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Particle production in matrix cosmology
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We consider cosmological particle production ift 1L dimensional string theory. The process is described
most efficiently in terms of anomalies, but we also discuss the explicit mode expansions. In matrix cosmology
the usual vacuum ambiguity of quantum fields in time-dependent backgrounds is resolved by the underlying
matrix model. This leads to a finite energy density for the “in” state which cancels the effect of anomalous
particle production.
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[. INTRODUCTION genvalue§15-17. Small fluctuations of the collective field
then represent the perturbative states of the closed string
The spontaneous production of quantum particles irtheory(which in this case is a single massless sgalahile
curved backgrounds is a profound phenomenon which hasontrivial time-dependent states, involving macroscopic
inspired progress in fundamental physics for several decadesumbers of decaying DO-branes, correspond to cosmological
In particular, cosmological particle production is, accordingevolution. Such time dependent states can be studied unam-
to inflationary cosmology, the origin of all observable struc-biguously using the matrix model description.
ture in the universe. It is clearly important to understand The interpretation of time-dependent solutions in matrix
particle production better in a context where the quantuntheory as matrix cosmology was introduced recently by
nature of gravity is taken fully into account. The purpose ofKarczmarek and Strominggf.8] (the solutions themselves
this paper is to attempt this in the case of the matrix modehave been known for some tinfd9-21)). In the present
for two dimensional string theory. paper we generalize their solutions by recognizing them as
In the usual treatment of quantum fields in curved spaceW.,, transforms of the ground state. This representation im-
time cosmological particle production is the tangible conse-mediately allows the generation of several infinite families of
guence of an ambiguous vacuum: the vacuum state definembsmological solutions. Although our derivation is classical,
with respect to modes which are natural at early times typithe solutions clearly exist at the quantum level.
cally contains particles when analyzed with respect to modes A notable feature of our work is a careful treatment of a
which are natural at late timeéor a review se¢1]). Thisis  key stringy aspect of this model, viz. a preferred ground state
quite similar to Hawking radiation from black holg€8]. In  with finite energy. The fluctuations around the cosmological
string theory, holographic representations of gravity in termdackgrounds are efficiently described by the collective field
of gauge theories have led to significant progress in our untheory of the matrix eigenvalues. The fluctuating field in fact
derstanding of Hawking radiatiof3—10. In the gauge reduces to a massless scalar field in two dimensions, a popu-
theory description, there is a preferred time and so a prelar toy model for studying vacuum ambiguities. The novelty
ferred vacuum, and Hawking radiation results arises througin the present context is that the vacuum state of the scalar
the normal quantum mechanical decay of a highly degeneffield is inherited from the ultraviolet completion of the
ate initial statd4,6,11,12. It is natural to expect that string theory, i.e. the matrix model. This means the short-distance
theory would provide a similar insight into the nature of divergences of the energy-momentum tensor are canceled,
cosmological particle production. This, however, has turnedather than subtracted as in usual quantum field theory. It
out to be rather difficult, particularly because of problems ofalso means a specific, finite, energy is associated with the
formulating string theory in time-dependent backgrounds. static vacuum, namely the energy which, in the matrix
Recent progress in two dimensional non-critical stringmodel, is the standard one loop energy of the ground state. In
theory has improved the situation somewft®,14). In this  matrix cosmology this ground state energy will contribute a
case there is a well understood holographic description—thetime-dependent term in the electromagn€(iitM) tensor
matrix quantum mechanics of open strings—and also avhich happens to precisely cancel the usual contribution
closed string field theory, the two dimensional collectivefrom particle production. The vacuum expectation value
field theory of the eigenvalue densit¥5]. The holographic (VEV) of the EM tensor is thugdentical in the initial and
description has no space and has a unique time, while, in thfinal states of the cosmology, a highly unusual situation.
closed string description, space arises from the space of ei- It is often confusing what the correct observables are in
time-dependent string theory. This concern seems particu-
larly acute in matrix cosmology where the universe tends to
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useful. In matrix cosmology there is a preferred vacuum, i.eknown now, the excitations of the Fermi sea in tke 0

a notion of no particle state which is universal, and appli-region simply represents a second massless scalar present in

cable even as space-time is disappearing. This enables usttee 0B theory{23].

discuss cosmological particle in a setting that would be dif- The action corresponding to E¢L) has an infinite sym-

ficult to analyze using ordinary quantum field theory. metry algebra\W., [24—26, whose generators are given by
This paper is organized as follows. In Sec. Il we introduce

the cosmological solutions to the matrix model. In Sec. Il

we first discuss the causal structure and the observables of

matrix cosmology. We then construct the explicit modes of

the fluctuating quantum fields and deduce the correspondinghe Hamiltonian is one of these charglss —w;,;. At the

