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Nonlinear coupled Alfven and gravitational waves
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In this paper we consider nonlinear interaction between gravitational and electromagnetic waves in a
strongly magnetized plasma. More specifically, we investigate the propagation of gravitational waves with the
direction of propagation perpendicular to a background magnetic field and the coupling to compressional
Alfvén waves. The gravitational waves are considered in the high-frequency limit and the plasma is modeled
by a multifluid description. We make a self-consistent, weakly nonlinear analysis of the Einstein-Maxwell
system and derive a wave equation for the coupled gravitational and electromagnetic wave modes. A WKB-
approximation is then applied and as a result we obtain the nonlinear ddufpeo equation for the slowly
varying wave amplitudes. The analysis is extended to 3D wave pulses, and we discuss the applications to
radiation generated from pulsar binary mergers. It turns out that the electromagnetic radiation from a binary
merger should experience a focusing effect, that in principle could be detected.
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[. INTRODUCTION tensor and instead focus on the nonlinear response from mat-
ter. In particular we consider coupled gravitational and elec-

Recently much work has been devoted to the study ofromagnetic waves propagating in a magnetized plasma, with
gravitational waves, largely due to the increased possibilitghe direction of propagation perpendicular to the background
of detection by facilities in operation such as LIGOaser ~Mmagnetic field. For this wave coupling to be efficient, the
Interferometer Gravitational Wave Observatoryr by ambi-  interaction should béalmos} resonant, i.e., the electromag-
tious detector projects under development such as I(I$A  netic wave propagation velocity in the plasma should be
ser Interferometer Space Antenrid]. The possibility of in-  close to the speed of light. This increases the interaction
teraction between electromagnetic and gravitational field§trength and allows us to neglect the effect of the background
has also led to alternative proposals for gravitational wavéurvature, in comparison with the direct interaction with
detectors, see e.g., Ref&,3] and references therein. Closer matter.
to the source, in an astrophysical context, the gravitational The plasma is modeled by a multifluid description, and
waves often propagate in a plasma medium, and the amplwe perform a self-consistent weakly nonlinear analysis of the
tudes can be much larger, which increases the number dfinstein-Maxwell system of equations for 1D spatial varia-
possib]e interaction mechanisms, see e.g. F{gf.szz] Lin- tions in the high-frequency limit. This system is reduced to a
ear gravitationa| wave theory in a magnetized p|asma hagingle nonlinear wave equation for the Coupled gravitational
been studied by for example Refd,5], including the back and electromagnetic waves. We then apply a WKB-
reaction from the plasma on the gravitational wave. In Refs@pproximation to this wave equation, and it turns out that the
[6-9] the authors have studied nonlinear responses to thelowly varying wave amplitude obey the well-known nonlin-
gravitational wave by the plasma medium, although the backar Schrdinger (NLS) equation[23]. In Sec. IV B, the
reaction has been neglected. The nonlinear response givégalysis is expanded to include a 3D spatial dependence,
raise to effects, such as parametric instabilifie®,11,12, allowing us to consider diffraction and/or nonlinear self-
large density fluctuation®,10], and photon acceleratids]. focusing of the wave. For certain conditions the sign of the
The application of gravitational wave processes to astrophydonlinear coefficient is of focusing type, which for sufficient
ics has been discussed by, for example, Réf3-15, and to  initial amplitudes implies solutions that undergo wave col-
cosmology by Refs[16—-18. A number of works studying lapse. The conditions for collapse and the possible applica-
nonlinear propagation of gravitational waves, including thetions to astrophysics are discussed.
back reaction from the plasma, have also been written, see
e.g.,[10,11,19.

In Refs.[20,21] geometrical nonlinearities from the Ein-
stein tensor were considered, and a nonlinear evolution equa- The problem treated in this paper contains a number of
tion was derived. However, it was found that the nonlinearsmall parameters used in the different approximations and
coefficient was proportional to the small difference of theexpansions made throughout the paper. The aim of this sec-
phase velocity and the velocity of light in vacuum. In thetion is to give an overview of these parameters, at what
present paper we neglect nonlinearities from the Einsteistages of the calculations they are introduced, and to what

order the expansions need to be made.
In Sec. Ill, we introduce the small gravitational wave am-

