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Nonlinear coupled Alfvén and gravitational waves
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In this paper we consider nonlinear interaction between gravitational and electromagnetic waves in a
strongly magnetized plasma. More specifically, we investigate the propagation of gravitational waves with the
direction of propagation perpendicular to a background magnetic field and the coupling to compressional
Alfvén waves. The gravitational waves are considered in the high-frequency limit and the plasma is modeled
by a multifluid description. We make a self-consistent, weakly nonlinear analysis of the Einstein-Maxwell
system and derive a wave equation for the coupled gravitational and electromagnetic wave modes. A WKB-
approximation is then applied and as a result we obtain the nonlinear Schro¨dinger equation for the slowly
varying wave amplitudes. The analysis is extended to 3D wave pulses, and we discuss the applications to
radiation generated from pulsar binary mergers. It turns out that the electromagnetic radiation from a binary
merger should experience a focusing effect, that in principle could be detected.
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I. INTRODUCTION

Recently much work has been devoted to the study
gravitational waves, largely due to the increased possib
of detection by facilities in operation such as LIGO~Laser
Interferometer Gravitational Wave Observatory!, or by ambi-
tious detector projects under development such as LISA~La-
ser Interferometer Space Antenna! @1#. The possibility of in-
teraction between electromagnetic and gravitational fie
has also led to alternative proposals for gravitational w
detectors, see e.g., Refs.@2,3# and references therein. Clos
to the source, in an astrophysical context, the gravitatio
waves often propagate in a plasma medium, and the am
tudes can be much larger, which increases the numbe
possible interaction mechanisms, see e.g. Refs.@4–22#. Lin-
ear gravitational wave theory in a magnetized plasma
been studied by for example Refs.@4,5#, including the back
reaction from the plasma on the gravitational wave. In Re
@6–9# the authors have studied nonlinear responses to
gravitational wave by the plasma medium, although the b
reaction has been neglected. The nonlinear response g
raise to effects, such as parametric instabilities@7,9,11,12#,
large density fluctuations@8,10#, and photon acceleration@8#.
The application of gravitational wave processes to astroph
ics has been discussed by, for example, Refs.@13–15#, and to
cosmology by Refs.@16–18#. A number of works studying
nonlinear propagation of gravitational waves, including t
back reaction from the plasma, have also been written,
e.g.,@10,11,19#.

In Refs. @20,21# geometrical nonlinearities from the Ein
stein tensor were considered, and a nonlinear evolution e
tion was derived. However, it was found that the nonline
coefficient was proportional to the small difference of t
phase velocity and the velocity of light in vacuum. In th
present paper we neglect nonlinearities from the Eins
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tensor and instead focus on the nonlinear response from
ter. In particular we consider coupled gravitational and el
tromagnetic waves propagating in a magnetized plasma,
the direction of propagation perpendicular to the backgrou
magnetic field. For this wave coupling to be efficient, t
interaction should be~almost! resonant, i.e., the electromag
netic wave propagation velocity in the plasma should
close to the speed of light. This increases the interac
strength and allows us to neglect the effect of the backgro
curvature, in comparison with the direct interaction wi
matter.

The plasma is modeled by a multifluid description, a
we perform a self-consistent weakly nonlinear analysis of
Einstein-Maxwell system of equations for 1D spatial var
tions in the high-frequency limit. This system is reduced to
single nonlinear wave equation for the coupled gravitatio
and electromagnetic waves. We then apply a WK
approximation to this wave equation, and it turns out that
slowly varying wave amplitude obey the well-known nonli
ear Schro¨dinger ~NLS! equation @23#. In Sec. IV B, the
analysis is expanded to include a 3D spatial depende
allowing us to consider diffraction and/or nonlinear se
focusing of the wave. For certain conditions the sign of t
nonlinear coefficient is of focusing type, which for sufficie
initial amplitudes implies solutions that undergo wave c
lapse. The conditions for collapse and the possible appl
tions to astrophysics are discussed.

II. OVERVIEW OF THE APPROXIMATION SCHEME

The problem treated in this paper contains a number
small parameters used in the different approximations
expansions made throughout the paper. The aim of this
tion is to give an overview of these parameters, at w
stages of the calculations they are introduced, and to w
order the expansions need to be made.

In Sec. III, we introduce the small gravitational wave am
plitudes h1,3 and in calculating Maxwell and fluid equa
tions, ~27!–~33!, we only keep terms toO(h1,3). However,
for the case when the gravitational wave interacts with
©2004 The American Physical Society14-1
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almost resonant Alfve´n wave, nonlinearities become impo
tant. The reason is that the resonance magnifiesudBu/uB0u
where dB and B0 are the wave magnetic field and bac
ground magnetic field, respectively. The magnification is
the orderudBu/uB0u;h1v/dv where dv is the frequency
mismatch as compared to the Alfve´n mode. Therefore, we
keep terms up to orderO(udBu3/uB0u3), in the expansion of
the wave equation~41!, in order to obtain the nonlinear am
plitude modulation. Other nonlinearities originating from t
Einstein tensor and the effective currents in~7!–~12! will not
be magnified due to the resonance, and may be neglect
our treatment, see also the discussion following Eq.~20!.