Bogulubov coefficients for particle production. Finally, in classical level the charges, satisfy the Poisson bracket
Sec. IV, we compute the energy-momentum tensor of theygebra

model, using anomalies.
Note addedAs this paper was being prepared we received {Wys ,Wyrstpp=(rs’ —SI" )W, 1+ 15461 (4)
[22] which has some overlap with the present work, particu-
larly Sec. lll. However, the main points of the works are Our interest inW,, is that it generates nontrivial solutions:
different. starting with any classical solution, a new classical solution
can be found by transforming with\&,, element. In particu-
Il. MATRIX COSMOLOGY lar a static Fermi sea like E@2) can be transformed into a
) ) ) ) _ time dependent Fermi sea by using charges withs. We
In this section we introduce the matrix cosmologies ofi concentrate on solutions generated in this way by

Karczmarek and Strominggt8], along with our generaliza-  opargeqy o andw,,. For these théinite transformations of
tions. We discuss in turn the matrix model description, the, andp become

collective field theory, and the fluctuations in collective field

1
Wrszze(r_s)t(x_p)r(x'i'p)s- (3)

theory. Wos: X' =x+\se S(x+p)sL
A. Fermion phase space picture p'= p—)\se’St(er p)sfll (5)
The holographic description of two dimensional closed
string theory is in terms of singlet states of the quantum Wro: X =x+Are(x—p)" 1,
mechanics of a singlbl X N Hermitian matrixM with some
invariant potential TW(M) which has a quadratic maxi- p'=p+rret(x—p) 1, (6)

mum. We will choose the value &f(M) at this maximum to

be zero. The dynamics can be entirely recast in terms of theshere\ is the parameter of transformation. Thus, starting
eigenvalue;(t) of the matrixM and interpreted abl fer- ~ from the static Fermi surfac€), we can obtain an infinite
mions with positions;(t) in an external potentia¥(x). The  set of exact solutions characterized by Fermi surfaces:
double scaling limit consists of tuning the coupling constants

involved in the potential and taking— o so that the Fermi o1 _ _
energy —ur—0 while the rescaled Fermi energy Wos - E(Xz_pz)ﬂ‘se Hxtp)=a, @)
=BNpur is held fixed. In this limit the coordinates and the
momenta of the fermions may be rescaled such that the 1
single particle Hamiltonian becomes the inverted harmonic Wo: E(xz—p2)+)\re+”(x—p)’=ﬂ. (8)
oscillator
1d2 1 Of particular interest are the solutions obtained by the
h=—-——-x2 (1) actions ofwg; andw,g. In these cases thé/,, transforma-

tions (5), (6) reduce to conventionaloordinate transforma-
tions which are simply time dependent shifts of the coordi-
nate. It is then clear that we can create a two-parameter
family of solutions by combining the transformatioms,;
andw,q with arbitrary parameters

The Fermi energy of this rescaled problem-ig. Interpret-
ing the double scaling limit as a continuum limit of string
world sheets one can identify the corresponding string cou
pling asgs=1/u.

In the classical limit we can discuss the dynamics in terms

of fermion trajectories in phase spaceff). In the ground X'=x+h_e e, ©
state, the Fermi surface is
p'=p—h_e '+, e\ (10
1 2 1 2 . .
P mSXT = p, (2)  The resulting solutions

which implies that all states with?<x?>—2u are filled. In

1
Z(x2—p2)+ “tUx+ )+ ty— )=
this paper we will concentrate on the regiar<0. As is Z(X POFAe (xtp) Fhe(x=p)=p (1D
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are in fact the solutions discussed by Karczmarek and
Strominger{18] (up to a redefinition of the string coupling p(x,H)=2 S(x—x(1)). (17
constant '

The more general cosmological solutions given by @3- |y the continuum limit it is convenient to trade the density

also correspond to smooth Fermi surfaces. A nice way tQ,y 1 for a scalar fieldd(x.t) throuah p(x.t) = d.db(x.t
map them is to introduce the coordinates=x=* p in phase ?I)'%e ;ction of the field;’)((i(t)’ i)s [27 2% P =0 d(x.1).

space. Then the solutions generatedaRy take the form

_stus _ (at¢)2 772 3 1 2
X_X,+2\se S%S =2u. (12 S= | dtd 20y 5 (kP H| SX T p || +AS,

. . (18)
We will consider the case of>0. After the further rescal-
ingsy_=Xx_2ua andy.=ax, with the time-dependent whereAS is the singular term
factor

1
\s] 15 AS= Ef dtdX 9, @[ dydx10g|X—X'| Jx=x » (19
a= ; e’t, (13)

which is a part of the Jacobian of the change of variables
the Fermi surface becomes (17) from eigenvalues;(t) to the densityp(x,t) [27]. The
singular termA S does not contribute at leading order in the
loop expansion parametgg= 1. It will nevertheless play
y_=—(1-Yy%). (149 a central role in our discussion since particle production is a
Y quantum effect as well. Indeed, particle production will be

| inalv thi ¢ . . 40 in oh effectively of the same order as the quantum correction en-
nterestingly this surface is symmetric aroupe O in phase capsulated in Eq(19).

space only for evens, since only theny_(-y.) Any distribution of eigenvalues corresponds to a definite

