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Universality of massive scalar field late-time tails in black-hole spacetimes
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The late-time tails of a massive scalar field in the spacetime of black holes are studied numerically. Previous
analytical results for a Schwarzschild black hole are confirmed: The late-time behavior of the field as recorded
by a static observer is given byc(t);t25/6sin@v(t)3t#, wherev(t) depends weakly on time. This result is
carried over to the case of a Kerr black hole. In particular, it is found that the power-law index of25/6
depends on neither the multipole mode, nor on the spin rate of the black holea/M . In all black hole
spacetimes, massive scalar fields have the same late-time behavior irrespective of their initial data~i.e., angular
distribution!. Their late-time behavior is universal.
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I. INTRODUCTION

The late-time behavior of massless fields in black h
spacetime has been studied in detail for both linearized@1,2#
and fully nonlinear~spherical! evolutions@3,4#. In contrast,
the late-time behavior of massive fields has been studie
much less detail. In this paper we study the late-time beh
ior of a scalar field numerically, in the spacetimes
Schwarzschild and Kerr black holes.

The first to consider the problem of a massive scalar fi
in the spacetime of a Schwarzschild black hole were N
vikov and Starobinski, who studied the problem in the f
quency domain, and found that there are poles in the c
plex plane closer to the real axis than in the massless c
They thus inferred that the decay rate would be slower in
massive case than in the massless case@5#. That problem was
later studied numerically by Burko@6# both for a linearized
massive scalar field, and for a self-gravitating, spherical m
sive field. In both cases it was found in Ref.@6# that the
late-time behavior was given by an oscillating field, who
envelope decayed according to an inverse power law,
whose frequency was determined by the Compton wa
length of the field, i.e., by its mass term. In Ref.@6# it was
also reported that the decay rate of the envelope was g
by t2a, where a;0.8. No attempt was done in Ref.@6#,
however, to determine the value ofa accurately, or to deter
mine its dependence or lack thereof of the parameters of
problem. The most detailed analytical study of the probl
was done by Koyama and Tomimatsu in a series of th
papers@7–9#.

The most striking feature of the problem of tails of
massive scalar field is that the tails exist already in flat spa
time @11#, because spacetime acts like a dispersive med
for a Klein-Gordon field. Based on the exact Green functi
the behavior of the field in Minkowski spacetime was fou
in Ref. @6# to be given by

cflat;t2,23/2sin~mt !, ~1.1!
1550-7998/2004/70~4!/044018~8!/$22.50 70 0440
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, being the multipole moment of the field, andm21 being its
Compton wavelength. A derivation of Eq.~1.1! appears in
the Appendix. More recently, an interesting self-similar b
havior of a Klein-Gordon field in Minkowski spacetime wa
found in Ref.@10#. The self-similar behavior reduces to E
~1.1! for a field evaluated at a fixed location at very la
times.

In the spacetime of a Schwarzschild black hole there
important differences. The decay rate was found in Ref.@8#
to be given by

csch;t25/6sin@v~ t !3t#, ~1.2!

where the power index is independent of,. The time-
evolving angular frequencyv(t) approachesm asymptoti-
cally ast→`, but is different fromm at finite values of time.
This result was generalized in Ref.@9# to any spherically
symmetric, static black-hole spacetime. The details of t
result have not been corroborated numerically—althou
qualitatively they are supported by the results of Ref.@6#—a
task we undertake in this paper. In addition, we also sh
that this result remains correct also for a Kerr black hole,
which the power index25/6 is independent of both, and
the spin rate of the black holea/M . We also study the be
havior ofv(t), and find it to be in agreement with the resu
of Refs. @8,9#. Similar conclusions were obtained recent
also for a spinning dilaton black hole@12# ~see also Ref.
@13#!.

