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Strongly hyperbolic second order Einstein’s evolution equations
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BSSN-type evolution equations are discussed. The name refers to the Baumgarte, Shapiro, Shibata, and
Nakamura version of the Einstein evolution equations, without introducing the conformal-traceless decompo-
sition but keeping the three connection functions and including a densitized lapse. It is proved that a pseudo-
differential first order reduction of these equations is strongly hyperbolic. In the same way, densitized
Arnowitt-Deser-Misner evolution equations are found to be weakly hyperbolic. In both cases, the positive
densitized lapse function and the spacelike shift vector are arbitrary given fields. This first order pseudodiffer-
ential reduction adds no extra equations to the system and so no extra constraints.
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I. INTRODUCTION be cast into this symmetric hyperbolic forfs]. Finally,
weak hyperbolicity is a less rigid notion than strong hyper-
Einstein’s equation determines geometries; hence its sololicity but it does not imply well posedness for quasilinear
tions are equivalent classes under space-time diffeomoequations.
phisms of metric tensors. It is this invariance, however, A definition of strong hyperbolicity for pseudodifferential
which imposes a particular aftermath on every initial valuefirst order systems is introduced in Sec. Il. Differential first
formulation for Einstein’s equation. The geometrical equa-order strongly hyperbolic systems known in the literature are
tion must be first converted into a system having a wellincluded. A reason for this definition is that it incorporates
posed Cauchy problem, and so without the diffeomorphisnprecisely the hypothesis needed for proving well posedness.
invariance. A preferred foliation of spacelike hypersurfacesThe proof involves standard pseudodifferential techniques. If
on the space-time is usually introduced in order that adaptedn m-order differential system has a first order, differential or
coordinates break this invariance. Einstein’s equation is thepseudodifferential, strongly hyperbolic reduction, then it is
decomposed into constraint equations on the foliation hyperwell posed. See the end of this section for an example of a
surfaces and evolution equations. While the constraints arfirst order pseudodifferential reduction of the wave equation.
uniquely determined by this procedure, the evolution equaAlso see the Appendix for a brief and self-contained intro-
tions are not. Some of these evolution equations turn out tduction to the subject of pseudodifferential operators.
be hyperbolic. This is in accordance with a main aspect of Although strongly hyperbolic systems are at the core of
general relativity, that of causal propagation of the gravitathe various proofs of well posedness for the Cauchy problem
tional field. in general relativity, they have played, until recently, no simi-
Hyperbolicity refers to algebraic conditions on the princi- lar role in numerical relativity6]. Finite difference schemes
pal part of the equations which imply well posedness for thehave been implemented for non-strongly-hyperbolic equa-
Cauchy problem, that is, the existence of a unique continutions. However, Lax’s equivalence theorem does not hold in
ous map between solutions and initial data. There are severtllese situationg7]. It has been shown that discretization
notions of hyperbolicity, which are related to different alge-schemes standard in numerical relativity are not convergent
braic conditions. Some notions imply well posedness for thavhen applied to weakly hyperbolic and ill posed systems
Cauchy problem in constant coefficient equations but not if8,9]. As more complicated situations are studied numeri-
more general systems, such as quasilinear equations. Seally, the interest in strongly hyperbolic reductions of Ein-
[1,2] for reviews intended for researchers on general relativstein’s equation is increasing. There is also much experience
ity. Regarding quasilinear systems, strong hyperbolicity isand a vast literature in numerical schemes based on well
one of the more general notions of hyperbolicity that impliesposed formulations coming from inviscid hydrodynamics
well posedness for the Cauchy problem. The proof involve$10,11]. This experience can be transferred into numerical
pseudodifferential analys[8,4]. Symmetric hyperbolic sys- relativity when strongly hyperbolic reductions are used.
tems are a particular case of strongly hyperbolic systems Early numerical schemes to solve Einstein’s equation
where well posedness can be proved without using pseudavere based on variants of the Arnowitt-Deser-Mis(@&dM )
differential techniques. Several equations from physics cadecompositiorf12]. Only recently has it been proven that a
first order differential reduction of the ADM evolution equa-
tions is weakly hyperboli¢13]. This is the reason for some

*Electronic address: gnagy@math.ucsd.edu of the instabilities observed in ADM-based numerical
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is introduced, with the density exponent held as a free pasystem in time, in appropriate coordinates, that is,
rameter. The evolution equations are reduced to first order in ah=k  ak=Ah

. . . . tHi=h th— ’
a pseudodifferential way. It is found that the resulting system

is weakly hyperbolic for every prescription of a positive den-wjith te[0,), x' e R3, and A= 5" 4,9; the flat Laplacian.

sity lapse and a spacelike shift vector. This is summarized ifHere ' = diag(1,1,1). Fourier transform the systemxin
Theorem 1. Pseudodifferential techniques and mode decom-

position are at the core of a proof directed to computing the dh=k, dk=—|w|?h, )
eigenvalues and eigenvectors of the principal symbol of the ~ )

evolution equations, and to check that the eigenvectors dwhere h(t,w;) is the Fourier transform oh(t,x') in the
not span the whole eigenspace. The mode decompositigspace variables, as defined in the Appendix. The fundtiisn
also helps to understand why the addition of the Hamiltoniardefined in an analogous way, ahd|?= 8" w;w;. The key
constraint into the system does not produce a strongly hypestep is to rewrite Eqq1) as a first order system by introduc-

bolic system. _ , ing the unknown?:=i|w|h, wherei|w| is the symbol of the
Baumgarte-Shapiro-Shibata-NakamufaSSNitype sys-  hseydodifferential operator square root of the Laplacian. One
tems are introduced in the second part of this work. They argqtg

essentially the densitized ADM evolution equations where ai=ilolk s

L X - L=ilolk, dk=ilw|t.
some combination of connection coefficients of the three-
metric is introduced as a new variable. The mode decomporhe system so obtained is a reduction to first order of the
sition of the densitized ADM evolution equations and previ-griginal first order in time wave equation. Notice that there is
ous work on the linearized ADM equatiops5] suggest the g increase in the number of unknowns, just a replacement

introduction of this variable. It turns out to be related with of h by #, and correspondingly no extra constraints are in-
the variablel™ of the BSSN system, defined by E@1) i troduced. For the wave equation the result is a symmetric
[14]. (See alsd16].) Similar variables have been introduced hyperbolic system. In the case of the ADM equations the
in [17-21]. Their evolution equation is obtained, as in the resyiting system is weakly hyperbolic, with or without den-
BSSN system, from commuting derivatives and then add'n&itizing the lapse function, while for the BSSN-type equa-
the momentum constraint. It is shown here that the additiogigns one gets a strongly hyperbolic system.
of the momentum constraint transforms a weakly hyperbolic | sec. Il a precise definition for well posedness is intro-
system into a strongly hyperbolic one. This is the main resulijyced for first order quasilinear pseudodifferential systems.
of this work, and it is presented in Theorem 2. The first partstrongly hyperbolic systems are also defined and the main
of the proof follows the previous one for the densitized ADM thegrem asserting well posedness for these systems is re-
evolution equations. Once the eigenvectors are computegiewed. Section Il A is dedicated to reviewing the densi-
and it is verified that they do span the whole eigenspace, th§zed ADM equations. The main result here is Theorem 1,
proof continues with the construction of the symmetrizer.asserting that the resulting evolution equations are weakly
This construction is carried out with the eigenvectors. Fi-nyperbolic. The role of adding the Hamiltonian constraint is
nally, the smooth properties of the symmetrizer are verifiedpriefly discussed. Section 11l B is dedicated to introducing
The hyperbolicity of a family of BSSN-type evolution the BSSN-type system modifying the densitized ADM equa-
equations has previously been studied with a different techtjons. The main result of this work, Theorem 2, asserts that
nique[22]. The equations were reduced to a differential sys+hjs BSSN-type system is strongly hyperbolic for some
tem of first order in time and in space derivatives. The lapshoijces of the free parameters. The key point is the introduc-
was densitized, the eigenvalues and eigenvectors of the prifion of the momentum constraint into the evolution equa-
cipal symbol were computed, and it was verified that thejons. Section IV summarizes these results briefly. The Ap-
latter do span their eigenspace. A smooth symmetrizer wasendix is an introduction to pseudodifferential calculus. It
computed for a subfamily of systems, showing strong hypersymmarizes the main ideas and highlights the main results. It
bolicity in this case. . _ . is intended for physicists interested in learning the subject. It
All notions of hyperbolicity mentioned here require re- nrovides all the background knowledge to follow the calcu-
writing the evolution equations as a first order system. Thigations presented in this work. A summary of this type of

can be done in a differential or pseudodifferential way. Someyseudodifferential calculus was not found by the authors in
pseudodifferential reductions to first order have the advanthe specialized literature.