Furthermore, in Sec. III we introduce the high-frequen
approximation, valid for wave numbersk@1/r c , wherer c is
a characteristic radius of curvature of the background. T
condition may also be written as the small parame
kB0

2/k2!1, where k58pG ~we use units wherec5m0

5e051). We have to keep terms toO(kB0
2/k2), in order to

include the weak coupling between the gravitational mo
and the Alfvén mode.

In Sec. IV we first use the approximations] t'2]z , ex-
cept in the linear wave operators, in order to simplify o
system of equations. This is justified in the high-frequen
approximation. Furthermore, we use] t!vc , i.e., we assume
that the frequency of variations of fields is much smaller th
the cyclotron frequency of all particle species in the plasm
In the expansion of Eq.~36!, we must include terms to
O(] t /vc). This is because the equations of motion to zer
order in ] t /vc gives just theE3B drift of all particle spe-
cies, and we must include terms of one order higher to ob
a nonzero current in the plasma.

Next, in Sec. IV A, we introduce a weakly modulate
wave ~WKB-approximation!, with the underlying assump
tion that the characteristic length scale for amplitude mo
lations obeysL i@l. In deriving Eq.~50!, we need terms to
O(l2/L i

2) in order to include the dispersive term in~50!. We
also use 1/CA

2!1, whereCA is the Alfvén velocity, and only
keep terms to lowest nonvanishing order to simplify t
equations. Then, in Sec. IV B, we extend the problem
include small variations in the directions perpendicular to
direction of propagation. We apply the conditionL'@l,
whereL' is the characteristic length for perpendicular var
tions. In subsequent calculations, we must keep term
O(l2/L'

2 ) to obtain the diffractive term in Eq.~67!, see the
discussion at the beginning of Sec. IV B for more details

The parameters in this section are, in principle, indep
dent of each other with the sole exception thatdv/v
;1/CA

2 , which is our main motivation for considering th
regime CA

2@1. In addition to these parameters there ar
few other small parameters introduced throughout the pa
but those quantities are related in different ways to the o
presented in this section, and the relations are explaine
the text. The only restrictions on the parameters in this s
tion, besides their smallness, is due to physical applicabi
i.e., the values of the parameters should be chosen t
environments close to emitters of reasonably strong grav
tional waves. An example of such parameter values is p
sented in the final section.
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III. BASIC EQUATIONS

The gravitational and electromagnetic fields are govern
respectively, by the Einstein field equations

Gab5kTab ~1!

and the Maxwell field equations

¹aFab5 j b ~2!

¹aFbc1¹bFca1¹cFab50 ~3!

where Gab is the Einstein tensor,Tab is the energy-
momentum tensor,Fab is the electromagnetic field tensor,j b

is the four-current density, and¹ denotes covariant differen
tiation. We use the spacelike signature (2111) for the
metric.

For the plasma we use a multifluid description, where
plasma is seen as a number of charged fluids, one for e
plasma species, and collisions between particles are
glected. The total energy-momentum tensor is thenTab

5Tab
( f l )1Tab

(em) . Here the fluid part is

Tab
( f l )5(

s
$@m (s)1p(s)#u(s)au(s)b1p(s)gab% ~4!

where m (s) ,p(s) , and u(s)a are the internal energy density
pressure, and four-velocity for each plasma species,s, gab is
the metric tensor and the electromagnetic part is

Tab
(em)5Fa

cFbc2
1
4 gabF

cdFcd ~5!

In the absence of collisions, the evolution equations for e
fluid species can be written@24#

¹bT(s)
ab5Fabj b(s) ~6!

as is consistent with Eq.~1!.
With these preliminaries, we now follow the approa

applied in Refs.@8,9,13,19,25,26# and introduce an observe
four-velocity Va, so that the electromagnetic field can b
decomposed relative to this into an electric and a magn
part, Ea5FabV

b and Ba5 1
2 eabcF

bc, respectively. Here
eabc5Vdeabcd whereeabcd is the four-dimensional volume
element withe01235Audetgabu. Next we introduce an ortho
normal frame~ONF! with basis$ea5ea

m]xm%, wheree05V
5Vaea , ~i.e. Va5d0

a), and write the fluid four-velocity as

ua5(g,gv), where g5(12vava)2
1
2 , a51,2,3, andv is

the fluid three velocity. Dividing the four-currentj a

5(sq(s)n(s)u(s)
a in the same manner, the Maxwell equatio

~2! and~3! and fluid equations~6! can be written@13,19,26#

¹•E5r1rE ~7!

¹•B5rB ~8!

e0E2¹3B52 j2 jE ~9!

e0B1¹3E52 jB ~10!
4-2
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NONLINEAR COUPLED ALFVÉN AND . . . PHYSICAL REVIEW D 70, 044014 ~2004!
e0~gn!1¹•~gnv!5Dn ~11!

