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Universality of massive scalar field late-time tails in black-hole spacetimes
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The late-time tails of a massive scalar field in the spacetime of black holes are studied numerically. Previous
analytical results for a Schwarzschild black hole are confirmed: The late-time behavior of the field as recorded
by a static observer is given hy(t)~t~>%sifw(t)xt], wherew(t) depends weakly on time. This result is
carried over to the case of a Kerr black hole. In particular, it is found that the power-law inde»s/6f
depends on neither the multipole modenor on the spin rate of the black ho&®M. In all black hole
spacetimes, massive scalar fields have the same late-time behavior irrespective of their inifia.dategular
distribution. Their late-time behavior is universal.
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. INTRODUCTION ¢ being the multipole moment of the field, ajpd * being its
Compton wavelength. A derivation of EL.1) appears in
The late-time behavior of massless fields in black holethe Appendix. More recently, an interesting self-similar be-
spacetime has been studied in detail for both linearjzez] havior of a Klein-Gordon field in Minkowski spacetime was
and fully nonlinear(spherical evolutions[3,4]. In contrast, found in Ref.[10]. The self-similar behavior reduces to Eq.
the late-time behavior of massive fields has been studied ifiL..1) for a field evaluated at a fixed location at very late
much less detail. In this paper we study the late-time behawimes.
ior of a scalar field numerically, in the spacetimes of In the spacetime of a Schwarzschild black hole there are
Schwarzschild and Kerr black holes. important differences. The decay rate was found in R&f.
The first to consider the problem of a massive scalar fieldo be given by
in the spacetime of a Schwarzschild black hole were No-
vikov and Starobinski, who studied the problem in the fre- wsch~t*5’63ir'[w(t)><t], (1.2
guency domain, and found that there are poles in the com-
plex plane closer to the real axis than in the massless casehere the power index is independent 6f The time-
They thus inferred that the decay rate would be slower in th@volving angular frequencw(t) approaches:. asymptoti-
massive case than in the massless ¢aké hat problem was cally ast— o, but is different fromu at finite values of time.
later studied numerically by Burkid@] both for a linearized This result was generalized in RgB] to any spherically
massive scalar field, and for a self-gravitating, spherical massymmetric, static black-hole spacetime. The details of this
sive field. In both cases it was found in R¢6] that the result have not been corroborated numerically—although
late-time behavior was given by an oscillating field, whosequalitatively they are supported by the results of RéF—a
envelope decayed according to an inverse power law, anthsk we undertake in this paper. In addition, we also show
whose frequency was determined by the Compton wavethat this result remains correct also for a Kerr black hole, for
length of the field, i.e., by its mass term. In REf] it was  which the power index-5/6 is independent of both and
also reported that the decay rate of the envelope was givethe spin rate of the black hol'M. We also study the be-
by t™¢, wherea~0.8. No attempt was done in Rg6],  havior ofw(t), and find it to be in agreement with the results
however, to determine the value @faccurately, or to deter- of Refs.[8,9]. Similar conclusions were obtained recently
mine its dependence or lack thereof of the parameters of thalso for a spinning dilaton black holegl2] (see also Ref.
problem. The most detailed analytical study of the problen{13]).
was done by Koyama and Tomimatsu in a series of three
paperd7-9. _ IIl. MASSIVE TAILS IN SCHWARZSCHILD SPACETIME
The most striking feature of the problem of tails of a
massive scalar field is that the tails exist already in flat space- Massive fields in Schwarzschild spacetime were studied
time [11], because spacetime acts like a dispersive mediumumerically (for both a linearized and for a spherical self-
for a Klein-Gordon field. Based on the exact Green functiongravitating Klein-Gordon fieldin Ref.[6] and analytically in
the behavior of the field in Minkowski spacetime was foundRef. [8]. As discussed in Ref8], for uM =<1, the tail re-
in Ref.[6] to be given by gime satisfies> " 3M "2, M being the mass of the black
hole, andt being the regular Schwarzschild time coordinate.
Therefore, for a light scalar field, the heavier the field is, the
a1 sin(ut), (1.1) earlier the tails are seeffor heavy fieldsuM>1, the tail
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regime is fort>M, independently of the mass of the figld.  °*
To facilitate numerical simulations, one is tempted then tc |
increase the mass of the field. However, increasing the ma:

of the scalar field requires one also to increase the resolutior—
as the wavelength of the field is inversely proportional to itS= .|
mass, and as one needs at least a few data points per wars