tage that no extra equations are added into the system, so
there are no extra constraints. This reduces the algebra
needed to compute the symmetrizer. These techniques are
well known in the field of pseudodifferential calculus. They = Hadamard first introduced the concept of well posedness
were first used in general relativity [I15], where linearized for a Cauchy problem. It essentially says that a well posed
ADM evolution equations were proved to be weakly hyper-problem should have a solution, that this solution should be
bolic. The example below presents the wave equation as @anique, and that it should depend continuously on the data of
toy model to understand how the pseudodifferential first orthe problem. The first two requirements are clear, but the last
der reduction works. See Appendix A, and also Sec. 5.3 ione needs additional specifications. First, there is no unique
[4], for other possible first order reductions. Consider theway to prescribe this notion of continuity. Although a topo-

wave equation ofit* for a functionh, written as a first order logical space is all that is needed to introduce it, Banach

Il. WELL POSEDNESS
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spaces are present in most definitions of well posedness. This Let B(R") be a Banach space with norff, whose ele-
refinement simplifies the analysis while still including a largements are vector valued functions froR to R™. The
class of problems. Second, as nonlinear systems lack, in ge@auchy problem?2) is well posed inB(R") if given initial
eral, global in time solutions, one can at most expect a locadlata f(x) e B(R") there exists a solutiom(t,x) which is
in time notion of well posedness. Discussions on well posunique in B(R") for eachte[0,T), for someT>0; and
edness can be found ji0,11] and[3,4]. See[1] for a sum-  given any numbee>0 there existss>0 such that, for every

mary. This section is dedicated to reviewing the minimum SeHataT(x) cB(R") satisfying||?— f|< & there exists a unique
of definitions and results on well posedness for quasilinear .~ ‘'~ n = n ~
pseudodifferential strongly hyperbolic systems which ares'(_)lu“cln u(t,x) e B(R") fgr t_e[ON’T)XR for some T>0,
needed to describe the equations coming from general reliith [T—T|<e, and satisfying|u(t) —u(t)|<e, for all t
tivity. It assumes that the reader is acquainted with the no<[0,min(T,T)). This means that the solution depends con-

tions from functional analysis and pseudodifferential calcu-tinuously on the data in the norff|.

lus given in the Appendix. Well posedness is essentially a statement about the behav-
Consider the Cauchy problem for a quasilinear first ordefior of the solutions of a Cauchy problem under high fre-
pseudodifferential system quency perturbations of the initial data. Here is where

pseudodifferential calculus is most useful to study solutions

of the Cauchy problem. The high frequency part of the solu-
GU=p(t,x,u,d)u, uf_o=f, (2 tion can be determined by studying the higher order terms in
the asymptotic expansion of symbols.

A wide class of operators with well posed Cauchy prob-
lem is called strongly hyperbolic. A first order pseudodiffer-
ential system(2) is strongly hyperbolic ifpe ¢ and the
principal symbol is symmetrizable. This means that there
exists a positive definite, Hermitian operatd(t,x,») ho-
mogeneous of degree zerodn smooth in all its arguments
for o#0, such that

where u,f are mdimensional vector valued functions)
=1, andx represents Cartesian coordinatesRh n=1.
Here p(t,x,v,dy) is a smooth family of pseudodifferential
operators im//é,, parametrized byte R* andv e R™. Let
p(t,x,v,w) andp,(t,X,v,w) be their symbols and principal
symbols, respectively.

If pis a differential operator with analytic coefficients,
then the Cauchy-Kowalewski theorem asserts that there ex- (Hp;+p*H)e S,
ists a unique solution for every analytic ddtaHowever, - =
solutions corresponding to smooth data behave very differv\,herep*lk is the adjoint of the principal symbal;.

ently depending on the type of operatpr For example, The definition summarizes all the hypotheSes on quasilin-
write the flat Laplace equation ii"** and the flat wave ear systems needed to prove well posedness. It is the defini-
equation inR"** as first order systems in the formu  tion given in Sec. 3.3.1 ifil0] for linear variable coefficient
=A'g;u. The matrices\' are skew symmetric for the Laplac- systems, and the so-called symmetrizable quasilinear sys-
ian, and symmetric for the wave operator. Therefore, soluiems given in Sec. 5.2 ip4].
tions of the formu(t,x)=u(t)e'®* for the corresponding Consider first order differential systems of the fosu
Cauchy problems behave very differently at the high fre-=A'(t,x)9,u+B(t,x)u. The symbol is p(t,x,)
qguency limit. The solutions of the Cauchy problem for the:iAJ(t,x)wJ—+B(t,x), and the principal symbol is
Laplace equation diverge in the linjib|— e, while the so-  p,(t,x,w) =iAlw; . If the matricesA’ are all symmetric, then
lutions of the wave equation do not diverge in that limit.  fhe system is called symmetric hyperbolic. The symmetrizer
H is the identity, andp,+ pi =0. The wave equation on a
L o - fixed background, written as a first order system is an ex-
An explicit example ink®, presented by Hadamard i8], may  ample of a symmetric hyperbolic system. Well posedness for
clarify this. Consider the functions symmetric hyperbolic systems can be shown without
v(t,x)=sin(nt)sin(nx)/nP*1, pseudodifferential calculus. The basic energy estimate can be
W(t,x)=sinh(nsin(nx)/nP*+2, obtained by integration by parts in space-time.
If the matricesA' are symmetrizable, then the differential

with p=1,n, constants, defined ar=0, xe[0,1]. They are solu- system is called stronalv hvperbolic. The svmmetrizer
tions of the Cauchy problem for wave equation and the Laplacey gly hyp ) y

equation, respectively, with precisely the same Cauchy data on =H(t,x,) is assumed to depend smoothly an Every

_ i symmetric hyperbolic system is strongly hyperbolic.
=0, that is, . .
) Pseudodifferential calculus must be used to show well pos-
Ve 00, 0]i=0=0, vili=o=siN(NX/n®, edness for variable coefficient strongly hyperbolic systems
Wi +We, =0, W|i—=0, Wi—o=sin(nx)/nP. that are not symmetric hyperbol[8]. The definition given

Asn—=, the Cauchy data converge to zeradf%([0,1]). Inthis WO paragraphs above is more general because the symbol
limit, the solution of the wave equation converges to zero, while thed0o€s not need to be a polynomialdn The definition given
solution of the Laplace equation diverges. The concept of well posabove includes first order pseudodifferential reductions of
edness is introduced in order to capture this behavior of the waveecond order differential systems. These type of reductions
equation’s solution under high frequency perturbations on itsare performed with operators like, \, or ¢, defined in the
Cauchy data. Appendix.
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In the particular case of constant coefficient systems theréelds. The BSSN-type system is introduced in Sec. Il B. It
exists in the literature a more general definition of strongis essentially the system given|ih4,16 without conformal-
hyperbolicity [10,11. The principal symbolp; must have traceless decomposition, keeping the three connection func-
only imaginary eigenvalues, and a compléte set of linearljions and densitizing the lapse function. It is reduced to a
independent eigenvectors. The latter must be uniformly linfirst order pseudodifferential system like the ADM evolution
ear independent im#0 over the whole integration region. equations. The main result, Theorem 2, asserts that BSSN-
Kreiss’s matrix theorentsee Sec. 2.3 ifil0]) says that this type equations are strongly hyperbolic, for every positive
definition is equivalent to the existence of a symmetrider ~densitized lapse function and spacelike shift vector.

