass and the bulk energy-momentum tensor. Then, as an application of these results, we
consider a null dust model for the bulk energy-momentum tensor and discuss the black hole formation in the
bulk. We investigate the causal structure by identifying the locus of the apparent horizon and clarify possible
brane trajectories in the bulk. We find that the brane stays always outside the black hole as long as it is
expanding. We also find an upper bound on the value of the Hubble parameter in terms of the matter energy
density on the brane, irrespective of the energy flux emitted from the brane.
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I. INTRODUCTION whereo andp are the brane tension and energy density of

the matter on the brane, respectively, anddr/dr with 7

The braneworld scenario has attracted much attention iRejng the proper time on the brane. The final term is propor-
recent year$l]. In this scenario, our Universe is assumed t0tjon g to the mass of the bulk black hole and is often called
be on a(membrane embedded in a higher-dimensionalihe «qark radiation” since it behaves as the ordinary radia-

qucetime. There are many mode!s of the braneworld scey,, Geometrically, it comes from the projected Weyl tensor
nario and corresponding cosmologies. One of them that ha‘ the bulk, denoted commonly g, [7]. If we apply Eq
been extensively studied is the braneworld cosmology base 2 1o thé real Universe. the valﬁés of ¢ andM aré

. ’ h ’ 0

on a model proposed by Randall and Sundr@®®) [2], in . ) X

which a single positive tension brane exists in a ﬁve_constramed by observations of the cosmological parameters

dimensional spacetiméecalled the bulk with negative cos- [8]. ,

mological constant, the so-called RS2 model. In this paper, When the bulk ceases to be pure AdS-Schwarzschild, or

we focus our discussion on this single-brane model. when there exists a dynamical degree of freedom other than
In many cases, the five-dimensional bulk geometry is asthe metric, the parametdl, is no longer constant in gen-

sumed to be anti—-de Sitte/AdS) or AdS-Schwarzschild €ral, but becomes dynamical. For instance, this is the case of
[3-5: the so-called bulk inflaton modé&d—13], or when the brane

radiates gravitons into the bulkL5]. In particular, in Ref.
-1 [10], the dynamics of a bulk scalar field is investigated in the
dr? context of the bulk inflaton model under the assumption that
the backreaction of the scalar field on the geometry is small,
+ rde(zK - (1.1) a_nd it is found th_at there exists an inFeresting integral expres-
’ sion for the projected Weyl tensor in terms of the energy-

where€:=\/T/A5 is the AdS curvature radiud, is the momentum tensor of the scalar field. This suggests the exis-
black hole mass, andQ(ZKB) is the maximally symmetric tence of a local consgrvatlon law in the bulk that _dlre_ctly
(constant curvatujehree-space with = —1, 0, or+ 1. The relates the dark radiation on the brane to the dynamics in the

brane trajectory in the bulk,t(r)=(t(7),r(7)), is deter- b'“'llk' hi ) . h hen there |
mined by the junction conditiof6]. As usual, we impose the n this paper, we investigate the case when there Is non-

reflection symmetry with respect to the brane. Then, we obEL'V""t‘)I (Ijli/namlcs n thedblﬁk'(?nd C"f"”fy f(h?] retl)anon k:/(\a/twfeen
tain the effective Friedmann equation on the brangdes the bulk geometry and the dynamics of the brane. We focus
on the case of isotropic and homogeneous branes and hence

r M
dszz—(K+———0)dt2+
¢ r

2k 4 1 4 M assume the existence of slicing by the maximally symmetric
r + 5= (ﬁaz_ S|+ §(20P+P2)+ o three-space as in E(L.1). In this case, we can derive a local
rjre 136 | 18 r4’ energy conservation law in the bulk, in analogy with spheri-

(1.2 cal symmetric spacetimes in four dimensi¢hé]. Then, this
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conservation law can be used to relate the brane dynamics to . p 2
the geometrical properties of the bulk, especially with the ds’= @ dudv+r(uv)®dQiy 5, 23
projected Weyl tensor in the bulk.

The paper is organized as follows. In Sec. Il, we derivehere we refer ta andu as the advanced and retarded time
the local energy conservation law in the bulk and discuss theygrdinates, respectively. In Appendix A, the explicit com-
general property of the bulk geometry and cosmology on th¢onents of the connection and curvature in an

brane. We show that there exists a unique generalization qf,+ 2)-dimensional spacetime with maximally symmetric
the dark radiation that is directly related to the local mass in_gpace are listed.

the bulk. We also find that there exists another conserved The five-dimensional Einstein equations are given by
current associated with the Weyl tensor, as a nonlinear ver-

sion of what was found in Ref10]. In a vacuum(Ricci flat) Gap+ AgGap= 2T L+ S8y —Yo) 2.2)
spacetime, the local charge for this current is found to be abhodab s Tab e o

equivalent to the local mass. Let us call this the Weyl ChargeWhere the indicesa, b} run from 0 to 3, and 5, and 5 and

The difference between the local mass and Weyl charge ';Scé are the five-dimensional cosmological constant and gravi-

given by the linear combination of certain components of theLational constant, respectively. The brane is introduced as a
bulk energy-momentum tensor, and the projected Weyl tenéin ular hvpersurface located at wherev denotes a
sor that appears in the effective Friedmann equation on th 9 yp #=Yo, y

brane is indeed given by this Wevl charge. Thus we have a&aussian normal coordinate in the direction of the extra di-
9 y Y ge- mension in the vicinity of the brane, arf§},;, denotes the

unique decomposition of the projected Weyl tensor term into nergy-momentum tensor on the brane. The spacetime is as-

the part due to the bulk mass that generalizes the dark radl%umed to be reflection symmetric with respect to the brane.

tion term and the part due to the bulk energy-momentunt — _. . . ; . )
tensor. In Sec. lll, as an application of the conservation law rngis\,/t,er\:v%;on&der the Einstein equations in the bulk. They

derived in Sec. Il, we consider a simple null dust model and®
discuss the black hole formation in the bulk. We identify the
location of an apparent horizon and analyze possible trajec- 3u(log
tories of the brane in the bulk. We show that the brane stays '
always outside of the apparent horizon of the black hole as

|
) .,

yU

r r
S

,u

long as the brane is expanding. In Sec. IV, we summarize our For K r or r
; ; o ) Ut
work and mention future issues. 6 " (1—5 +3 KT T g As, (2.3
Il. LOCAL CONSERVATION LAW IN A SPACETIME r2d o r,ur,v‘ +4r,uv —(K=®) !y,
WITH MAXIMALLY SYMMETRIC THREE-SPACE or o[V @ 1, r Vi
ul, uy