T E
length to resolve an oscillating field. One faces then a comZ=***
peting effect: to decrease the computational time to an opti=. ozs
mum, one needs to balance the scalar field mass and tfg |

resolution of the numerical codéNVe do not discuss here the +°**
case ofuM>1 as the required numerical resolution is be-gozs|
yond current practical computational limjtOne may gain =
insight into the above discussion, noticing, following Ref.
[6], that for u<1/M, the corresponding Compton wave- ozef
length of the scalar field(=,u‘1)>M, that is, the field's 024 , ) , , ,
wavelength, is much longer than the typical radius of curva: 800 1000 M 2000 2500 8000
ture of spacetime, or the scale of inhomogeneity of curva-

ture. We therefore expect the field at early times to evolve FIG. 1. Convergence test for thd+1)D code. We find the
similarly to its evolution in flat spacetime. At later times the times at which the field has zeros for three different resolutions,
curvature effects become apparent, and we expect deviatiofégh t(h), mediumt(m), and lowt(l), and compute the ratio
from the flat-spacetime behavior. At asymptotically late[t(h)—t(m)]/[t(m)—t(l)] for each zero. We then plot this ratio as
times we expect to find the behavior predicted in Réf. a function of timet. Here, we usetl=5, 10, and 20 grid points per
The greater the mass term, the shorter the associated M for the.three rgsolutions. Second-order convergence corresponds
Compton wavelength, and the sooner the asymptotic do- © the ratio equaling 0.25.

main is expected. We therefore expect an oscillating field,

whose envelope is a broken power law: at early times it ifields alongr, =0, r, being the usual Regge-Wheeler loga-

0256

0244}

described byt ‘=2 and at late times by~ %%, rithmic radial (“tortoise” ) coordinate.
The field ¢ satisfies the Klein-Gordon equation The code is stable, and exhibits second order conver-
5 gence. The convergence test is presented in Fig. 1, which
(O-u)¢=0, (2.1 shows the ratio of differences for three runs with different
resolutions.

O being the D’Alembertian operator in curved spacetime.
We definey=r ¢ in the usual way, and decompose the fieldﬁe
¢ into Legendre modeg= = ,¢,P,(cosé). The radial equa-
tion that each mode&, satisfies is then given by

We first chose a low value giM. Figure 2 shows the

Id alongr, =const as a function of time. The initial field
here is spherical {=0), and a value ofuM =103 was
chosen. Similar results are obtained also for other low values
of uM. After the prompt burst and the quasinormal epoch,

y +EV~(r)w‘=o (2.2
,uv 4 € ’ .

where the effective potential

2M

( )e(e+1) 2M
Vin=|1-—|| ——+=

2
+ .
2 r3

(2.3

=}
T

r

r

To test our expectations in the context of a Schwarzschilc
black hole, we used a double-null code (b+1)D, and T,
solved the radial equation fa¥’. We specified a pulse of the —
form 109k

u—ug)(u—uy) ®

(
4 - (2.9

Pi(u)=

along the ingoing segment of the characteristic hypersurfac o
v=0 for u;<u<u,, and ¢(u)=0 otherwise. We also took 10 10° 10° 10*

#(v)=0 alongu=0. Here,u (v) is the usual retardethd- tM

vanced time. The results reported on below correspond to  F|G. 2. Field of a massive scalar field along=0. The initial
u;=20M andu,=60M, but our results are unchanged also data are for¢=0, u;=20M andu,=60M, andN=1. The solid
for other choices of the parameters, or for other choices ofurve is the massive scalar fighdith «M=10"3%), and the dashed
the characteristic pulse. In the following we observe théline is proportional to (/M) %2
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Ild !
10*