=—Yy-(y+). Concentrating as usual on the region in whichgiae of the two dimensional collective field theory. However,
y+<0 we find, for odds, a smooth Fermi surfacgjlnterpo- for generic Fermi surfaces such a state cannot be described
lating betweeny ~1/y, for smally, andy ~y% " for 55 3 classical solution of the collective field theory because
largey , . Importantly, since the quantiyy_/dy, vanishes of the presence of folds or disconnected pief2%;30. In
only once in this domain, there are no “folds” in the Fermi ¢t it can represent states of the theory where quantum
surface. This means it can be characterized by its intersectiofispersions of fields are of the same order as their classical
with ax, =const line, i.e. by the functior_=x_(x.). For  expectation valueg31,39. However, for the time dependent
evens, there is no zero ofly_/dy, and the Fermi surfaces Fermj surfaces considered in this paper the profiles are
actually cross over to positive valuesyf . In this descrip-  quadratic—there are no folds—and such Fermi surfaces can
tion the Euler equations for the Fermi surface are simply jndeed be represented as classical solutions of collective field
theory.

The classical equation of motion following from the La-

R

i

X

IXe = XXz x (19 grangian(18) is
2
which may be easily verified for Eqér), (8). Alternatively, 2 M: 2 24 ﬂ) —(x2—2 2
we can parametrize the Fermi surface by the values aff % dyd I () N (x m| (20
the two intersections with the= const line,P..(x,t). Then
the Euler equations take the form since we must ignord S in the classical limit. The ansatz
v 1 1
P =X=P.dP.. (16) dubo=—Po(X1), dibo=——Po(X,DF(D), (21
In the remainder of this paper we will primarily discuss the
original solutions(11) of [18]. where

=(x—F)2—
B. Collective field theory Po(x.1) (X=F)"=2p, (22

So far our discussion has been in the open string languagmlves the equation of motio(R0) for all functions F(t).
of matrix quantum mechanics. From this point of view we Imposing the consistency conditioAs),¢o= dyd;¢o ON EQ.
have described some matrix configurations which are tim¢21) we find
dependent, but there has not been a notion of “space” and

therefore no “cosmology” to discuss. The spatial coordinate d?F(t) B

X is an emergent quantity which can be seen only after pass- dtz (1), (23
ing to the closed string description by introducing the density

of eigenvalues or theollective field and so
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F(t)y=N_e t—x, e (24) and theW,, charges are given by
An alternative procedure that yields the soluti@1) with 1o ; s
Egs.(22) and(24) is to verify that the profiles of the Fermi Wis=5€" T (M —TIy) (M +11y)°]. (29)
surface,

If |u) denotes the ground state of this system, a cosmologi-
cal background generated Iy, is denoted by

The two parameter family of solutions to E@3) given M) =exdlidweoll ). (30
in Eq. (24) is identical to the matrix model solutidiil) that  The expectation values of a typical invariant quantity may
was generated from the static solutibr=0 by the action of  hen pe formally expressed as
Wg1 andw,q. The explicit solutions for othewyg,w,q solu-
tions can be also obtained in principle, though they involve (NOIN)=(u|O'| ), (31
solutions of higher order algebraic equations.

The form of Eq.(22) restricts thex<<0 branch of interest where
to

P.(X,t) == Py(x,t) +F(t), (25

satisfy the Euler equatiof16).

O'=e Ms0eMs0, (32

X<—\2u+E. (26)
This computation is purely formal because the left hand side

The solution generated byy, hasF(t)=\_e™!, so, ast of Eg. (31) is not meaningful because the stde is not
=—o, the Fermi surface is pushed to the region of largenormalizable. States such jag form a subset of the discrete
negativex. In perturbation theory, the collective field there- states in thece=1 model[33]. These, it is believed, should
fore does not support excitations for any finite-there isno  not be really be regarded as states in the spectrum of the
universe att=—oo. At finite times there is some allowed original model. Instead, they are interpreted as deformed
region of x which is growing att increases so that, &s backgrounds. The formal manipulation suggests that the ap-
—oo, the Fermi surface becomes the static soluti@n propriate deformed Hamiltonian is
which is the usual universe of the two dimensional string
around the ground state. The entire solution thus represents H'=Hy+\s€Tr(M—TIIy)*. (33
the creationof a universe. In a similar way, solutions gener- o )
ated byw,, represent thelestructionof a universe. We will In qther words, the h_olographlc interpretation of the cosmo-
henceforth concentrate on universe destruction. logical background is the modified matrix model whose

It will be important for our considerations to introduce a Hamiltonian isH'. This interpretation is similar to the pro-
lower boundx,;,=— A in Eq. (26) which restricts the uni- posed description of two dimensional black holes in terms a
verse to the finite volume matrix model deformed by a ™ ~2 potential[34].

—A<X<—\2u+F. (27 D. Fluctuations

The sole perturbative closed string excitation around an
arbitrary classical background is given by the fluctuation of
the collective field around the corresponding classical solu-
tion of collective field theorypy(x,t):

The origin of the infrared regulator is the potenthd(x)
before performing the double scaling limit. This leads Ao
~JBN~1/\Jy—. We should therefore think of the vol-
ume of the universe as a quantity of ord&8N in x space.
The solutions of collective field theory which correspond 1

to the more general solutions generatedviy, or w,, are d(X,1) = do(X,t) + \/——W(X.t)- (34)
more complicated to obtain, since these corresponadoto 7
linear transformations of the collective field. Nevertheless
as mentioned above, they can be obtained by solving high
order equations in terms of phase space variables and tra
lating these solutions in the collective field language.