In this section, we discuss the general property of a dy-
namical bulk spacetime with a maximally symmetric three-
space, and consider cosmology on the brane. First, we derive
a local conservation law in the bulk, as a generalization oﬂ/]
the local energy conservation law in a spherically symmetric
spacetime in four dimensior46]. Namely, we show that a
locally conserved energy flux vector exists in spite of the
absence of a timelike Killing vector field. This enables us to a

i . . 1 19 1 4
define a local mass in the bulk spacetime. We also show that =Pl - — —+— —
there exists a conserved current associated with the Weyl 2 rydv I ydu
tensor. This gives rise to a locally defined Weyl charge. It is
shown that the Weyl charge and the local mass are closelyrom the form of the metri€2.1), we can readily see thaf
related to each other. is conserved:

Next, we introduce the brane as a boundary of the dy-
namical spacetime. The effective Friedmann equation, is de- —g&®.,=(V—gé%) =2y (rr ) ,— (r%r ) ,]=0,
termined via the junction condition, and it is shown that the (2.5
local mass corresponds to the generalized dark radiation. Fi-
nally, we show that the projected Weyl tensor on the brane isvhere y=dety;; . Note that, for an asymptotically constant
uniquely related to the local mass. curvature spacetime, the vector figddl becomes asymptoti-

cally the timelike Killing vector field— (d/4t)?2.
With this vector fieldé?, we define a new vector field,

= kT —r?yAs,
herey;; is the intrinsic metric of the maximally symmetric
ree-space.

Now, we derive the local conservation law. We introduce
a vector field in five-dimensional spacetime as

(2.9

A. Local conservation law

We assume that the bulk allows slicing by a maximally =80T8, (2.9
symmetric three-space. Then, the bulk metric can written in
the double-null form where
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~ 1 M :z 2.3 TU —Tv
Tab=Tap— —5As50ap- (2.7 w= gl (Tor of ),
Kg
Using the Einstein equations, the components of the vector M= %Kgﬁ('rvur‘v_'rvvr‘u), (2.13

field S® are given by
3 or in a bit more concise form,
k3= g8 = S[r3(K=®)] W, 2
dM=§KErS(T”Ur,udv+T”ur,,}du—T”Udr). (2.14

3 . . . . .
ki\—gS'=— §[r2(K—‘I’)],v\F7- (2.8 Using the above, we can immediately write down two inte-
gral expressions foM given in terms of flux crossing the
u=const hypersurfaces from, to v,, and flux crossing the

Then, we have the local conservation law as v =const hypersurfaces from, to u,, respectively, as
$,=0. (2.9 M(va,u)=M(vy,u)
~ 2 v
Since&? is conserved separately, the conservatiosoim- = §K§J 2dur3(T3r,u—T$r,v) :
plies that we have another conserved curi@htlefined by U1 u=const.
- 1 M(U,uz)_M(U,Ul)
Sh=gPT? | =S+ S AR, (2.10
Ks

2 5%, 3
=35 durd(Tyr ,—Tor )
1 =
Thus we have the local conservation law for the energy- v=const

momentum tensor in the bulk. (2.19

From Egs.(2.8), we readily see the local mass corre- Finally, let us consider the Weyl tensor in the bulk. In the

sponding toS™ is given by[16] present case of a five-dimensional spacetime with maximally
~ symmetric three-space, there exists only one nontrivial com-
M:=(K—d)r?, (2.1)  ponent of the Weyl tensor, say,,’Y. The explicit expres-

sions for the components of the Weyl tensor are given in
where the factor 3/2 in the original expression %t is  Appendix A, Eqs(A7). Using the Bianchi identities and the
eliminated for later convenience. Alternatively, correspond-Einstein equations, we hay&6]
ing to S, we have another local mass that excludes the con-

d_
tribution of the bulk cosmological constant, Cabed = Jabe: (2.16
where
M:=M — EA r4=(K—®)r2— 1A rt. (212
60 6 ' 2(n-1) ,
abc= " Knt2| Tefap mgc[bT;a]
In what follows, we focus on the matter pavt, rather than (2.17

on the whole mas#1. It may be noted, however, that this

decomposition ofVl to the cosmological constant part and
the matter part is rather arbitrary, as in the case of a bulk Q3=r¢pndbea Q2,=0, (2.189
scalar field. Here we adopt this decomposition just for con-

venience. For example, this decomposition is more usefulvhere €, andn, are a set of two hypersurface orthogonal
when we consider small perturbations on the static Adshull vectors,

Schwarzschild bulk. We note that, in the case of a spherically a
symmetric asymptotic flat spacetime in four dimensions 0= \E(_r dv) pra. /LI) i(i)
(henceK=+1 and with no cosmological constanthis ar alou)’
function M agrees with the Arnowitt-Deser-MisnéADM )

energy or the Bondi energy in the appropriate limits. 1 1
(r JAdu,, ni= Eq) r_ — .

B. Local mass and Weyl charge (2.19

From the five-dimensional Einstein equatiof’s3), we  The nonzero components are written explicitly as
can write down the local conservation equation frin

terms of the bulk energy-momentum tensor explicitly as QY=-—rJv,, QV=-rJvY,, (2.20

From this, we can show that there exists a conserved current,
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and we have ing null geodesics is formed, whereashi=r ,=0, we have
. . p,=0 and an apparent horizon for the ingoing null geodesics
(I’ Cvuvu),U: r ‘]UUU ' is formed.
(r4Cvuvu),u:r4‘]uuu- (2.20) D. Brane cosmology
These are very similar to Eq&.8). It is clear thatr*C, ! We now consider the dynamics of a brane in a dynamical
defines a local charge associated with this conserved curreftulk with maximally symmetric three-spa¢8]. The brane
that is, the Weyl charge. trajectory is parametrized as,u)=(v(7),u(7)). Taking 7