II. OVERVIEW OF THE APPROXIMATION SCHEME
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almost resonant Alfue wave, nonlinearities become impor- lll. BASIC EQUATIONS

tant. The reason is that the resonance _ma_gnif&&/lBol The gravitational and electromagnetic fields are governed,
where 58 and BO are the wave magnetic f'elo_l _anc_:l baCk' respectively, by the Einstein field equations

ground magnetic field, respectively. The magnification is of

the order|5B|/|Bg| ~h. w/dw where dw is the frequency Gap=kTap (1)
mismatch as compared to the Alfvanode. Therefore, we

keep terms up to ordeP(| 5B|%/|B|%), in the expansion of and the Maxwell field equations

the wave equatiofél), in order to obtain the nonlinear am- V.Fab_ b 5
plitude modulation. Other nonlinearities originating from the CU 2
Einstein tensor and the effective currentgin-(12) will not

be magnified due to the resonance, and may be neglected in

our treatment, see also the discussion following 26). where G,, is the Einstein tensorT,, is the energy-
Furthermore, in Sec. Il we introduce the high-frequencymomentum tensof ,,, is the electromagnetic field tensg¥,
approximation, valid for wave numbeks>1/r., wherercis s the four-current density, arid denotes covariant differen-
a characteristic radius of curvature of the background. Thigjation. We use the spacelike signature €+ +) for the
condition may also be written as the small parametemetric.
xB3/k?<1, where k=87G (we use units where= u, For the plasma we use a multifluid description, where the
=¢p=1). We have to keep terms (@(KBﬁlkz), in orderto  plasma is seen as a number of charged fluids, one for each
include the weak coupling between the gravitational modelasma species, and collisions between particles are ne-
and the Alfven mode. glected. The total energy-momentum tensor is thep
In Sec. IV we first use the approximationgs —d,, ex- =T+ TEM Here the fluid part is
cept in the linear wave operators, in order to simplify our
system of equations. This is justified in the high-frequency f)_
approximation. Furthermore, we uge w., i.e., we assume T(ab)_ ES {{ 9+ P9 1U(9)ali(s)pt P(s)Tab} 4
that the frequency of variations of fields is much smaller than
the cyclotron frequency of all particle species in the plasmawhere w s ,p(s), andu, are the internal energy density,
In the expansion of Eq(36), we must include terms to pressure, and four-velocity for each plasma spesias,;, is
O(d;/w¢). This is because the equations of motion to zeroththe metric tensor and the electromagnetic part is
order ind,/w. gives just theE X B drift of all particle spe-
cies, and we must include terms of one order higher to obtain TEM=F °Fpc— % gapF*IF ¢ (5)
a nonzero current in the plasma.
Next, in Sec. IV A, we introduce a weakly modulated In the absence of collisions, the evolution equations for each
wave (WKB-approximation, with the underlying assump- fluid species can be writtel24]
tion that the characteristic length scale for amplitude modu- ab_ cab:
lations obeyd >\. In deriving Eq.(50), we need terms to VoT(9=F%In(s) (6)
O()\Z/LHZ) in order to include the dispersive term{50). We
also use ]@i<1, whereC, is the Alfven velocity, and only

keep terms to lowest nonvanishing order to simplify theapplied in Refs[8.9,13.19,25,2Fand introduce an observer

equations. Then, in Sec. IV B, we extend the problem t } L o
include small variations in the directions perpendicular to th((;four velocity V¥, so that the electromagnetic field can be

direction of propagation. We apply the conditian >\ decomposed relative to this into an electric and a magnetic
. = ) — b — 1 bc H
whereL | is the characteristic length for perpendicular varia-part’ Eq=FapV" and Ba=;eapf™, respectively. Here

— d . ~ . .
tions. In subsequent calculations, we must keep terms té?grcne\rﬁt f;/‘i‘?[;d wheirele Jeb»fd 'S| trll\lee;?l\J/\;edilrr::reondSL:(;re]aflar:/glrLtjrr:) N
O(N?/L?) to obtain the diffractive term in E¢67), see the €0123™ Yabl-

. . o _
discussion at the beginning of Sec. IV B for more details. normal frame(ONF) with basis{e,=e;dx}, whereg=V

o TR ) : .
The parameters in this section are, in principle, indepen= " €a: (-8 V =), and write the fluid four-velocity as

dent of each other with the sole exception théb/w u?=(y,yv), where y=(1—vava)_%, a=1,2,3, andv is
~1/C,§, which is our main motivation for considering the the fluid three velocity. Dividing the four-currenf?
regime Ci>1. In addition to these parameters there are a=25q(s)n(s)u?s in the same manner, the Maxwell equations
few other small parameters introduced throughout the papef2) and(3) and fluid equation$6) can be writter{13,19,26
but those quantities are related in different ways to the ones

VaFpet VoFcat VeFap=0 (3

as is consistent with Eq1).
With these preliminaries, we now follow the approach

presented in this section, and the relations are explained in V-E=p+pe (7)
the text. The only restrictions on the parameters in this sec-
tion, besides their smallness, is due to physical applicability, V-B=pg (8)
i.e., the values of the parameters should be chosen to fit
environments close to emitters of reasonably strong gravita- &E-VXB=—]j—jg 9
tional waves. An example of such parameter values is pre-
sented in the final section. €B+VXE=—jg (10
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e(yn)+V-(ynv)=An (1)  whereh =h_(zt) andh,=h,(z¢t) denotes the two polar-
ization modes of weak gravitational waves in the TT gauge,
(n+p)(e+Vv-V)w=—y Vp—y(g+v-V)p and|h.|,|h«|<1. The quantitie$, andh, differ from the
corresponding quantities in the vacuum cabe=h_(z
+an(E+vXxB)+(u+p)g —t),hy=h,(z—1), because of the weak interaction with