~m1p!~e01v•¹!gv52g21¹p2gv~e01v•¹!p

1qn~E1v3B!1~m1p!g

~12!

where we have omitted the fluid species indexs, and it is
understood that we have one pair of fluid equations~11! and
~12! for each plasma fluid species. We have introduced
three-vector notationE[(Ea)5(E1,E2,E3) etc., and ¹
[(e1 ,e2 ,e3). The charge density isr5(sq(s)gn(s) andn is
the proper particle number density. The effective charg
currents, and forces originating from the inclusion of t
gravitational field are given by

rE[2Gba
a Eb2eabgGab

0 Bg ~13!

rB[2Gba
a Bb1eabgGab

0 Eg ~14!

jE[@2~G0b
a 2Gb0

a !Eb1G0b
b Ea

2eabg~Gb0
0 Bg1Gbg

d Bd!#ea ~15!

jB[@2~G0b
a 2Gb0

a !Bb1G0b
b Ba

1eabg~Gb0
0 Eg1Gbg

d Ed!#ea ~16!

Dn[2gn~G0a
a 1G00

a va1Gba
a vb! ~17!

g[2g@G00
a 1~G0b

a 1Gb0
a !vb1Gbg

a vbvg#ea ~18!

whereGbc
a are the Ricci rotation coefficients associated w

the tetrad$ea%.
From now on we will assume that the plasma is cold,

that we can neglect the pressure terms in Eq.~12! and let
m (s)5m(s)n(s) , wherem(s) is the mass of each particle sp
cies. We will also apply the high-frequency approximati
@27# for the gravitational waves. Thus we will assume th
the background gravitational field and the unperturb
plasma and electromagnetic fields fulfill Einstein’s fie
equations~1!, and we introduce perturbations to the metr
gmn5gmn

(0)1hmn , ~greek indices are coordinate indices!, and
to the energy-momentum tensor,Tab5Tab

(0)1dTab , which
should then fulfill

dGab5kdTab ~19!

wheredGab is the ~linearized! perturbation to the Einstein
tensor caused by the metric perturbation.

It was recently shown by Ref.@19# that in the high-
frequency approximation the gravitational wave can be ta
to be in the transverse and traceless~TT! gauge even in the
presence of matter. In this gauge the metric of a lineari
gravitational wave propagating in thez direction is given by
@28#

ds252dt21~11h1!dx21~12h1!dy212h3dxdy1dz2

~20!
04401
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whereh1[h1(z,t) andh3[h3(z,t) denotes the two polar
ization modes of weak gravitational waves in the TT gau
anduh1u,uh3u!1. The quantitiesh1 andh3 differ from the
corresponding quantities in the vacuum case,h1[h1(z
2t),h3[h3(z2t), because of the weak interaction wit
the plasma. However, this difference is very small, whi
will allow us to use] t'2]z in many of the subsequen
approximations. We note that components of the metric t
sor corresponding to the quadratically nonlinear contribut
from the pseudoenergy momentum tensor, as well as hig
order cubic nonlinearities are neglected in~20!. The basic
motivation for this is that we neglect nonlinearities from t
Einstein tensor and focus on the nonlinear response f
matter. When determining the regime of validity for this a
proach, a couple of things should be noted, as follows:

~i! As shown by Ref.@20#, for unidirectional propagation
of a weakly modulated plane wave in a flat background~in
the absence of the gravitational wave!, the nonlinearities in
the Einstein tensor cancel up to cubic order as far as
evolution of the amplitude function is considered.~Although
the background curvature due to the pseudoenergy mom
tum tensor of the wave is affected, this does not lead
amplitude modulations. We note that this result is consist
with the exact so called PP-wave solutions where the am
tude function is unaffected by the nonlinearities in the E
stein tensor, although the background curvature is modi
due to the wave.!

~ii ! If the background in the absence of the gravitation
wave is weakly curved~with a characteristic radius of cur
vaturer c fulfilling krc@1, wherek is the gravitational wave
number!, nonlinearities in the Einstein tensor lead to amp
tude modulations of the order of] th1,3;vh1,3

3 /(k2r c
2),

see Ref.@21#.
~iii ! If there are wave perturbations in matter close

resonance~i.e., assuming a wave mode in matter fulfillin
v5k1dv, wheredv!v), the matter response due to th
gravitational wave is magnified. As will be shown below, f
our case the nonlinear contribution, close to resonance, to
amplitude modulation scales as] th1,3;kT0h1,3

3 v/dv2,
where T0 is the magnitude of the background energ
momentum tensor. We note that the nonlinear matter
sponse dominates over that associated with the comb
effect of the background curvature and the Einstein ten
nonlinearities, providedk22r c

22!kT0 /dv2.
~iv! Using the high-frequency approximation (krc@1, see

@27,29#! and assuming a weakly nonlinear response fr
matter, it is always possible to use the TT gauge@19#. As far
as the direct interaction with the medium is concerned, i
the contribution that is magnified due to the resonance,
background metric can then be considered as flat~i.e., gab

(0)

5hab), see@29#.
Next we choose our tetrad basis for the metric~20! as

e05] t , e15~12 1
2 h1!]x2 1

2 h3]y ,

e25~11 1
2 h1!]y2 1

2 h3]x , e35]z . ~21!

Using ~20! and~21! in the linearized Einstein field equation
4-3
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~19!, subtracting the11 and 22, and adding the12 and 21
components of the equations one gets@8,19,29#

~] t
22]z

2!h15k~dT112dT22! ~22!

~] t
22]z

2!h35k~dT121dT21! ~23!