FIG. 3. Field of a massive scalar field along=0. The initial
data are for=0, u;=20M andu,=60M, andN=4. The solid

t/'M

curve is the massive scalar figldith M =1), and the dashed line

is proportional to /M) %%,
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t/'M

FIG. 5. Same as Fig. 3, but with=1.

hole, and therefore behaves as in flat spacefideeay rate
of t~%?). At late times, the field takes its asymptotic decay
rate oft ~>6, and the onset of the asymptotic behavior can be

an oscillatory tail is seen. The decay rate of the envelope ofynirolied by changing the value pfM.

the tail is very close ta=3?2

The prediction of Ref[8] is that the asymptotic decay

We next consider a high value pfM. Figure 3 shows the | 5te oft—56 is independent of the value éf We check this

field for the same parameters as in Fig. 2, except that herg, Fig. 5, which shows the same data as in Fig. 3, except that
uM=1. Again, an oscillatory tail is seen, and the decay raté,ere we takef = 1. Again, the decay rate is 5%, the same

of the tail is very close ta~ .

as with¢ =0. We could not find any deviation from the>®

The most interesting case is that of an intermediate valugenavior for any value of. We therefore conclude that our
of M, for which both types of behavior coexist. In Fig. 4 simylations are in agreement with the prediction of FReF.

we show the field foprM =2.5x 10~ 2. This figure shows an

initial oscillatory decay with an envelope decaying Itke’?,

In flat spacetime the period of the oscillations does not
change at late times, and is given By,=2m/u (see the

which changes gradually to an oscillatory decay with a deca)&ppendbq. In Schwarzschild spacetime, the period is no

rate oft = This is the broken power law expected: at early|onger fixed. In Ref[8], the oscillatory part of the field is
times the field has not noticed yet the presence of the blaciyen py

10 T T T

; il
8 [
1 ul)3 10*

t/M

FIG. 4. Field of a massive scalar field along=0. The initial
data are for=0, u;=20M andu,=60M, andN=4. The solid
curve is the massive scalar fielgfvith uM=2.5x10"2). The
dashed linga) is proportional to /M) %2, and the dotted linéb)
is proportional to /M) %8,

sin ut— (3/2) (27 uM)?3(ut) Y3+ smaller terms.

To interpret this prediction as a changing period, we rewrite
the oscillatory part of the field as $in(t) Xt], where

)

Figure 6 shows the power spectrum of the field, for the
caseuM =1. A sharp peak at=(27) ! is seen. This peak
corresponds to the angular frequency equaling the mass term
m. Notice the one-sided broadening of this peak. While no
frequencies higher than ¢2) ! appear to be present, lower
frequencies are. This suggests that as time progresses, the
frequency increases to its asymptotic value ofrf2%. We
test this in Fig. 7 by plotting +2#/P(t) as a function of
t~1. Here, P(t) is the local period of the oscillations. We
find that ast—, indeed the period decreases to its
asymptotic value. Next, we consider in greater detail the rate
at which the period approaches its asymptotic value. Recall
that according to Refl8], the slope of the curve in Fig. 7
should be 2/3. In Fig. 8 we display the local slope of the

M 2/3

3
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FIG. 6. Power spectrum of the field. HereM =1, andN
=100. To obtain this plot, the field’s values were first scaled®fy
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FIG. 8. The local slope of the curve in Fig.f(t), as a function
of M/t.

to get close to a pure sinusoid, and then the Fourier transform was

taken. We assume hetand belowy M=1.
curve as a function ot~1. Our numerical result, of an

asymptotic slope of 0.660.01, is in agreement with the
predictions of Ref[8].