Nothing is known about the smoothnessHbfvith respect to Let (M,g,,) be a space-time solution of Einstein’s equa-
t, x, andw. The existence of this symmetrizer is equivalenttion. That is a four-dimensional, smooth, orientable manifold
to well posedness for constant coefficient systems. HoweveM, and a smooth, Lorentzian metwg, solution of
the proof of well posedness for variable coefficient and qua-
silinear systems does require the smoothness of the symme-
trizer. There are examples showing that this smoothness do(iﬁ
e e 0610y TenS, and 6. R encr &, ad R co-

. 1 ) . notes Ricci’'s scalar. Latin indices,b,c,d denote abstract
hypothesis on the latter could imply this smoothness, one hagices and they are raised and lowered vg#i and g,y
to include it into t_hg definition of strong hyperbolicity for respectively, withg,.g°°= 6,°. The unique torsion-free met-
nonconstant cqefﬁmgnt systems. ric connection is denoted By, . The conventions throughout

A more fragile notion of hyperbollm_ty IS _called weak hy- this work are Xj,Vyjv.= Raplv4 for Riemann’s tensor and
perbolicity, where_ the operathl_ has_ imaginary elgen\{gl- $_,+7+,+) for the metric signature.
ues, but nothlng is required of its eigenvectors. Quasnln_ea Prescribe orM a foliation of spacelike hypersurfaces by
weakly hyperbolic systems are not well posed. The followingjnroqycing a time function, which is a scalar function sat-
example gives an idea of the problem. Th&2 system jsqying the condition tha¥,t is everywhere timelike. Denote
du=Adyu with t,xe It and the foliation byS,, and byn, the unit normal tdS, such that
1 1 nd=gn, is future directed. Thereforen,=—NV,t for

some positive functiom. Fixing the foliation determines its
01 :‘(irst an;]j C_;econd fundamelntal fornts,,= g4, + NaN, and
. . . =— ny, respectively. Decompose Einstein’s equa-
IS weak[y hyperbohc. Pleine wave solutions of the formti?)% into a(levoclu?[ion ec?uation(%/), (4) andpconstraint equatigns
u(t,x)=u(t)e'* satisfy |u(t)[<[u(0)|(1+]|w|t). There- (5) (g), as follows:
fore, plane wave solutions to a weakly hyperbolic system do
not diverge exponentially in the high frequency lin@s in Lahap=—2Kap, 3
the case of Cauchy problem for the Laplace equathmut
only polynomically. This divergence causes solutions to vari-  £,K,p= ®'R,p— 2K, Kkpc+ kkap— (D2DpN)/N— kS,

Gab=«Tap,

th G,p=Ra.p— R0.,/2 the Einstein tensoiT ,, the stress-

A=

able coefficient weak hyperbolic systems to be unstable un- 4

der perturbations in the lower order terms of the operator, as

well as in the initial data. Dpka®—Dak=kj,, )
The main theorem about well posedness for strongly hy-

perbolic systems is the following. The Cauchy problé& PR+ k?—kapk®=2xp, (6)

for a strongly hyperbolic system is well posed with respect to ) . B

the Sobolev nornf ||s with s>n/2+ 1. The solution belongs wher((a3l)ln der}g’)‘es the Lie derivative alonyf, andk=k,".

to C([0.T),HS), andT>0 depends only offf]s. Here ) R.ab’ R, andD, are, re.sp(.a‘c?twely, thg Ricci tensor,
In the case of strongly hyperbolic differential systems,® R'Cft') scalar, and the Levi-Civitaonnection ofhgy,

this is Theorem 5.2.D ifé]. The proof for pseudodifferential While h®" denotes its INVerse. The stress-energy tensor is

strongly hyperbolic systems is essentially the same. Ongecomgt?ged aSCS%b:(ha hy, Tcd_Tga%/Z)! with T

builds an estimate for the solution in a norm, defined using™ Tabd™ » Ja= ~haM"Teq, andp="Taynn". .

the symmetrizer, equivalent to the Sobolev ndfh Then Introduce onM a future-directed timelike vector fieltd.

the argument follows the standard proof for differential sys-'MmPose the additional conditiatV,t=1, that is, the integral

tems. The construction of the symmetrizer is basically thdines of t* are parametrized precisely ty This condition
one carried out if23]. implies that the orthogonal decompositiontdfwith respect

to S; has the form?®=Nn?+ 82, with n,8%=0. N is called
the lapse function ang? the shift vector. The integral lines
of t* determine a diffeomorphism among the hypersurfaces
The ADM decomposition of Einstein’s equation is re- S;. This, in turn, determines a coordinate systemvbfrom
viewed. The densitized lapse function is introduced ina coordinate system d®,. Lie derivatives with respect to?
Sec.lll A. Theorem 1 says that the resulting evolution equaean be rewritten in terms df and 82. The resulting equa-
tions are weakly hyperbolic, for every choice of a positivetions are called the ADM decomposition of Einstein’s equa-
densitized lapse function and spacelike shift vector as givetion.

IIl. ADM DECOMPOSITION OF EINSTEIN'S EQUATION
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A. Densitized ADM equations First order reduction. Compute the symbol associated

Consider the ADM decomposition of Einstein's equation, With the second order operator given by EG8, (8), that is,

Let x* be a coordinate system adapted to the foliat®n

wher(_axozt andx' are |ntr|n5|c coor_dlnates on ea:Sp that (pth”:J {_ZNR”_+iwkﬁkﬁij+zﬁ|(ié,i)lgl}eiwxa—w,
remain constant along the integral linestdf Greek indices S

take values 0, 1, 2, 3, and latin indices,k,|, take values 1,

2, 3. In these coordinates= 5y*, n,=—Ngs,°% then g* - Wi K
=68 and n*=(8,*—B*)IN. The components of the ‘?tkij:f {(N/2)[|w|5hij + (14 b) wjw;hh — 20" wihj)]
space-time metric have the form S

) ) ) . i Ki, 1R 1pio
0=~ N28,26,04yi(B'8,°+ 6,)(B16,°+5,)). Hlodk+Byjedo,

In these coordinates Whereﬁij and Rij denote the Fourier transforms i of h;;
andk;; , and
(3)R--—Ehk'[—a ahij— 3,9;hig+ 23,y B _B. 1ok
=2 k0 Njj — didjNy k(iMj Bij:Bij+2k|(i<9j),3|
+7ik|7jk|_7ijk7klla denotes the terms not in the principal symbol. Héee

o , =dw/(2m)%? |w|f=w;w;h'l, and we will use the conven-

where y,,”=h,* h,"h,“T,.,7 are the spatial compo- tion '=w;h'. Transform this second order symbol into a
nents of the Christoffel symbols @f,,, and»':=y/"0. it order one vid;; =i|o| sh;; , where|w|3= w;w; 8", with

Densitize the lapse function, that is, write it &  si_giag(1,1,1). The associated first order system is then
=(h)Q, whereh:= vdet(h;;), b is a constant, an@ is a
given, positive function. This modifies the principal part of o ) .
Eq. (4). New terms containing second spatial derivatives ofd;{;; =f {ilw[s[ — (2N/a)k;; +5eij]+2ek(iaj)/sk}e'wxa*w,
h;; come from O;D;N)/N. St

Summarizing, the unknowns for the densitized ADM ©
equations aréy;; andk;; . The evolution equations, Eqs),
(4)’ haVe the form ﬁtkij :J {I|w|h[—(Na/2)(@|J +(1+ b)Z)i:uthI@H
St
Lit-phij= —2Nk;j, @) i T IR TR
—2w w(i€j)k)+,8kij]+8ij}e Xdw, (10)

,C(t_,g)kij:(N/Z)hkl[_ﬁk(9|hij | | | | _ | | o .

with a=|w h/ |5, wi=wi/ O|p, B:zwkﬂ , and €|J

—(1+b)a,aihy+ ihiy 1+ B . a .
(A+b)didiha+ 206y 1+ B, (©) =[silo| ;hije’*dw. Then the symbol of equations above

where ‘C(tfﬁ)hij :athij —(ﬂkakhij +2hk(i(9j)ﬁk), and the can be written as

same holds fok;; . The nonprincipal part terms are grouped

|n p(t,X,U,Ia))zl|w|hp1(t,X,u,w)+B(t,x,u,w), (11)
Bij = N[‘yikl y]kl_ ‘yU kry‘dl - 2ki|kj| + k'l kll _A” - KSij]’ where @G)T:: (2@k(|(9j),8k,§”), |:|T=: (@” ,Rij), with the up-
) " per indexT meaning transpose. The principal part operator
Aij=aia;— vi*ax+ 3,9;(In Q)+ 2byi vV, p; can be read out from the terms inside the square brackets

. , ) in Egs. (9), (10). Notice that the definition of the principal
with a,=n"V,n,=D (InN). The relations IN=blnh  sympol here differs from the one given in Sec. Il by a factor

+IinQand O;DjN)/N= (blz)hklﬂiajhkl+A[1_Were used. of ilw|y,. (In particular, the eigenvalues pf as defined here
The following result asserts that densitized ADM evolu- st be real to be hyperbolic. -
tion equations are weakly hyperbolic. Eigenvalues and eigenvectors jpf. Once the principal

Theorem 1Fix any positive functiorQ, a vector fields',
and first and second fundamental forims,k;; on S;. If b
=0, then Eqs(7), (8) are weakly hyperbolic. Ib<0, these
equations are not hyperbolic.