II. MASSIVE TAILS IN SCHWARZSCHILD SPACETIME

Massive fields in Schwarzschild spacetime were stud
numerically ~for both a linearized and for a spherical se
gravitating Klein-Gordon field! in Ref. @6# and analytically in
Ref. @8#. As discussed in Ref.@8#, for mM&1, the tail re-
gime satisfiest@m23M 22, M being the mass of the blac
hole, andt being the regular Schwarzschild time coordina
Therefore, for a light scalar field, the heavier the field is, t
earlier the tails are seen.~For heavy fields,mM@1, the tail
©2004 The American Physical Society18-1
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regime is fort@M , independently of the mass of the field!
To facilitate numerical simulations, one is tempted then
increase the mass of the field. However, increasing the m
of the scalar field requires one also to increase the resolu
as the wavelength of the field is inversely proportional to
mass, and as one needs at least a few data points per w
length to resolve an oscillating field. One faces then a co
peting effect: to decrease the computational time to an o
mum, one needs to balance the scalar field mass and
resolution of the numerical code.~We do not discuss here th
case ofmM@1 as the required numerical resolution is b
yond current practical computational limits.! One may gain
insight into the above discussion, noticing, following Re
@6#, that for m!1/M , the corresponding Compton wave
length of the scalar fieldl(5m21)@M , that is, the field’s
wavelength, is much longer than the typical radius of cur
ture of spacetime, or the scale of inhomogeneity of cur
ture. We therefore expect the field at early times to evo
similarly to its evolution in flat spacetime. At later times th
curvature effects become apparent, and we expect devia
from the flat-spacetime behavior. At asymptotically la
times we expect to find the behavior predicted in Ref.@8#.
The greater the mass termm, the shorter the associate
Compton wavelengthl, and the sooner the asymptotic d
main is expected. We therefore expect an oscillating fie
whose envelope is a broken power law: at early times i
described byt2,23/2 and at late times byt25/6.

The fieldc satisfies the Klein-Gordon equation

~h2m2!f50, ~2.1!

h being the D’Alembertian operator in curved spacetim
We definec5rf in the usual way, and decompose the fie
c into Legendre modesc5(,c,P,(cosu). The radial equa-
tion that each modec, satisfies is then given by

c ,uv
, 1

1

4
V,~r !c,50, ~2.2!

where the effective potential

V,~r !5S 12
2M

r D F,~,11!

r 2
1

2M

r 3
1m2G . ~2.3!

To test our expectations in the context of a Schwarzsc
black hole, we used a double-null code in~111!D, and
solved the radial equation forc,. We specified a pulse of th
form

c,~u!5F4
~u2u1!~u2u2!

~u22u1!2 G 8

~2.4!

along the ingoing segment of the characteristic hypersur
v50 for u1,u,u2, andc(u)50 otherwise. We also took
c(v)50 alongu50. Here,u (v) is the usual retarded~ad-
vanced! time. The results reported on below correspond
u1520M andu2560M , but our results are unchanged al
for other choices of the parameters, or for other choices
the characteristic pulse. In the following we observe
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fields alongr * 50, r * being the usual Regge-Wheeler log
rithmic radial ~‘‘tortoise’’ ! coordinate.

The code is stable, and exhibits second order con
gence. The convergence test is presented in Fig. 1, w
shows the ratio of differences for three runs with differe
resolutions.

We first chose a low value ofmM . Figure 2 shows the
field alongr * 5const as a function of time. The initial field
here is spherical (,50), and a value ofmM51023 was
chosen. Similar results are obtained also for other low val
of mM . After the prompt burst and the quasinormal epo

FIG. 1. Convergence test for the~111!D code. We find the
times at which the field has zeros for three different resolutio
high t(h), medium t(m), and low t(l), and compute the ratio
@ t(h)2t(m)#/@ t(m)2t(l) # for each zero. We then plot this ratio a
a function of timet. Here, we usedN55, 10, and 20 grid points pe
M for the three resolutions. Second-order convergence corresp
to the ratio equaling 0.25.

FIG. 2. Field of a massive scalar field alongr * 50. The initial
data are for,50, u1520M and u2560M , andN51. The solid
curve is the massive scalar field~with mM51023), and the dashed
line is proportional to (t/M )23/2.
8-2
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an oscillatory tail is seen. The decay rate of the envelope
the tail is very close tot23/2.

