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Riemann tensor of the ambient universe, the dilaton, and Newton’s constant
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We investigate a four-dimensional world, embedded into a five-dimensional spacetime, and find the five-
dimensional Riemann tensor via generalization of the GaDesgacc) equations. We then derive the general-
ized equations of the four-dimensional world and also show that the square of the dilaton field is equal to
Newton’s constant. We find plausible constant and nonconstant solutions for the dilaton.
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Since the pioneering work of KaluZd] and Klein[2],  surfaceM. We assume that this equation is givarpriori.
who unified gravitation with electromagnetism, the implica- The physical principles motivating the choice of type of hy-
tions of possible extra dimensions to our world have beempersurfacdspecified by the functiog/(x*)] and the choice
under intense investigation—sg@] for an extensive collec- of a particular four-dimensional spacetime sligiven bys)
tion of papers on higher-dimensional unification. Jordan anére open problems for multidimensional theories and not the
Muiller [4] and Thiry[5] used the equations of Kaluza-Klein subject of our analysis. We will retaias a parameter of the
theory to show that the gravitational constant can be exmodel.
pressed as a dynamical field. A constant solution for New- One can alternatively express the parametric equations of
ton’s constant, however, is then allowed only if the square oM asx*=x*(y’,s) and treat the parametsi@s a coordinate;
the Maxwell electromagnetic tensor vanishes. Here we exthis then represents a coordinate transformation with inverse
amine adual setup in which this problem can be avoided. S
Based on the original Kaluza model, we are here considering Y'=y(x#),  s=g(xk). @
a general embedding of a four-dimensional world into a five- . L .
dimensional ambient spacetime. We derive a generalizatiowe assume that this transform_anon 1S invertible at each
of the GaussCodacc) equations by utilizing all degrees of point. This means that the Jacobi matrices of the transforma-

freedom(the entire geometjyof the ambient spacetime, and tion and its inverse have nonvanishipg determir]ants every-
we also show how they affect the physics of the four-W.here' _Thus, o glpbally _pa_rametn.ZPT the foliated five-
dimensional world. As a result we find a system of equationsd'men.s'onalI spacet|me\/_, it is sufficient to use _the
for the electromagnetic field, gravitational field, and dilatonC.Oomlmates of the four-dimensional world and the folia-
field. One of these equations is a plausible generalization Ot*on parametes. .
the gauge fixed Maxwell equations in the presence of a dila- The vector normal to the surface is
ton field. We also show that the square of the dilaton field is o
equal to(modulo numerical factojshe Newton’s constant. N =—— )
The gauge freedom of the electromagnetic fields is trans- K axe
ferred to a freedom in fixing the dilaton field. Apart from the
constant solution for the dilaton, we give an example of aLet us also define
nonconstant solution describing a time-varying Newton con-
stant in an expanding univergsee alsq6—11] and others ef’“=ﬁ n“=aiﬂ Ei _9y 3)
We also give a general formula for generating different so- ] ay! ' as’ LN
lutions for the dilaton field.

We consider a four-dimensional worM, embedded into  The derivatives are related as follows:
a five-dimensional spacetimé (see[12—-22 and references

therein for a detailed discussion on embeddinget y' (i d u

=1,2,3,4) denote the coordinates okl and x* (u 3kfﬁ:ek s (4)
=1,2,3,4,5) denote the coordinates \énGreek indices will y

be related to the five-dimensional spacetimjewhile latin

indices will be associated with the four-dimensional space- &VEi,,:E',fﬂkJrN,ﬂs- (5)