In the basis~21! the non-zero terms in~13!–~18! are

jE52 1
2 ~E1] th11B2]zh11E2] th32B1]zh3!e1

1 1
2 ~E2] th12B1]zh12E1] th32B2]zh3!e2

~24!

jB52 1
2 ~B1] th12E2]zh11B2] th31E1]zh3!e1

1 1
2 ~B2] th11E1]zh12B1] th31E2]zh3!e2

~25!

g52 1
2 g~v1] th11v1v3]zh11v2] th3

1v2v3]zh3!e11 1
2 g~v2] th11v2v3]zh1

2v1] th32v1v3]zh3!e21 1
2 g~~v1

22v2
2!]zh1

12v1v2]zh3!e3 . ~26!

The generalization to a finite gravitational wave pu
width, i.e., including a weak spatial dependence perpend
lar to the direction of propagation, leads to additional ter
in ~24!–~26! and ~22! and ~23!. An outline of this case is
found in Sec. IV B.

IV. COUPLED ALFVE´ N AND GRAVITATIONAL WAVES

In Ref. @8# a test fluid approach was taken to show tha
gravitational wave can drive the amplitude of an electrom
netic wave to a nonlinear regime, and in Ref.@19# a linear
analysis of the interaction between a gravitational wave
the extraordinary electromagnetic wave was made using
equations presented in Sec. III. Here we intend to tak
similar approach, but guided by the results in Ref.@8#, we
will include a nonlinear response of matter and fields, wh
still assuming the metric perturbation to remain small.

We assume the presence of a background magnetic fi
B05B0e1, and introduce the perturbationsn5n01dn, B
5(B01Bx)e1 , E5Eye21Eze3, andv5vye21vze3 @30#. We
also note that in the case of gravitational waves propaga
in a magnetized plasma, with the magnetic field perpend
lar to the direction of propagation, only theh1-polarization
part of the gravitational wave couples effectively@31# to the
electromagnetic wave, see also Ref.@19#. Thus we puth3

50 in order to simplify the algebra. As in Ref.@8#, we as-
sumevy!1, ~becausevy;h1), and therefore neglect term
of the typevy

2 andvyh1 , but we allow forvz;1. We will
also consider slow variations such that] t!vc[qB0 /m for
each plasma species. With these restrictions the Maxwell
fluid equations~7!–~12! can be reduced to the following se
of equations@32#:
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qg~n01dn! ~27!

] tEy2]zBx52(
s

@qg~n01dn!vy#2 1
2 Ey] th1

1 1
2 ~B01Bx!]zh1 ~28!

] tEz52(
s

qg~n01dn!vz ~29!

] tBx2]zEy52 1
2 Ey]zh11 1

2 ~B01Bx!] th1

~30!

] t@g~n01dn!#52]z@g~n01dn!vz# ~31!

] t~gvy!1vz]z~gvy!5
q

m
@Ey1vz~B01Bx!# ~32!

] t~gvz!1vz]z~gvz!5
q

m
@Ez2vy~B01Bx!# ~33!

and the linearized Einstein equations,~22! and~23!, become

~] t
22]z

2!h15k~Ey
222B0Bx2Bx

2!. ~34!

For the electromagnetic wave to exchange energy effectiv
with the gravitational wave, the two waves must be alm
resonant, so we will consider all perturbations to be of
form Bx'Bx(z2t), which allows us to use] t'2]z in sim-
plifying our system of equations. A certain care must
taken here though; this approximation may of course not
used directly in the operator (] t

22]z
2). Equations~27!–~33!

can then be reduced to

~] t
22]z

2!Bx1(
s

m2vp
2

q2
]zS ]z~gvz!

B01Bx
D

5] t@~Bx1Ey!] th1#1B0] t
2h1 ~35!

] t~gvy!1vz]z~gvy!

5
q

m
@vz~B01Bx!1Ey# ~36!

where vp5An0q2/m is the plasma frequency. In order t
eliminateEy we can start with the linearized version of E
~30!. Using ] t'2]z and integrating we obtain

Ey52Bx1 1
2 B0h1 . ~37!

Reinserting this into~30! we find that the equation is fulfilled
to O(h1), which means that we can use the expression~37!
for Ey even when the electromagnetic amplitude is large, i
comparable toB0.

We now make an expansion of Eq.~36! in the small pa-
rameter] t /vc and use~37! to obtainvz . The result is
4-4
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vz5
Bx2 1

2 B0h1

B01Bx
1OS ] t

vc
D'

Bx

B01Bx
. ~38!

We see thatvz does not depend on the charge of the partic
but is the same for all particle species, which means that
z component of the current is zero, and the current is in thy
direction. Insertingvz , Ey and expanding the wave operat
in Eq. ~35! as ] t

22]z
25(] t2]z)(] t1]z)'2(] t1]z)] t , we

are left with the following coupled system of equations:

@] t1V~Bx!]z#Bx5 1
2 B0] th1 ~39!