We next consider a high value ofmM . Figure 3 shows the
field for the same parameters as in Fig. 2, except that h
mM51. Again, an oscillatory tail is seen, and the decay r
of the tail is very close tot25/6.

The most interesting case is that of an intermediate va
of mM , for which both types of behavior coexist. In Fig.
we show the field formM52.531022. This figure shows an
initial oscillatory decay with an envelope decaying liket23/2,
which changes gradually to an oscillatory decay with a de
rate oft25/6. This is the broken power law expected: at ea
times the field has not noticed yet the presence of the b

FIG. 3. Field of a massive scalar field alongr * 50. The initial
data are for,50, u1520M and u2560M , andN54. The solid
curve is the massive scalar field~with mM51), and the dashed line
is proportional to (t/M )25/6.

FIG. 4. Field of a massive scalar field alongr * 50. The initial
data are for,50, u1520M and u2560M , andN54. The solid
curve is the massive scalar field~with mM52.531022). The
dashed line~a! is proportional to (t/M )23/2, and the dotted line~b!
is proportional to (t/M )25/6.
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hole, and therefore behaves as in flat spacetime~decay rate
of t23/2). At late times, the field takes its asymptotic dec
rate oft25/6, and the onset of the asymptotic behavior can
controlled by changing the value ofmM .

The prediction of Ref.@8# is that the asymptotic deca
rate of t25/6 is independent of the value of,. We check this
in Fig. 5, which shows the same data as in Fig. 3, except
here we take,51. Again, the decay rate ist25/6, the same
as with,50. We could not find any deviation from thet25/6

behavior for any value of,. We therefore conclude that ou
simulations are in agreement with the prediction of Ref.@8#.

In flat spacetime the period of the oscillations does
change at late times, and is given byTflat52p/m ~see the
Appendix!. In Schwarzschild spacetime, the period is
longer fixed. In Ref.@8#, the oscillatory part of the field is
given by

sin@mt2~3/2!~2pmM !2/3~mt !1/31smaller terms#.

To interpret this prediction as a changing period, we rew
the oscillatory part of the field as sin@v(t)3t#, where

v~ t !5mF12
3

2 S 2p
M

t D 2/3

1OS 1

t D G . ~2.5!

Figure 6 shows the power spectrum of the field, for t
casemM51. A sharp peak atf 5(2p)21 is seen. This peak
corresponds to the angular frequency equaling the mass
m. Notice the one-sided broadening of this peak. While
frequencies higher than (2p)21 appear to be present, lowe
frequencies are. This suggests that as time progresses
frequency increases to its asymptotic value of (2p)21. We
test this in Fig. 7 by plotting 122p/P(t) as a function of
t21. Here, P(t) is the local period of the oscillations. W
find that as t→`, indeed the period decreases to
asymptotic value. Next, we consider in greater detail the r
at which the period approaches its asymptotic value. Re
that according to Ref.@8#, the slope of the curve in Fig. 7
should be 2/3. In Fig. 8 we display the local slope of t

FIG. 5. Same as Fig. 3, but with,51.
8-3
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curve as a function oft21. Our numerical result, of an
asymptotic slope of 0.6660.01, is in agreement with th
predictions of Ref.@8#.

III. MASSIVE TAILS IN KERR SPACETIME

Now we turn to the discussion of massive scalar field ta
in Kerr background. We intuitively expect the late-time b
havior in this case to be identical to that of the Schwarzsc
case, as presented in the preceding section. The reason
the late-time tail is expected to be independent ofa/M is the
following: For a massless field in Kerr spacetime, there i
mixing of modes and each existing mode decays with a
cay rate oft2(2,13), which is the same decay rate as in t
Schwarzschild case. All the modes that are not disallow
are excited, such that the overall decay rate is dominate
the existing mode with the slowest decay rate@2#. We expect

FIG. 6. Power spectrum of the field. Here,mM51, and N
5100. To obtain this plot, the field’s values were first scaled byt5/6

to get close to a pure sinusoid, and then the Fourier transform
taken. We assume here~and below! M51.