(12)  the plasma. However, this difference is very small, which
will allow us to used;~—4d, in many of the subsequent

where we have omitted the fluid species indgxand it is  approximations. We note that components of the metric ten-
understood that we have one pair of fluid equati@is and  sor corresponding to the quadratically nonlinear contribution
(12) for each plasma fluid species. We have introduced thérom the pseudoenergy momentum tensor, as well as higher-
three-vector notationE=(E®)=(E! E? E® etc., andV order cubic nonlinearities are neglected(R0). The basic
=(e;,6,,6;3). The charge density is==:0(5)¥N(5) andnis  motivation for this is that we neglect nonlinearities from the
the proper particle number density. The effective chargeskinstein tensor and focus on the nonlinear response from
currents, and forces originating from the inclusion of thematter. When determining the regime of validity for this ap-

gravitational field are given by proach, a couple of things should be noted, as follows:
(i) As shown by Ref[20], for unidirectional propagation
pe=—T§,EF—ePT) B, (13)  of a weakly modulated plane wave in a flat backgrouind
the absence of the gravitational wayvéhe nonlinearities in
pg=—T%,BP+ePTY E, (14)  the Einstein tensor cancel up to cubic order as far as the
evolution of the amplitude function is consideré¢dlthough
je=[—(T§s— Zo)E’B+ FgBE“ the background curvature due to the pseudoenergy momen-
tum tensor of the wave is affected, this does not lead to
—e*P/(I'peB,+T5,Bs)]e, (15  amplitude modulations. We note that this result is consistent
with the exact so called PP-wave solutions where the ampli-
je=[—(Tgs—Tjo)B + FgBB“ tude function is unaffected by the nonlinearities in the Ein-
By 0 s stein tensor, although the background curvature is modified
+ PN goE, +T5,Es) Ie, (16 due to the wave.
(i) If the background in the absence of the gravitational
An=—yn(I'g,+ow,+T5,0") (17 wave is weakly curvedwith a characteristic radius of cur-
vaturer . fulfilling kr.>1, wherek is the gravitational wave
g=— Y15t (I'get Fgo)vﬁ+ ngvﬁv Ye, (18) numbey, nonlinearities in the Einstein tensor lead to ampli-

tude modulations of the order afih, ~wh3 ,/(Krd),
whereI'} . are the Ricci rotation coefficients associated withsee Ref[21].
the tetrad{e,}. (iii) If there are wave perturbations in matter close to
From now on we will assume that the plasma is cold, saresonancdi.e., assuming a wave mode in matter fulfilling
that we can neglect the pressure terms in 8@ and let w=k+ dw, where Sw<w), the matter response due to the
M(s=MN(s), Wherem,, is the mass of each particle spe- gravitational wave is magnified. As will be shown below, for
cies. We will also apply the high-frequency approximationour case the nonlinear contribution, close to resonance, to the
[27] for the gravitational waves. Thus we will assume thatamplitude modulation scales a$h+’><~KT0h?jr’><a)/5w2,
the background gravitational field and the unperturbedvhere T, is the magnitude of the background energy-
plasma and electromagnetic fields fulfill Einstein’s field momentum tensor. We note that the nonlinear matter re-
equations(1), and we introduce perturbations to the metric,sponse dominates over that associated with the combined
Q,LV:gLOV)Jr h,.. (greek indices are coordinate indigeand  effect of the background curvature and the Einstein tensor
to the energy-momentum tendeab=Tg%)+ 6T,p, Which  nonlinearities, provideﬂ‘zr;2< kTol Sw?.
should then fulfill (iv) Using the high-frequency approximatiokr¢>1, see
[27,29) and assuming a weakly nonlinear response from
0Gap= k0T ap (19 matter, it is always possible to use the TT ga{i@|. As far
as the direct interaction with the medium is concerned, i.e.,
where 6G,, is the (linearized perturbation to the Einstein the contribution that is magnified due to the resonance, the

tensor caused by the metric perturbation. _ background metric can then be considered as(flet, g%
It was recently shown by Refl19] that in the high- = 7.1), see[29]
ab/» .

frequency approximation the gravitational wave can be taken Nyt we choose our tetrad basis for the metdi6) as
to be in the transverse and tracel€¢§%) gauge even in the
presence of matter. In this gauge the metric of a linearized
gravitational wave propagating in tlzedirection is given by
[28]

Q):&tl el:(l_ % h+)&x_ % hxay:

&=(1+3h,)d,— s hdy, &3=4,. (21)
ds?=—dt+(1+h,)dx2+(1—h,)dy?+ 2h, dxdy+dZ 24 )0y™ 2 xOx z