The proof has two steps: first, to write down EG8), (8)
as an appropriate first order pseudodifferential system, Eq

symbol is known, it only remains to compute its eigenvalues
and eigenvectors. The assumptier1 facilitates the com-
putations. It is not a restriction since the norfs and| |,

are equivalent and smoothly related, and therefore the prop-
erties of the eigenvalues and eigenvectors of the principal

(9). (10): second, to split the corresponding principal Syrnbc)I§ymbol are the same with either norm. Furthermore, one can

. AT_ - r . . _
into orthogonal parts with respect to the Fourier variabje ~ Ceck that ifu= (£, ’ki)z IS an e|g3/e2[1vect32rA opy(a=1)
and then to explicitly compute the associated eigenvaluewith eigenvaluen, thenu ' (a)=(a™ ~%;; ,a"k;;) is an ei-
and eigenvectors. genvector ofp;(a) with the same eigenvalue. Therefore,

Proof. from now ona=1 is assumed. A second suggestion for do-
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ing these calculations is to decompose the eigenvalue equa- ~2) ) A
tion p,U=\U into orthogonal components with respect to AT=0, =

®; . Introduce the splitting

The eigenvalue has multiplicity 4, but there are only two

tij= w00+ g2+ 20t )+ 1), (120 linearly independent eigenvectors. Hetg? represent two
o o linearly independent vectors, each one orthogonal;,toand
Kij = wjo;K+K'q;;/2+ 2w(ik]-’)+ k<'”-> , (13 labeled with the index, which takes values 1,2. This part is

. B the main reason why the ADM equations are weakly hyper-
wheregj; = h;; — w;»; is the orthogonal projector t@;, and  bolic.
The last part is again four dimensional and corresponds to
i =040, the variableu®), that is, the two-tensor fieldg(;;, andk;, .
(The tensor@<’ij> has only two independent components be-
cause of the symmetry, the orthogonality ¢9, and the
trace-free condition. The same holds ﬁérj) .) The result is

2”<iJ>A}

>
gl
ISR
~

_q|l€
@<’ij>:Qikqj'l(@kl_{?'Qkﬂz)-

The same definitions hold for tHqu components. This de-
composition implies thati= 0"+ u® +u® where

RE—x1, 40—

fm o~ -, N | =, A
a(l): w,w1€+(q”/2)€ +U(ij)

wjo K+ (q;;/2)K’ The eigenvalues each have multiplicity 2, and there are four

linearly independent eigenvectors. H@r@DA represent two

2wl s linearly independent symmetric, traceless tensors, orthogonal
" (2)— (GaS)) ~(3) (i) ~
ud= T, ., 14 tow.

[ 20K ) k<iJ> At the end one gets the following picture. All eigenvalues

The principal symbolp; and the eigenvalue eQUati(m_l] are real forb=0. Notice thatk3" becomes imaginary for

! b<0, so the equations are not hyperbolic in this case. With
=\U can also be decomposed into the same three parts. Thespect to the eigenvectors, there are two main cases. First,
first part is four dimensional, corresponding to the variabley~0 andb+1. Then, the eigenvectors of the first and third

u®), that is, the scalar fieldd,, k, €', andk’. The eigen- parts of p, do span their associated eigenspaces; but the

values are eigenvectorsi{?) corresponding to the second partmf do
not span their eigenspace. In the second chseQ or b
=1. In this case there are linearly dependent eigenvectors
~ ~ . . even among the scalar variables. Therefore, the conclusion is
where N:=(N—B)/N, so the rgle of the shift vector is to that the sysgterm) (8) is weakly hyperbolic fob=0. M
displace the value of the eigenvalue by an amoynt It is interesting here to comment on the role of the Hamil-
=w,8, and the lapse rescales it. But a change of lapséonian constraint. Suppose that a term of the farim) times
(which here is the functio®) and shift cannot change a real Eg.(6) is added to Eq(4). Herea is some real constant. Can
eigenvalue into an imaginary one. It cannot affect the hyperthis modification alter the hyperbolicity of the ADM equa-
bolicity of the system. The associated eigenvectors for thisions? Herea is some real constant. One might think that
first part are adding the Hamiltonian constraint to the ADM evolution
equation could have a similar role as densitizing the lapse

XP==1, XP== b,

Nom 2[(1+b)wjwj+(1-b)q;/2] function ie., it could keep both eigenvectar§) linearly
A | F[(1+ b)Z)iZ)j+(1—b)Qij/2] ' independent. The fact is, it does not. Such an addition of the
o Hamiltonian constraint modifies onh{" andu{*), and does
LD 200 not modify ﬁg\lz) and\$Y. The result is
2| 2 bww |
L jWj

NP=+1+2a,

two elgenvectorsl(l) The conclusion for this part is that the .y | 2(1+b+ 2a) w0+ (1—b+2a)q;/2]

eigenvalues are real fdr=0, and the four eigenvectors are U= TV1+2a[(1+b)o,w;+(1-b)q;: /2]
linearly independent fob#0, b#1. v .

The second part is also four dimensional and correspondgherefore, adding the Hamiltonian constraint only helps to
to the variablel®, that is, the vector fields; andk/ . (The  keep the eigenvectors(!) independent of thei("), so it

vector ¢/ has onIy two independent components because dfelps only in the casb= 1 where the former collapse onto
the cond|t|0n€ ®'=0. The same holds fdf’ ) The resultis the latter(for a=0). Forb#1 the addition of the Hamil-

Notice that forb=1 the two eigenvectors{" collapse to the
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tonian constraint does not contribute to make the vecflﬂg’s The main result of this work asserts that BSSN-type evo-

linearly independent, whereas densitizing the lapse does. lution equations are strongly hyperbolic for some choices of
the free parameters.

Theorem 2Fix any positive functiorQ, vector field 3,
first and second fundamental forrhg, k;; on ;. If b>0,
Consider the densitized ADM evolution equatidids (8). b#1, andc>0, then Eqgs.(15-(17) are strongly hyper-

B. BSSN-type equations

Introduce into these equations the new variable bolic. Assume thab=1. If c=2, then Egs(15—(17) are
o strongly hyperbolic; ifc#2, ¢>0, then they are weakly
fra=h"7y, " hyperbolic.

o 0 . One can check that the systéfrb)—(17) remains strongly
By definitionn, f*=0, that is,f"=0, so the new variables hyperbolic under a transformation of the ford=f;
are_the components'=h"[hdch;—d;(Inh)], where b q4.(Inh) for any real constand, in particulard=1/3,
= Vdet(n;;) as above. They are related to the three connecy ;e gives the BSSN variablB'. (See the comment at the
tion variablesl™ of the BSSN system defined in EQ1) in  end of this section.
[14]. More precisely,y;; T/ =f;+ (1/3)d;(Inh), wherey;; is The first part of the proof follows the argument that es-
defined in Eq(10) of that reference. The evolution equation tablishes Theorem 1. That is, from E¢$5)—(17) obtain the
for f; is obtained by taking the trace in indiceso of the  first order pseudodifferential system Eq&8)—(20) below.

identity Then compute the eigenvector and eigenvalues, by splitting
the principal symbol into orthogonal parts with respect to the
N, sLnYue’= = 2D (K, T D Ko 28Ky Kol Fourier variablew; . Finally, the second part of the proof is
the construction of the symmetrizer.
1 v o S Proof
+ thﬁhv th (911’(70"18 ’ )

First order reduction.Compute the symbol associated
with the second order operator given by EQ5)—(17):
where £,7,,°=0%3,7,,°+27,(,°0 yN* = y,,*3,n°, and
adding to the result times the momentum constraifB). . " N .
Herec is any real constant. One then gets arhyj = JS[{—ZN kij +iwBhij + 2hyd;) B4 € o,

Lof,=(c—2)D k,"+(1—C)D k+C,,

ak-:f N/2)[ | w|2h;; +bwjwih"hg ] +iNef;

where the nonprincipal terms are grouped in R St{( olahy +bajojhthl+iN et
C,=—ckj,—2k,,a"+ka,—2v,,,k" =2k, +iwB%; +B;le' " dw,

+(1N)h,,h7%3,d 58" . R R
&tfi: f {iN[(C—2)kikwk+(l—c)wihk1kk1]+ i wk,kai
Summarizing, the unknowns for BSSN-type systems are S

hij, kij, andf;. The evolution equations are AW
L ghii=—2NKk;;, 15 . oo
(A ! @39 where the terms not in the principal symbol have the forms
N ~ A N
L pkiy =5 [ = adihi = baidjhi ]+ Nog )+ By B =B;j + 2k 9B,

16 ~ o~
(10 Ci=Ci+ a8

Lo pnfi=N[(c—2)hK gk +(1—c)hMake]+C, N . N
a-phi=NL( ) ki ) Kl +G (17) Here dw=dw/(27)%? |w|ﬁ=wiwjh”, and o'=w;h". In-

, , _ troduce the unknowr?;;=ilw|sh;;, with |w|5=w;w;d,
where L g fi=afi —(B'0;fi+1,6,8"), while Ly ghij  wheres’=diag(1,1,1). The resulting pseudodifferential sys-
and L p)kj; are defined below Eqs7), (8), and tem is a first order one, given by