'In our applications we identify the fielgl with the spacetime
e[fichyon% Inserting the expressio(84) into the action(18)
"We find the guadratic action of the fluctuations:

C. Backgrounds in th ix model 8(2)=EJ dxdt——— [(8 77)2—[(77:? ¢ )2—({9@0)2}
. backgrounas in the matrix mode 2 77(9x¢0 t x¥0 &xd’o
What is the meaning of these cosmologies in the original o
' ' i ics? This i tPo
holqgraph|g theory, i.e. matrix quantum mechanics? This is X(,m)2—2 ﬂmﬂxn]- (35)
an interesting question because in this case the holographic dxdo

theory has no “space” at all and these cosmologies are en-
coded as specific time dependent configurations of the matrix——
M(t). The Hamiltonian for matrix quantum mechanics reads in general leg-pole factors must be taken into account. These

2 ) result in a nonlocal redefinition of the field which will not be es-
Hy = Tr[ Il —M“], (28) sential in our discussion.
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This form of the quadratic action is valid for fluctuations In usual quantum field theory there is, in the absence of
aroundany classical solutionpy(x,t). Itis useful to interpret  special symmetries, no sense in which one vacuum is pre-
the action in terms of a massless scalar field propagating inferred over the other—the appropriate choice is determined

spacetime with metric by the nature ofobservers This vacuum ambiguity enters
concrete computations through the normal ordering prescrip-
ddo . \? tion which is implemented at “equal time,” a notion that
dx+ gx¢0dt depends on the observer or, more precisely, on the coordinate
ds’=—dt?+ —————. (36)  system. String theory is different because ultraviolet diver-
(mxbo) gences are absent and therefore physical observables, such as

the one loop free energy, are finite. The way this comes about
in the collective field theory description is that the singular
1 1 term (19) acts as a counterterm that cancels all divergences.
(2)=— S— 2_ 2_ 2 2 The f f this singul ingl ifi di-
S dxdt {(3;m)2—[Po(X,1)2—F(t)%](dx7) e form of this singular term singles out a specific coordi
2 Po(x,t) nate system, by regulating physical quantities at equal matrix

For the specific case of matrix cosmolo(1) we have

+2F (1) 3y}, (37)  time. This circumstance forces us to use the same time
=7 in the original &,t) coordinates and the static coordi-
and the background metric becomes nates §,7).

(dx—F(t)dt)?

I1l. PARTICLE PRODUCTION IN MATRIX COSMOLOGY
Po(x,t)? (38)

ds?=—dt*+
In this section we discuss the causal structure of the met-

The coordinate takes values in the intervé26). At the end  ric seen by the fluctuations and define notionsnoénd out

points of this space the fielg(x,t) satisfieDirichlet bound- ~modes accordingly. We derive the nontrivial Bogolubov

ary conditions. This follows from the fact that the integral of transform relating then and out modes, and we determine

the full collective fieldfdxdy.¢ is the total number of fermi- the corresponding spectrum of particles. We consider for

ons and therefore fixet. definiteness thedestructionof a universe, i.e. a draining
At the classical level the actiof87) is invariant under Fermi sea F=—\e').

Weyl rescalings and so it determines the metric only up to an

overall conformal factor. In Eq38) this factor was chosen A. Causal structure

so that spacetime is flat. This can be seen explicitly by trans- ] )
forming the spatial coordinate as A general problem in the study of time-dependent back-

grounds is the definition of proper physical observables. For
__ - _ example, it is often difficult to define a8 matrix, because
X \/ﬂcoshyﬂz, =L 39 there are no suitablen and out regions. One might expect
that matrix cosmology would suffer from this problem, since
the entire spacetime disappears at late times. However, as we
ds?= —dt?+dy?, (40)  discuss now, this is fortunately not the case.
The most natural coordinate for spacetime processes is

and the boundary condition simply becomes a Dirichlet connot the matrix model coordinate but rather the exponenti-
dition aty=0. In these coordinates the problem thus returngited coordinat® defined through
to the static case.

In terms of the original coordinates,t) we have a prob- X= =12 coshQ. (42)
lem similar to the moving mirror probleri,35], with the
mirror trajectory given by the upper limit of the coordinate We will think of Q as the physical spacetime coordinate and
range(26). In the moving mirror problem particle production refer to it as the cosmological coordinate. In our applications
can be entirely rephrased in terms of the anomalous transfowe will in addition find it essential to employ the static co-
mation of the energy momentum tensor under the conformabrdinate y which transforms the matrix cosmology to
transformation which makes the mirror stationary. TheMinkowski space(40) with a Dirichlet condition aty=0.
vacuum in static coordinates then appears as a collection @ccording to Eq.(39) we have the relations
particles in the frame where the mirror moves. Particle pro-
duction in matrix cosmology works similarly except that, as .