(20 Using (20) and(21) in the linearized Einstein field equations
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(19), subtracting the;; and ,,, and adding the;, and ,;

components of the equations one g&d9,29 f9zEz=§ qy(no+én) (27)
(9= 92, = k(8T 11— 8T5) (22
HE,—9,By=— N+ dn)v,]— 3E,d;h
(ﬂtz_ﬁg)hXZK(5T12+ 5T,y (23) tEy ™ 0zDx Es [gy(ng )Uy] 2 Eyoilly
In the basig21) the non-zero terms ifl3)—(18) are + 3 (Bo+By)dh. (28)
je=— 3 (Ed;h, +Byd,h +E,dh,—Bidhy)e
E 2 10t + 20711+ 20t 10z Ix /) *1 atEZ:_ES Q7(no+5n)vz (29)
+ 3 (Epdth . —B1dh —E1dthy —Badhy)e,
(24) 9By—d,E,= — 3E, ;. + 5 (Bo+By)dth,
(30
jg=— 3 (B1oih. —E»dh, +Bydth +Eqdh, ) e
[ y(ng+én)]=—d y(no+ onjv,] (31)
+ 3 (Baoth, +Eqd,h, —Bydth + Epdhy)e,
q
(25 il ’yvy)+vzaz( ')’Uy): E[Ey+vz(BO+Bx)] (32
9=~ 3 Y(v1dth; +vv3dh, +v,0hy q
+ 030,y ) e+ %')’(Uzﬂth++l}203azh+ &t('yvz)+vz‘92('yvz):E[Ez_Uy(BO+Bx)] (33
—v10thy —vw3dh ) e+ 1 y(vi—v3)dh. and the linearized Einstein equatioli2?) and(23), become
+20,059,h)e;3. (26) (97— 32)h, = k(E;—2BoB,—BY). (34)

The generalization to a finite gravitational wave pulseFor the electromagnetic wave to exchange energy effectively
width, i.e., including a weak spatial dependence perpendicuwith the gravitational wave, the two waves must be almost
lar to the direction of propagation, leads to additional termsesonant, so we will consider all perturbations to be of the
in (24)-(26) and (22) and (23). An outline of this case is form B,~B,(z—t), which allows us to usé,~— d, in sim-

found in Sec. IV B. plifying our system of equations. A certain care must be
) taken here though; this approximation may of course not be
IV. COUPLED ALFVE N AND GRAVITATIONAL WAVES used directly in the operatoﬁﬁ—ﬂg). Equations(27)—(33)

In Ref.[8] a test fluid approach was taken to show that acan then be reduced to

gravitational wave can drive the amplitude of an electromag- 2 2

. . . . . m-w
netic wave to a nonlinear regime, and in Rgif9] a linear (a?—aﬁ)BerE —Ls,
analysis of the interaction between a gravitational wave and s Q2
the extraordinary electromagnetic wave was made using the »
equations presented in Sec. Ill. Here we intend to take a =l (Bx+Ey)dih ]+ Bodth. (35
similar approach, but guided by the results in R&f, we
will include a nonlinear response of matter and fields, while Gi(yvy) T v yoy)
still assuming the metric perturbation to remain small.

We assume the presence of a background magnetic field,
Bo=Bgye;, and introduce the perturbatioms=ny+ én, B
=(Bo+By)e, E=E e+ E,&3, andv=uv,6,+v,€; [30]. We
also note that in the case of gravitational waves propagatinghere w,= Jnog?/m is the plasma frequency. In order to
in a magnetized plasma, with the magnetic field perpendicueliminateE, we can start with the linearized version of Eq.
lar to the direction of propagation, only thre -polarization  (30). Using ¢,~ — d, and integrating we obtain
part of the gravitational wave couples effectivgBi] to the
electromagnetic wave, see also Rf9]. Thus we puthy Ey=—By+ 3 Boh. . (37)
=0 in order to simplify the algebra. As in Rd#8], we as-
sumev,<1, (becausey~h ), and therefore neglect terms Reinserting this int@30) we find that the equation is fulfilled
of the typevf, andvyh,, but we allow forv,~1. We will  to O(h,), which means that we can use the expres$&m
also consider slow variations such thgtc w,=qB,/m for  for E, even when the electromagnetic amplitude is large, i.e.,
each plasma species. With these restrictions the Maxwell ancbmparable td,.
fluid equations7)—(12) can be reduced to the following set ~ We now make an expansion of E@6) in the small pa-
of equationq 32]: rameterd, / w. and use37) to obtainv,. The result is

d(yvy)
B+ By

~L10,(Bo+ B +E,] (30
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Bx_ % Boh+ (9t BX 1 k2 KB%
== "0~ . =kl 1-—| = +—
=g+ o~ 5rs; 39 oK1 4z TR (44)

We see thab , does not depend on the charge of the particlesyye see that there are two roots @) and will hereafter
but is the same for all particle species, which means that thgsfer to these two modes as the fast mode, for the root with
zcomponent of the current is zero, and the current is inythe positive sign, and the slow mode, for the root with negative
direction. Insertizngjzz, E, and expanding the wave operator sign. We see that for largk, i.e., k>\/K_Bg C/zM we can

in EQ. (35 as d; = ;= (= ;) (0 + ;) ~2(01+ ;) 0, W pagiact the small quantityB2/2, and the dispersion relation
are left with the following coupled system of equations: for the fast mode takes the form~k, while for the slow