FIG. 7. The changing period, 122p/P(t) vs M /t, for the same
data as in Fig. 6.
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this situation to remain basically the same also for a mas
field. However, for a massive scalar field in Schwarzsch
spacetime the decay rate is independent of the mode,. This
implies that although in Kerr spacetime, mode mixing w
indeed generate more modes and each mode will have
same evolution as in Schwarzschild spacetime~as in the
massless case!, because in the Schwarzschild case all m
sive field modes have the same decay rate, and they wil
have the same decay rate in Kerr spacetime.

Our numerical simulations were performed using the p
etrating Teukolsky code~PTC! @14#, which solves the Teu-
kolsky equation for linearized perturbations over a Ke
background in the ingoing Kerr coordinates (t̃ ,r ,u,w̃).
These coordinates are related to the usual Boyer-Lindq
coordinates (t,r ,u,w) through w̃5w1*aD21dr and t̃ 5t
2r 1r * , where D5r 222Mr 1a2 and r * 5*(r 2

1a2)D21dr. The Teukolsky equation for the functionc in
the ingoing Kerr coordinates can be obtained by impleme
ing black-hole perturbation theory~with a minor rescaling of
the Kinnersley tetrad@14#!. It has no singularities at the even
horizon, and therefore is capable of evolving data acros
This equation is given for a massless field (m50) by

~S12Mr !
]2c

] t̃ 2
2D

]2c

]r 2 12~s21!~r 2M !
]c

]r

2
1

sinu

]

]uS sinu
]c

]u D2
1

sin2u

]2c

]w̃2
24Mr

]2c

] t̃ ]r

22a
]2c

]r ]w̃
2 i

2s cotu

sinu

]c

]w̃
1~s2cot2u1s!c12@sr

1 ias cosu1~s21!M #
]c

] t̃
50. ~3.1!

For the case of interest, we sets50 in Eq. ~3.1!, and
include a mass termm2(r 21a2cos2u)c on the left-hand side
of Eq. ~3.1!. The PTC implements the numerical integratio

as

FIG. 8. The local slope of the curve in Fig. 7,p(t), as a function
of M /t.
8-4
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of the resulting equation by decomposing it into azimut
angular modes and evolving each such mode using a red
~211!-dimensional linear partial differential equation. Th
results obtained from this code are independent of the ch
of boundary conditions, because the inner boundary is t
cally placed inside the horizon, whereas the outer bound
is placed far enough away that it has no effect on the ev
tion. ~As was shown in Ref.@15#, close timelike boundaries
with Sommerfeld-like boundary conditions do not allow f
the evolution of late-time tails.! Typically, for the simulations
performed in this study, the outer boundary was located
4000M and a grid of size 40000332 (radial3angle) was
used. The initial data was always chosen to be a Gaus
distribution, centered at 50M and with a width of 2M . The
PTC is stable and exhibits second-order convergence as
from Fig. 9.

We first demonstrate the independence of the late-t
evolution of the Kerr parameter (a/M ) of the background
spacetime. Figure 10~left panels and upper panel on th
right! shows tails from several different evolutions corr
sponding to different values ofa/M , all plotted together.
Each oscillatory tail shown has the expected period~about
2p/m) and a decay rate close tot25/6. The value ofmM is
chosen here to be 1.

We next demonstrate the independence of the oscilla
tail of the value of,. Figure 10~right panels! shows the
late-time evolution of the massive scalar field (mM51) in a
Kerr background spacetime witha/M50.6 for several dif-
ferent values of,. There appears to be no deviation from t
t25/6 oscillatory tail for any value of,.