. . ! . F )N

we shall see in Sec. IV B, the vacuum is prescribed differ- coshy = coshQ+ —— = coshQ— ——e¢. (42)

so that the metric becomes

ently. V2u V2u
2Strictly this argument implies only thaj(Xy) — 7(— v2u) =0. 3In the literature one often encounters the coordirgqigefined

That fermions are in fact prevented from leaking out in either end ofthroughx= —e ™9 (see e.g[39]). OurQ=q at asymptotic distances
the interval is clear prior to taking the double scaling limit, and thisbut Q has the advantage that the turning point of the Fermi sea is at
property is inherited by the scaled theory. Q=0.
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Q=(Qmin Q.=y.+log(l+Xxe Y-)+O(e¥+) on It (45

whereX = (y2/u)\. ThusQ, — with Q_ fixed will take
one to theoutregionZ *. The relation(45) is easily inverted

onZ™ to find
y-=Q.+log(1—xe %)+ 0O(e ). (46)
B An important feature of this expression is the branch cut at

FIG. 1. Causal structures i) static(y) and (B) cosmological Q- =I0g\. Thus we are reaching theut region by taking.
(Q) coordinates. The dashed lines refer to the boundary of spacd?+— With Q_ fixed at some value larger than the mini-
time (the end point of the eigenvalue distributjdn the two differ- ~ mal value(Q_)nin=I0g \. The significance of this limiting
ent coordinates. value is that the boundary of the draining Fermi sea asymp-

totically approaches the light-like trajectory parametrized by
The time coordinate is the same for all these coordinate Q_=(Q_)mi,. This is indicated in Fig. B).
systems. In summary, the disappearance of spacetime by definition

In the static coordinategy) a naturalin regionZ~ is  prevents the presence of a future timelike infinite How-
defined by taking the light-cone coordinate =y—t—oo. ever, there is still a well-definedut regionZ *, defined by
Similarly, a naturalout regionZ " is defined by taking the taking Q,—o with Q_ fixed at some value larger than the

light-cone coordinatg/. =y+t—. It is important to dis-  asymptotic trajectory of the tachyon walQ()min=logX.

tinguish these regions from the future and past time-like in-This means it makes sense to discuss observables in the form
finities, 1=, which are reached by taking- *+«~ at fixedy, of S'matrix elements.

and also from the space-like infinity?, which is reached by
takingy— +« at fixed timet. These are all indicated in Fig.
1(A).

This discussion of asymptotic regions in the flat coordi- The equation of motion for the fluctuating collective field
nates translates nicely into the cosmological coordinateg can be solved exactly. This is most easily done in the static
(Q). Indeed, define light-cone coordinat€s.=Q=+t and  coordinatesy) where the equation of motion is satisfied by

B. in and out modes

use Eq.(42) to obtain simple plane waves. After taking the Dirichlet boundary con-
dition aty=0 into account, an obvious basis of solutions is
Q.=Q=*t given by
_ 1 o
\ ul(y,t)y=——=e '"“'sinoy (0>0) (47
=+t+cosh 1 coshy+ ——e! VT
N2u

and their complex conjugates. The normalization of &q)

Y.y y,+y_ has been chosen such that these modes form an orthonormal
== 5 +cosh ! cos"( 5 ) basis with respect to the Klein-Gordon norm
LA emy_),z}_ (43 (Uyr ,Uy) =i Ldzﬂ(uwaﬂuz,—uz,aﬂuw)z5(w—w')
2p (49)

Thein regionZ ~ is defined by takingy_ —o with y_ fixed,

50 Eq.(43) gives on any Cauchy surfacE. We can find the exact modes in

the physical coordinate€Q) by solving Eq.(42) for y in
terms of Q andt, and substituting the result into E47).
The modes obtained in this way will in general have a com-
) ] ] i ) ) ] plicated dependence on the timebut this dependence be-
Thein regionZ ™ is thus defined in physical coordinates by -ome quite simple in thé and out regions.

taking Q_ —c with Q. fixed. Of course, this is rather ob- | the in region (Z~) the static coordinate§)) coincide

hates(y) agree with the cosmological coordinaté) at  gq. (47) as

early times. The point of making the notion of “early times”
precise is to avoid confusion about the concept “late times”

Q.=y.+0(e’¥Y-) onZ. (44)

. . ) 1 ) )

in the following. U0 1) = ——e i°tsinw0 = e+  on 7Z-.
The out regionZ * is defined by taking/, — with y_ o(Q:1) N “Q 47w

fixed, and so Eq(43) gives (49)
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In the second equality we omitted the term dependin@on

because, o ~, this term does not contribute to the prob-

ability current. Equivalently, the inner produ@t8) reduces
onZ to

(uw,,uw):if dQ, (u,dg, Uy, —uy,dg U,) on I,
(50)

According to Eq.(49) the modeg47) reduce to the standard
positive frequency plane waves in threregion. It is for this

PHYSICAL REVIEW D70, 044017 (2004

amounts to the introduction of a particle concept. Since
spacetime is rapidly evolving at late times it is not obviaus
priori that any such notion should even exist in th re-
gion. However, in the present context, the underlying matrix
model singles out a preferred time coordin&teThe pro-
posedout modes(54) are uniquely determined by their ca-
nonical dependence on this time coordinate.