time M. Let (x*)=s=const be the equation of the hyper- X
Obviously, if we denotef = n# andEiz N, , then €)) and
*Electronic address: rossen.ivanov@dcu.ie (E%) will be the Jacobi matrices of the transformatiodt)
TElectronic address: prodanov@physics.dcu.ie —(y',s) and its inverse. Therefore,
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elET=§"=E"e”. (6) Note that whenA'=0 and ¢=1, thenN“=n* as in the
Arnowitt-Deser-Misner approadt22].
This orthogonality condition is equivalent to The extrinsic curvature is
ef'El, =4, (7) Kji=ef'e/Q,, (18)
N,n*=1, (8  whereQ,,=V,N,=V,N,
. Mult|ply|ng Eq (18 across byEJ EI and applying the
E,e/+N,nn"=6,, (9)  orthogonality conditiong7)—(11), one easny finds
N,ef=0, (10) Qup=ELELKij+(N.Ep+NgE)fi+N,Ngx, (19
n*El,=0. (11  with y=n*n"Q,, and
(Note thats”=dim V=5 andsj=dim M=4.) f —nrefo - Al 1
i=n*e; =A'K;;+ =3d;N, 20
Thus the basese(* ,n*) and €, N,) are dual. They do ! i Que WoNTY (20
not depend on the metric of either spacetime, but only on the
particular embedding chosen. whereN=yN,N*. _
Let us now introduce a scalar fielt(y*,s), a vector field The four-dimensional Christoffel symbols
Ai(y%s), and the metric tensom;;(y¥,s), which are 1
M valued tensor functions ovi. We further define the metric 7}k=§9”(0k9|j + 3,01~ 919jk) (21)
, of the five-dimensional spacetlmé as an expansion
over the basis vectOtE' andN,,
can then be expressed as
,=ELELgij +(NLE,+N,E )A+N,N,¢. (12 i i :
G g” ( v ,u,) i n I/¢ ( ) ,yll_I z(ﬁjelﬂ_kejqelﬁrzﬁ)E!u_ K“AI, (22)

Taking x'=y', x=s=const, ie., e=3"n*=5%, E,

= 5'ﬂ, N,= 52 in Eq. (12) corresponds to the original

Kaluza mode[1]. Klein’s modification[2] gj;— gi; + AiA;,

together with the identification ap as a dilaton is the model

put forward by Jordan and Mer [4] and Thiry[5]. We note

that the metria12) has the same form as the inverse of theysing Eqs.(22) and(7)—(10), becomes

metric of Klein’s model, and thus the two theories are dual: . '

Kaluza’s model corresponds to slicing, while Klein’s model r}kle'ae]-*e{je,”RfWﬁL EL(V,.nY) (efKj;—ef'K;)

corresponds to threading of the five-dimensional spacetime . : .

[15]. The case withA;=0 has also been considereste, for +V(AK)) = Vi AK ) + AAT(K i K= KK ),

example[22,23 and references thergin (24)
The lack of gauge invariance for the fields, which we

nevertheless will associate with the electromagnetic poterwhereRY,, is the five-dimensional Riemann curvature ten-

tials, in view of the slicing-threading duality, is compensatedsor. The above is generalizationof the Gauss equations.

by the freedom to fixp. This, as will become clear later, is Taking A'=0 and ¢=1, one simply recovers the well

where I';;; are the five-dimensional Christoffel symbols.
Further, the four-dimensional Riemann curvature tensor

]kl 5k7,| NYikt ¥ Ymk™ Vik Ymi» (23

the freedom to fix the dilaton field. known Gauss equatiorisee, for exampld,24])
Returning to Eq(12), we defineg" as the inverse of the i o i i
metricg;; . ThusA'=g'A; andA?2=gAA,. M= B ekeRY 1y T KiKjj —KiKy; . (25)

The inverseG*” of the metricG,,, onV is then given by i i ) )
Let us now expand the five-dimensional Riemann curva-

GH7=hli ef'el— 6Al(en’+e’n*)+ #n*n’,  (13)  turetensor over our basis. Using its symmetries we can write

where 6=(¢—A?) "1 andhii =gl + 9AIAl. One can easily Ryuvo=E\ELESEL Ujjg +[(N\E, —=N,E} ESE,,
HNG, = gt i i v
check thatG#*G, ,= &' . Using the invers&*"” (13) of the F(NE)— NUEL)El{EM]Vm

metric G,,,, we can raise and lower the five-dimensional

indices to get + (N\EL = NLED(N,E,~N,E)W;, (26
N#=G*'N,=6(n*—A'ef), (14 where the coefficients in this expansion satisfy
N?=N,N#=4, (15 Uijk =Uwij = —Yijik= — Yjixr (27)
N,=G,,N"=AE,+N,¢, (16) Vik=—Vjk, Wj=W;. (28)
n2=nMn”= ¢. (17 Using Eq.(24), one can further find
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Ui =elel'ere/ Ry 0 h™ U0 — N2AK(V i + Vi) + N?W; =0, (37)
iky/. O N2AIW., =