IIl. MASSIVE TAILS IN KERR SPACETIME

this situation to remain basically the same also for a massive
field. However, for a massive scalar field in Schwarzschild
spacetime the decay rate is independent of the nfodehis
implies that although in Kerr spacetime, mode mixing will
indeed generate more modes and each mode will have the
same evolution as in Schwarzschild spacetifas in the
massless cagebecause in the Schwarzschild case all mas-
sive field modes have the same decay rate, and they will all

Now we turn to the discussion of massive scalar field tailshave the same decay rate in Kerr spacetime.

in Kerr background. We intuitively expect the late-time be-

Our numerical simulations were performed using the pen-

havior in this case to be identical to that of the Schwarzschilctrating Teukolsky codéPTC) [14], which solves the Teu-
case, as presented in the preceding section. The reason wkylsky equation for linearized perturbations over a Kerr

the late-time tail is expected to be independera/dfl is the

background in the ingoing Kerr coordinates,r(6,¢).

following: For a massless field in Kerr spacetime, there is arpese coordinates are related to the usual Boyer-Lindquist

mixing of modes and each existing mode decays with a de-
cay rate oft~?*3) which is the same decay rate as in the
Schwarzschild case. All the modes that are not disallowed
are excited, such that the overall decay rate is dominated b

the existing mode with the slowest decay g We expect

0

-0.21

/P@) |
sL ¢

Iog1q |1-2n

iog,, (M/t) ~

FIG. 7. The changing period,-127/P(t) vs M/t, for the same
data as in Fig. 6.

coordinates tr,6,¢) through o=+ faA~'dr andt=t
where A=r2-2Mr+a? and r,=[(r?
+a%)A~1dr. The Teukolsky equation for the functiof in

e ingoing Kerr coordinates can be obtained by implement-
ing black-hole perturbation theofwith a minor rescaling of
the Kinnersley tetrafl14]). It has no singularities at the event
horizon, and therefore is capable of evolving data across it.
This equation is given for a massless fiejd=€0) by

T,

AN 2
+ ——A—5+2(s— —M)—
(2 2Mr)&,t,2 Ao7r2 2(s—1)(r M)ar
1 4 mp) 1 3y PP
——— | SN0— | — == —=5— r——
sing 36 d0)  sinfe gg2 ator
52 2scoté d
—2a lﬁ—' . —lf+(szcot20+s)¢//+2[sr
Irde sind  ye

P

d
+iascosf+(s— 1)M]E=O. (3.1

For the case of interest, we set0 in Eq. (3.1), and
include a mass term?(r?+ a2cos6)y on the left-hand side
of Eq. (3.1). The PTC implements the numerical integration
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T " T " T " P(t) is the local period. Indeed, we see in the Kerr case a
decreasing period, with an asymptotic rdtope of the
0.28 - curve in Fig. 12 is shown in Fig. 13f about 0.68 0.02,
= : which is consistent with thé€Schwarzschilgivalue of 2/3.
é B | Thus, in accord with our expectations, the asymptotic
= \, late-time behavior of massive scalar fields in a Kerr space-
= VNI time is identical to that in a Schwarzschild background. Spe-
E0.24r T cifically, the asymptotic late-time tail is insensitive to the
) multipole numbert, and also insensitive to the spin rate of
= the black hole. The late-time behavior of massive scalar
fields in black hole spacetimes is universal. There is yet to be
0.20 , . , . an analytic study in the Kerr context, akin to the one in the