C. Bogolubov transformation

The in modes depend on both thmut modes and their

reason that we have specified them from the outset by thgomplex conjugates, as encoded in the Bogolubov transform,

superscript “in.”

In the out region (Z ") the static coordinatéy) is related
to the cosmological coordinat®) through Eq.(46) and so
the modeg47) take the form

un(Q.t)=— gleQ-(1-Xe Q)@

onZ,.

(51)

|
Va4mTw

We have omitted the term depending @1 because this
term does not contribute to the current in theregion? The
canonical mode#&49) in thein region thus evolve to the more
complicated modeg51) in the out region. The change from
dependence o, to dependence o _ is due to the re-

flecting boundary conditions on the field which turn left

movers into right movers.
Since thein modes are rather complicated in tbat re-

gion, it is natural to introduce a different basis which is ™

unQ)= f:dz[a(awu%“‘(cgq

+ B(w,0)(UF(Q))*]. (55)
We want to compute the Bogolubov coefficientén, ») and

,B(;,w). To do so we introduce the Fourier transfoRrof
thein mode through

uL[j(Q,)zf:dw'eiw’Q—F(w,w'). (56)

We must be a little careful when inverting this expansion,
becaus&_ has a semi-infinite range bounded below by the

nimum value Q_)minzlnX. Accordingly we compute

simple there. The obvious choice is to consider a set of

modes parametrized by>0 and which, in theout region,
reduce to the canonical form

e“- onZ,. (54)

UZUP(Q,t):—\/ﬁ

It is obvious that modes in fact exist that satisfy the equa-
tions of motion everywhere and reduce to this expression in
theoutregion: thein modes and their complex conjugates all

satisfy the equations of motion and, in tbat region, they
take the form given in Eq(51) which, when the complex
conjugates are included, spat functions ofQ_ . The non-
trivial content of selecting the modg$4) is the implied
notion of positive frequencyw>0 which, after quantization,

“This is clearest in thg coordinates where the inner product on
7" is written as in Eq(50) with dQ, —dy_ anddg —dy . If we
wish to write the inner product oA * as an integral ovedQ_ we
must use the more complicated tangent derivative

J I +—1 4 (52)
S0 TR T o5 Q)
aQ_ f9Q-Y+
where
Q Ae Q-
_+|y+:TQ. (53
Q- 1-AeR-

»dQ.  —.
—iwQ_,,In
o€ Q)

aQ

flnx 2w

fw do’' F(w,0") .
22T o' —w

f dw’ei(w’76Q*F(w,w’)
(0’ —w)inX

=F(o,0). (57)

In the first step we assumed |§I<O, which is implied
already on the left hand side to ensure convergence. In the

next step we closed the’ contour in the lower part of the
complex plane. Using Eq51) for thein modes we find

©

— dQ.  —.
Flo= | Sre ™)

In\ €7

i (»dQ. . - - .
- |nxiel(w_w)Q(l_)\e_Q)lw

2

RUGD
2@

1 . — ’
f dz Z*I(wfw)fl(l_z)lw
0

47w

044017-7



DAS, DAVIS, LARSEN, AND MUKHOPADHYAY

UG
=— Bi(w—w),1+iw).
Arew 2T ( ) )

(58)
We changed the integration variableze \e”®-. Compar-
ing the definition of the Bogolubov transfor(b5) with the

Fourier transform(56), and recalling the definition obut
modes(54), we now find the Bogolubov coefficients

ad;wy=;;\/§§Ww455005—w)4+iwx (59)

_ N _
B(w,w)ZZ\/;)\'(“’+“’)B(—I(a)+w),l+lw).
(60)

The non-vanishing of th@(w,®) is interpreted as par-

PHYSICAL REVIEW D 70, 044017 (2004

A. Static case

We begin the discussion by considering the static ¢ase
=0. The Hamiltonian for the fluctuations then simplifies to

+AH, (64)

1 1
EHE,JF 5 (0xm)?

Hzf dXPO

where

1
AHzf dxPy Zaxax,log|x—x’|

(65

x=x'

is the Hamiltonian form of Eq.19). This last term is actually
independent of the fluctuating fielgl, but it is included be-
cause it contributes at the same order in the loop expansion
parametergs= ! as the quadratic fluctuations. The mea-
suredx P, that appear in both Eq&64) and(65) translates in

ticle_ p_roqluction in the_mat_rix cosmology. The cregtion andthe underlying matrix model tdep(e), which is the obvious
annihilation operators in th& andout vacua are defined by continuum version of the sum over eigenvalues. The expres-

the expansions

(Qu)= f:dw[aifuiﬂ'(Q,t)+ai£TUZ'*(Q,t)]

N f “dw[a°UU(Q, 1)+t Ut (Q,1) ],
0
(61)

and so, comparing with E455), one finds

aﬁmzfdeEaUmZD§f+ﬁ*umZBa§H.
0

(62

sions in the square brackets then correspond to the quantum
fluctuations of the eigenvalues.