Using the Einstein equations, we then find that the Weyfo be the proper time on the brane, we have

charge can be expressed in termsMfand the energy- -
u oot

momentum tensor as 4 o uv="- 1 (2.25
ré Ké
rC,,""'=3M+ 5(6G%—Gl)=3M+ grA(GTUu_T'i)- on the brane, where=du/dr and so on. The unit vector
(2.2  tangent to the brand.e., the five-velocity of the brands
given by
This is one of the most important results in this paper. As we .
shall see below, the Weyl compone@t,'" is directly re- a_ 'iﬂ,i :2r,ur,v(ud +odu)
lated to the projected Weyl tenshr,,, and hence this rela- v Yoo Coul » Ve b vroiya
tion gives explicitly how the local maskl and the local (2.26
value of the energy-momentum tensor affects the brane dy- _ o
namics. and the unit normal to the brane is given by
a
C. Apparent horizons nd= ( —i)%-l- u%) , na:Zr(;r,,, (udv —vdu),.
As in the conventional four-dimensional gravity, the (2.27)

gravitational dynamics may lead to the formation of a black

hole in the bulk. Rigorously speaking, the black hole forma-The components of the induced metric on the brane are cal-
tion can be discussed only by analyzing the global causalylated as

structure of a spacetime. Nevertheless, we discuss the black

hole formation by studying the formation of an apparent ho- Ix@ oxP
rizon. AQuv="" ~—Yan; (2.28
In four dimensions, an apparent horizon is defined as a ay* ay

closed two-sphere on which the expansion of an outg@ng " L .
ingoing null geodesic congruence vanishes. Here, we extenwhere“' v run from 0_t003 andy a}re tihe_ intrinsic coordi-
the definition to our case and define an apparent horizon asifte€s on the brane with”=7 andy'=x (i=1,2,3). Then
three-surface on which the expansion of a radial null geodel® induced metric on the brane is given by
sic congruence vanishes. Note that “radial” here means sim-
ply those congruences that have only theu) components;
hence an apparent horizon will not be a closed surfa¢e if

ds{yy=—d7+1(7)%dQf 5. (2.29

The trajectory of the brane is determined by the junction
. condition under th&Z, symmetry with respect to the brane.

. > 10My 0 extrinsic curvature on the brane is determined as
ing the u=const andv =const hypersurfaces, respectively,

are given by 16] K2 1
Kw=—51Su— 250, 2.3
1. 1o 1 1@ w 2#“3%) 230
PV aT oy T T2 R T

wheresS,,, is assumed to take the form

(2.23

Naively, if ®=0, one might think that botlp, andp, van- _ _ _ _
ish. However, from the regularity condition of the metric wWith o and p being the tension and energy density of the

S, =diag —p,p,p,p) — o8, (2.3)

(2.1), we have matter on the brane, respectively, as introduced previously,
andp being the isotropic pressure of the matter on the brane.
ruf o Substituting the induced metri@.29 in Eq. (2.30, we ob-
2
Hence, it must be that ,=0 orr ,=0 if ®=0. If d=r , N _
=0, we havep,=0 and an apparent horizon for the outgo- Fut= 2{ 6 (p+ o) H}’ (232
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2 If we eliminate theM/r* term from Eq.(2.34 by using this

. r Ksg
r,v= > E(’H o)+H], (2.33 equation, we recover the effective Friedmann equation on the
brane in the geometrical approalch,
whereH =r/r. Multiplying the above two equations and us- Kg 1 Ké E
ing the normalization conditioi2.25, we then obtain the ~ H2+ —2=(%02— 7]t 1—8(2crp+p2)+K§T(f;)— TTT
effective Friedmann equation on the brane: r (2.4
4 4
H24 52: ﬁgz_iz + 5 20p+p2)+ M4- where T® comes from the projection of the bulk energy-
re 136 | 18 r momentum tensor on the brane and is given in the present

(2.39 case hy

We see thaMM is a natural generalization of the dark radia- 1
tion in the AdS-Schwarzschild case to a dynamical bulk. T(Tg)zéT'i—T”U . (2.42
For a dynamical bulkM varies in time. The evolution of

M is determined by Eq(2.14), and on the brane it gives Finally, from the brane point of view, it may be worth-

while to give the expressions for the effective total energy

M=M ,v+M ,u density and pressure on the brane. They are given by

2 1 . (tot) — (brane)y  (bulk) (tot) — py(brane)y (bulk)
:§K§r4 Tvv(gkg(P+U)_H)vz P P P v P p p '(2-43)
1 . 2 where
—Tuu(gKé(p-f- o)+H|u?|— §K§r4HT”v .
1, 2
(2.35 KapO=3 < ki(pt o) |
This result is consistent with Ref§12,15. From the Co- 1
dacci equation on the brafhé], Kip(brane)zl_zkg(p+U)(p_a+2p),
D,K”,—D,K",=kETpn°q?, (2.3 B
3M
whereD , is the covariant derivative with respectdg, and k2P = ——

. e : 4"
K, is the extrinsic curvature of the brane, we obtain the r
equation for the energy transfer of the matter on the brane to

the bulk, M o1,

l..,L., U
2~ (bulk) _
K p( ) r_ + — K

—TY— STY+2TY
. . . v u
p+3H(p+p)=2(—T,,v2+Tyuud). (2.37) (2.44)

Equations(2.34), (2.35, and (2.37) determine the cosmo- whereM is given by Eq.(2.12) and?ab is defined by Eq.

logical evolution on _the br.ane, once the bulk geometry iS2.7), and both contain the contribution from the bulk cos-
.‘Q’OI\r/]Ed' These e.quafll_?‘ns will bef arf)plllze_d to a nuIIIdusrt] modg ological constant. It may be noted that, unlike the effective
'?] t be er.Xt ;e_c?lond_ € ca(sje_ 0 At € :jnstgln-sca ar theory I%nergy density, the effective pressure contains a part coming
the bulk is brietly discussed in Appendix B. from the bulk that cannot be described by the local mass