[9+W(B,)d,]B,= % Bodih, (39) mode we ge’w~k(1—1/2C,§). We note that in this regime,
. the main part of the energy is in the form of gravitational
(92— 9%)h, = —2kByB, (400  wave energy for the fast mode, whereas most of the energy is

electromagnetic for the slow mode. This can be seen from
where V(B,) =1—(1/2C3)[Bo/(Bo+2B,)]¥2 and we have the approximate dispersion relations above, together with the
introduced the AlfVe velocity Ca=(1/Ssw3/ w)¥2 We  coupled Eqs(39) and (40). For very long wavelengthss
note from (39) that our previous assumptiofy~ —d, re- S\/KBOZ Ci, we of course still have two roots of the disper-
quires the background parameters to San. In arriv- sion relation, but in this case the two modes divide their
ing at Eqg. (40) we have also neglected a small term €nergies roughly equal between the gravitational and electro-
—kh.ByB,, resulting from the substitution of37) into ~ Magnetic form. Therefore, we refer to this regime as that of
(34). The left-hand side of Eq39) contains the wave opera- mixed modes.

tor for compressional Alf#e waves(also called fast magne- ~ The next step is to include higher order terms in the am-
tosonic waves which in the considered regime propagatesplitude expansion o¥(B,) and let the wave amplitude vary
close to the speed of light. Furthermore, the left-hand side ofveakly in space and time, as comparedst@ndk. Keeping

Eq. (40) describes gravitational waves in vacuum. The right-terms up to third order i, , Eqg. (41) now reads

hand sides of Eq939) and (40) are the mutual interaction

terms, which may provide a comparatively effective energy
exchange, because the propagation velocities of the wave(‘;th?z)
modes are close to each other. Now combining these two
equations and again expandiag— 2> we obtain, after one kB2

time integration, the following wave equation for the com- - TBx- (45)
bined electromagnetic and gravitational wave mode:

— B o BZ|d
2C2  2c2B, . 4c2B? *)”

Bx

We note that the nonlinear terms induces second-harmonic
(SH) and low-frequency(LF) perturbations, and we must
therefore modify our ansatz according to

2

(at+ﬁz)[at+V(Bx)az]Bx:_TBx- (41)

A. WKB-approximation for quasimonochromatic waves By=B(z,t)e'** U+ Bg(z,t)e? k=D +c.c.+ BLF(Z(,Z)G)
Here we intend to show that for quasimonochromatic

waves, the wave equatiqdl) leads to the nonlinear Schro Where c.c. stands for complex conjugate of the preceding

dinger (NLS) equation[23] for the weakly varying ampli- terms, and we define andk in (46) to fulfill the dispersion

tude. We begin the analysis of E@1) by first considering relation (43) exactly. Inserting this int@45), we get a long

the linear case. Thus replaciny(B,) with V(By)=1 equation involving both SH and LF terms as well as terms of

—1/2C2 we get the original frequency. To analyze this we use standard
techniques for nonlinear wave equations, which we give an
1 KBS outline of here(see e.g., Ref.23] for details:
(0t 3| it | 1= —5 |92 |Bx=— TBX‘ (42 (i) First we note that the induced SH and LF terms are one
2C, order smaller in an amplitude expansion than terms of the

— . original frequency, which allows us to neglect all terms of
From a plane wave ansal = Bex{di(kz—wt)], we then di- higher order inBs, and B, ¢ .

rectly obtain the linear dispersion relation (i) From linear theory we know that the envelope of the
2 original perturbationB(z,t) travels with the group velocity
D(w,k)=(0—K)| o—k+ k _ "_BOZO_ 43) vg. Since q.uadratic perturbations of th(_a original amplitude
2(;5\ 2 acts as a driver for both second harmonic and low-frequency

perturbations, we observe th&ts, as well asB g will
This is in agreement with the dispersion relation presentegropagate with the group velocity. Thus we may use the
by Ref.[8], if we in their result make the appropriate ap- approximationd,~ —uv4d, for derivatives acting on tham-
proximations corresponding @~ — d,. Solving the disper- plitudes Note also that in general we must use this approxi-
sion relation we get the following result: mation here instead of,~—¢,. This is because of the op-
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Let us now write Eq(50) in a more simple form by using
(47) to eliminateBg, and making the following coordinate
transformations:

erator @;+d,), which otherwise will give zero to lowest
order when acting on the wave perturbation.