For explicit computations it is useful to employ the static
coordinates/ where the metric for the fluctuation of the col-
lective field is the simple Minkowskia(0), and the Dirich-
let condition is imposed ag=0. In this coordinate system
the Green’s function takes the simple form

- 1
D(t,y;t,y)=——lo

At?—Ay?
41 9

Atz—(yW)z)’ (60

where At=t—t and Ay=y—y. The denominator arises
from the image charge that enforces the Dirichlet condition.

The quantity that we want to compute is the expectationthe Green’s function in other coordinate systems can be

value of theout number operator in than vacuum:

N(w)=(ad'"a%");,
- | dulpto.w)
0

_fw do sinh7o
0 4m(w+w) sinhm(w+w)sinhre

(63

This is our final result for the particle spectrum Bii. The

found by simply substituting expressions foandy as func-
tions of those other coordinates.

The Green's function diverges at coincident points, so, to
do the calculations, we must regulate the theory. We interpret
two point functions by using a cutoff imcoordinates accord-
ing to the prescription

((xm)?)=lim a3,D(t,y;t,y),

X—X

(67)

where the point splittingc— x+ €/2, x—x— e/2 is implied.
The t andy (and their barred analogueare functions of

integral is convergent at high energies, as it should be. Therﬁ1ese slightly shifteck (and x). Evaluating the remaining

is a logarithmic divergence for small which is interpreted
as a linear divergence iQ_; i.e., it is the energydensity
which is finite.

IV. ENERGY MOMENTUM TENSOR

expression we find

1 | yy
0, m)2)=— —Ilim { ==
((dxm)?) ZWY_J =y

In this section we analyze the energy-momentum tensor

of the fluctuations in the cosmological background. We begin
by reviewing the static case and then turn to the time-

dependent setting.

2
(y+y)
1 1<y’

2 1 )
7) — o X O(€),
(68)
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where the limite—0 is implied and we introduced the
Schwarzian derivative
( )2

as well as the notatiop’ = d,y= — 1/P,, etc.(and similarly
for y andx).

The canonical momentum is given by the Hamiltonian
equation of motion as

ug "

3

2

y

fyxp=—2[2
y

, (69
y

1

HPO

n

(70

(9t77.

Using this expression, it is straightforward to compute the
two point correlator of the momenta using the Green'’s func-

tion (66) and the point-splitting procedure already used in
Eq. (67). The result is

!

A
7) —E{y,x}+(9(€z).

(112) = -

27e? * 8_77(

(71)

This result agrees precisely with E§8), except for the sign

of the second term, which is the part that arises from the
images. Indeed, the computations leading to the two results

are almost identical because, after taking Rigeappearing in
the denominator of Eq(70) into account, temporal deriva-

tives act on the short distance part of the Green’s function in

PHYSICAL REVIEW D70, 044017 (2004

renormalization of the collective field theatyThis ex-
plicit understanding of how the matrix theory induces the
correct counterterms in collective effective field theory is
the origin of a preferred vacuum in the theory.

(i) The image in the Green'’s functidf6) contributes to
the finite part of the two-point functior(8) and(71), but
these contributions cancel in the total energy. It is not
surprising that boundary conditions are unimportant for
the extensive part of the energy in the thermodynamic
limit, but it is nice to see how it works explicitly.

(i) The finite part agrees with the one-loop result found
by solving the matrix model explicitly36].° This gives
great confidence that we have interpreted the theory cor-
rectly.

et us also mention the further results:

(i) In collective field theory, the ground state of the ma-
trix model is the vacuum defined in terms of the mode
expansion of the fluctuation field in terms of modes
e~ '“'sin(wy) since this is the vacuum which leads to the
two point function used above.

(i) The presence of a finite ground state energy in this
theory is an important signature that we are dealing with a
string theory. In fact, at finite temperatufie this term,
when added to the standard thermodynamic contribution,
leads to aT-dual answer symmetric undetT—1/7wT
characteristic of string theoryd5].

(i) We have performed the calculation using a point
splitting regulator ik space. If we use instead a regulator
in y space, the Schwarzian derivative term will come from

the same way as spatial derivatives. This agreement between AH. The divergences cancel as before leading to the same

the potential energy68) and the kinetic energy71) is re-
ferred to as the virial theorem. The origin of the virial theo-
rem in the matrix theory is the simple oscillator form of the
potential after double scaling.

finite answer.

B. EM tensor in matrix cosmology

Collecting the results we find that the divergent pieces Let us now generalize these considerations to matrix cos-

cancel and the final result for the expectation value is
1
Hgs= — deOE{y,x} (72

of the Hamiltonian(64) in the ground state. The explicit
form (39) (with F=0) of y(x) gives

for largex?. The extensive part of the energy is therefore

1
§+

1
N

2P3’

3u

Z—2u (79

{y,x}=%(

1 1
Hgsz_ﬂ“n(_xmin”:@mﬁ%r (74)

since|Xminl = A ~ 1/\uo. This result is interesting for several
reasons:

(i) The singular term from the Jacobi&B5) cancels the
regularized singularities from the two-point functions and
so the final result is finite, without the need for further

mology. As we have emphasized, matrix cosmology is re-
lated to the static case by a simple coordinate transformation
which, near the asymptotic null infinit§ *, takes the form
y_=Q_+log[1-Xe Q-]+ 0O(e ), (75)
asQ. —o with Q_ fixed at someQ_>In\. As in previous

sections we use the notatign.=y=*t and Q.=Q=t for
the static and cosmological light-cone coordinates and we

also introduced the abbreviation=X\ \2/u to parametrize
the limiting value Q_)min=InX\.