~] t
22]z

2!h1522kB0Bx ~40!

whereV(Bx)512(1/2CA
2)@B0 /(B012Bx)#3/2 and we have

introduced the Alfve´n velocity CA[(1/(svp
2/vc

2)1/2. We
note from ~39! that our previous assumption] t'2]z re-
quires the background parameters to satisfyCA

2@1. In arriv-
ing at Eq. ~40! we have also neglected a small ter
2kh1B0Bx , resulting from the substitution of~37! into
~34!. The left-hand side of Eq.~39! contains the wave opera
tor for compressional Alfve´n waves~also called fast magne
tosonic waves!, which in the considered regime propagat
close to the speed of light. Furthermore, the left-hand sid
Eq. ~40! describes gravitational waves in vacuum. The rig
hand sides of Eqs.~39! and ~40! are the mutual interaction
terms, which may provide a comparatively effective ene
exchange, because the propagation velocities of the w
modes are close to each other. Now combining these
equations and again expanding] t

22]z
2 we obtain, after one

time integration, the following wave equation for the com
bined electromagnetic and gravitational wave mode:

~] t1]z!@] t1V~Bx!]z#Bx52
kB0

2

2
Bx . ~41!

A. WKB-approximation for quasimonochromatic waves

Here we intend to show that for quasimonochroma
waves, the wave equation~41! leads to the nonlinear Schro¨-
dinger ~NLS! equation@23# for the weakly varying ampli-
tude. We begin the analysis of Eq.~41! by first considering
the linear case. Thus replacingV(Bx) with V(B0)51
21/2CA

2 we get

~] t1]z!F ] t1S 12
1

2CA
2 D ]zGBx52

kB0
2

2
Bx . ~42!

From a plane wave ansatzBx5B̄exp@i(kz2vt)#, we then di-
rectly obtain the linear dispersion relation

D~v,k!5~v2k!S v2k1
k

2CA
2 D 2

kB0
2

2
50. ~43!

This is in agreement with the dispersion relation presen
by Ref. @8#, if we in their result make the appropriate a
proximations corresponding to] t'2]z . Solving the disper-
sion relation we get the following result:
04401
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v5kS 12
1

4CA
2 D 6A k2

16CA
4

1
kB0

2

2
. ~44!

We see that there are two roots of~43! and will hereafter
refer to these two modes as the fast mode, for the root w
positive sign, and the slow mode, for the root with negat
sign. We see that for largek, i.e., k@AkB0

2 CA
2 , we can

neglect the small quantitykB0
2/2, and the dispersion relatio

for the fast mode takes the formv'k, while for the slow
mode we getv'k(121/2CA

2). We note that in this regime
the main part of the energy is in the form of gravitation
wave energy for the fast mode, whereas most of the energ
electromagnetic for the slow mode. This can be seen fr
the approximate dispersion relations above, together with
coupled Eqs.~39! and ~40!. For very long wavelengths,k
&AkB0

2 CA
2 , we of course still have two roots of the dispe

sion relation, but in this case the two modes divide th
energies roughly equal between the gravitational and elec
magnetic form. Therefore, we refer to this regime as tha
mixed modes.

The next step is to include higher order terms in the a
plitude expansion ofV(Bx) and let the wave amplitude var
weakly in space and time, as compared tov andk. Keeping
terms up to third order inBx , Eq. ~41! now reads

~] t1]z!F ] t1S 12
1

2CA
2

1
3

2CA
2B0

Bx2
15

4CA
2B0

2
Bx

2D ]zGBx

52
kB0

2

2
Bx . ~45!

We note that the nonlinear terms induces second-harm
~SH! and low-frequency~LF! perturbations, and we mus
therefore modify our ansatz according to

Bx5B~z,t !ei (kz2vt)1BSH~z,t !e2i (kz2vt)1c.c.1BLF~z,t !
~46!

where c.c. stands for complex conjugate of the preced
terms, and we definev andk in ~46! to fulfill the dispersion
relation ~43! exactly. Inserting this into~45!, we get a long
equation involving both SH and LF terms as well as terms
the original frequencyv. To analyze this we use standa
techniques for nonlinear wave equations, which we give
outline of here~see e.g., Ref.@23# for details!:

~i! First we note that the induced SH and LF terms are o
order smaller in an amplitude expansion than terms of
original frequency, which allows us to neglect all terms
higher order inBSH andBLF .

~ii ! From linear theory we know that the envelope of t
original perturbationB(z,t) travels with the group velocity
vg . Since quadratic perturbations of the original amplitu
acts as a driver for both second harmonic and low-freque
perturbations, we observe thatBSH as well asBLF will
propagate with the group velocity. Thus we may use
approximation] t'2vg]z for derivatives acting on theam-
plitudes. Note also that in general we must use this appro
mation here instead of] t'2]z . This is because of the op
4-5
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erator (] t1]z), which otherwise will give zero to lowes
order when acting on the wave perturbation.

~iii ! The different time scales in the equation~second har-
monics, low frequency, original frequency! are picked out by
multiplying with the appropriate exponential function an
then averaging over many wavelengths and period time
order to omit the rapidly oscillating terms in the resulta
equation, see@23#. ~E.g., to find the equation governing th
wave of original frequency,v, we multiply by exp@2i(kz
2vt)# and take an average over several wavelengths
period times.!

To lowest order, the equation for the SH terms becom

D~2v,2k!BSH5
3~vk2k2!

