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Particle production in matrix cosmology
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We consider cosmological particle production in 111 dimensional string theory. The process is described
most efficiently in terms of anomalies, but we also discuss the explicit mode expansions. In matrix cosmology
the usual vacuum ambiguity of quantum fields in time-dependent backgrounds is resolved by the underlying
matrix model. This leads to a finite energy density for the ‘‘in’’ state which cancels the effect of anomalous
particle production.
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I. INTRODUCTION

The spontaneous production of quantum particles
curved backgrounds is a profound phenomenon which
inspired progress in fundamental physics for several deca
In particular, cosmological particle production is, accordi
to inflationary cosmology, the origin of all observable stru
ture in the universe. It is clearly important to understa
particle production better in a context where the quant
nature of gravity is taken fully into account. The purpose
this paper is to attempt this in the case of the matrix mo
for two dimensional string theory.

In the usual treatment of quantum fields in curved spa
time cosmological particle production is the tangible con
quence of an ambiguous vacuum: the vacuum state defi
with respect to modes which are natural at early times ty
cally contains particles when analyzed with respect to mo
which are natural at late times~for a review see@1#!. This is
quite similar to Hawking radiation from black holes@2#. In
string theory, holographic representations of gravity in ter
of gauge theories have led to significant progress in our
derstanding of Hawking radiation@3–10#. In the gauge
theory description, there is a preferred time and so a p
ferred vacuum, and Hawking radiation results arises thro
the normal quantum mechanical decay of a highly dege
ate initial state@4,6,11,12#. It is natural to expect that string
theory would provide a similar insight into the nature
cosmological particle production. This, however, has turn
out to be rather difficult, particularly because of problems
formulating string theory in time-dependent backgrounds

Recent progress in two dimensional non-critical stri
theory has improved the situation somewhat@13,14#. In this
case there is a well understood holographic description—
matrix quantum mechanics of open strings—and also
closed string field theory, the two dimensional collecti
field theory of the eigenvalue density@15#. The holographic
description has no space and has a unique time, while, in
closed string description, space arises from the space o
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genvalues@15–17#. Small fluctuations of the collective field
then represent the perturbative states of the closed s
theory~which in this case is a single massless scalar!, while
nontrivial time-dependent states, involving macrosco
numbers of decaying D0-branes, correspond to cosmolog
evolution. Such time dependent states can be studied un
biguously using the matrix model description.

The interpretation of time-dependent solutions in mat
theory as matrix cosmology was introduced recently
Karczmarek and Strominger@18# ~the solutions themselve
have been known for some time@19–21#!. In the present
paper we generalize their solutions by recognizing them
W` transforms of the ground state. This representation
mediately allows the generation of several infinite families
cosmological solutions. Although our derivation is classic
the solutions clearly exist at the quantum level.

A notable feature of our work is a careful treatment of
key stringy aspect of this model, viz. a preferred ground s
with finite energy. The fluctuations around the cosmologi
backgrounds are efficiently described by the collective fi
theory of the matrix eigenvalues. The fluctuating field in fa
reduces to a massless scalar field in two dimensions, a p
lar toy model for studying vacuum ambiguities. The nove
in the present context is that the vacuum state of the sc
field is inherited from the ultraviolet completion of th
theory, i.e. the matrix model. This means the short-dista
divergences of the energy-momentum tensor are cance
rather than subtracted as in usual quantum field theory
also means a specific, finite, energy is associated with
static vacuum, namely the energy which, in the mat
model, is the standard one loop energy of the ground state
matrix cosmology this ground state energy will contribute
vtime-dependent term in the electromagnetic~EM! tensor
which happens to precisely cancel the usual contribut
from particle production. The vacuum expectation val
~VEV! of the EM tensor is thusidentical in the initial and
final states of the cosmology, a highly unusual situation.

It is often confusing what the correct observables are
time-dependent string theory. This concern seems part
larly acute in matrix cosmology where the universe tends
have dramatic initial and/or final conditions, such as t
complete disappearance of space-time at early or late tim
In the context of quantum field theory the problem with su
non-adiabatic evolution is that the particle concept is
©2004 The American Physical Society17-1
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useful. In matrix cosmology there is a preferred vacuum,
a notion of no particle state which is universal, and app
cable even as space-time is disappearing. This enables
discuss cosmological particle in a setting that would be
ficult to analyze using ordinary quantum field theory.

This paper is organized as follows. In Sec. II we introdu
the cosmological solutions to the matrix model. In Sec.
we first discuss the causal structure and the observable
matrix cosmology. We then construct the explicit modes
the fluctuating quantum fields and deduce the correspon
Bogulubov coefficients for particle production. Finally,
Sec. IV, we compute the energy-momentum tensor of
model, using anomalies.

Note added.As this paper was being prepared we receiv
@22# which has some overlap with the present work, parti
larly Sec. III. However, the main points of the works a
different.

II. MATRIX COSMOLOGY

In this section we introduce the matrix cosmologies
Karczmarek and Strominger@18#, along with our generaliza
tions. We discuss in turn the matrix model description,
collective field theory, and the fluctuations in collective fie
theory.