Bij = N[z')’kl(i 3’j)k|+ Yikl ijl_ Yiijl Ykkl

ae-:f ilo|o[ — (2N/a)ki; + BEij1+ 2810, B e Ao,
= 2ki'kj +kijki' = Ajj— kS 1, o S[{ " ! ! «WFY

(18
C=N[Ci+(c—2) vk = v’k 1.
o . Y R RNy, o F
The constraint equations are €8, (6 and aikij J‘S[{I|w|h[(Na/2)( tij—bwjwh{+2wf;)
f4— "oy, #=0. +Bki1+Bjle o, )

044012-7



NAGY, ORTIZ, AND REULA PHYSICAL REVIEW D 70, 044012 (2004

atfi:J {il@|n[N((c—2)kja* . 2wi~wj~ A 2010,
S i0=| FVbow; |, U= 0
+(1-c)wih¥ky) + BT 1+ Cle Ao, (20 o; (1+b)w,

with C(:|(1)|h/|(1)|5, a=wi/|w|h, Z%ZZ)k,Bk, and €|]
= [sj|o|shij€“*dw. The symbol of Eqs(18)—(20) has the
form,

Notice that both eigenvectots’) collapse ifo=0. Also see

that the eigenvectore(l) collapse tofiglz) in the caseb=1

andc#2. Thus, in these cases Eq48)—(20) are weakly
p(t,X,u,iw)=i|w|,p1(t,X,u,®)+B(t,x,u,w), (21)  hyperbolic. In the casb=1 andc=2 the eigenvalues \b

B i collapse to+1. Therefore, one has{!’=+1, each with

where BU) "= (28y9;)8B;; ,C)), u"=({;; ki Fi), the in- multiplicity 2, and X$"=0, with multiplicity 1. There are

dexT denotes the transpose and the principal symhalan  five linearly independent eigenvectors in this case,

be read out from the terms inside the square brackets in Egs.

(18)—(20). As in the proof of Theorem 1, the definition of the

principal symbol here differs from the one given in Sec. Il by 200 9ij
a factor ofi|w|p. uV=| Foo; |, ul=| F@/2|,
Eigenvalues and eigenvectors pf. Following the proof ~ ~
of Theorem 1,a=1 is assumed. One can check in this case - @i i
that, if uT=(¢;; ,k;; ,f;) is an eigenvector op;(@=1) with o
eigenvalue), thenu'(a)=(a 2% ,a¥%;;,a %)) is an wiwj
eigenvector ofp,(a) with the same eigenvalu)e ﬁglz): 0
The orthogonal decompositiofl12), (13) simplifies the ~
calculation. In addition, decompose -
3 :Z)ifﬂei, , The second part is six dimensional and corresE)onds to the
variablesu(®, that is, the vector field§/ , ¢/, andk/, or-

where f=w;f' and f/ =q;/f;. This decomposition implies thogonal tow; . The eigenvalues are
thatu=u®+u®+u® where

AP=0, AP==+c/2,

oo+ (0;;/2) ¢’
o= Z)i:u,-RwL(q”/Z)R’ , where each.on_e has multiplicity 2. They are reatb#O.
. There are six linearly independent eigenvectors in the case
A w;f ¢>0, given by
Zw(ié’j) €<,”> ZZJ(in)A 42)(ivj)A
U= 206k |, 0@=] k| (22) i@=| 0 |, 0@=| = \2cma0, |,
L 0 vi (2=t

Spllt the principal symbob; and the eigenvalue equation wherev represent two linearly independent vectors, each

D1U AU into the same three parts. The first part is five di-gne orthogonal ta;, labeled by the indexA which takes
mensional, correspondmg to the variahle), that is, the values 1, 2. Here is the key role of the momentum constraint.

scalar fieldd, 7, k, ¢', andk’. The eigenvalues are If c=0, that is, the momentum constraint is not added to the
system, then the two eigenvectm,“;?z) become linearly de-
AP==1, X{P==x\b, X{=0, pendent, as occurs in the densitized ADM evolution equa-
tions.
each having multiplicity 1, where again:=(\—23)/N. The last part is four dimensional and is the same as in
Hence, the eigenvalues are reabit0. The corresponding Theorem 1. It corresponds to the variabié®), that is, the
eigenvectors are tensor fieldsl ;;;, andky;, . The result is
2[(b—c+1)wjwj+(1—-b)(q;/2)] 20"
1]
GW=| = — P — . ~ ~
uy, = F[(b C+l)w|wj+£1 b)(q;j/2)] |, )\(13)=i1, Ugi): IU(n)A
(2—c)bw; 0
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The elgenvalues each have mUltlpllClty 2, and there are fOU’lrhe matrix coefficients of each part depend@n The sca-

linearly independent eigenvectors. The tenaqf@) repre-

lar variable part of the symmetrizer has the form

sent two linearly independent symmetric, traceless tensors,

orthogonals taw; .
The symmetrizerThe operatorH=(T " })*(T"1) is a

symmetrizer of systeni21), whereT is an operator whose

columns correspond to the eigenvectorspaf T ! is its

inverse, and * denotes the adjoint. Then it only remains to do

a lengthy, although straightforward, calculation.

There are two hints that help to simplify the construction
of the symmetrizer. They are based on the observation that (0)ij

the principal symbol has the particular fornm=Np,+ 3I,

wherel is the identity matrix=diag(h*h;,",h¢*h;',h;),
and

0 El(&ij(k)kl 0
Eﬁ El(k)ij“)kl 0 El(k)ij(f)k ,
0 Pl(f)|(k)kI 0

where the indices ), (k), and (f) indicate rows and col-
umns, that is, equations and variables, respectively, and the

matrix components are given by
Paoii = —20gny),
"él(k)ij“)k':(—1/2)[h(ikhj)'+bziajhk'],
Pagij = wghy
P1n = (c=2)whi+(1-c)wih,

Then, the first hint is that a symmetrizer fpg is indeed a

symmetrizer for the nondiagonal elemef)tls_A second hint
is that the orthogonal decomposition in"Eg2) induces the

same splitting inp;=p; P +p; @+p;® and therefore in

H=H®+H@ 4+ H®O),
The result is

H ey 0 0 Heyi "
H= 0 H(k)| (kI 0
H(f)i((f)kl 0 H(f)i(f)k
where

H({/)Ij(f)kl H(l) ((’)kl+H 2) (€)kI+H ) (()kl

H(f)”(f)k H(l) (f)k_l_H(Z) (f)k

H(k)l (k)kl — H(l) (k)kl+ H(2) (k)kl+ H(3) (k)kl
)kl — 1) (0)kl 2) (O)kl
Hpy (0K = HEE), (0K @) (08,

Hk— 1y (1) (Dky 14(2) (K
Hini V%= H{f; (OF+HEE, Ok,

HD (OKIZ dij

(6)ij H wwww-ﬁ-Her{u Zq
~~ iy i~
+Hypr| wioiq +?w 0]
H{g) Ok =H¢ oo o +Hf€,q2"”
~ o~~~ dij
HE&))” (k)kl = Hkk jwi wkwl-l-Hk,k,?qkl
qu~ K™
+Hkk’ (1) (,!)]q 2 y

Hgl)) (Okl = Hf(www-i-errwq ,

H{E Dk=H o0k,

where the scalar functions that appear above are the follow-
ing:

1 i 1
Ho=g 52+ (1407 Himgp,

(b+1-c)?+b

— Hrr:—,
2n2" KN op(1-b)?

(b?+1—c)?+b?
2(1-b)?

(b?+1—c)(1+b)
B 2(1—b)

- (b2+1—c)
Hfg/——E 2(C—1 —W

’

(c—1—b)

1
Hkk/:m, Hw:—?(b‘FS).

The symmetrizer for the vector variable part is

2(c—2)%2+1 -
H(2) (0K 2@ iqn&a,
(0)ij 4c2 (i4))
—2)—1.
@ e de=D -1
Ho)ij 52 wiqj)"

1
(2) (k)kl— - k™|
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4(c—2)—1 this section, has real eigenvalues and a complete set of lin-
H2 Ok = —— = ~7,(kgh), early independent eigenvectors
(i > ai, y p genvectors. .
2¢c The second generalization involves the transformation

Fi=f,+dg,(Inh), whered is any real constant. That is, in-
2) (k_ 9 stead of defining the BSSN-type system with the varidpje
Hiit = Eqi : define it withF;. The new evolution equations have a dif-
ferent principal symbol from Eqg15)—(17) of the BSSN-
type equations. However, one can check that it does not
change the hyperbolicity of the system. Indeed, it modifies
only the p;* part of the principal symbol. Its eigenvalues

1
(3) (Okl— — ¢y Kpy. | . ~ = ~
H )i g da iy remain the same, namely{"’=+1, \{=+ b, and\{V
=0. The associated eigenvectors are now given by