NO\;‘V dwe 1elat3 _theR aboye resglt Ito theh gr(]aometncal @Palone. The contracted Bianchi identity implies the conserva-
proach developed in Refi7], in particular with theE ., term  4i5n |aw for the total effective energy-momentum on the
on the brane. The projected Weyl tensor

brane:
_ b
E,»=Caupb,nN (2.39 PO | 3 (DU 4 (bulk))
has only one nontrivial component as = plbrane)_gpy( p(brane)y p(brane) (o 45
_ b d_ 22
E.-=CapcdN0 v =4C, ,,uv = —C,,*". 239 This is mathematically equivalent to E(R.35. However,

these two equations have different interpretations. From the
bulk point of view, Eqg.(2.35 is more relevant, which de-
scribes the energy exchange between the brane and the bulk,
whereas a natural interpretation of Eg.49 is that it de-
~ 2 scribes the energy exchange between two different matters
E _=— ﬂJr E(G‘i—6G” )=— ﬂJr ﬁ(Tii_GTu ). on the brane: the intrinsic matter on the brane and the bulk
" r4 6 ’ r4 6 0 matter induced on the brane. The important point is, as men-
(2.40 tioned above, that the pressure of the bulk matter has contri-

Using EQ.(2.22), this can be uniquely decomposed into the
part proportional tavl and the part due to the projection of
the bulk energy-momentum tensor on the brane. We find
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butions not only from the local mass but also from a projec- o .
tion of the bulk energy-momentum tensor, which makes the —=e @), (3.9
equation of state different fromp(®!= p(®ul)/3 'j e that of v
a simple dark radiation. where the functior (v) describes the freedom in the rescal-
ing off the null coordinate. This equation is consistent with
Ill. APPLICATION TO THE NULL DUST MODEL Eq. (3.4). Thus, we obtain the solution as
In this section, by using the local mass derived in the 2 M)
preceding section, we discuss the bulk geometry and brane cI):r'veF(”): Kt ————,
cosmology in the context of a null dust model. Especially, we 4 r
pay attention to the gravitational collapse due to the emission 1
of energy from the brane. Namely, we consider an ingoing _ = zJ'” F(v)
null dust fluid emitted from the brar{d5,17,18. M(v)=73 x5 Uod”e f(v)+Mo, @7
A. Setup where we have assumed thgv) =0 for v <v,, that is,vg

is the epoch at which the ingoing flux is turned on. For
Sefiniteness, we assume that the bulk is pure Adb<ab
and setM ;=0 in what follows.

Transforming the double-null coordinates,() to the
half-null coordinates,r) as

The energy-momentum tensor of a null dust fluid take
the form[24],

Tap=m1falpt manang, (3.1

where, andn, are the ingoing and outgoing null vectors,
respectively, introduced in Eq&2.19. If we require that the
energy-momentum conservation law is satisfied for the ingos
ing and outgoing null dust independently, we have

rydu=dr—r ,dv, (3.9
he solution is expressed as
ds’=—4d(r,v)e ZFdv2+4e FOdpdr+r2dQf 5,
o f(v) d  g(u) *

:(r,u)2r37' MfW > 32 (3.9

where® is given by the first of Eq93.7). This is an ingoing

. . i Vaidya solution with a negative cosmological constant
respectively, and have the dimensidBsxX mass) 1. We as- ; ; ; ; e
’ 5 [15,17. For an arbitrary intensity functiofi(v), this is an

sume the positive energy density, i.€(v)=0 andg(u)  exact solution for the bulk geometry. Note that if we rescale
=0. Thus, the nontrivial components of the energy-v as dv—do=eFdo f(v) scales as f(v)—>f_(v)

momentum tensor ar it . ; ; ,
omentum tensor are =e 2Ff(v), which manifestly shows the invariance of the

where f(v) and g(u) are arbitrary functions ot and u,

f(v) g(u) solution under this rescaling.
Tpw=—"73", Tww="7"- (3.3 An apparent horizon for the outgoing radial null congru-
r r ence is located on the three-space, satisfying
To satisfy the local conservation law in an infinitesimal ®=r =0 while r.=finite 3.1
interval (u,u+du) and @,v+dv), we find that the intensity v " ' (310
functionsf(v) andg(u) have to satisfy the relation This gives
o ) 2
f(v)(r— =g(u) ﬁ) . (3.9 r2:€_( K2+4M(v)—K). (3.11)
U u ’ U 2 €2

In general, if bothf(v) andg(u) are nonzero, it seems al- The direction of the trajectory of the apparent horizon is
most impossible to find an analytic solution that satisfies Edgiyen by

(3.4). Hence we choose to set eithfgp) =0 org(u)=0. In
the following discussion, we focus on the case tbéi) dr M €2r k2 (v)eF W) e2r
=0, that is, the ingoing null dust. = id

- - 3.1
dv  2(r*+M¢€?3)  6(r*+M¢?) (312

B. Bulk geometry of the null dust collapse Thus, forf(v)>0, dr/dv is positive, which implies that the

Forg(u)=0, Eqgs.(2.14) give trajectory of the apparent horizon is spacelike.
For the case oK=+1 or K=0, the apparent horizon
M :}Kzgf( ). M =0 3.5 originates fromr =0, while it originates fromr=¢{ for K
Y370, v M= ' =—1. A schematic view of the null dust collapse is shown

in Fig. 1. We assume that the brane emits the ingoing flux
The second equation implielsl =M (v). Substituting Eq. during a finite intervalbounded by the dashed lines in the
(3.9 into the Einstein equation®.3), we find figure9 and no naked singularity is formed. For all the cases,
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r=0 r=0
=~. ~ R, ~\
(N ~ Nee, ~
h ~ +J AN
Ly AN 5 N, e, N,
ey, ~ :. r=0 \\ -.,5\
N, AN | \,
Ty ~ Ke N,
NI NS AN .
.
T Nt ~ N
AN AN N
AN ~
~ N
~ N ™
~ N
~ N
\\ =00
N
= N —
r=0 < =00
N
N
~
k=0
(@) K=+1

(c) K=-1

FIG. 1. (Color online Causal structure of a spacetime with ingoing null dust for the cas&s=of 1, 0 and— 1. In each figure, The
(almost verticagl wavy curve represents the brane trajectory and the dotted line is the locus of the apparent horizon. The thick horizontal line
at r=0 represents the spacelike curvature singularity formed there. The ingoing flux is assumed to be emitted during a finite interval
bounded by the dashed lines.