A. Fermion phase space picture

The holographic description of two dimensional clos
string theory is in terms of singlet states of the quant
mechanics of a singleN3N Hermitian matrixM with some
invariant potential TrV(M ) which has a quadratic maxi
mum. We will choose the value ofV(M ) at this maximum to
be zero. The dynamics can be entirely recast in terms of
eigenvaluesxi(t) of the matrixM and interpreted asN fer-
mions with positionsxi(t) in an external potentialV(x). The
double scaling limit consists of tuning the coupling consta
involved in the potential and takingN→` so that the Fermi
energy 2mF→0 while the rescaled Fermi energym
5bNmF is held fixed. In this limit the coordinates and th
momenta of the fermions may be rescaled such that
single particle Hamiltonian becomes the inverted harmo
oscillator

h52
1

2

d2

dx2 2
1

2
x2. ~1!

The Fermi energy of this rescaled problem is2m. Interpret-
ing the double scaling limit as a continuum limit of strin
world sheets one can identify the corresponding string c
pling asgs51/m.

In the classical limit we can discuss the dynamics in ter
of fermion trajectories in phase space (x,p). In the ground
state, the Fermi surface is

1

2
p22

1

2
x252m, ~2!

which implies that all states withp2,x222m are filled. In
this paper we will concentrate on the regionx,0. As is
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known now, the excitations of the Fermi sea in thex.0
region simply represents a second massless scalar prese
the 0B theory@23#.

The action corresponding to Eq.~1! has an infinite sym-
metry algebra,W` @24–26#, whose generators are given b

wrs5
1

2
e(r 2s)t~x2p!r~x1p!s. ~3!

The Hamiltonian is one of these charges,h52w11. At the
classical level the chargeswrs satisfy the Poisson bracke
algebra

$wrs ,wr 8s8%PB5~rs82sr8!wr 1r 821,s1s821 . ~4!

Our interest inW` is that it generates nontrivial solutions
starting with any classical solution, a new classical solut
can be found by transforming with aW` element. In particu-
lar a static Fermi sea like Eq.~2! can be transformed into a
time dependent Fermi sea by using charges withrÞs. We
will concentrate on solutions generated in this way
chargeswr0 andw0s . For these thefinite transformations of
x andp become

w0s : x85x1lse2st~x1p!s21,

p85p2lse2st~x1p!s21, ~5!

wr0 : x85x1lrert~x2p!r 21,

p85p1lrert~x2p!r 21, ~6!

where l is the parameter of transformation. Thus, starti
from the static Fermi surface~2!, we can obtain an infinite
set of exact solutions characterized by Fermi surfaces:

w0s :
1

2
~x22p2!1lse2st~x1p!s5m, ~7!

wr0 :
1

2
~x22p2!1lre1rt~x2p!r5m. ~8!

Of particular interest are the solutions obtained by
actions ofw01 and w10. In these cases theW` transforma-
tions ~5!, ~6! reduce to conventionalcoordinate transforma-
tions which are simply time dependent shifts of the coor
nate. It is then clear that we can create a two-param
family of solutions by combining the transformationsw01
andw10 with arbitrary parameters

x85x1l2e2t1l1et, ~9!

p85p2l2e2t1l1et. ~10!

The resulting solutions

1

2
~x22p2!1l2e2t~x1p!1l1et~x2p!5m ~11!
7-2
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are in fact the solutions discussed by Karczmarek
Strominger@18# ~up to a redefinition of the string couplin
constant!.

The more general cosmological solutions given by Eq.~8!
also correspond to smooth Fermi surfaces. A nice way
map them is to introduce the coordinatesx65x6p in phase
space. Then the solutions generated byw0s take the form

x2x112lse2stx1
s 52m. ~12!

We will consider the case ofl.0. After the further rescal-
ings y25x2/2ma and y15ax1 with the time-dependen
factor

a5Fls

m G1/s

e2t, ~13!

the Fermi surface becomes

y25
1

y1
~12y1

s !. ~14!

Interestingly this surface is symmetric aroundy50 in phase
space only for evens, since only then y2(2y1)
52y2(y1). Concentrating as usual on the region in whi
y1,0 we find, for odds, a smooth Fermi surface interpo
lating betweeny2;1/y1 for small y1 and y2;y1

s21 for
largey1 . Importantly, since the quantitydy2 /dy1 vanishes
only once in this domain, there are no ‘‘folds’’ in the Ferm
surface. This means it can be characterized by its intersec
with a x15const line, i.e. by the functionx25x2(x1). For
evens, there is no zero ofdy2 /dy1 and the Fermi surface
actually cross over to positive values ofy2 . In this descrip-
tion the Euler equations for the Fermi surface are simply

] tx656x66x7

]x6

]x7
, ~15!

which may be easily verified for Eqs.~7!, ~8!. Alternatively,
we can parametrize the Fermi surface by the values ofp at
the two intersections with thex5const line,P6(x,t). Then
the Euler equations take the form

] tP65x2P6]xP6 . ~16!

In the remainder of this paper we will primarily discuss t
original solutions~11! of @18#.

B. Collective field theory

So far our discussion has been in the open string langu
of matrix quantum mechanics. From this point of view w
have described some matrix configurations which are t
dependent, but there has not been a notion of ‘‘space’’
therefore no ‘‘cosmology’’ to discuss. The spatial coordina
x is an emergent quantity which can be seen only after p
ing to the closed string description by introducing the dens
of eigenvalues or thecollective field
04401
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r~x,t !5(
i

d„x2xi~ t !…. ~17!