B0CA
2

B2 ~47!

where, from~43!, we note thatD(2v,2k)53kB0
2/2. Simi-

larly, the equation for the low frequency wave is

F ]z
22CA

4S 4v24k1
k

Ca
2D 2GBLF

5
3~4v24k1k/CA

2 !

2B0~v2k1k/2CA
2 !

]z
2uBu2 ~48!

where, in arriving at~48!, we have used] t'2vg]z andvg is
given by

vg5
2v~121/4CA

2 !22k~121/2CA
2 !

2v22k~121/4CA
2 !

. ~49!

Note that if CA
2→`, i.e., the plasma density goes to zer

vg→1, although, as can be seen from~43!, v2kÞ0.
The back reaction at the original frequency is determin

by the equation

S i ~] t1vg]z!1
vg8

2
]z

2DB5
F

B0
S BSHB* 1BLFB1

5

2B0
uBu2BD

~50!

where the group dispersion,vg8 , is given by

vg8

2
5

kB0
2

CA
4~4v24k1k/CA

2 !3
, ~51!

F5
3~k22vk!

2CA
2~2k22v2k/2CA

2 !
~52!

and the star denotes complex conjugate.
In order to simplify the system of Eqs.~47!–~50!, we first

consider the LF equation~48!. We see that for the differen
modes we can compare the solution of Eq.~48! with the SH
term and getBLF /BSH;]z

2uBu2/k2. Now remembering tha
the wave amplitudes vary weakly in space, as comparedk,
we then conclude that this quantity is very small and
therefore neglect the term involving the low frequency fie
from now on.
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in
t

nd

s

,

d

e

Let us now write Eq.~50! in a more simple form by using
~47! to eliminateBSH and making the following coordinate
transformations:

j5b~z2vgt ! ~53!

t5
uvg8ub

2

2
t ~54!

where

b5CA
2~4v24k1k/CA

2 ! ~55!

and the absolute value in the transformation~54! has been
introduced in order to keept positive at all positive timest.
Note that the sign ofvg8 depends on the roots of the dispe
sion relation; for the mode with positive sign in~44! vg8 is
positive and for the mode with negative signvg8 is negative.
Furthermore we use the linearized equations to relateB to
the gravitational perturbationh1 . Keeping only lowest order
terms in Eq.~39! we get

h15
2~v2k1k/2CA

2 !

B0v
B. ~56!

Transforming the gravitational perturbation amplitude a
cording to

h̃15C1h1 ~57!

where

C1
25

3v2k~5v25k19k/2CA
2 !

16CA
2~v2k1k/2CA

2 !4
~58!

then allows us to rewrite Eq.~50! as a standard NLS equa
tion for the rescaled gravitational perturbation amplitude:

~ i ]t6]j
2!h̃156uh̃1u2h̃. ~59!

Here the plus and minus signs correspond to the fast and
slow mode, respectively. Equation~59! can be solved by the
inverse scattering technique, as discussed by for exam
Ref. @23#. Asymptotically in time, the solution is a train o
solitons.

B. Generalization to a 3D spatial dependence

In this section we address the fact that in reality we w
not have exact plane wave solutions to the linearized E
stein and Maxwell equations. Rather the involved quantit
will also depend on thex andy coordinates if we have wave
propagation in thez direction. We will here assume that th
deviation from plane waves is small and use a perturba
treatment. The underlying assumption is that]x and]y is of
order of 1/L' , where 1/L' is the characteristic width of the
pulse fulfilling l/L'!1 (l is the wavelength!, while ]z is of
order 1/l.

Assuming anx andy dependence in the metric perturb
tion function,h1 , will induce perturbations in the form o
4-6
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additional components in the Einstein tensor, as seen f
the Lorentz gauge condition~60!. We thus note that there
must be corresponding perturbations in the ener
momentum tensor in order to fulfill Einstein’s equations~19!.
The metric must of course be adjusted correspondingly,
this leads to the addition of components in the metric per
bation,hab ; specifically the following components~of order
l/L') must be added:h01, h02, h13, andh23. Inserting this
metric perturbation into~19! and using the Lorentz-conditio

]bhab50 ~60!

we get the following modified version of Eq.~22!:

~] t
22]z

22¹'
2 !h15k~dT112dT22! ~61!

where we again have subtracted the11 and 22 components of
Eq. ~19!, and we have introduced¹'

2 []x
21]y

2 .
The variation of the perturbed fields in thex andy direc-

tions will also induce other components of the electrom
netic and velocity field perturbations, so we introduce ad
tional terms in the perturbed fields according toE5Exe1
1Eye21Eze3 and correspondingly for other fields. These e
tra perturbations are small, of orderl/L' . Note that we now
have several small quantities here and we neglect term
the type]xh1 , ]xEx , vxBy , etc., i.e., we neglect all term
that include more than one small quantity@with the important
exception of the¹'

2 -operator in~61! because this operato
compares with the operator (] t

22]z
2), which is small in it-

self#. We also make the same approximations made pr
ously.