the causal structures after the onset of emission are very (3) r<0, ®>0—0,>0, v_<O0.
similar. The spacelike singularity is formedrat 0, but it is
hidden inside the apparent horizon. _ _ _
(4) r<0, ®<0—v,.>0, v_>0.
C. Brane trajectory in the bulk
In the null dust model, using Eq2.25), the proper time From these, we can conclude the following. For an expand-
on the brane is related to the advanced time in the bulk a#lg braner>0, the brane exists always outside the horizon,

[18] ®>0, andv is given byv . . On the other hand, a contract-
) e ing brane,r<0, can exist either outside or inside of the
) rEre+o (3.13 horizon. Thus, if the brane is expanding initially, the trajec-

20 ' tory is given byv =v , , and it stays outside the horizon until

it starts to recollapse, if ever. If the brane universe starts to
To determine the appropriate sign in the above, we requireecollapse, which is possible only in the case +1, by

that the brane trajectory is timelike, henge-0, and exam- continuity, the trajectory is still given by=v_, and the
ine the signs of . for all possible cases: brane universe is eventually swallowed into the black hole.
- From the above result, we find
(1) r>0, ®>0—0v,>0, v_<O0.
L LT r2+®<0 a1
(2) >0, d<0—v,<0, v_<0. Ful=r=rw=—""5 : (314
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Using Eg.(2.32, this gives an upper bound of the Hubble

parameter on the brane as f(v)=—v, (3.2)
Ks

H<5K§(P+‘7)' 319 wherer is a positive constant. This corresponds to the self-
similar Vaidya spacetime if the cosmological constant were
Let us now turn to the effective Friedmann equation onabsen{19]. The brane ceases to emit radiationvatv, and
the brane. For simplicity, we tune the brane tension to thehe bulk becomes static AdS-Schwarzschilddorvg. Thus
Randall-Sundrum valuesZo= 6/¢. The effective Friedmann the local mass is given by
equation on the brane is

0 (v<0)
K 1 1 M(7)
H2+ —2=—Kép0+—Kgp2+ 7 (3.19 2
' =A O=v=v
r2 18 36 r M(o)=1 30 ( 0) (322
where M (7)=M (v (7)) for notational simplicity. From Eg. )
(2.37), the energy equation on the brane is given by 57\00 (vo<v).
T f(7). The singularity is formed atr(v)=(0,0), and it is naked
+3—(p+Dp)=—2 2 31 e singularity is formed atr(v)=(0,0), and it is nake
Py (p+p) r3 v (3.17 if there exists a future-directed radial null geodesic emanat-

ing from it. The null geodesics then form a Cauchy horizon.
wheref(7)="f(v(7)). From Eq.(2.35, the time derivative The trajectory of a radial null geodesic is determined by the

of M is given by equation
M=EFK§ EKg(p-l-O')—H f(r)v2. (3.18 dr 1 r’(v) M(v) 32
316 @ 2| e T ) (329

Thus, from Eq(3.19, M continues to increase on the brane. o o
The advanced time in the bulk is related to the propef-€t us analyze the above equation in the vicinitwet0. A

; v o : future-directed radial null geodesic exists ifx
time on the brane by . in Eq. (3.13. Specifically, using the . . " . oy
elquality y. i Eq.(3.13. Specifically, using :=lim,_,odr/dv is positive. Using L'H@ital's theorem, we

obtain

2 4
¢=K+L—M=r2(§(p+o)2—H2) (3.19 ) dr 1/ 2x

2 r? 36 ' x=lim—==lim-—=-|K-—|. (3.29

veo U ,0dv 2 3x2

on the brane, we have
It is clear that the above equation has no solution wKen
=0 or K=—1. Hence no naked singularity is formed for
K=0 orK=—1. Therefore, we consider the cadse-1. We

introduce a function,

. ef® Kg -1
V= E(p-l—a')—H . (3.20
Note that the productv? is invariant under the rescaling of
v. Oncef(7) is given, we can solve the system of equations
(3.16—(3.18 self-consistently for a given initial condition,
and determine the bulk geometry and the brane dynamics at

the same tim¢15]. A quantitative analysis of the brane cos- Then, the condition for the naked singularity formation is

Q(x)=3x3— §x2+)\. (3.2

mology is left for future work. that Q(x)=0 has a solution for a positive. The function
Q(x) has a minimal point at=1/3. Therefore, the singular-
D. Formation of a naked singularity ity is naked if

In the previous subsections, we assumed that there is no 1
naked singularity in the bulk. However, it has been shown Q(13)=— 5 +A=<0, (3.26
that a naked singularity can be formed in the null dust col- 18
lapse[19-25. For instance, a naked singularity exists in a )
Vaidya spacetime when the flux of radiation rises from zerdghat is,
sufficiently slowly. We expect the same is true in the present 1
case.

Without loss of generality, we sef (")=2. We consider O<A=71g: (3.27
the following situation. Forv <0, the bulk geometry is
purely AdS. The radiative emission from the brane begins aThus, the bulk has a naked singularity for small valuea ,of
v=0. We choose the intensity function as i.e., for the flux of radiation which rises slowly enough.
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FIG. 2. (Color online The loci of the null geodesi¢the solid
curve and the apparent horizofthe dotted curveon the @,r)
plane, scaled in units of the AdS radids in the critical case\
=1/18. Their behaviors are qualitatively the same for all the other
values of\ in the range 8\ <1/18.