In the continuum limit it is convenient to trade the dens
r(x,t) for a scalar fieldf(x,t) throughr(x,t)5]xf(x,t).
The action of the fieldf(x,t) is @27,28#

S5E dtdxF ~] tf!2

2]xf
2

p2

6
~]xf!31S 1

2
x22m D ]xfG1DS,

~18!

whereDS is the singular term

DS5
1

2E dtdx ]xf@]x]x8logux2x8u#x5x8 , ~19!

which is a part of the Jacobian of the change of variab
~17! from eigenvaluesxi(t) to the densityr(x,t) @27#. The
singular termDS does not contribute at leading order in th
loop expansion parametergs5m21. It will nevertheless play
a central role in our discussion since particle production i
quantum effect as well. Indeed, particle production will
effectively of the same order as the quantum correction
capsulated in Eq.~19!.

Any distribution of eigenvalues corresponds to a defin
state of the two dimensional collective field theory. Howev
for generic Fermi surfaces such a state cannot be descr
as a classical solution of the collective field theory beca
of the presence of folds or disconnected pieces@29,30#. In
fact, it can represent states of the theory where quan
dispersions of fields are of the same order as their class
expectation values@31,32#. However, for the time dependen
Fermi surfaces considered in this paper the profiles
quadratic—there are no folds—and such Fermi surfaces
indeed be represented as classical solutions of collective
theory.

The classical equation of motion following from the La
grangian~18! is

2] t

] tf

]xf
5]xFp2~]xf!21S ] tf

]xf
D 2

2~x222m!G ~20!

since we must ignoreDS in the classical limit. The ansatz

]xf05
1

p
P0~x,t !, ] tf052

1

p
P0~x,t !F~ t !, ~21!

where

P0~x,t !5A~x2Ḟ !222m, ~22!

solves the equation of motion~20! for all functions F(t).
Imposing the consistency conditions] t]xf05]x] tf0 on Eq.
~21! we find

d2F~ t !

dt2
5F~ t !, ~23!

and so
7-3
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F~ t !5l2e2t2l1et. ~24!

An alternative procedure that yields the solution~21! with
Eqs.~22! and ~24! is to verify that the profiles of the Ferm
surface,

P6~x,t !56P0~x,t !1F~ t !, ~25!

satisfy the Euler equation~16!.
The two parameter family of solutions to Eq.~23! given

in Eq. ~24! is identical to the matrix model solution~11! that
was generated from the static solutionF50 by the action of
w01 andw10. The explicit solutions for otherw0s ,wr0 solu-
tions can be also obtained in principle, though they invo
solutions of higher order algebraic equations.

The form of Eq.~22! restricts thex,0 branch of interest
to

x,2A2m1Ḟ. ~26!

The solution generated byw01 has F(t)5l2e2t, so, ast
52`, the Fermi surface is pushed to the region of la
negativex. In perturbation theory, the collective field ther
fore does not support excitations for any finitex—there is no
universe att52`. At finite times there is some allowe
region of x which is growing att increases so that, ast
→`, the Fermi surface becomes the static solution~2!,
which is the usual universe of the two dimensional str
around the ground state. The entire solution thus repres
the creationof a universe. In a similar way, solutions gene
ated byw10 represent thedestructionof a universe. We will
henceforth concentrate on universe destruction.

It will be important for our considerations to introduce
lower boundxmin52L in Eq. ~26! which restricts the uni-
verse to the finite volume

2L,x,2A2m1Ḟ. ~27!

The origin of the infrared regulator is the potentialV(x)
beforeperforming the double scaling limit. This leads toL
;AbN;1/Am0→`. We should therefore think of the vol
ume of the universe as a quantity of orderAbN in x space.

The solutions of collective field theory which correspo
to the more general solutions generated byw0s or wr0 are
more complicated to obtain, since these correspond tonon-
linear transformations of the collective field. Neverthele
as mentioned above, they can be obtained by solving hig
order equations in terms of phase space variables and t
lating these solutions in the collective field language.

C. Backgrounds in the matrix model

What is the meaning of these cosmologies in the origi
holographic theory, i.e. matrix quantum mechanics? This
an interesting question because in this case the hologra
theory has no ‘‘space’’ at all and these cosmologies are
coded as specific time dependent configurations of the ma
M (t). The Hamiltonian for matrix quantum mechanics rea

HM5Tr@PM
2 2M2#, ~28!
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and theW` charges are given by

wrs5
1

2
e(r 2s)tTr@~M2PM !r~M1PM !s#. ~29!

If um& denotes the ground state of this system, a cosmol
cal background generated byws0 is denoted by

ul&5exp@ ilws0#um&. ~30!

The expectation values of a typical invariant quantity m
then be formally expressed as

^luOul&5^muO 8um&, ~31!

where

O 85e2 ilws0Oeilws0. ~32!

This computation is purely formal because the left hand s
of Eq. ~31! is not meaningful because the stateul& is not
normalizable. States such asul& form a subset of the discret
states in thec51 model @33#. These, it is believed, should
not be really be regarded as states in the spectrum of
original model. Instead, they are interpreted as deform
backgrounds. The formal manipulation suggests that the
propriate deformed Hamiltonian is

H85HM1lsestTr~M2PM !s. ~33!

In other words, the holographic interpretation of the cosm
logical background is the modified matrix model who
Hamiltonian isH8. This interpretation is similar to the pro
posed description of two dimensional black holes in term
matrix model deformed by a TrM 22 potential@34#.