(iii) The different time scales in the equati@econd har-
monics, low frequency, original frequencgre picked out by

multiplying with the appropriate exponential function and §=B(z—vgql) (53)
then averaging over many wavelengths and period times in oo
order to omit the rapidly oscillating terms in the resultant _ |Ug|ﬁ t (54)
equation, se¢23]. (E.g., to find the equation governing the 2
wave of original frequencyw, we multiply by exp—i(kz
—ot)] and take an average over several wavelengths anghere
period times. 2 2
To lowest order, the equation for the SH terms becomes B=Ci(4o—4k+kICy) (59
3(wk—Kk?) and the absolute value in the transformati®4) has been
D(2w,2k)Bgy=———— B2 (47)  introduced in order to keep positive at all positive times
Bo i Note that the sign of;é depends on the roots of the disper-

where, from(43), we note thatD (2w,2k) =3«kB2/2. Simi-
larly, the equation for the low frequency wave is
2

93—Ch BLr

k
4o—4Kk+ -
Ca
3(4w—4k+k/C3)
= NS (48)
2Bo(w—k+k/2C2)

where, in arriving at48), we have used,~ —v yd, andv 4 is
given by

2w(1—1/4C%)—2k(1—1/2C%)
vg= > . (49
2w—2k(1—1/4C3)

Note that if C3—, i.e.,
vy—1, although, as can be seen fr¢48), w —k+0.

The back reaction at the original frequency is determine

by the equation

!

- Yg » F 2
|(&t+vgﬁz)+?&z B= B BSHB +B|_|:B+ |B| B

(50)
where the group d|sperS|on , Is given by
v, xB2
= : , (51)
2 Ch(4w—4k+k/C3)®
3(k?— wk)
(52)

 2C2(2k—2w—k/2C2)

and the star denotes complex conjugate.
In order to simplify the system of Eq&7)—(50), we first

consider the LF equatio®8). We see that for the different

modes we can compare the solution of E&8) with the SH

the plasma density goes to zero,

sion relation; for the mode with positive sign {44) v, is
positive and for the mode with negative sigf is negative.
Furthermore we use the linearized equations to rdbate
the gravitational perturbatidm, . Keeping only lowest order
terms in Eq.(39) we get

A 2(w—k+k/2C3)

Transforming the gravitational perturbation amplitude ac-
cording to

h,=W¥h, (57)

where

, 3wk(50—5k+9k/2C3)
P2= > - (59
16C2(w—k+k/2C3)

qhen allows us to rewrite Eq50) as a standard NLS equa-

tion for the rescaled gravitational perturbation amplitude:

(i9,209h,==|h,|%h (59)

Here the plus and minus signs correspond to the fast and the
slow mode, respectively. Equati@f9) can be solved by the
inverse scattering technique, as discussed by for example
Ref. [23]. Asymptotically in time, the solution is a train of
solitons.

B. Generalization to a 3D spatial dependence

In this section we address the fact that in reality we will
not have exact plane wave solutions to the linearized Ein-
stein and Maxwell equations. Rather the involved quantities
will also depend on th& andy coordinates if we have wave
propagation in the direction. We will here assume that this
deviation from plane waves is small and use a perturbative
treatment. The underlying assumption is thalandd, is of

term and geB, ¢ /Bgy~ (92|B|2/k2 Now remembering that order of 1L, , where 1L, is the characteristic Wldth of the
the wave amplitudes vary weakly in space, as comparéd to pulse fulfillingA/L, <1 (\ is the wavelength while 4, is of
we then conclude that this quantity is very small and weorder 1A.

therefore neglect the term involving the low frequency field Assuming arx andy dependence in the metric perturba-

from now on.

tion function, h, , will induce perturbations in the form of
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additional components in the Einstein tensor, as seen from 17, whered, acts only on the amplitude. B(t) varies
the Lorentz gauge conditiof60). We thus note that there
must be corresponding perturbations in the energy
momentum tensor in order to fulfill Einstein’s equatidts).

slowly compared to the exponential péice., 9,/ w<1), we
can then expand the inverse opera&g‘r,l as

The metric must of course be adjusted correspondingly, and 1 . ~ .

. g . . _ I . 0t I
this leads to the addition of components in the metric pertur- o t=——— :_( 1—ji— 4 |~—, (65)
bation,h,,; specifically the following componentsf order —iw+g, © ® ®

ML) must be addedchg,, hgy, hi3, andh,;. Inserting this

metric perturbation int¢19) and using the Lorentz-condition USing this result and expanding the velocity functig(B,)
up to second order iB, we get the equation

dph3P=0 (60)
we get the following modified version of E¢R2): (0t 0)[ 01+ Vex(Bx) 9,1Bx— > Oyt d,— éaz) Vf B,
(9F=32=V2)h, = k(8T 11— 6T2) (61) <82
where we again have subtracted theand ,, components of - TBX (66)

Eq. (19), and we have introduced? =z +4; .
The variation of the perturbed fields in tkeandy direc- ~ Where

tions will also induce other components of the electromag-

netic and velocity field perturbations, so we introduce addi- VexpBx)=1—(

tional terms in the perturbed fields according Ee-E,¢e;

+ E&,+ E,€; and correspondingly for other fields. These ex-

tra perturbations are small, of ordefL, . Note that we now

have several small quantities here and we neglect terms

the typedsh, , d4Ey, vy By, etc., i.e., we neglect all terms

that include more than one small quanfiith the important

1/2C3) + (3B,/2C4B,) — (15B2/4C3B3).