Our next interest is whether the naked singularity is local FIG. 3. (Color onling Causal structure of a spacetime with in-
or global. If it is globally naked, it may be visible on the going null dust when a naked singularity is formed. The wavy and
brane. To examine this, we integrate E8.23. In the vicin-  almost vertical curve represents the brane trajectory and the dotted
ity of v=0, we find line is the locus of the apparent horizon. A naked singularity is

formed atr=0 along thev =0 null line. A radial, future-directed

v? null geodesic originating from the naked singularithe right-
(V) =Xov| 1+ bﬁ LERRE (3.28 pointed thick ling stays outside of the apparent horizon and reaches
the brane.

wherex, is the largest positive root dd(x)=0;
the final event horizon at=v,. Mathematically, this is due
1 N T BV~ to the cosmological constant term in E.23, which
X0:€{1+ [1-36N+i6y2)n(1-181)]"° strongly drives the null geodesic trajectory to larger values of
r. Thus, we conclude that the naked singularity is global and
+[1-36M—i62\(1—18\)]"3} (3.29  visible on the brane. The causal structure in this case is il-
lustrated in Fig. 3. Investigations on the effect of the visible

and singularity on the brane are necessary, but they are left for
2 future work.
b= —_ 90 (3.30 Finally, let us mention the strength of the naked singular-
2(5%p—1) ity as we approach it along a radial null geodesic. wete

. . an affine parameter of the geodesic: 0 be the singularity,

From the form ofQ(x), we readily see that, monotonically and the tangent vector be denoted Ky=dx®/dw. We ex-

decreases from 1/2 to 1/3 asincreases from 0 to 1/18, and amineR bkakb andC,,*". From Eq.(3.3 and the Einstein
a vu . . .

henceb is positive definite. We compare this trajectory with
the trajectory of the apparent horizon. It is given by Eq.
(3.1D) with K=+1. In the vicinity ofv =0, it gives

equations, we have

2x \ 02 Raok?kP= et (v) (d_”)zz Zﬁ(d_”)z
rapp<v>=\/?“(1_§%+"' . (33D : r3 ldwl s Tdw
Sincexy>+/2\/3 for all the values of\ in the range 6\ . 2\ w2 (3.3
<1/18, anddr,,,/dv is a decreasing function aof while wooXo(l=%o)2 )
dr,,/dv is an increasing function af, it follows that the
null geodesic lies in the exterior of the apparent horizon and
the difference in the radius at the sameincreases as  Also, from Eq.(2.22, we have
increases, at least wheanis small. This suggests that the
singularity is globally naked. 3M 2\p2 o\
In Fig. 2, we plot the loci of the null geodesic and the C,ll=—r= s Ty 20w 20/ (17 x0)
apparent horizon. The result is clear. The null geodesic al- ré r* wooXg
ways stays outside of the apparent horizon, thus outside of (3.33

044021-9
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Thus the Ricci tensor and the Weyl tensor divergenas APPENDIX A: GEOMETRICAL QUANTITIES AND
andw~2¥/(1=%0) ' respectively, which is a sign of a strong LOCAL CONSERVATION LAWS IN  (N+2) DIMENSIONS

curvature singularity. . . . .
9 Y In this appendix, we give useful formulas in an

(n+2)-dimensional spacetime with constant curvature
IV. CONCLUSION n-space, and generalize the expression for the local mass and
In this paper, in the context of the RS2 type braneworld,We\)/Vleczgrrg?der the metric in the double-null form
we discussed the dynamics of the bulk and the effective cos- ’
mology on the brane in terms of the local conservation law 4r r, 5
that exists in the bulk spacetime with a maximally symmetric ds’= g dudvt r(u,0)%dQf oy, (A1)
three-space. First, we formulated the local conservation law
in the dynamical bulk. We found that the bulk geometry iSWhereK: +1,0,or—1, Corresponding to the Sphere, flat
completely described by the local madsand it is directly  space, and hyperboloid, respectively. We denote the metric
related to the generalized dark radiation term in the effectiveensor of the constant curvature spaceygs The explicit

Friedmann equation. We also found that there exists a corexpressions for the geometrical quantities in this spacetime
served current associated with the Weyl tensor and the prggre as follows.

jected Weyl tensor that appears in the geometrical approach The Christoffel symbol is
is just the local charge for this current, and it can be ex-
pressed in terms dfl and a certain linear combination of the u
components of the bulk energy-momentum tensor. I'y=|log
Next, as an application of our formalism, we adopted a
simple null dust model, in which the energy emitted by the rd rd
brane is approximated by an ingoing null dust fluid, and F}}z— or Vi If=— or Vi (A2)
investigated the general properties of the bulk geometry and Mu Mo
the brane trajectory in the bulk. Usually, the ingoing null dust
forms a black hole in the bulk. However, in the caseKof ri.= r_v”5._
=+1, a naked singularity can be formed in the bulk when
the flux rises from zero slower than a critical rate. We show
that the naked singularity is global and thus it can be visible
to an observer on the brane. Studies on the implications of a
visible naked singularity on the brane is left for future work. R w=Ry,,=— ( log
Also, we found that the brane can never enter the black
hole horizon as long as it is expanding. In addition, we found
an upper bound on the Hubble expansion rate, given by the RU =
energy density of the matter on the brane, for arbitrary but
non-negative energy flux emitted by the brane. We also pre-
sented a set of equations that completely determine the brane [ 1 (@ ro
dynamics as well as the bulk geometry. R%.,i=|— Ef(—) -
Finally, let us briefly comment on some future issues. In . v
this paper, we only discussed the case of null dust. However, oy ;
this is too simplified to be realistic. As a realistic situation, it Riujuz LU J(|og Ll
will be interesting to consider a bulk scalar field such as a | T r
Fl o )
[

r,Ur,U
)

Mol o

v

) ; Fﬁﬁ(log

,u

. r . .
i _ v I _npl

R

The Riemann tensor is

r,Ur,U
P

Yij

-‘ﬂ
S
B
S—

Yij

=

S| =
<

[

(A3)

dilaton or a moduli field. In this case, it will be necessary to
solve the bulk and brane dynamics numerically in general.
Another interesting issue will be the evaporation of a bulk
black hole by the Hawking radiation and its effect on the
brane dynamics. We plan to come back to these issues in _ _
future publications. R, ju=Rj,=—

log

R
r r

Moo
'05},
r
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I u

Rij:

) —-2n
,uov

,Ur,U
The scalar curvature is

R= hl [
a r,Ur,U Og

r,Ur,U
P

@r oy,
e,

nn—1)

+ =7 (K- ). (A5)

The Einstein tensor is

Guu=Ruu:Gpy =Ry,

K
—|+n r , (AB)

rUU
+2(n—1)=
,uv r

(n-2)(n-1)
—fm—cb)]m.