D. Fluctuations

The sole perturbative closed string excitation around
arbitrary classical background is given by the fluctuation
the collective field around the corresponding classical so
tion of collective field theoryf0(x,t):

f~x,t !5f0~x,t !1
1

Ap
h~x,t !. ~34!

In our applications we identify the fieldh with the spacetime
tachyon.1 Inserting the expression~34! into the action~18!
we find the quadratic action of the fluctuations:

S(2)5
1

2E dxdt
1

p]xf0
H ~] th!22F ~p]xf0!22S ] tf0

]xf0
D 2G

3~]xh!222
] tf0

]xf0
] th]xhJ . ~35!

1In general leg-pole factors must be taken into account. Th
result in a nonlocal redefinition of the field which will not be e
sential in our discussion.
7-4
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This form of the quadratic action is valid for fluctuation
aroundanyclassical solutionf0(x,t). It is useful to interpret
the action in terms of a massless scalar field propagating
spacetime with metric

ds252dt21

S dx1
] tf0

]xf0
dtD 2

~p]xf0!2
. ~36!

For the specific case of matrix cosmology~21! we have

S(2)5
1

2E dxdt
1

P0~x,t !
$~] th!22@P0~x,t !22F~ t !2#~]xh!2

12F~ t !] th]xh%, ~37!

and the background metric becomes

ds252dt21
~dx2F~ t !dt!2

P0~x,t !2 . ~38!

The coordinatex takes values in the interval~26!. At the end
points of this space the fieldh(x,t) satisfiesDirichlet bound-
ary conditions. This follows from the fact that the integral
the full collective field*dx]xf is the total number of fermi-
ons and therefore fixed.2

At the classical level the action~37! is invariant under
Weyl rescalings and so it determines the metric only up to
overall conformal factor. In Eq.~38! this factor was chosen
so that spacetime is flat. This can be seen explicitly by tra
forming the spatial coordinate as

x52A2m coshy1Ḟ, t5t, ~39!

so that the metric becomes

ds252dt21dy2, ~40!

and the boundary condition simply becomes a Dirichlet c
dition aty50. In these coordinates the problem thus retu
to the static case.

In terms of the original coordinates (x,t) we have a prob-
lem similar to the moving mirror problem@1,35#, with the
mirror trajectory given by the upper limit of the coordina
range~26!. In the moving mirror problem particle productio
can be entirely rephrased in terms of the anomalous trans
mation of the energy momentum tensor under the confor
transformation which makes the mirror stationary. T
vacuum in static coordinates then appears as a collectio
particles in the frame where the mirror moves. Particle p
duction in matrix cosmology works similarly except that,
we shall see in Sec. IV B, the vacuum is prescribed diff
ently.

2Strictly this argument implies only thath(xmin)2h(2A2m)50.
That fermions are in fact prevented from leaking out in either end
the interval is clear prior to taking the double scaling limit, and t
property is inherited by the scaled theory.
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In usual quantum field theory there is, in the absence
special symmetries, no sense in which one vacuum is
ferred over the other—the appropriate choice is determi
by the nature ofobservers. This vacuum ambiguity enter
concrete computations through the normal ordering presc
tion which is implemented at ‘‘equal time,’’ a notion tha
depends on the observer or, more precisely, on the coordi
system. String theory is different because ultraviolet div
gences are absent and therefore physical observables, su
the one loop free energy, are finite. The way this comes ab
in the collective field theory description is that the singu
term ~19! acts as a counterterm that cancels all divergenc
The form of this singular term singles out a specific coor
nate system, by regulating physical quantities at equal ma
time. This circumstance forces us to use the same timt
5t in the original (x,t) coordinates and the static coord
nates (y,t).

III. PARTICLE PRODUCTION IN MATRIX COSMOLOGY

In this section we discuss the causal structure of the m
ric seen by the fluctuations and define notions ofin andout
modes accordingly. We derive the nontrivial Bogolub
transform relating thein and out modes, and we determin
the corresponding spectrum of particles. We consider
definiteness thedestructionof a universe, i.e. a draining
Fermi sea (F52let).

A. Causal structure

A general problem in the study of time-dependent ba
grounds is the definition of proper physical observables.
example, it is often difficult to define anS matrix, because
there are no suitablein and out regions. One might expec
that matrix cosmology would suffer from this problem, sin
the entire spacetime disappears at late times. However, a
discuss now, this is fortunately not the case.

The most natural coordinate for spacetime processe
not the matrix model coordinatex, but rather the exponenti
ated coordinateQ defined through3

x52A2m coshQ. ~41!

We will think of Q as the physical spacetime coordinate a
refer to it as the cosmological coordinate. In our applicatio
we will in addition find it essential to employ the static c
ordinate y which transforms the matrix cosmology t
Minkowski space~40! with a Dirichlet condition aty50.
According to Eq.~39! we have the relations

coshy5coshQ1
Ḟ

A2m
5coshQ2

l

A2m
et. ~42!

f

3In the literature one often encounters the coordinateq defined
throughx52e2q ~see e.g.@39#!. OurQ.q at asymptotic distances
but Q has the advantage that the turning point of the Fermi sea
Q50.
7-5



te

in

.

di
te

y
-

’’
s

t at

i-

p-
by

tion

e

form

ld
atic
y
n-
is

rmal

n

m-
-

ac

DAS, DAVIS, LARSEN, AND MUKHOPADHYAY PHYSICAL REVIEW D 70, 044017 ~2004!
The time coordinatet is the same for all these coordina
systems.