Finally, the two-tensor part of the symmetrizer is

1 ~ ~
H{G; N =S agkay'. 2[(b—c+1)ww;+(1-b)(q;j/2)]
uV=| F[(b—c+L)wjw;+(1-b)(q;/2)] |,

One can check that the symmetrizer so defined satisfies ~
(2—c)(b+d)w;

H(i|w|np1) + (i|w|np1)*H=0 and so trivially belongs to -
S0 This symmetrizeH(t,x,u, ) is bounded fob#1, ¢ R ~ ~

>0, and smooth in all its arguments. The césel andc . w'f)L A 20w,

=2 can be computed in the same way described above, and u§12)= + \/Bwiwj ) u§13)= 0

the same conclusion holds. Then, for these two cases the ~ ~
' . 1+b+d)w;

system(18)—(20) is strongly hyperbolic. [ | L (1t+d)o; ( Joy

Two further generalizations are immediate. The first oneTherefore, the hyperbolicity of the BSSN-type equations is
involves the Hamiltonian constraint. Suppose the teﬂnr] not changed by this transformation.
times the Hamiltonian constrairt6) is added to Eq(16).
Here a is any real constant. What are the eigenvalues and IV. DISCUSSION
eigenvectors of the resulting principal symbol? The result is,

as one expects, that the only change is in the scalar variable The first order pseudodifferential reduction performed in
partp,V). The eigenvalues are the space derivatives is here the main tool used to study the

hyperbolicity of the BSSN-type systems. This technique is
W) 4 oo T ~(1)_ widely used in pseudodifferential analysis. It does not in-
MP==\1+2a2-¢), XV==\b, XP=0, crease the number of equations, so there are no new con-
straints added to the system. It emphasizes that well posed-
ness essentially captures the absence of divergent behavior in
the high frequency limit of the solutions of a given system.
This tool is applied to Eqs(15—(17), which have deriva-
tives of first order in time and second order in space. They

each one having multiplicity 1, and(ll) is real provided
a(2—c)=—(1/2). The corresponding eigenvectors are

2[(b—c+1)wiw;+(1—b)qg;/2]

l]§\”= TA[(b—c+ 1)Z)iz,j+(1_b)q”/2] are obtained from the ADM equations by densitizing the
! - lapse function and introducing the three connection variables
(2—c)bw; f;. Its evolution equation is obtained by adding the momen-

~~ tum constraint to an identity from commuting derivatives.
2(wjw;+0jj) The positive-density lapse function and the spacelike shift

+a(2-c) ??\(Z)iz)ﬁqu) ' vector are arbitrary given functions. There are free param-
~ eters given by the exponent in the densitized lapse and the

(2c-1)ow; factor in the addition of the momentum constraint. The re-

sulting first order pseudodifferential system is strongly hy-

20,0 2[(3—2b)wjw;+bg;] perbolic for some values of the free parametégee Theo-
W= 0 |+a 0 rem 2). . T
A3 ~ ~ ' The introduction off; as a new variable is inspired by the
(1+b)w 3w; variableT" of the BSSN system, defined by Eg1) in [14],

. and in the study of the linearized ADM evolution equations
where A= 1+2a(2—-c). The eigenvectom(fz) does not given in[15]. This variable is the crucial step that allows us
change. The conclusion is summarized below. to introduce the momentum constraint into the system. These

Corollary 1. Consider Eqs(15)—(17) and assume the hy- two things, in turn, produce the result that the vector variable
pothesis of Theorem 2. Assurbe-0 andc>0. Assume that eigenvectorsﬂ(ﬁ) do span their eigenspace. This is the key
a termabh;; times the Hamiltonian constrai) is added to  feature that converts the weakly hyperbolic densitized ADM
Eq. (16), where a is a real constant satisfying(2—c)  system into a strongly hyperbolic one. This property does not
>—1/2. Then the resulting principal symbol, as defined inchange when a term of the foraw;(Inh) is added to the
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system. Then, both results suggest why the BSSN system t&l operator of ordem. The mapp— p used in these notes is
preferred to the ADM equations for numerical analysis. Thisintroduced in subsection 3 of The Appendix. It is the most
conclusion agrees with a previous result{#P], where the used definition of pseudodifferential operators in the litera-
hyperbolicity of the BSSN system was also studied. It isture, and the one most studied.
shown there that a differential reduction to first order in time  The Fourier transform is used to rewrite the differential
and space derivatives, together with a densitization of th@perator because it maps derivatives into multiplication, that
lapse, produce a strongly hyperbolic system. The results is, [ 9,u(x)] =iwu(w). This property is used to solve con-
the present work are also consistent with numerical studiestant coefficient partial differential equatiof®DES by
on the evolution equations presented 17—19. For further  transforming the whole equation into an algebraic equation.
developments on these systems, [s#21]. This technique is not useful on variable coefficient PDEs,
Finally, the role of the Hamiltonian constraint, when because of the inverse property, that ifxu(x)]
added to the ADM and BSSN-type evolution equations, is—=jj ((w). For example, one hagau+xu] =i[d,u
studied. In the case where the density lapse expdmeritit 1 and nothing has been simplified by the Fourier trans-
does not affect the hyperbolicity properties of the two SyS<qrm “That is why one looks for other ways of rewriting
tems. That is, densitized ADM evolution equations remaingitferential operators. The generalization to pseudodifferen-
weakly hyperbolic, and the BSSN-type system remaina| operators is an additional consequence. Other transforms
strongly hyperbolic. In the caske=1 the addition of the can be used to define different generalizations of differential
Hamiltonian constraint in both systems prevents the twyperators. For example, Mellin transforms are usefPi.
eigenvectors of the scalar variable block from collapsing The functionsp(x, w) are called symbols. Differential op-
onto each other. This keeps the BSSN—type equation strongly,ators correspond to polynomial symbolsan They con-
hyperbolic even in the casb=1, but is not enough 10 5y the main equations from physics. Even strongly hyper-
change the weakly hyperbolic character of the densitizeg),ic PDEs have polynomial symbols. Why should one

ADM evolution equations. consider more general symbols? Because the generalization
is evident, and it has proved worth doing it. The Atiyah and
ACKNOWLEDGMENTS Singer index theorem is proved using pseudodifferential op-

erators with smooth symbols, which are more suitable for
We thank Olivier Sarbach for reading the manuscript andstudying homotopy invariants than polynomial symd@is.
suggesting improvements. G.N. also thanks Bruce Driver folfechniques to prove the well posedness of the Cauchy prob-
discussions on pseudodifferential calculus. This work wasem for a strongly hyperbolic system require one to mollify
partially supported by CONICET and SeCyT, UNC. polynomial symbols into smooth nonpolynomial onés.
The main application in these notes is simple: to reduce a
second order partial differential equation to a first order sys-
tem without adding new characteristics into the system. This
is done by introducing the operator, a square root of the
1. Introduction Laplacian, which is a first order pseudodifferential, but not

Pseudodifferential operators are a generalization of diﬁerg'ﬁerent'al’ operator. The main idea for this type of reduction

ential operators that make use of Fourier theory. The idea jgas introduced ij26].

to think of a differential operator acting upon a function aswol;'dosw gﬁ??ﬁ? stgtlso?(sangsglzsarr?;[ ggﬁﬁir?ﬁg' slgug[c?oﬁ;-
the inverse Fourier transform of a polynomial in the Fourier y Y P

i ined?
variable times the Fourier transform of the function. Thisferentlal operators determined? The answer depends on

integral representation leads to a generalization of differenwrrgggr\%gpgr“?ﬁem gr']f;?;?né'aér:’t):r;atogi dOCVT’Ii\éVT?natz dti(t)iotr)zll
tial operators, which correspond to functions other than pon-p . y 9 P ' ;
nomials in the Fourier variable, as long as the integral conProperties one wants the latter to have. There are different
verges ' spaces of symbols defined in the literature. Essentially all of

In other words, given a smooth complex valued funCtiOnthem agree that the associated space of pseudodifferential

(x,) from R”X'R” With some asvmototic behavior at in- operators is closed under taking the inverse. The inverse of a

?fﬂit;/ associate with it an operat @({( &p). S5 HereS is pseudodifferential operator is another pseudodifferential op-
f 1O0x) OO,

the Schwart that is. th L of | lued rator. This statement is not true for differential operators.
€ schwar znspace, atis, the set of complex vajued Smoots, algebra developed in studying pseudodifferential opera-
functions inR", such that the function and every derivative tor

: oo o s is useful to compute their inverses. This is important
decay faster than any polynomial at infinity. The association, o o physical point of view, because the behavior of solu-
p—p, that is, functions into differential operators,

p— s, _ Ors, IS NOt 455 of PDES can be inferred from the inverse operator. One
unique. This is known to anyone acquainted with quantumyq g even say that pseudodifferential operators were created
mechanics. Different maps from functiopgX, ) into op- i the middle 1950s from the procedure to compute parame-
eratorsp(x,dy) give rise to different theories of pseudodif- trices to elliptic equationgA parametrix is a function that
ferential calculus. Every generalization must coincide in thegiffers from a solution of the equatign(u) =& by a smooth
following: The polynomial p(X,w)=ZX|,<ma.(X)(iw)*  function, wherep is a differential operator, and is Dirac’s
where « is a multi-index inR" 'must be associated with the delta distribution} To know the parametrix is essentially the
operatorp(x,dy) = = |4 <maa(X) dy , that is, with a differen-  same as to have the inverse operator.