0 1000 2000 3000 4000 Schwarzschild casg7—9]. Also, it should be noted that all
UM the numerical simulations reported on in this work were axi-
FIG. 9. Convergence test for ti+1)D penetrating Teukolsky ~Symmetric. In a nonaxisymmetric evolution of massive sca-
code. We compute the times at which is field has zeros for threédr fields in a Kerr spacetime, under certain conditions, a
separate resolutiorhigh t(h), mediumt(m), and lowt(l)] and  Very interesting instability arises that has been studied in the
plot the ratio[t(h)—t(m)]/[t(m)—t(l)] as a function of time. The frequency-domaif16]. We are hoping to return to an exten-
resolutions used for this test wek&/40, M/20, andM/10 for the  sive study of that case in the time-domain elsewhere. Lastly,
high, medium, and low resolutions, respectively. Second-order conintriguing deviations from the results reported on here, which
vergence is clear by the value of the convergence (&ti25. appear to introduce a certain low-frequency modulation at
very late times, were reported on in numerical simulations
of the resulting equation by decomposing it into azimuthal[17,18. Notably, the analytical analyses do not show any
angular modes and evolving each such mode using a reducétdch phenomena. It remains an open question whether such
(2+1)-dimensional linear partial differential equation. The phenomena are real physical ones, or a numerical artifact.
results obtained from this code are independent of the choice
of boundary conditions, because the inner boundary is typi-
cally placed inside the horizon, whereas the outer boundary ACKNOWLEDGMENTS
is placed far enough away that it has no effect on the evolu- The authors thank Jorge Pullin and Steven Detweiler for
tion. (As was shown in Refl15], close timelike boundaries syggesting a study of massive scalar fields in a black hole
with Sommerfeld-like bOUndary conditions do not allow for Spacetime’ and Hiroko Koyama and Amos Ori for discus-
the evolution of late-time tailsTypically, for the simulations  sions. G.K. acknowledges research support from the Univer-
performed in this study, the outer boundary was located agjty of Massachusetts at Dartmouth and also from NSF grant
4000V and a grid of size 4000032 (radiakangle) was number PHY-0140236. L.M.B. was supported by NSF grant
used. The initial data was always chosen to be a GaussigpHY-0244605. Some of the numerical simulations were per-
distribution, centered at 30 and with a width of M. The  formed at Boston University’s Scientific Computing and Vi-
PTC is stable and exhibits second-order convergence as cleglialization Center. The authors are grateful for having access

from Fig. 9. to that facility.
We first demonstrate the independence of the late-time

evolution of the Kerr parametera(M) of the background
spacetime. Figure 10left panels and upper panel on the  APPENDIX: TAILS OF A MASSIVE SCALAR FIELD
right) shows tails from several different evolutions corre- IN FLAT SPACETIME
sponding to different values od/M, all plotted together.
Each oscillatory tail shown has the expected pefaldout
27/ ) and a decay rate close t0°®. The value ofuM is
chosen here to be 1.

We next demonstrate the independence of the oscillatory
tail of the value of¢. Figure 10(right panel$ shows the S(t—r)  udy(ut?—r?)
late-time evolution of the massive scalar fiejd\ =1) in a g(r,t)= - O(t—r), (AL
Kerr background spacetime wityM = 0.6 for several dif-
ferent values of . There appears to be no deviation from the
t 5/ oscillatory tail for any value of. for a source at the origifin space and time Here,J; is the

Last, we turn to the changing period of the oscillations inBessel function of the first kind of order 1. This Green'’s
the Kerr case. In Fig. 11 we plot the power spectrum of thefunction can of course be integrated to find the field straight-
field for the case o/M=0.6,€=0, anduM=1. Much forwardly, but instead we shall use a more geometric ap-
like in the Schwarzschild case in the preceding section, w@roach to find the field.
observe a one-sided broadening of the peak at)(Z. To Consider a spherical shell of radiug, such that the ini-
test whether this indicates a monotonic increase in frequencyal perturbation field is well localized in space and in time.
we plot in Fig. 12 +2/P(t) as function oft !, where  The only requirement is that the perturbation will be regular

In this Appendix we derive the decay rate of Klein-
Gordon tails in flat spacetime. The exact Green'’s function is
known[11], and is given by
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everywhere, and in particular at the location and time of the
burst and at the origin=0. The field¢ satisfies the Klein-
Gordon equation

(O—p?)¢=0. (A2)
We next define, as usual,=r ¢, and write the radial equa-
tion for ¢.

As the field propagates in spherical waves, the field can
depend only on the spacetime intergdtom the event of the
burst. That is,y=¢(s). Inserting this into the radial equa-
tion, we find thaty satisfies

Sy + sy’ + u?s* =0, (A3)
a prime denoting derivative with respect to the intersal
This is just the Bessel equation, with general solution

FIG. 10. Massive scalar field
(with  uM=1) sampled atr
=50M. The initial data have a
Gaussian distribution, centered at
50M, and have a width of [I.
The dotted curves show the be-
havior of the scalar field, and the
solid lines are proportional to
(t/M) 5% The sequence of plots
demonstrate a clear independence
of a/M, and also of the mode
number?.