In the static coordinates~y! a natural in region I 2 is
defined by taking the light-cone coordinatey25y2t→`.
Similarly, a naturalout region I 1 is defined by taking the
light-cone coordinatey15y1t→`. It is important to dis-
tinguish these regions from the future and past time-like
finities, ı6, which are reached by takingt→6` at fixedy,
and also from the space-like infinity,ı0, which is reached by
takingy→1` at fixed timet. These are all indicated in Fig
1~A!.

This discussion of asymptotic regions in the flat coor
nates translates nicely into the cosmological coordina
(Q). Indeed, define light-cone coordinatesQ65Q6t and
use Eq.~42! to obtain

Q65Q6t

56t1cosh21H coshy1
l

A2m
etJ

56
y12y2

2
1cosh21H coshS y11y2

2 D
1

l

A2m
e(y12y2)/2J . ~43!

The in regionI 2 is defined by takingy2→` with y1 fixed,
so Eq.~43! gives

Q65y61O~e2y2! on I 2. ~44!

The in regionI 2 is thus defined in physical coordinates b
taking Q2→` with Q1 fixed. Of course, this is rather ob
vious, since it is clear from Eq.~42! that the static coordi-
nates ~y! agree with the cosmological coordinates~Q! at
early times. The point of making the notion of ‘‘early times
precise is to avoid confusion about the concept ‘‘late time
in the following.

The out regionI 1 is defined by takingy1→` with y2

fixed, and so Eq.~43! gives

FIG. 1. Causal structures in~A! static~y! and~B! cosmological
~Q! coordinates. The dashed lines refer to the boundary of sp
time ~the end point of the eigenvalue distribution! in the two differ-
ent coordinates.
04401
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Q65y61 log~11l̃e2y2!1O~e2y1! on I 1 ~45!

where l̃5(A2/m)l. ThusQ1→` with Q2 fixed will take
one to theout regionI 1. The relation~45! is easily inverted
on I 1 to find

y65Q61 log~12l̃e2Q2!1O~e2Q1!. ~46!

An important feature of this expression is the branch cu
Q25 log l̃. Thus we are reaching theout region by taking
Q1→` with Q2 fixed at some value larger than the min

mal value(Q2)min5log l̃. The significance of this limiting
value is that the boundary of the draining Fermi sea asym
totically approaches the light-like trajectory parametrized
Q25(Q2)min . This is indicated in Fig. 1~B!.

In summary, the disappearance of spacetime by defini
prevents the presence of a future timelike infiniteı1. How-
ever, there is still a well-definedout regionI 1, defined by
taking Q1→` with Q2 fixed at some value larger than th
asymptotic trajectory of the tachyon wall (Q2)min5 log l̃.
This means it makes sense to discuss observables in the
of S-matrix elements.

B. in and out modes

The equation of motion for the fluctuating collective fie
h can be solved exactly. This is most easily done in the st
coordinates~y! where the equation of motion is satisfied b
simple plane waves. After taking the Dirichlet boundary co
dition at y50 into account, an obvious basis of solutions
given by

uv
in~y,t !5

1

Apv
e2 ivtsinvy ~v.0! ~47!

and their complex conjugates. The normalization of Eq.~47!
has been chosen such that these modes form an orthono
basis with respect to the Klein-Gordon norm

~uv8 ,uv!5 i E
S
dSm~uv]muv8

* 2uv8
* ]muv!5d~v2v8!

~48!

on any Cauchy surfaceS. We can find the exact modes i
the physical coordinates~Q! by solving Eq. ~42! for y in
terms ofQ and t, and substituting the result into Eq.~47!.
The modes obtained in this way will in general have a co
plicated dependence on the timet, but this dependence be
come quite simple in thein andout regions.

In the in region (I 2) the static coordinates~y! coincide
with the cosmological coordinates~Q! and so we can write
Eq. ~47! as

uv
in~Q,t !5

1

Apv
e2 ivtsinvQ5

i

A4pv
eivQ1 on I 2.

~49!

e-
7-6
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In the second equality we omitted the term depending onQ2

because, onI 2, this term does not contribute to the pro
ability current. Equivalently, the inner product~48! reduces
on I 2 to

~uv8 ,uv!5 i E dQ1~uv]Q1
uv8
* 2uv8

* ]Q1
uv! on I 2.

~50!

According to Eq.~49! the modes~47! reduce to the standar
positive frequency plane waves in thein region. It is for this
reason that we have specified them from the outset by
superscript ‘‘in.’’

In the out region (I 1) the static coordinate~y! is related
to the cosmological coordinate~Q! through Eq.~46! and so
the modes~47! take the form

uv
in~Q,t !52

i

A4pv
eivQ2~12l̃e2Q2! iv on I1 .

~51!

We have omitted the term depending onQ1 because this
term does not contribute to the current in theout region.4 The
canonical modes~49! in the in region thus evolve to the mor
complicated modes~51! in the out region. The change from
dependence onQ1 to dependence onQ2 is due to the re-
flecting boundary conditions on the field which turn le
movers into right movers.

Since thein modes are rather complicated in theout re-
gion, it is natural to introduce a different basis which
simple there. The obvious choice is to consider a set
modes parametrized byv.0 and which, in theout region,
reduce to the canonical form

uv
out~Q,t !52

i

A4pv
eivQ2 on I1 . ~54!