APPENDIX: ESSENTIALS OF PSEUDODIFFERENTIAL
OPERATORS
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Spaces of pseudodifferential operators are usually definegith u the complex conjugate ofi. This set is a Hilbert
to be closed under composition and transpose, and to act &pace, that is, a complete vector space with inner product,
distribution spaces and on Sobolev spaces. They can be ivhere the inner product is given by (, ) and is complete with
variant under diffeomorphisms, so they can be defined on gespect to the associated nojfrh
manifold. This definition for pseudodifferential operators is  The Sobolev spaces, for k a non-negative integer, are
not so simple as for differential operators, because the lattahe elements of.? such that
are local operators and the former are not. Pseudodifferential
operators are pseudolocal. An opergboacting on a distri- u[[2:= |ou[2<
butionu is local if p(u) is smooth in the same set wharés k \o;Sk '
smooth. Pseudolocal means that the set whefe) is ) .
smooth includes the set wheuds smooth. This means that ~ Wherea=(ay,az, ... ,ay) is a multi-index, and for every
could smooth out a nonsmoothnesswiMollifiers are an  such multi-index ¢ denotes 9;7%d,2---d;" and |a|
example of this kind of smoothing operator. They are integral=3{"_, ;. The inner product in.? defines an inner product
operators, which justifies the name of pseudolocal. Differenin H* given by
tial operators with smooth coefficients are an example of
local operators. The proofs of all these properties of a o
pseudodifferential operators are essentially algebraic calcula- (Uv)ie= ‘%k (0%u,d%).
tions on the symbols. One could say that the main practical
advantage of pseudodifferential calculus is, precisely, turning Let S be the space of functions of rapid decrease, also
differential problems into algebraic ones. called the Schwartz space, that is, the set of complex valued,

smooth functions orfk", satisfying

2. Function spaces |U|k’a==SUQ(EHn|(1+|X|2)k/2t9au|<°°

The study of the existence and unigueness of solutions to
PDEs, as well as the qualitative behavior of these solutiondor every multi-indexa, and allke N natural, with|x| the
is at the core of mathematical physics. Function spaces areuclidean length iR". The Schwartz space is useful in sev-
the basic ground for carrying on this study. The mathematicaéral contexts. It is the appropriate space to introduce the
structure needed is that of the Hilbert space, or Banackourier transform. It is simple to check that the Fourier trans-
space, or Frehet space, which are complete vector spaceform is well defined on elements in that space, in other
having, respectively, an inner product, a norm, and a particuwords, the integral converges. It is also simple to check the
lar metric constructed with a family of seminorms. Every main properties of the transformed function. More important
Hilbert space is a Banach space, and every Banach space issathat the Fourier transform is an isomorphism between
Frechet space. The main examples of Hilbert spaces are thgéchwartz spaces. As mentioned earlier, the Schwartz space
space of square integrable functiohd, and the Sobolev provided with an appropriate metric is an example of a Fre
spacesHX, with k a positive integer, which consist of func- chet space. Its dual space is the set of distributions, which
tions whosek derivatives belong td.2. The Fourier trans- generalizes the usual concept of functions.
form makes it possible to extend Sobolev spaces to real in- The Fourier transform of any functiame S is given by
dices. This generalization in the idea of the derivative is
gssentially the same as one uses to construct pseudodifferen- Ful(x)= a(x)::f e X ou(w)dw,
tial operators. Examples of Banach spacesldiespaces of R"
p-power integrable functions, wheté is the particular case

p=2. The main examples of Febet spaces ar@”({1), the .
set of smooth functions in any open €€ R", with a par- the Euclidean volume element and scalar produdt'inre-

ticular metric on it(the caseQ=R" is denotedC™), the spectively. The mapF:S— S is an isomorphism. The inverse

Schwartz space of smooth functions of rapid decrease, arldap s given by
its dual as a Frehet space, which is a space of distributions.
This section presents only Sobolev spaces, first with non- FHulx)= ﬁ(x)::f e* “u(w)dw.
negative integer index, and the generalization to a real index. R
The Fourier transform is needed to generalize the Soboley, important property of the Fourier transform useful in
spaces. Therefore, Schwarz spaces are introduced to faciE,—DE th is the followinal a® ~_ilal,.al d
tate the definition of the Fourier transform, and to extend it erry_ IS Ae ° owmg_[ X_U(X)] o%u(w), an
to L2. The next section is dedicated to introducing pseudodlX“U(x)] =i*ls3U(w), that is, it converts smoothness of

where do=dw/(27)"?, while do and x- 0= ;X' w! are

ifferential operators. the function into decay properties of the transformed func-
Let L2 be the vector space of complex valued, squardion, and vice versa. The Fourier transform is extended to an
integrable functions o™, that is, functions such thdu|  isomorphismZ:L?—L2, first proving Parseval’s theorem,
<o, where|u|:=/(u,u) and that is, U,v)=(u,v) for all u, v € S (which gives Plancher-
el's formula for normsljuf|=|/u||, in the case that the norm
(u,v)==f u(x)o(x)dx, comes fro_m an inm_er product, with=v) and second recall-
R ing thatS is dense in_2.
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The definition of Sobolev spacé¥’ for sreal is based on that p(u) and its derivatives decay faster than any polyno-
Parseval's theorem. First recall that everg H* with non-  mial in x. The idea is to multiply Eq(A2) by x* and recall
negative integek satisfiess®u e L for |a|<k, so Parseval’s the relation|“/x*e'® = 9%e'®* Integration by parts and the
theorem implie$w|*U(w) e L2. Second, notice that there ex- inequality (A1) imply that the resulting integral converges
ists a positive constant such that (1¢)(w)<(1+|w|)  and is bounded ix. This gives the decay.
<c(w), where{w)=(1+]|w|?)Y2 Therefore, one arrives at ~ The polynomial symbolsp(x,w)=ZX[}_a.(X)(iw)*
the following definition. The Sobolev spadd¢® for any s  with non-negative integen correspond to differential opera-
e R consists of locally square integrable function®tfhsuch  tors of orderm, p(x,d,) 22m|:oaa(x) dy . An example of a
that(w>sf1 e L2. This space is a Hilbert space with the inner pseudodifferential operator that is not differential is given by
product the symbolp(w)= x(o)|w|*sifIn(lw])], wherek is a real
constant andy(w) is a cut function ajw|=1/2. That is a
smooth function that vanishes fhw|<1/2 and is identically
1 for |w|=1. The cut function is needed to have a smooth
function atw=0. This symbol belongs t8*. The function

(Uv)g= ﬁﬁn<w>zsa_(w){)(w)dw,

and the associated norm is denoted by p(w)=x(w)In(lw]) is not a symbol, becausep(w)|
<co(w)¢, for everye>0, but|d,p(w)|<c{w)~?, and the
||u||§:=f (0)¥0(w)|*do. change in the decay is bigger than 1, which is the value of
R"

|| in this case. Another useful example to understand the
, . symbol spaces i = “In(Jw]), with k a real con-
One can check thai®CH® whenevers'<s. Notice that yant Thiz funct%(nwi)s n)cgfz)s'erbch'?Brnatural or zero, for
negative indices are allowed. The elements of those spac% . X ym T
e same reason as in the previous example. However, it is a

are distributions. Furthermore, the Hilbert spate® is the symbol for the remaining cases, belongingstd ¢, for ever
dual of H®. Finally, two more spaces are needed later on, y>0 g ' 9 ' y