With these approximations we can calculate the effec
charges, currents, and forces~13!–~18! and work out the
Maxwell and fluid equations~7!–~12!. The result is a large
set of equations that can be reduced using]z'2] t , and the
first-order results~37! and ~38!. We finally arrive at the fol-
lowing equation for the magnetic field perturbation

~] t
22]z

22¹'
2 !Bx1

1

CA
2

]zF S B0

B012Bx
D 3/2

]zBxG5B0] t
2h1

~62!

and Eq.~61! reduces to

~] t
22]z

22¹'
2 !h1522kB0Bx . ~63!

In order to simplify this system further we expand the ope
tor (] t

22]z
22¹'

2 )'2] t(] t1]z)2¹'
2 and insert this in~62!

and ~63!. Let us also introduce the notation] t
21 for the in-

verse operation of] t . Using~63! we can then combine thes
two equations into the following modified version of th
wave equation~41!

~] t1]z2
1
2 ] t

21¹'
2 !~] t1V~Bx!]z2

1
2 ] t

21¹'
2 !Bx

52
kB0

2

2
Bx . ~64!

Next we note that for perturbations on the formBx
;B(t)expi(kz2vt) we can expand the operator] t as ] t5
04401
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2iv1]̃t , where]̃ t acts only on the amplitude. IfB(t) varies
slowly compared to the exponential part~i.e., ]̃ t /v!1), we
can then expand the inverse operator,] t

21 as

] t
215

1

2 iv1 ]̃ t

5
i

v
S 12 i

]̃ t

v
1••• D'

i

v
. ~65!

Using this result and expanding the velocity functionV(Bx)
up to second order inBx we get the equation

~] t1]z!@] t1Vexp~Bx!]z#Bx2F i

v S ] t1]z2
1

4CA
2

]zD ¹'
2 GBx

52
kB0

2

2
Bx ~66!

where

Vexp~Bx!512~1/2CA
2 !1~3Bx/2CA

2B0!2~15Bx
2/4CA

2B0
2!.

We see that this is just Eq.~45! with an extra term on the
left-hand side corresponding to the small variation in thex
andy directions. In order to analyze this equation, we ma
a small modification to our ansatz~46! in order to include the
weak spatial dependence in the amplitudes and insert
into ~66!. Working out the algebra, we see that the equatio
for the SH and LF terms are unaltered to the desired ac
racy. This means that the only alteration to our previous
sults in Sec. IV A will be an extra term in the operator on t
left-hand side of Eq.~50!, corresponding to the¹'

2 -term in
~66!. Making the same transformations made in Sec. IV
the final result for the transformed gravitational perturbat
amplitudeh̃1 is

~ i ]t6]j
21Y¹'

2 !h̃156uh̃1u2h̃1 ~67!

where the coefficientY is given by

Y5

US 4v24k1
k

CA
2 D U

4v~v2k!S v2k1
k

2CA
2 D ~68!

and where the plus and minus signs again refer to the
and slow mode, respectively.

V. SUMMARY AND DISCUSSION

We have studied the weakly nonlinear propagation
coupled Alfvén and gravitational waves~AGW! propagating
perpendicular to an external magnetic field in a plasma w
CA

2@1, using the coupled Einstein and Maxwell equatio
One of our main results is the general evolution equat
~41!, which holds for a broadband spectrum. A thorou
study of this equation is a project for further study. In ord
to simplify ~41!, we have made a WKB-ansatz, and show
that this leads to the well-known NLS equation~59!, where
4-7
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the generalization to a 3D spatial dependence has been
scribed in Sec. IV B.

Possible astrophysical sources for large amplitude AG
are binary pulsars, particularly in the later stages of th
evolution, i.e., not too far from merging. Clearly such a sy
tem produces gravitational waves, and as discussed by
example, Ref.@13#, this leads also to large amplitude ele
tromagnetic perturbations. Through the back reaction
Einstein’s equations the electromagnetic perturbation
coupled to the gravitational one, and linearly this is d
scribed by the dispersion relation~43!. For typical wave-
lengths and background parameters~i.e., for k@AkB0

2 CA
2),

the dispersion relation approximately separates in the
mode,v'k, and the slow mode,v'k(121/2CA

2), where
the former mainly has gravitational character and the la
one electromagnetic character. However, very close to
lapsing binaries we have magnetic fieldsB0;108T, in which
case there is no clear distinction in character between
modes. On the other hand, for moderate values ofB0 further
from the source, the modes will be clearly separated. H
ever, due to the strong coupling in the near region of puls
both the fast and slow mode will be represented at lar
distances, although the energy density of the later will
smaller. The amount of energy given to the slow mode
be estimated from the results of Ref.@13# and correspond to
an electromagnetic power of the order 1025 W close to
merging.

In order to discuss the nonlinear evolution, we consi
pulses including a perpendicular dependence, which is
scribed by Eq.~67!. For simplicity we study long pulses with
a shape that depends only on a~normalized! cylindrical ra-
dius, r̃ 5A(x21y2)/Y, thus neglecting dispersive effects. O
reinstating the speed of lightc, the condition for this is
16pGB0

2CA
2L'

2 /c6m0!k2L i
2 , whereL' andL i are the char-

acteristic length scales for variations in the perpendicular
parallel directions respectively. In this case we get a cy
drically symmetric NLS equation

F i ]t1
1

r̃

]

] r̃
S r̃

]

] r̃
D G h̃156uh̃1u2h̃1 . ~69!