It is obvious that modes in fact exist that satisfy the eq
tions of motion everywhere and reduce to this expressio
theout region: thein modes and their complex conjugates
satisfy the equations of motion and, in theout region, they
take the form given in Eq.~51! which, when the complex
conjugates are included, spanall functions ofQ2 . The non-
trivial content of selecting the modes~54! is the implied
notion of positive frequencyv.0 which, after quantization

4This is clearest in they coordinates where the inner product o
I 1 is written as in Eq.~50! with dQ1→dy2 and]Q1

→]y2
. If we

wish to write the inner product onI 1 as an integral overdQ2 we
must use the more complicated tangent derivative

]

]Q2
Uy2

5]Q2
1

]Q1

]Q2
U
y1

]Q1
~52!

where

]Q1

]Q2
uy1

5
l̃e2Q2

12l̃eQ2
. ~53!
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amounts to the introduction of a particle concept. Sin
spacetime is rapidly evolving at late times it is not obviousa
priori that any such notion should even exist in theout re-
gion. However, in the present context, the underlying ma
model singles out a preferred time coordinatet. The pro-
posedout modes~54! are uniquely determined by their ca
nonical dependence on this time coordinate.

C. Bogolubov transformation

The in modes depend on both theout modes and their
complex conjugates, as encoded in the Bogolubov transfo

uv
in~Q2!5E

0

`

dv̄@a~v̄,v!uv̄
out

~Q2!

1b~v̄,v!„uv̄
out

~Q2!…* #. ~55!

We want to compute the Bogolubov coefficientsa(v̄,v) and
b(v̄,v). To do so we introduce the Fourier transformF of
the in mode through

uv
in~Q2!5E

2`

`

dv8eiv8Q2F~v,v8!. ~56!

We must be a little careful when inverting this expansio
becauseQ2 has a semi-infinite range bounded below by t
minimum value (Q2)min5 ln l̃. Accordingly we compute

E
ln l̃

` dQ2

2p
e2 i v̄Q2uv

in~Q2!

5E
ln l̃

` dQ2

2p E
2`

`

dv8ei (v82v̄)Q2F~v,v8!

5 i E
2`

` dv8

2p

F~v,v8!

v82v̄
ei (v82v̄)ln l̃

5F~v,v̄ !. ~57!

In the first step we assumed Im(v̄),0, which is implied
already on the left hand side to ensure convergence. In
next step we closed thev8 contour in the lower part of the
complex plane. Using Eq.~51! for the in modes we find

F~v,v̄ !5E
ln l̃

` dQ2

2p
e2 i v̄Q2uv

in~Q2!

52
i

A4pv
E

ln l̃

` dQ2

2p
ei (v2v̄)Q2~12l̃e2Q2! iv

52
i

A4pv

l̃ i (v2v̄)

2p E
0

1

dz z2 i (v2v̄)21~12z! iv
7-7
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52
i

A4pv

l̃ i (v2v̄)

2p
B„i ~v̄2v!,11 iv….

~58!

We changed the integration variable toz5l̃e2Q2. Compar-
ing the definition of the Bogolubov transform~55! with the
Fourier transform~56!, and recalling the definition ofout
modes~54!, we now find the Bogolubov coefficients

a~v̄,v!5
1

2p
Av̄

v
l̃ i (v2v̄)B„i ~v̄2v!,11 iv…, ~59!

b~v̄,v!5
1

2p
Av̄

v
l̃ i (v1v̄)B„2 i ~v̄1v!,11 iv….

~60!

The non-vanishing of theb(v̄,v) is interpreted as par
ticle production in the matrix cosmology. The creation a
annihilation operators in thein andout vacua are defined by
the expansions

h~Q,t !5E
0

`

dv@av
inuv

in~Q,t !1av
in†uv

in* ~Q,t !#

5E
0

`

dv@av
outuv

out~Q,t !1av
out†uv

out* ~Q,t !#,

~61!

and so, comparing with Eq.~55!, one finds

av
out5E

0

`

dv̄@a~v,v̄ !av̄
in

1b* ~v,v̄ !av̄
in†

#. ~62!

The quantity that we want to compute is the expectat
value of theout number operator in thein vacuum:

N~v!5^av
out†av

out& in

5E
0

`

dv̄ub~v,v̄ !u2

5E
0

` dv̄

4p~v1v̄ !

sinhpv

sinhp~v1v̄ !sinhpv̄
.

~63!

This is our final result for the particle spectrum onI 1. The
integral is convergent at high energies, as it should be. Th
is a logarithmic divergence for smallv̄ which is interpreted
as a linear divergence inQ2 ; i.e., it is the energydensity
which is finite.

IV. ENERGY MOMENTUM TENSOR

In this section we analyze the energy-momentum ten
of the fluctuations in the cosmological background. We be
by reviewing the static case and then turn to the tim
dependent setting.
04401
n
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n
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A. Static case

We begin the discussion by considering the static casF
50. The Hamiltonian for the fluctuations then simplifies

H5E dxP0F1

2
Ph

21
1

2
~]xh!2G1DH, ~64!

where

DH5E dxP0F 1

2p
]x]x8logux2x8uG

x5x8

~65!

is the Hamiltonian form of Eq.~19!. This last term is actually
independent of the fluctuating fieldh, but it is included be-
cause it contributes at the same order in the loop expan
parametergs5m21 as the quadratic fluctuations. The me
suredxP0 that appear in both Eqs.~64! and~65! translates in
the underlying matrix model toder(e), which is the obvious
continuum version of the sum over eigenvalues. The exp
sions in the square brackets then correspond to the quan
fluctuations of the eigenvalues.