Last, we turn to the changing period of the oscillations
the Kerr case. In Fig. 11 we plot the power spectrum of
field for the case ofa/M50.6, ,50, andmM51. Much
like in the Schwarzschild case in the preceding section,
observe a one-sided broadening of the peak at (2p)21. To
test whether this indicates a monotonic increase in freque
we plot in Fig. 12 122p/P(t) as function oft21, where

FIG. 9. Convergence test for the~211!D penetrating Teukolsky
code. We compute the times at which is field has zeros for th
separate resolutions@high t(h), mediumt(m), and low t(l)] and
plot the ratio@ t(h)2t(m)#/@ t(m)2t(l) # as a function of time. The
resolutions used for this test wereM /40, M /20, andM /10 for the
high, medium, and low resolutions, respectively. Second-order c
vergence is clear by the value of the convergence ratio~0.25!.
04401
l
ed

ce
i-
ry
-

at

an

ear

e

ry

e

e

cy

P(t) is the local period. Indeed, we see in the Kerr cas
decreasing period, with an asymptotic rate~slope of the
curve in Fig. 12 is shown in Fig. 13! of about 0.6860.02,
which is consistent with the~Schwarzschild! value of 2/3.

Thus, in accord with our expectations, the asympto
late-time behavior of massive scalar fields in a Kerr spa
time is identical to that in a Schwarzschild background. S
cifically, the asymptotic late-time tail is insensitive to th
multipole number,, and also insensitive to the spin rate
the black hole. The late-time behavior of massive sca
fields in black hole spacetimes is universal. There is yet to
an analytic study in the Kerr context, akin to the one in t
Schwarzschild case@7–9#. Also, it should be noted that al
the numerical simulations reported on in this work were a
symmetric. In a nonaxisymmetric evolution of massive s
lar fields in a Kerr spacetime, under certain conditions
very interesting instability arises that has been studied in
frequency-domain@16#. We are hoping to return to an exten
sive study of that case in the time-domain elsewhere. Las
intriguing deviations from the results reported on here, wh
appear to introduce a certain low-frequency modulation
very late times, were reported on in numerical simulatio
@17,18#. Notably, the analytical analyses do not show a
such phenomena. It remains an open question whether
phenomena are real physical ones, or a numerical artifac
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APPENDIX: TAILS OF A MASSIVE SCALAR FIELD
IN FLAT SPACETIME

In this Appendix we derive the decay rate of Klein
Gordon tails in flat spacetime. The exact Green’s function
known @11#, and is given by

g~r ,t !5
d~ t2r !

r
2

mJ1~mAt22r 2!

At22r 2
Q~ t2r !, ~A1!

for a source at the origin~in space and time!. Here,J1 is the
Bessel function of the first kind of order 1. This Green
function can of course be integrated to find the field straig
forwardly, but instead we shall use a more geometric
proach to find the field.

Consider a spherical shell of radiusr 0, such that the ini-
tial perturbation field is well localized in space and in tim
The only requirement is that the perturbation will be regu

e

n-
8-5
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FIG. 10. Massive scalar field
~with mM51) sampled at r
550M . The initial data have a
Gaussian distribution, centered a
50M , and have a width of 2M .
The dotted curves show the be
havior of the scalar field, and the
solid lines are proportional to
(t/M )25/6. The sequence of plots
demonstrate a clear independen
of a/M , and also of the mode
number,.
th
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ca
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everywhere, and in particular at the location and time of
burst and at the originr 50. The fieldf satisfies the Klein-
Gordon equation

~h2m2!f50. ~A2!

We next define, as usual,c5rf, and write the radial equa
tion for c.

As the field propagates in spherical waves, the field
depend only on the spacetime intervals from the event of the
burst. That is,c5c(s). Inserting this into the radial equa
tion, we find thatc satisfies

s2c91sc81m2s2c50, ~A3!

a prime denoting derivative with respect to the intervals.
This is just the Bessel equation, with general solution

c~s!5 c̃1J0~ms!1 c̃2Y0~ms!. ~A4!
04401
e

n

FIG. 11. Power spectrum of the field evolving in a Kerr spac
time. Here,mM51, anda/M50.6. To obtain this plot, the field’s
values were first scaled byt5/6 to get close to a pure sinusoid, an
then the Fourier transform was taken.
8-6
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Here, J0 and Y0 are the Bessel functions of the first an
second kinds, respectively, of order 0. The integration c
stantc̃2 must vanish for the field to be regular at the event
the burst (s50). Therefore,

c~s!5 c̃1J0~ms!. ~A5!