The Weyl tensor is

n—1 rr r rr
u_ ,ut v _ ,UU_ ,u' v _
Cuvu n+1 Iog (I) ) " r rch (K q))a
1

— 2 u
Civjo= ﬁr %iCuvu s

2
Cij=— WTA( Yik i1 — ¥it Yik) Cup "

PHYSICAL REVIEW D 70, 044021 (2004

Let us now turn to the conserved current associated with
the Weyl tensor. We start from the equation that results from
the Bianchi identitie$26],

Cabcd‘d:‘]abc, (A11)

where

_2(n—1)

abc Knt2 Tc[a;b]+ (n+1) gc[bT;a] .

(A12)

From this equation, we can show the existence of a locally
conserved currer®? given by

Q3=r{pndhea  Q2,=0, (A13)
where¢? andn? are the null vectors defined in Eq2.19.
The nonzero components are explicitly written as

QY=—-rJv,, Q’=-rJv4,. (A14)
We then find the following relations,
(rn+1Cvuvu),v:rn+lvavi
(rn+1Cquu)'u:rn+l\]uuu' (A15)

These relations are generalization of E521), and imply
that the Weyl component®**C_“" is the local charge asso-
ciated with this conserved current.

Using the explicit form ofC,,’" in Egs. (A7) and the
Einstein equations, we can relate the Weyl charge to the local
mass. We find

From these formulas, we can show the existence of a

conserved current in the same way as given in the text.

Namely, with the timelike vector field?® defined by Eq.
(2.4), the currentss?= £°T,@ and S2=£°T, 2 are separately

rﬂ+lcvuvu
n(n-1)M n-1 .
- 2 a n(n+1)rn+l(G|‘_2nGv”)
n(in—1)M n—-1 :
= it Kot T —2nTY,).

(A16)

conserved, and the corresponding local masses are givefinally, we note that this equation implies that the linear

respectively, by

M=r""Y(K-d) (A8)

and

_ 2

— N — n—1
M=M= D=2y Ao

(A9)

The v and u derivatives ofM are given by the energy-
momentum tensor as

M _ 2 2_rn TU _Tv
v Kn+2 n ( vr,U vr,v)!

2r"

MVUZKﬁMT(Tﬁr'U—TZr’U). (A10)

combination of the energy-momentum tensor,

r YT —-2nTY,), (A17)
plays the role of a local charge as well. Therefore, the be-
havior of this quantity is constrained nonlocally by the inte-
gral of the flux given by the corresponding linear combina-
tion of the currentS® and Q2. Although we do not explore

it here, this fact may be useful in an analysis of the behavior
of the bulk matter.

APPENDIX B: EINSTEIN-SCALAR THEORY
IN THE BULK

In this appendix, we apply the local conservation law to
the five-dimensional Einstein-scalar theory. We assume that
there is no matter on the brane, but we take account of a
coupling of the bulk scalar field to the brane tension. In this
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case, the energy exchange between the brane and the bulk,From the brane point of view, as given by E¢8.43 in

hence the time evolution d¥l, occurs through the coupling. the text, the effective energy density and pressure are com-
We first consider a general bulk scalar field. Then, as gosed of the brane tension and the bulk matter induced on

special case, we analyze the local mass on the brane for thiee brane as

exact dilatonic solution discussed by Koyama and Takahashi

[13]. Finally, we clarify the relation between the local mass p=pM+p®  pltV=pD 4 p®) (B7)

and the term that is identified as the dark radiation term in

the effective four-dimensional approach in which the contri-where

bution of the scalar field energy-momentum to the brane is

required to take the standard four-dimensional f¢ir. Kip(T)_ 1_2K402 K4p(T)_ _ 1_2K45102,
1. Setup M
We consider a theory described by the action kap® = rral
=J d°xy—g iR—E(? PPrd—V () M 1 1/ d \?
2k2 2°° k2p® =—+ = k2| ¢? —2V+ 7 , (B8)
5 r* 3 Hde?
—J d*xV—qo(¢). (B1)  where Eq.(B4) is used. From the Bianchi identity on the

brane, the conservation law for the total effective energy-

For the bulk with the metric given by E¢2.1), the energy- momentum on the brane is obtained as

momentum tensor in the bulk is given b . -
gren sy p®+3H(p®+p®) = — p(M, (B9Y)

_ 42 _ 42
Too=¢s Tu=¢u, The above relation is mathematically equivalent to 68§).
As discussed after Eq2.45 in the text, Eq.(B9) gives
the point of view from the brane, and it is naturally inter-
preted as the equation describing the energy exchange be-
tween the brane tension and the bulk matter induced on the
i) brane. On the other hand, the time variation of the local mass
Tyj=—r? or 1 PudutV(P) |y (B2)  along the brane, EqB6), gives the point of view from the
e bulk, and it contains not only the energy transfer from the
brane tension to the bulkhe last term but also the energy
(j;ll w of the bulk scalar field at the location of the brane,
which is nonvanishing in general even if the scalar field has
no coupling to the brane tension.

Tw=—

On the brane, the first derivatives of the scalar field tan-
gent and normal to the brane are expressed, respectively,

}'=¢ nP=—o v+ U,

2. Dilatonic exact solution

b= %= v+ ¢ U. (B3)

In the caseK=0, and for special forms of/(¢) and
o(¢), an exact cosmological solution is known, as a realiza-
tion of the bulk inflaton moddl13]. The forms of the poten-
tial and brane tension are

The Codacci equatiof2.36) gives, via the coupling to the
brane tension, the boundary condition at the brane,

d
r_ A
¢ —E d¢0’(¢) (84) ng(d)) +5 )\2 *2\7bk5¢, (B].O)
In the present case, the effective Friedmann equation induced K§U(¢): FZ)\oe‘ \gb,(sd,’ (B11)

on the brane, Eq.2.34), becomes
where 8, b, and\, are constant and are all assumed to be

K 1 3M :
2 2 2, 2" non-negative, and
, 8
The time evolution of the local mass on the brane is given A=4b"—=. (B12)
by
L 14 21 q If =0, there exists a static, Minkowski brane solutjaA].
VIR NN TN ot 40, 9 In order to avoid the presence of a naked singularity, the
M= 3 et H[QS 2V+ 4\d¢ ) 36" ¢>d¢0 ' dilatonic couplingb? is assumed to be smaller than 116].