For explicit computations it is useful to employ the sta
coordinatesy where the metric for the fluctuation of the co
lective field is the simple Minkowskian~40!, and the Dirich-
let condition is imposed aty50. In this coordinate system
the Green’s function takes the simple form

D~ t̄ ,ȳ;t,y!52
1

4p
logS Dt22Dy2

Dt22~y1 ȳ!2D , ~66!

where Dt5 t̄ 2t and Dy5 ȳ2y. The denominator arise
from the image charge that enforces the Dirichlet conditi
The Green’s function in other coordinate systems can
found by simply substituting expressions fort andy as func-
tions of those other coordinates.

The Green’s function diverges at coincident points, so
do the calculations, we must regulate the theory. We inter
two point functions by using a cutoff inx coordinates accord
ing to the prescription

^~]xh!2&5 lim
x̄→x

] x̄]xD~ t̄ ,ȳ;t,y!, ~67!

where the point splittingx̄→x1e/2, x→x2e/2 is implied.
The t and y ~and their barred analogues! are functions of
these slightly shiftedx ~and x̄). Evaluating the remaining
expression we find

^~]xh!2&52
1

2p
lim
x̄→x

H ȳ8y8

~ ȳ2y!2
1

ȳ8y8

~ ȳ1y!2J ,

52
1

2pe2 2
1

8p S y8

y D 2

2
1

12p
$y,x%1O~e2!,

~68!
7-8
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where the limit e→0 is implied and we introduced th
Schwarzian derivative

$y,x%5
y-

y8
2

3

2 S y9

y8
D 2

, ~69!

as well as the notationy85]xy521/P0, etc. ~and similarly
for ȳ and x̄).

The canonical momentum is given by the Hamiltoni
equation of motion as

Ph5
1

P0
] th. ~70!

Using this expression, it is straightforward to compute
two point correlator of the momenta using the Green’s fu
tion ~66! and the point-splitting procedure already used
Eq. ~67!. The result is

^Ph
2&52

1

2pe2 1
1

8p S y8

y D 2

2
1

12p
$y,x%1O~e2!.

~71!

This result agrees precisely with Eq.~68!, except for the sign
of the second term, which is the part that arises from
images. Indeed, the computations leading to the two res
are almost identical because, after taking theP0 appearing in
the denominator of Eq.~70! into account, temporal deriva
tives act on the short distance part of the Green’s functio
the same way as spatial derivatives. This agreement betw
the potential energy~68! and the kinetic energy~71! is re-
ferred to as the virial theorem. The origin of the virial the
rem in the matrix theory is the simple oscillator form of th
potential after double scaling.

Collecting the results we find that the divergent piec
cancel and the final result for the expectation value is

Hgs52E dxP0

1

12p
$y,x% ~72!

of the Hamiltonian~64! in the ground state. The explic
form ~39! ~with F50) of y(x) gives

$y,x%5
1

P0
2 S 1

2
1

3m

x222m D→ 1

2P0
2 , ~73!

for largex2. The extensive part of the energy is therefore

Hgs52
1

24p
u ln~2xmin!u5

1

48p
ln m0 , ~74!

sinceuxminu5L;1/Am0. This result is interesting for severa
reasons:

~i! The singular term from the Jacobian~65! cancels the
regularized singularities from the two-point functions a
so the final result is finite, without the need for furth
04401
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renormalization of the collective field theory.5 This ex-
plicit understanding of how the matrix theory induces t
correct counterterms in collective effective field theory
the origin of a preferred vacuum in the theory.
~ii ! The image in the Green’s function~66! contributes to
the finite part of the two-point functions~68! and~71!, but
these contributions cancel in the total energy. It is n
surprising that boundary conditions are unimportant
the extensive part of the energy in the thermodynam
limit, but it is nice to see how it works explicitly.
~iii ! The finite part agrees with the one-loop result fou
by solving the matrix model explicitly@36#.6 This gives
great confidence that we have interpreted the theory
rectly.

Let us also mention the further results:

~i! In collective field theory, the ground state of the m
trix model is the vacuum defined in terms of the mo
expansion of the fluctuation field in terms of mod
e6 ivtsin(vy) since this is the vacuum which leads to th
two point function used above.
~ii ! The presence of a finite ground state energy in t
theory is an important signature that we are dealing wit
string theory. In fact, at finite temperatureT this term,
when added to the standard thermodynamic contribut
leads to aT-dual answer symmetric underpT→1/pT
characteristic of string theory@15#.
~iii ! We have performed the calculation using a po
splitting regulator inx space. If we use instead a regulat
in y space, the Schwarzian derivative term will come fro
DH. The divergences cancel as before leading to the s
finite answer.