We see that this is just Eq45) with an extra term on the
left-hand side corresponding to the small variation in xhe
gfndy directions. In order to analyze this equation, we make
a small modification to our ansaf46) in order to include the
weak spatial dependence in the amplitudes and insert this
. . ) into (66). Working out the algebra, we see that the equations
exception of theV -operator |n(621) because this Operator s, the SH and LF terms are unaltered to the desired accu-
compares with the operatop{— 7). which is small in it- ey This means that the only alteration to our previous re-
selfl. We also make the same approximations made previgjts in Sec. IV A will be an extra term in the operator on the

ously. L _left-hand side of Eq(50), corresponding to th&f-term in
With these approximations we can calculate the effectlvet%). Making the same transformations made in Sec. IV A,

charges, currents, and forces3)—(18) and work out the o finai result for the transformed gravitational perturbation
Maxwell and fluid equation$7)—(12). The result is a large amplitudeﬁ is g P
N

set of equations that can be reduced usiyrg — d;, and the
first-order resultg37) and (38). We finally arrive at the fol-

i 2 2\R — T 12K
lowing equation for the magnetic field perturbation (19,29 +YVi)h, = =lh.l*hs (67)

32 where the coefficienY is given by

1 B
2_ 2 g2 i 0 _ 2

(at (92 VJ_)BX+ Ci (92|: BO+ ZBX (9ZBX Boatth K

(62) 4w—4k+ g

A

and Eq.(61) reduces to Y= ‘ (68)

do(w—K)| o—k+ —
(3= 2= VD). = 20BgB, . ©3 ol )(‘” 2C:

In ordzer t02 simg)lify this system fugther we expand the operaand where the plus and minus signs again refer to the fast
tor ((?t —0Z—VL)~26t(8t+ 192)—Vl and insert this in(62) and slow mode, respectively_
and (63). Let us also introduce the notatio)iig‘1 for the in-

verse operation aof; . Using(63) we can then combine these V. SUMMARY AND DISCUSSION
two equations into the following modified version of the
wave equatior(41) We have, studied the weakly nonlinear propagation of
coupled Alfven and gravitational wave@GW) propagating
(d¢+d,— 3 07 1V2) (9, + V(By) d,— 3 0, 1V?)B, perpendicular to an external magnetic field in a plasma with
Cf\>1, using the coupled Einstein and Maxwell equations.
KBS One of our main results is the general evolution equation
:_TBX' (64) (41), which holds for a broadband spectrum. A thorough

study of this equation is a project for further study. In order
Next we note that for perturbations on the forB)  to simplify (41), we have made a WKB-ansatz, and showed
~B(t)expi(kz—wt) we can expand the operatéy as d,= that this leads to the well-known NLS equatib), where
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the generalization to a 3D spatial dependence has been dgervation then follows from the optimization scheme
scribed in Sec. IV B. according toa(7)A(7)=A(0)a(0). Furthermore, the evolu-
Possible astrophysical sources for large amplitude AGWion of the width scales as[a(7)/a(0)]?—1x[1
are binary pulsars, particularly in the later stages of their— A(0)?a(0)?/1.]7 where | ,~1.35. Thus if A(0)%a(0)?
evolution, i.e., not too far from merging. Clearly such a sys->1.35, the pulse will collapse to zero width in a finite time,
tem produces gravitational waves, and as discussed by, fa@nd in the opposite case linear diffraction will dominate to
example, Ref[13], this leads also to large amplitude elec- spread out the pulse indefinitely. Of course, for the case of
tromagnetic perturbations. Through the back reaction ircollapse, higher-order nonlinearities neglected in the deriva-
Einstein’s equations the electromagnetic perturbation ision of (69) will eventually become important, which will
coupled to the gravitational one, and linearly this is de-change the later stages of the given scenario.
scribed by the dispersion relatidg@3). For typical wave- Let us study whether the electromagnetically dominated
lengths and background parametérs., for k>\/KBOZ CZA), slow mode, excited by binary pulsars close to collapse may
the dispersion relation approximately separates in the fagindergo wave collapse. Here a word of caution is at hand. In
mode, w~k, and the slow mode,pmk(l_l/ch\), where a real system of this type a number of effects outside the
the former mainly has gravitational character and the latemodel equatiori69) are likely to play important roles for the
one electromagnetic character. However, very close to colPulse dynamics. For the sake of simplicity we will here ex-
lapsing binaries we have magnetic fieRlg~10°T, in which ~ clude such effects. From the variational approach mentioned
case there is no clear distinction in character between thabove, which agrees with numerical wofi], we find that
modes. On the other hand, for moderate valueBgofurther  collapse takes place jh.|2>1,/r], which can be written
from the source, the modes will be clearly separated. How-
ever, due to the strong coupling in the near region of pulsars, » 6 -
both the fast and slow mode will be represented at larger B” ¢” Buokc
distances, although the energy (_jensny of the later will be 5(2) C,‘i 87G BS
smaller. The amount of energy given to the slow mode can