H™*:=Ug_gH® andH*:=N_yzHS. These spaces are, with € s .
appropriate metrics on them, leteet spaces. A closer picture A very useful operator I.5— S given by
of the kind of element these spaces may contain is given by

the following ?Obsero\clation.s. The Sobolev embedding lemma AS(U):zf 6 X 0)SU( ) dw,
implies thatH*CC™”, while the opposite inclusion is not n

true. Also notice thaSCH”, and therefordd " *CS’, so the

elements oH ™~ are tempered distributions. where s is any real constant. This is a pseudodifferential
operator that is not differential. Its symbol i&5={w)*%,
3. Pseudodifferential operators which belongs t&®, and then one saysse °. It is usually
Let S™, with me R, be the set of complex valued smooth denoted as\®=(1—A)%2 It can be extended to Sobolev
functionsp(x,») from R"xXR", such that spaces, that is, to an operatdf:HS—L?2. This is done by
- noticing the bound AS(u)|=||ulls for all ue S, and recalling
|afagp(x,w)|<ca<w>m*|al, (Al) thatSis a dense subset &f. This operator gives a picture

of what is meant by as derivative, fors real. One can also
with C, a constant depending on the multi-index and  rewrite the definition oHS, saying thau e H® if and only if
(wy=(1+]w|?)Y2 This is the space of functions whose el- AS(u) e L2.
ements are associated with operators. It is called the space of Pseudodifferential operators can be extended to operators
symbols, and its elements(x,w) symbols. There is no acting on Sobolev spaces. Givpr ¢, it defines an opera-
asymptotic behavior needéd in tievariable, because Fou- tor p(x,dy):HS"™—HS. This is the reason to caih the order
rier integrals are thought to be carried out in thesariable.  of the operator. The main idea of the proof is again to trans-
The asymptotic behavior of this variable is related to thelate the basic estimatdl) into the symbol to arl-type
order of the associated differential operator, as one cagstimate for the operator, and then use the densisyinfL2.
shortly see in the definition of the map that associates func¥he translation is more complicated for a general pseudodif-
tions p(x,w) with operatorsp(x,d,). One can check that ferential operator than foA®, because symbols can depend
S™ CS™ wheneverm’<m. Two more spaces are needed O % Intermediate steps are needed, involving estimates on
later on,S”:=U,_xS™ andS™ =N . xS™. an integral representation of the symbol, called the kernel of
the pseudodifferential operator. Pseudodifferential operators
can also be extended to act on distribution spagesthe
dual of Schwartz spaceS
, R An operatomp:H ™ “—H™~ is called a smoothing operator
p(x,ax)(u)=f eXp(x,w)u(w)dw, (A2)  if p(H™*)CC”. That mean(u) is smooth regardless of
K - being smooth. One can check that a pseudodifferential op-
for all ue S. The constantnis called the order of the opera- erator whose symbol belongs® ™ is a smoothing operator.
tor. It is clear that e S implies p(x,d,) (u) € C*; however, For example, p(w)=e"*I"e S™*. However, not every
the proof thatp(u) € S is more involved. One has to show smoothing operator is pseudodifferential. For example,

Given any p(x,w)eS", the associated operator
p(x,dy):S— S is said to belong ta/™ and is determined by
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p(w)=p(w), with peHS for somes and having compact for all k, and lim_,..m;=—, so (p—q) € S™”. This is the

support, is a smoothing operator which is not pseudodifferprecise meaning for the rough sentence, “what really matters
ential unlessp is smooth. Friedrichs’ mollifiers]J, for €  is the asymptotic expansion.”

€(0,1], are a useful family of smoothing operators, which  There is in the literature a more general concept of
satisfyJ _(u)—u in theL? sense, in the limie—0, for each asymptotic expansion. It does not require that fheo be

uel? asymptotically homogeneous. We do not consider this gener-
Consider one more example, the operato§— S given  alization in these notes.
by Most of the calculus of pseudodifferential operators con-

sists of performing calculations with the highest order term

o R in the asymptotic expansion and keeping careful track of the

A(u):= fRne"‘"xl|w|X(w)u(w)a—w, lower order terms. The symbol of a product of pseudodiffer-
ential operators is not the product of the individual symbols.
Moreover, the former is difficult to compute. However, an
asymptotic expansion can be explicitly written for classical

i - ,  symbols, and one can check that the principal symbol of the
w=0. The operator without the cut function &5S—L product is equal to the product of the individual principal

where () is again a cut function dtw|=1/2. The symbol
is N(w)=i|w|x(w). The cut functiony makes\ smooth at

given by symbols. More precisely, givepe ¢f, andg e ¢, then the
product is a well defined operatopge ¢,"° and the
e(u):f eiw-xi|w|a(w)a—w_ asymptotic expansion of its symbol is
]Rn
_ ; 1
Its symbolf(w)—||w| does not belong to an$™ because it pq~‘ . [92p(x, ) [%q(X,®)].
—_— a|= ! — —

is not smooth atv=0. Both operatora.,¢ can be extended
to mapsH!—L2. What is more important, their extensions
are essentially the same, because they differ in a smoothingjotice that the first term in the asymptotic expansion of a
although not pseudodifferential, operator. commutatof p,q]=pg—qp, that is, its principal symbol, is

The asymptotic expansion of symbols is maybe the mosgrecisely 1/ times the Poisson bracket of their respective
useful notion related to pseudodifferential calculus. ConSideéymboIs,{p,q}zEj(&wjpaqu—&xjpaqu),

a d(icreasmg sequengan;;_, , with “mj—’“mj,; — . Let Similarly, the symbol of the adjoint pseudodifferential op-
{pj}j=1 be a sequence of symbofg(x,w) e S™. ASSUMe o 1141 is not the adjoint of the original symbol. However, this
that these symbols are asymptotically homogeneous @f s trye for the principal symbols. The proof is based in an
degreem;, that is, they satisfyp;(x,tw)=t"ip;(x,@) for  zsymptotic expansion of the following equation:

|o|=1. Then, a symbop e S™ has the asymptotic expan-
sionX;p; if and only if —

(p*)(x,w)=f fﬂne‘“x—X’)'(wW’)(g)*(x’,w’)arxaw.

k
(p—z p,—) e SN+, ¥V k=1, (A3)
- =l There are three main generalizations of the theory of
pseudodifferential operators present in the literature. First,
and it is denoted byp~2;p;. The first order term in the the operators act on vector valued functions instead of on
expansionps, is called the principal symbol. Notice that; scalar functions. While this is straightforward, the other gen-
are real constants, not necessarily integers. Every asymptot@¥alizations are more involved. Second, the space of symbols
expansion defines a symbol, that is, every function of theés enlarged, first done if27]. It is denoted asS];, and its
form =, p; belongs to some symbol spag#:. However, not ~ elements satisfyl9¢d%p(x, )| <C,, z(w)™ #l** Al with
every symbop e S™ has an asymptotic expansion. ConsiderCe.s & constant depending on the multi-indiceand8. The
- extra indices have been tuned to balance two opposite ten-
the examplep(w) = x(w)|w|*An(j]). The set of symbols dencies; on the one hand, to preserve some properties of
that admit an asymptotic expansion of the fol#3) is  differential operators; on the other hand, to maximize the
called classical, it is denoted I8f], and the corresponding amount of new objects in the generalization. These symbol
operators are said to belong #Jj. One then haS{JCS™  spaces contain functions like(x,»)=()2®, which be-
Notice that if two symbolg andq have the same asymptotic |ongs toSY;, where>0 andm=max. gna(x). Third, the

expansionX;p;, then they differ in a pseudodifferential domain of the functionp(x, ) is changed fronk"< R" to
smoothing op?erator, because QXR", with QCR" any open set. A consequence in the
change of the domain is that C{(Q)—C*(Q), so the do-
K main and range op are not the same, which makes it more
_ ( q- 2 ) e SM(k+1) difficult to define the product of pseudodifferential operators.
j ! These notes are intended to be applied to hyperbolic PDEs
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on R", which are going to be converted to pseudodifferentiation of [33] is very instructive. The first order reduction us-
operators inS', so there is no need to consider the last twoind A is due to Caldenvin [26], and a clear summary of this

generalizations. reduction is given irf30].
The field of pseudodifferential operators grew out of a

special class of integral operators called singular integral op-
erators. Mikhlin in 1936 and Caldamcand Zygmund in the

There is no main reference followed in these notes; howbeginning of 1950s carried out the first investigations. The
ever, a good place to start i8]. Notice that the notation is field started to develop really fast after a suggestion by Peter
not precisely the one in that reference. The introduction id.ax in 1963[34], who introduced the Fourier transform to
good, and the definitions are clear. The proofs are difficult tarepresent singular integral operators in a different way. Fi-
follow. More extended proofs can be found[29], together nally, the work of Kohn and NirenberfB5] presented the
with some historical remarks. The whole subject is clearlypseudodifferential operators as they are known today, and
written in [30]. It is not the most general theory of pseudo- they proved their main properties. They showed that singular
differential operators, but it is close to these notes. A slightlyintegral operators are the particular case of pseudodifferen-
different approach can be found [iB81], and detailed calcu- tial operators of order zero. Further enlargements of the
lations to find parametrices are given[®2]. The introduc- theory were due to Hmander{27,34.
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