B. EM tensor in matrix cosmology

Let us now generalize these considerations to matrix c
mology. As we have emphasized, matrix cosmology is
lated to the static case by a simple coordinate transforma
which, near the asymptotic null infinityI 1, takes the form

y25Q21 log@12l̃e2Q2#1O~e2Q1!, ~75!

asQ1→` with Q2 fixed at someQ2. ln l̃. As in previous
sections we use the notationy65y6t and Q65Q6t for
the static and cosmological light-cone coordinates and
also introduced the abbreviationl̃5lA2/m to parametrize
the limiting value (Q2)min5 ln l̃.

The static coordinates~y! play a several roles in the prob
lem. First, the cosmological coordinates~Q! reduce to the

5This cancellation has been known from early days of collect
field theory@15,28,37#. However, generally the image term has be
ignored in these computations and our explicit verification of
virial theorem in the presence of regularization is also new, to
best of our knowledge.

6The energy~74! agrees with Eq.~3.30! of @38# after dividing the
result given there by two, because we only compute the energ
the x,0 part of the Fermi sea.
7-9
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static coordinates at early times, so the static coordin
define thein vacuum. Second, the Green’s function~66! in
static coordinates transforms simply into the cosmolog
coordinates, since the transformation~75! is conformal ~it
does not mix the ‘‘1’’ and ‘‘ 2 ’’ light-cone coordinates!. This
will allow us to use conformal techniques to study the pro
lem at asymptotic null infinityI 1. Following the standard
strategy, we begin the discussion by writing the results fr
the static case in a form that transforms naturally under
conformal group.

The extensive part of the energy was computed in
previous subsection with the result~74!. The volume factor
in the static frame~y! is related to the infrared cutoff in th
matrix model coordinates~x! throughx;ey so we can ex-
press this result concisely in terms of the energy density

e52
1

48p
, ~76!

in the static frame. Note that this formula is exact atI 1

since the subleading terms in Eq.~73! do in fact vanish as
Q1→` with Q2 fixed. The classical expression for the pre
sure density is identical to that of the energy density,
repeating the arguments in the previous subsection, we
p5e. The complete energy-momentum tensor in the st
frame thus takes the form

^Ty1 ,y1
&5^Ty2 ,y2

&52
1

48p
, ~77!

in light-cone coordinates.
Let us now transform to the cosmological coordinatesQ

which contain the behavior at late times. Since Eq.~75! is a
conformal transformation we can use the standard, ano
lous, transformation rule

TQ2 ,Q2
5S ]y2

]Q2
D 2

Ty2 ,y2
1

1

24p
$y2 ,Q2%S , ~78!

of the EM tensor. The second term is present because
short distance singularity of the EM tensor, although s
canceled by the explicit counter-term~65! in the collective
field theory, differs by finite amounts in the two coordina
systems. The expectation value of Eq.~78! relates the EM
tensor of the static and the cosmological coordinates. Ev
ating the derivatives we find

]y2

]Q2
5

1

12l̃e2Q2
, ~79!

$y2 ,Q2%S5

l̃e2Q2S 12
1

2
l̃e2Q2D

~12l̃e2Q2!2
,

~80!

and then Eq.~78! becomes simply

^TQ2 ,Q2
&52

1

48p
. ~81!
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This means physical observers will experienceno outgoing
flux of energy atI 1. This result is a tremendous surprise

In standard computations, such as those considering m
ing mirrors, the static EM tensor^Ty2 ,y2

& would be taken to
vanish, and soonly the second term~the Schwarzian deriva
tive! in Eq. ~78! would contribute. The associated ener
would be interpreted as the energy of the particles produ
by the expansion. This is also the natural interpretation of
Schwarzian derivative here. However, in the present con
the particle production is partially obscured by another eff
which is operative as well: the~one-loop! energy density of
the ‘‘in’’ vacuum is non-zero and finite in the co-movin
frame (y). The corresponding EM tensor is blueshifted in t
frame of asymptotic observers~Q! onI 1 and this leads to an
energy flux. This effect is the origin of the first term in E
~78!. Our remarkable result is that these two effects can
each other precisely such that the cosmological vacuum
precisely the same EM tensor as the static vacuum. Thi
very different from the standard computations.

The EM tensor~81! takes the same value along the ent
I 1 as it does onI 2. This suggests that, despite appearanc
I 1 is a perfectly nice locus to define large classes of obse
ables. One may consider the scattering of particles fromI 2

to I 1 and correlation functions onI 1 itself. The existence
of such observables cannot be taken for granted in a ti
dependent setting, but in matrix cosmology, it would se
that they both exist and are computable. It would clearly
interesting to make this more explicit.

Our result that the one-loop energy of the matrix cosm
ogy agrees with that of the static ground state is all the m
surprising because theclassicalenergy in this specific back
ground does receive the very specific time-dependent co
bution

Ecl5Ecl
(0)2ḞE

2L

2A2m
dxxAx222m ~82!

whereEcl
(0) is the static ground state energy. This is consist

with Eq. ~33!. That the one-loop energy is the same as in
ground state of course means there is no energy flux.

In summary, we have found a remarkable cancellation
tween two apparently different contributions to the EM te
sor. The consequence is that the outgoing EM tensorT22 is
identical in thein and out vacua. This is quite unusual an
surprising, at least to us. It is natural to suspect that
cancellation ultimately stems from the integrable nature
the underlying matrix theory. To understand this better
would be interesting to make the formal description of t
matrix cosmology as a deformed matrix model more co
crete. It would also be interesting to extend the computat
of the EM tensor to the broader class of cosmological so
tions generated in Sec. II B from theW` symmetry of the
model.
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