For r 5const and fort@r ,r 0, we then find that

c'c1

cos~mt2p/4!

~mt !1/2
. ~A6!

This solution does not satisfy the regularity requirement,
the fieldf diverges at the spatial originr 50. However, the
field f is required to be regular atr 50, especially at late
times (mt@1).

To obtain the physical solution we superimpose solutio
to the radial equation, such that the field is regular at
origin. This can be achieved by an ‘‘image charge.’’ T
superposition

FIG. 12. The changing period in Kerr spacetime: 122p/P(t)
vs M /t for the same parameters as in Fig. 11.

FIG. 13. The local slope of the curve in Fig. 12,p(t), as a
function of M /t.
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c~s!5 c̃1@J0~ms1!2J0~ms2!# ~A7!

is the requested solution, wheres1
25t22(r 2r 0)2 and s2

2

5t22(r 1r 0)2. This corresponds to an ‘‘image charge’’ a
r 52r 0. Obviously,r 52r 0 is not a physical point in space
time. It is a mathematical way to write a formal solutio
where in the physical part of the domain of dependence
the superimposed bursts the solution is the one sought~see
Fig. 14!. In fact, this is just a mathematical way to speci
regular boundary conditions alongr 50.

For r 5const and fort@r ,r 0, we then find that

c~ t@r ,r 0!'c1

cos~mt2p/4!

~mt !3/2
rr 0 . ~A8!

The phase is unimportant, such that we finally get the re

f~ t@r ,r 0!'c1r 0

sin~mt !

~mt !3/2
. ~A9!

The fall off rate oft23/2 is the one reported on in Ref.@11#.
To find the time dependence of higher, modes, we find

the derivative of the spherical solution with respect to t
Cartesian coordinatez. Recall that on the equatorial plan
]P,(cosu)/]z52(,11)P,11(cosu)/r. We can thus generat
c1 from c0 by calculating]c,50 /]z, and by the uniquenes
of the solution that should give us the dipole solutionc,51.
Specifically, notice that

]

]z
5

]r

]z

]s

]r

]

]s
52

r

s
cosu

]

]s
.

Notice the factor 1/s in this expression. This implies tha
whenever a derivative with respect toz is taken, the exponen
of t in the denominator increases by 1.~This is the case
because of the sinusoidal function in the numerator. T
leading term int21 comes from its differentiation, and the

FIG. 14. The construction of the ‘‘image charge’’ solution. Th
burst of the spherical wave is at the event (0,r 0). The domain of
dependence of this event is the union of regions I and III in
diagram. As this solution is not regular alongr 50 we introduce an
‘‘image charge,’’ i.e., a burst with the opposite sign at the fictitio
event (0,2r 0). The field due to this image solution in region II is
of course, unphysical, but in region III it is, and is superimpos
with the solution of the original burst in that region.
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the exponent of the denominator does not change. It is
creased by 1 because of this 1/s factor.!

Carrying, times this differentiation with respect toz, we
find that

c,~ t@r ,r 0!;
sin~mt !

t,13/2
. ~A10!

The reason why the Huygens principle fails in this case
that the phase velocity of a plane wave satisfying the Kle
Gordon equation is
a
an

04401
n-

s
-

vph5
1

A12~m/v!2
, ~A11!

so that whenevermÞ0, different frequencies which make u
a wave packet travel at different speeds. As noted in R
@11#, it is not surprising that the associated plane waves
not arrive at the observation point with the same relat
phase they had at the beginning. In fact, spacetime beh
like a dispersive medium for the Klein-Gordon equation,
the wave numberk5vA12(m/v)2 is no longer a linear
function of v.
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