=Tijia — (e — mi myj), (29 h*Vji —N“AIW; =0, (39

hi'w; =0. (39)

V= n”ef‘eﬁeerMW
Multiplying Eq. (37) by Al and adding it to Eq(38) allows
us to excludeV;, from Eq.(38). Then, using the expressions

N _ = o _
=AUija N (Viem; = Vi), (30) (29) and(30) for Ujj,; andVjy,, Eq.(38) becomes
k k_
WhereTr“:(l/N)K“ . V|(7TI _Vlﬂ'k_o' (40)
Finding the remaining tensdlV; is more complicated. Eqyationg40) (as we will see beloware ageneralizatiorof
One can easily see that Maxwell's equations in a fixed gauge.
TN S0 SN =S, + ARV, One has to make a very important point here. Klein’'s
Wi =n" "€ e Ry e =S5+ AVig 4 (3Y) theory corresponds to a threading decomposition of the five-
where dimensional spacetimgl5]. Rigorous analysi$16] shows

that the curvature tensor of the hypersurface formed is given
1 . by Zelmanov’s curvature tensor, which differs from the ordi-

S =m”"ej €' (M\Qo— VsQu)- (32 nary Riemann curvature tensor by additional terms contain-

ing s derivatives of the four-dimensional metfit7—-21]. In-
dependence of the parameterforces the two curvature
tensors to be equal and thus represents a surface forming
condition. In Kaluza’'s theory, the foliation of the five-
dimensional spacetime corresponds to slidib§]. Then the

In the above we identify derivatives in the direction rof.
To handle this type of term, we will have to explicitly invoke
the dependence omn

First, by virtue of Eq(5), we get the following expression

for the extrinsic curvaturél): four-dimensional metri@;; naturally appears as the slicing
metric, and imposing independence on the paransatenot
N? N? at all necessary.
Kji= =5 (VA+VA) + 504 To simplify the analysis of the physics described by the

fields A;, ¢, and N, we will, however, put aside the
s-dependent terms. Also, for simplicity, we will assume that
the basis elements and their duals are congthos recov-
ering the original Kaluza theoyyThe tensor();; will then
vanish from Eq.(34).

Equation(40) becomes

1
- EN)\(gHajE;ﬁ"‘ng’(ﬂ EI;+A|(9J'N)\+AJ'(9|N)\)

N2
+ ?GMV[Akﬁk(efLef)_f7s(e,”e|v)]- (33

Using Egs.(20), (31), (32), and(33), it follows that 2 )
g Egs.(20), (3D, (32), and(33) W= -2 Z (o nlgaN, (4

— 1 2 ink
Wi _@ViV'N_ ﬁ(ﬁiN)(a'NHA A'Uiju HereF, = VA — V|A, is the Maxwell electromagnetic tensor
with A, being the electromagnetic potential.

The first term on the right-hand side of E¢.1) describes
an interaction between electromagnetic and gravitational
fields. We assume that it is much smaller than the remaining

1 L terms, so that we can neglect it. Note thgt cannot be
+ N2 T N it Qi (34 «gauged up” to increase the scale 8§r¥. Furthermore, if

N is a constant, then Eq41) becomes the usual Maxwell

where ), contains only terms that are proportional to de-equations

1 K K 1.«
+ QLA ma) + N (A ) ] = GA Ve

E;\//fltsl;/es of the basis vectors and their duals with respect to v FX=0. 42)
The five-dimensional Ricci tensor can easily be calculated’he remaining two equations are
from Eq. (26): ¢k
R, = ELEIV[hikUijkI_N2Ak(vjkl+vlkj)+N2le]+(N,uEly Vk(ﬁ)zo’ (43
+N,EL) (= hikVj + N2AIW; ) + NN, bW, . (35) 1 N2
L . L . = 591r=> T (44)
Then the five-dimensional Einstein equations in vacuum
R =0 (36) wherer =g¥r, andr;, are the four-dimensional scalar cur-
mr vature and four-dimensional Ricci tensor, respectively.
reduce to The energy-momentum tens®dy; is therefore given by
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Tj| :Tj'|\/|aXW6||+ gikViBj|k+Cj| + DJ| s (45)
where
Maxwell ik 1 ik
T =g FiijI_ZgleikF \
Biik=AVIA —AVIA —AiFi+ Vi(AA)
+0;1 (AVA AV A, (46)
Cj| =gj|AiAkrik—2AiA|rij _2AiAjri| s (47)
B 4 2
Djl_m(ajN)(ﬁlN)_ﬁVjle
2 2 k
—@Wk(A|(9]N+AJﬁ|N)+m[—A 7Tj|
+ A+ Ay =g (Alrf = AR JaWN. (48)