Contrary to Eq.~59!, there are no exact solutions known f
the cylindrical version~69!, except for some physically un
interesting special cases. Still Eq.~69! has been studied in
some detail, both analytically, using approximate variatio
techniques@33#, and numerically@34#. Of most interest to us
is the case with the minus sign, corresponding to the sl
electromagnetically dominated mode. The main motivat
for considering this mode is that this choice gives a non
earity of focusing type. For strong enough nonlinearity t
solutions to~69! then show wave collapse, i.e., the pul
focuses indefinitely and the pulse radiusr̃ p→0 in a finite
time. The main characteristics of the collapse can be
scribed within an approximate variational framework. F
lowing Ref. @33# we use a trial function h̃1( r̃ ,t)
5A(t)sech@ r̃ /a(t)#exp@ib(t) r̃ 2# together with Rayleigh-
Ritz optimization in order to derive a single ordinary diffe
ential equation for the pulse widtha(t). Pulse energy con
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servation then follows from the optimization schem
according toa(t)A(t)5A(0)a(0). Furthermore, the evolu-
tion of the width scales as @a(t)/a(0)#221}@1
2A(0)2a(0)2/I c#t

2 where I c'1.35. Thus if A(0)2a(0)2

.1.35, the pulse will collapse to zero width in a finite tim
and in the opposite case linear diffraction will dominate
spread out the pulse indefinitely. Of course, for the case
collapse, higher-order nonlinearities neglected in the der
tion of ~69! will eventually become important, which wil
change the later stages of the given scenario.

Let us study whether the electromagnetically domina
slow mode, excited by binary pulsars close to collapse m
undergo wave collapse. Here a word of caution is at hand
a real system of this type a number of effects outside
model equation~69! are likely to play important roles for the
pulse dynamics. For the sake of simplicity we will here e
clude such effects. From the variational approach mentio
above, which agrees with numerical works@34#, we find that
collapse takes place ifuh̃1u2.I c / r̃ p

2 , which can be written

B2

B0
2

c6

CA
6

3m0k2c4

8pGB0
2

k2r p
2.1.35 ~70!

where we have reintroduced dimensional quantities. T
electromagnetic fields leaving the binary system is exci
by gravitational quadrupole radiation, which has a cert
directionality, but not a very pronounced one. Thus bef
significant focusing takes place, the pulse width can be
placed by the radial distance from the sourcer dist as a rough
order of magnitude estimate for the pulse width. Thus
substituter p→r dist in ~70!, useB2r dist

2 51025m0 /c4p T2m2

and takek51025 m21 corresponding to the parameter va
ues mentioned above, discussed in more detail in Ref.@13#.
The only extra parameters we need to specify areB0 andr0.
For a broad range of relevant background valu
10220 kg/m3,r0,1025 kg/m3 and 10210 T,B0,0.1 T,
the condition~70! is always fulfilled. The main concern is t
find values fulfilling the previous assumptionCA

2/c2

5B0
2/m0r0c2@1, which holds for a low-density plasmar0

;10220 kg/m3, provided B0.1024 T. However, we note
that the condition~70! can be misleading, since for the stron
powers considered, the level of the second harmonic fie
typically obeys BSH.B0 at relevant distances from th
source. This level lies outside the regime of validity f
weakly nonlinear waves. We note that the left-hand side
~70! is proportional toBSH . Replacing the expression fo
BSH found from ~47! by its limit of validity BSH;B0 ~rel-
evant for more moderate powers than 1025 W), we note that
collapse will occur when

c2k2r dist
2

CA
2

*1 ~71!

which is easily fulfilled at reasonable distances (r dist
*107 m) from the source. The characteristic timescale
4-8
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significant focusing corresponding to the example giv
above~with BSH;B0) is given byTfoc;CA

2/c2v.
The nonlinearity of the fast~gravitationally dominated!

mode is not of focusing type. We note that from Eq.~59!,
there is still the possibility of other nonlinear effects, such
~dark! soliton formation that might, in principle, be detecte
The characteristic time scale for such nonlinear processe
typically very large@35#, which can be seen from Eqs.~54!–
~59! inserting realistic background parameter values for
relevant quantities. This means that for nonlinear effects
be important for this mode, we must assume extreme par
eter values that cannot be justified by astrophysical obse
tions.

The condition~71! does not contain gravitational param
eters, which is a consequence of the electromagnetic do
nance of the slow mode. However, we note that the con
ered process is induced by the gravitational-electromagn
coupling, and thus it still has a gravitational origin. The co
.
tu

rs

s.

s.

J.

V.

.
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dition for wave collapse of this mode can be fulfilled for
reasonable range of parameters, which opens up for the
sibility of structure formation of the electromagnetic radi
tion pattern. In the example considered above, the focus
takes place on fractions of a second~unlessCA

2 is extremely
large!, and thus the nonlinearities may cause noticea
structures in the later stages of binary merging. We wish
point out here, though, that this example is to be seen a
somewhat crude estimation of the focusing effect, and t
this example does not express all of the physics involved
the absolute vicinity of a binary merger, other significa
effects are almost certain to appear. A more complete tr
ment is a project for future research.
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