be estimated from the results of RgL3] and correspond to _ _ _ N
an electromagnetic power of the order?1®W close to Where we have reintroduced dimensional quantities. The

merging. electromagnetic fields leaving the binary system is excited

In order to discuss the nonlinear evolution, we considePy gravitational quadrupole radiation, which has a certain
pulses including a perpendicular dependence, which is dedirectionality, but not a very pronounced one. Thus before
scribed by Eq(67). For simplicity we study long pulses with Significant focusing takes place, the pulse width can be re-
a shape that depends only or(r@rmalized cylindrical ra- ~ placed by the radial distance from the sourgg as a rough
dius,¥ = V(X% +yA7Y, thus neglecting dispersive effects. On order_of magnltud_e estimate fozr t2he pulsée width. Tzhuzs we
reinstating the speed of light, the condition for this is SUbSt't”terpHr_dsist |rll(70), use BT = 10°%uo/ca T?m
167G BSCiLf/CGMO<k2Lf, whereL, andL; are the char- and takek=10"> m™~ " corresponding to the parameter val-

acteristic length scales for variations in the perpendicular an&S Mentioned above, discussed in more detail in Ré&.

parallel directions respectively. In this case we get a cyIin-The only extra parameters we need to specify&yandp,.

; ; : For a broad range of relevant background values
drically symmetric NLS equation
ysy a 10" 2 kg/mP<py<10 ° kg/m® and 10°T<B,<0.1 T,

k?r5>1.35 (70

190\l 5 the condition(70) is always fulfilled. The main concern is to
i9,+=—=|r—=||h,==|h.|%h,. (69  find values fulfiling the previous assumptioiC4/c?
rori or =B2/ uopoc?>1, which holds for a low-density plasma

120 : — 4
Contrary to Eq(59), there are no exact solutions known for ~ 10 “" kg/ e, provided Bo>10"* T. However, we note
the cylindrical version69), except for some physically un- that the conditior{70) can be misleading, since for the strong

interesting special cases. Still E@9) has been studied in POWers considered, the level of the se_cond harmonic fields
some detail, both analytically, using approximate variationafyPic@lly obeysBs,>B, at relevant distances from the
technique$33], and numerically34]. Of most interest to us  SOUrce. Th|§ level lies outside the regime of Va|ldlt¥ for
is the case with the minus sign, corresponding to the slow/V€aKly nonlinear waves. We note that the left-hand side of
electromagnetically dominated mode. The main motivatiort/0) iS proportional toBsy. Replacing the expression for
for considering this mode is that this choice gives a nonlin-Bsx found from (47) by its limit of validity Bsy~B, (rel-
earity of focusing type. For strong enough nonlinearity the€vant for more moderate powers tharf’l@/), we note that
solutions to(69) then show wave collapse, i.e., the pulse collapse will occur when

focuses indefinitely and the pulse radE5§—>O in a finite

time. The main characteristics of the collapse can be de- c2Kk2
scribed within an approximate variational framework. Fol-
lowing Ref. [33] we use a trial functionh.(r,7)
=A(7)sechir/a(7)]exdib(7)r?] together with Rayleigh-
Ritz optimization in order to derive a single ordinary differ- which is easily fulfilled at reasonable distancesgg
ential equation for the pulse wid#y( 7). Pulse energy con- =10" m) from the source. The characteristic timescale for

2

I gist
2

Ca

=1 (72)
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significant focusing corresponding to the example giverdition for wave collapse of this mode can be fulfilled for a
above(with Bg~By) is given by Ty~ C4/c?w. reasonable range of parameters, which opens up for the pos-
The nonlinearity of the fastgravitationally dominated  sibility of structure formation of the electromagnetic radia-
mode is not of focusing type. We note that from E§9), tion pattern. In the example considered above, the focusing

there is still the possibility of other nonlinear effects, such agakes place on fractions of a secofuhlessC is extremely
(dark) soliton formation that might, in principle, be detected. large, and thus the nonlinearities may cause noticeable
The characteristic time scale for such nonlinear processes #ructures in the later stages of binary merging. We wish to
typically very large[35], which can be seen from Eq&4)— point out here, though, that this example is to be seen as a
(59) inserting realistic background parameter values for thesomewhat crude estimation of the focusing effect, and that
relevant quantities. This means that for nonlinear effects tahis example does not express all of the physics involved. In
be important for this mode, we must assume extreme paranthe absolute vicinity of a binary merger, other significant
eter values that cannot be justified by astrophysical observaffects are almost certain to appear. A more complete treat-

tions. ment is a project for future research.
The condition(71) does not contain gravitational param-
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