We will analyze each of these terms separately. The first one
is the Maxwell energy-momentum tensor. The ten-
sorC;, describes the interaction between the electromagneti

Maxwell

and gravitational fields. From E@¢44) we see that, ilN? is
very small(as we will confirm latey, thenr;; will be of the

order of N, which justifies the neglect of the interaction

terms in Eq.(41) and the tensoC;; .

Using EQq.(33) in Eqg. (20) and then Eq(20) in Eq. (43),
we see that a constant solution fdris allowed by Eq(43)
if ¢ satisfies

k 1 i
v 3k¢:§F Fik, (49
whereF'¥ is a solution of Eq(42). For the constant solution
for N, the tensoD;; vanishes. Moreover,
OEgijViTj|:gijViTj’|\Aaxwe”, (50)
since g™'g"V,.\V,Bjik= — (2IN) ;i (f*/N)=0 in view of
Eq. (43).

In other words, the conservation la®0) is given by the
usual Maxwell energy-momentum tensﬂilﬂmax‘”e” and N?
plays the role of the Newton consta@y, :

N2 _ 8’7TGN
2

. (51

The generalized Einstein and Maxwell equati¢id$)—(48)
will be modified further upon inclusion afderivative terms.
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the system of equationgl), (43), and(44) and, in general,
does not need to be a constant. Then it plays the role of a
dilaton field.

To illustrate this, consider the standard cosmological met-
ric [11] with E; =457

dsfs)= — s?dt? + 12es?0- ) (dr? +r2d0?)

+a?(1—a) ’t?ds. (52)

Changing variables byr—sef"
+a)/(1—-a) andt¥*—a(t), we get

with  y=—(1/2)(1

dshyy= —s?a?a(t) ]2 2a2(t)dt?+ 2A,drds

+sa’(t)e?"(B2dr?+d0?) + ¢pds?, (53

where A, =ypa’(t)e?, A=A,=A,=0,
=(v?Is)a?(t)e’’ + a?(1—a) 2a2*(t).

We takep to be a negative constant, so that the fiald
will fall off toward infinity. Since a(t) describes the infla-
tion, we note that the field, expands as?(t). The dilaton
fi/vhich models Newton’s constgniaries as

and ¢

N?=(1—a)?a a(t)] 2. (54)

Thus,

G—Za—ZH 55
G~ 2a;=-2aH, (59

where H is Hubble’s constant. Observational limitg] put
a<1073.

One should note that the four-dimensional metric is rsow
dependent, but this does not pose a problem in the slicing
formulation. Only the terndsg;; from the extrinsic curvature
(33) should be recovered.

Finally, we note that the general solution for the dilaton
field can be written as

(detgjy) (detE)?
B detG,, ’

2

(56)

for a solutionG,, of Eq. (36) and embedding specified with
EZ.
To recapitulate, we have found plausible generalizations

Equation (51), however, holds regardless of whether theof the Einstein-Maxwell equations and explained the origin
s-derivative terms are included or not. One has to point oubf the constant solution for the dilatdinepresenting New-
here that in the setup of Thirf5], and in[14], Gy=¢2, ton’s constaniGy) as well as the possibilities for modeling
where¢ satisfies Eq(49). This implies that a constant solu- nonconstant solutions for different cosmologiespresenting
tion for ¢ and, consequentlysy, is possible only when the time-varying Gy) in relation to the gauge freedom of our
unphysical constrainE*F; =0 is satisfied. model.

In contrast, in the dual setup, a constant solution is pos- We thank Vesselin Gueorguiev, Brian Dolan, Brien Nolan,
sible. HoweverN (together withA; andg;;) is a solution to  and Siddhartha Sen for useful discussions and comments.
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