The static coordinate) play a several roles in the prob-
lem. First, the cosmological coordinaté®) reduce to the

5This cancellation has been known from early days of collective
field theory[15,28,37. However, generally the image term has been
ignored in these computations and our explicit verification of the
virial theorem in the presence of regularization is also new, to the
best of our knowledge.

5The energy(74) agrees with Eq(3.30 of [38] after dividing the
result given there by two, because we only compute the energy of
the x<0 part of the Fermi sea.
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static coordinates at early times, so the static coordinateShis means physical observers will experiemzeoutgoing
define thein vacuum. Second, the Green’s functit®6) in  flux of energy atZ *. This result is a tremendous surprise.
static coordinates transforms simply into the cosmological In standard computations, such as those considering mov-
coordinates, since the transformati¢rb) is conformal(it  ing mirrors, the static EM tensdi, , ) would be taken to
does not mix the *"and “ —"light-cone coordinatep This  yanish, and senly the second ternthe Schwarzian deriva-
will allow us to use conformal teChniqUeS to Study the prob—tive) in Eq (78) would contribute. The associated energy
lem at asymptotic null infinityZ *. Following the standard \ould be interpreted as the energy of the particles produced
strategy, we begin the discussion by writing the results fromyy the expansion. This is also the natural interpretation of the
the static case in a form that transforms naturally under th&chwarzian derivative here. However, in the present context
conformal group. the particle production is partially obscured by another effect

The extensive part of the energy was computed in theyhich is operative as well: theone-loop energy density of
preViOUS subsection with the FESI(IVE4). The volume factor the “in” vacuum is non-zero and finite in the Co-moving
in the static framdy) is related to the infrared cutoff in the frame 6/) The Corresponding EM tensor iS blueshifted in the
matrix model coordinate&x) throughx~e’ so we can ex-  frame of asymptotic observef®) onZ* and this leads to an
press this result concisely in terms of the energy density energy flux. This effect is the origin of the first term in Eq.

1 (78). Our remarkable result is that these two effects cancel
S —— (76) each other precisely such that the cosmological vacuum has

A8 precisely the same EM tensor as the static vacuum. This is
very different from the standard computations.

The EM tensor(81) takes the same value along the entire
I" asitdoes oif . This suggests that, despite appearances,
T" is a perfectly nice locus to define large classes of observ-

bles. One may consider the scattering of particles ffom

Z" and correlation functions ofi * itself. The existence
%f such observables cannot be taken for granted in a time-
dependent setting, but in matrix cosmology, it would seem

1 that they both exist and are computable. It would clearly be
(Ty, y 2 =(Ty_y)=— T (770 interesting to make this more explicit.

4 Our result that the one-loop energy of the matrix cosmol-
ogy agrees with that of the static ground state is all the more
surprising because thaassicalenergy in this specific back-
ground does receive the very specific time-dependent contri-
bution

€=

in the static frame. Note that this formula is exactZat
since the subleading terms in EF.3) do in fact vanish as
Q. —oo with Q_ fixed. The classical expression for the pres-
sure density is identical to that of the energy density, so
repeating the arguments in the previous subsection, we fi
p=e€. The complete energy-momentum tensor in the stati
frame thus takes the form

in light-cone coordinates.

Let us now transform to the cosmological coordinafes
which contain the behavior at late times. Since &®) is a
conformal transformation we can use the standard, anom
lous, transformation rule

. [—Veu
Eq=EQ-F f P dxxyx2—2u (82)

ay_\? 1
To o = 90 _ Ty ,y_+E{yf Q-ts, (79
of the EM tensor. The second term is present because tﬁ@hereE(c?) is the static ground state energy. This is consistent
short distance singularity of the EM tensor, although stillWith EQ.(33). That the one-loop energy is the same as in the
canceled by the explicit counter-ter65) in the collective ~9round state of course means there is no energy flux.
field theory, differs by finite amounts in the two coordinate ' Summary, we have found a remarkable cancellation be-
systems. The expectation value of E@9) relates the EM  tWeen two apparently different contributions to the EM ten-

tensor of the static and the cosmological coordinates. EvaligOr- The consequence is that the outgoing EM tefisor is
ating the derivatives we find identical in thein and out vacua. This is quite unusual and

surprising, at least to us. It is natural to suspect that the

ay_ 1 cancellation ultimately stems from the integrable nature of

Fre = 50 (79)  the underlying matrix theory. To understand this better, it

- e would be interesting to make the formal description of the

matrix cosmology as a deformed matrix model more con-
'Xe—Q( 1— lXe‘Q) crete. It would also be interesting to extend the computation
of the EM tensor to the broader class of cosmological solu-

y-.Q-}s= (1-%e Q)2 ' tions generated in Sec. || B from th&/,, symmetry of the
(80) model.
and then Eq(78) becomes simply ACKNOWLEDGMENTS
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