(B6)  This implies thatA is negative and is in the range
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8 the low energy limit,H2¢?<1, whereH is the Hubble pa-
2<(—A)s=>. (B13) ; ; ;
3 rameter of the brane, and the leading order correction gives
the gradual energy loss from the scalar field to the bulk,
The exact solution takes the form giving rise to the dark radiation terf8,11]. Here, we discuss
o ‘ the relation between the dark radiation term appearing in this
— a\T, \? K T, . . . . . .
ds’=e?V@(—dr?+ e gdxX dx + 2?5 (Nd2), effective four-dimensional description and the generalized
. dark radiation term given by the local mass in the bulk.
¢=¢(1)+E(2), (B14) From the geometrical descripti¢i], the induced Einstein

with the brane located at=z, and it is assumed that equation on the brane is written as

E(zo) =0 without loss of generality. The scale factor of the 1
brane and the scalar field on the brane are given by *G,,=- 1—2K§azqw+ kTP -E,,. (B19

_ aa() — 1/6b? 2brgh(7) —
r(ry=e (Hg7) , evPrs Hor, (B15 where

ey 2| ~ 1.
S 5 T;b3=§[TabquB— ( Tabnanb_ ZTabgab) quv} )
Mo\ =z=4bNo\ =z (B16) (B20)

is the projected tensor of the bulk energy-momentum onto

the brane that includes the contribution of the cosmological

constant; see Eq2.7). For a homogeneous and isotropic
rane, the nonvanishing components are

where

8

H0:: A4‘§

As seen from the first of Eq$B15), the power-law inflation
is realized on the brane fdr*<1/6.

Let us consider the time evolution of the energy content i
this model. From the brane point of view, the time derivative

of the brane tensiop(" is always negative: 1

A :I‘—S't?)'): _:'I—UU+ 6Tii ’
o(N=—— 0. (B17)
P st S
. Foi = Fi - Yo O T (B21)
Thus, from Eq.(B9), for an observer on the brane, there is e ', Yy v

one-way energy transfer from the brane tension to the bulk

matter induced on the brane. From the bulk point of view, et us decomposg,, as

however, the situation is slightly more complicated. The time

derivative of the local mas@r the generalized dark radia- E,.,=EQ+EQ, (B22)
. . v Mmv mv

tion) on the brane, EqB6), is evaluated as

whereE) is to be expressed in terms of the bulk energy-
momentum tensor in such a way that the effective four-
dimensional description is recovered, a:‘s@ is the part that
should be identified as the dark radiation term in this effec-
The sign ofM is determined by the sign af/8+ 5. Note tive four-dimensional approach. To be in accordance with
that the sign ofA/8+ & determines the sign of the bulk po- Ref.[11], we choose the components Bf°) as

tential as well, as seen from E10). If A/8+5>0, i.e.,
6>(—A)/8=(b%2)—1/3, we haveM>0. SinceM is the
total bulk mass integrated up to the location of the brane, the
increase inM implies an energy flow from the brane to the _
bulk. Therefore, in this case, the energy in the brane tension =—-E®, (B23

is transferred to the bulk scalar field and it flows out into the ) ) o ) o
bulk. In contrast, ifS< (— A)/8, we haveM <0. In this case, and identify the remaining part with the dark radiation

although there is still energy transfer from the brane tensioferM: X,
to the bulk scalar field, the bulk energy flows onto the brane.
In other words, there is a localization process of the bulk
energy onto the brane that overwhelms the energy released
from the brane tension.

M__ 1 1b2A5 B18
A1z P lgte (B

b) _ 2
I

v 1, =
T+ =TY, |+ 5 k(T —3T7,)
u 12

—E@=X=—-E®@ (B24)

In the effective four-dimensional description, the Einstein
equation on the brane takes the form,

3. Local mass and the effective four-dimensional description 4G = KflT(Eﬁ)— g(d)
nv v pv

(B25)

In the bulk inflaton model with a quadratic potential
[9-12,, it has been shown that the bulk scalar field projectethereTfff) is the effective energy-momentum tensor on the
on the brane behaves exactly like a four-dimensional field irbrane,
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1, ) (b) Applyi % this to a bulk scalar field with the actic(Bl), we

12/69 At TP —EP), (B26)  find pM and p'™ are given by those of a four-dimensional
scalar fielde with the potential,

and «3 is the four-dimensional gravitational constant that K2

should be appropriately defined to agree with the conven-  x3V(ef ()= K5 V() + —02(¢)— —o’ 2(p) |,

tional four-dimensional Einstein gravity in the low energy (B29)

limit. In the present case of homogeneous and isotropic cos-

mology, the only nontrivial components are the effective enwhere o= 1/K52/K42¢ From the contracted Bianchi identity,
ergy density and pressure, which are given explicitly by e obtain

2-|-(eff) [

1
—4( r4X).

(B30)

Unfortunately, as we can see from E{B27), there is no
simplification in the energy equation in terms of the five-
1 1 1 1 dimensional energy-momentum tensor.
kapeM= = 27N = — — (2o2+ = KgTv + k2T From the effective four-dimensional point of view, what
3 12 12 happens is the conversion of the scalar field energy on the
brane to the dark radiation via the coupling to the brane
(B27)  tension. From the bulk point of view, a natural interpretation
is to regard the local madé on the brane as the generalized
) ) ] ) ] dark radiation. These two different identifications of the dark
The effective Friedmann equation on the brane is written agagjation term on the brane coincide only when the bulk is in

vacuum andvl is constant. Comparison of the above decom-

- 1 5 1 -
Kﬁp(eﬁ)= — KiT(eﬁ)TTzl_ngo.Z_ ZKSTU 7 KéT'i D#Tiff):b(efmr 3H(p(eﬁ)+ p(eff)) - _

m|\>| =
-

U~ U~
2 u
5 .—TUU+ =T v
v u

3

8

2 u~v U~U
Kg —T u+ T v
u u

3l H2+ — K 5| = k2pe —E@ position of E . with Eq. (2.40, we find the difference be-
r* tween the dark radiation in the four-dimensional description
1 1 and the generalized dark radiation in terms of the local mass
12Kga'2— ZKSTU 7 Kg'f'ii M as
ML a7y g Yog U 4 x
1 5[ U~ U~ 4_4K5( i v) 8K5 lut oy :
— 5 Ksg T, + .—Tuv + X. (B29) r v u
8 v u (B31)
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