0.8

amplitude (arbitrary units)

0.0

0.14

0.15

0.16
fM

0.17 0.18

FIG. 11. Power spectrum of the field evolving in a Kerr space-
time. Here,uM =1, anda/M =0.6. To obtain this plot, the field’s

values were first scaled by to get close to a pure sinusoid, and

#(S) =C1Jo(1S) +C,Yo(1S). (A4)
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-3.20 -2.80 -240 -2.00 FIG. 14. The construction of the “image charge” solution. The
log o(M/t) burst of the spherical wave is at the eventr {p, The domain of

dependence of this event is the union of regions | and Il in the
FIG. 12. The changing period in Kerr spacetime:27/P(t)  diagram. As this solution is not regular along 0 we introduce an
vs M/t for the same parameters as in Fig. 11. “image charge,” i.e., a burst with the opposite sign at the fictitious
event (O;-rp). The field due to this image solution in region Il is,
Here, Jo and Y, are the Bessel functions of the first and of course, unphysical, but in region Ill it is, and is superimposed
second kinds, respectively, of order 0. The integration conwith the solution of the original burst in that region.

stantc, must vanish for the field to be regular at the event of

the burst 6=0). Therefore, () =Cq[Jo(S1) — Jo( 1S,) ] (A7)
#(S)=C1Jo(1S). (A5) is the requested solution, whegg=t?>—(r—r,)? and s3
=t>—(r+ry)2. This corresponds to an “image charge” at
Forr=const and foit>r,rq, we then find that r=—ro. Obviously,r = —r is not a physical point in space-
time. It is a mathematical way to write a formal solution,
cog ut—/4) where in the physical part of the domain of dependence of
‘/WClW (A8 the superimposed bursts the solution is the one so(sge

Fig. 14. In fact, this is just a mathematical way to specify
This solution does not satisfy the regularity requirement, agegular boundary conditions alomg-=0.

the field ¢ diverges at the spatial origin=0. However, the Forr=const and fott>r,ro, we then find that
field ¢ is required to be regular at=0, especially at late
times (ut>1). cog ut—ml4)

P(t>rrg)~c, rrg. (A8)

To obtain the physical solution we superimpose solutions (ut)®?
to the radial equation, such that the field is regular at the
origin. This can be achieved by an “image charge.” The The phase is unimportant, such that we finally get the result
superposition

sin(ut)
07 ; ; ; , , . , . . d(t>r,ro)~cifg——=. (A9)
(ut)¥?
065
The fall off rate oft~*? is the one reported on in RefL1].
o8 ] To find the time dependence of highémodes, we find

the derivative of the spherical solution with respect to the
Cartesian coordinate Recall that on the equatorial plane,

055

__osf . dP,(cosh)/dz=—(€+1)P,,(cosh)/r. We can thus generate
= 1 from g by calculatingdy, -/ 9z, and by the uniqueness
ossr 1 of the solution that should give us the dipole solutipn. ;.

Specifically, notice that

04r

d ar ds d r 00
gz azaras s

035

0.3

- . . . . . . . . . Notice the factor ¥ in this expression. This implies that
° 02 04 06 08 M‘ It 1214 16 18 w_f Whenever a denvaqve W|th respectzes taker_1, the exponent
* of t in the denominator increases by (This is the case

FIG. 13. The local slope of the curve in Fig. 18(t), as a because of the sinusoidal function in the numerator. The
function of M/t. leading term int—* comes from its differentiation, and then
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the exponent of the denominator does not change. It is in- 1

creased by 1 because of this faActor) Vph= TF——, (A11)
Carrying¢ times this differentiation with respect i we V1-(plw)?

find that

so that wheneven # 0, different frequencies which make up
. a wave packet travel at different speeds. As noted in Ref.
Yot 1)~ S'n('“t)_ (A10) [11], it is not surprising that the associated plane waves do
' te+32 not arrive at the observation point with the same relative
phase they had at the beginning. In fact, spacetime behaves
The reason why the Huygens principle fails in this case idike a dispersive medium for the Klein-Gordon equation, as
that the phase velocity of a plane wave satisfying the Kleinthe wave numbek=w\1—(u/w)? is no longer a linear

Gordon equation is function of w.
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