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Quintessence and inflation from the symmetry breaking transition of the internal manifold

Tirthabir Biswas* and Prashanth Jaikumar†
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We show that even in the simple framework of pure Kaluza-Klein gravity the shape moduli can generate
potentials supporting inflation and/or quintessence. Using the shape moduli as the inflaton or quintessence field
has the additional benefit of being able to explain symmetry breaking in a natural geometric way. A numerical
analysis suggests that in these models it may be possible to obtain sufficiente-foldings during inflation as well
as a small cosmological constant at the current epoch~without fine-tuning!, while preserving the constraint
coming from the fine structure constant.
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I. INTRODUCTION

Kaluza-Klein and supergravity theories provide an eleg
and geometric way of combining~four-dimensional! gravity
with gauge interactions through a geometric way throu
dimensional reduction schemes~see, for example,@1# for de-
tails!. One starts with a higher dimensional space-time c
taining a four-dimensional observable or ‘‘external’’ univer
along with extra dimensions constituting the ‘‘internal ma
fold.’’ The latter remains unobserved essentially due to
smallness.1 One then usually considers the vacuum to b
product of a four-dimensional vacuum manifo
~Minkowski, de Sitter or anti–de Sitter!, and a compact in-
ternal manifold with matching scalar curvature constan
Four-dimensional physics arises as fluctuations around
vacuum. For example, if one looks at the massless mo
which are important for describing low energy physics of t
higher dimensional metric, then one finds a graviton~in the
four-dimensional sector of the metric! and gauge bosons~ap-
pearing in the off-diagonal part of the metric! associated with
the Killing vectors of the ‘‘frozen’’ internal manifold. The
symmetries of the internal manifold translate into gau
symmetries in the observed four-dimensional universe. I
natural then to suspect that when we observe a symm
breaking in nature~the standard model, for example!, we are
really observing a shadow of a symmetry breaking tak
place in the internal manifold; a dynamical transition from
more symmetric internal~‘‘spherical’’! space to a less sym
metric ~‘‘squashed’’! one. In this paper we show that th
indeed may be the case where the internal manifold starts
with a symmetric metric, and rolls over~or tunnels through!
a potential barrier to reach a squashed state. Such a trans
would obviously have its cosmological implications, a
here we perform a preliminary analysis with respect to in
tion @3,4# and quintessence@5#. We find that the symmetry
breaking can take place via two kinds of transitions:~a! the
squashing field can make a transition from a symme
vacuum to a nonsymmetric vacuum as in the ordinary Hi

*Electronic address: tirtho@hep.physics.mcgill.ca
†Electronic address: jaikumar@hep.physics.mcgill.ca
1In the brane-world scenario@2# large extra dimensions are als

possible.
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mechanism, the rolling over phase potentially capable
generating inflation, and~b! the squashing field can kee
evolving much like a quintessence field, effecting what
call a ‘‘quintessential transition.’’ The dynamics in this ca
resembles the scenario of ‘‘quintessential inflation’’@6#,
where the rolling over phase corresponds to inflation as
fore, but at late times after the transition the internal ma
fold keeps getting more and more squashed, accompanie
quintessence, the potential energy approaching zero asy
totically. This picture departs fundamentally from the co
cept of a frozen internal manifold toward that of a dynam
one. The second scenario also suggests a possible reso
of the long-standing problem in Kaluza-Klein and supergra
ity dimensional reduction schemes of a large~of the order of
Planck mass! effective four-dimensional cosmological con
stant as it is inversely related to the compactification rad
once the shape is fixed.

Previously geometric mechanisms of symmetry break
have been realized by introducing additional scalar fields@7#.
However, we concentrate only on pure Kaluza-Klein grav
~no extra nongeometric scalar fields! where the internal
manifold is a Lie group, sayG, and the initial isometry group
GL ^ GR is broken down toGL ^ HR @8#. This should perhaps
be viewed only as a toy model to be extended to supergra
~SUGRA!. It should be mentioned that ideas of using geo
etry of extra dimensions to break gauge symmetry can a
be found in the context of ‘‘dimensional reduction by isom
etries’’ @9#, which is, however, fundamentally different from
the Kaluza-Klein scenario.

Within the Kaluza-Klein or SUGRA framework squashe
vacuum metrics@10#, their stability@11#, and geometric ways
of breaking symmetry@12# have also been studied for som
special internal manifolds using a quantum field theore
approach. However, in this paper we study the dynam
from a cosmological viewpoint. As was suggested in@8# we
first identify the scalar fields corresponding to the size a
the shape of the internal manifold that are relevant to st
the phase transition. We obtain an effective action of th
scalar fields coupled to four-dimensional gravity and sh
that the truncation is consistent@13#, i.e., the solutions of the
field equations derived from the effective action are also
lutions of the complete higher dimensional Einstein’s eq
tions. One can then derive a quantum mechanical action
treating these fields as collective coordinates@the ‘‘radii’’ of
our observational and internal dimensionsA(t) and S(t),
©2004 The American Physical Society11-1
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respectively, and a squashing variableT(t)] characterizing
the internal and the external manifold.

To study the dynamics comprehensively is a difficult ta
but one can get significant insight by looking at the equati
of motion ~for the collective coordinates!, effective poten-
tials, and approximate solutions. In particular, we find so
tions that can be associated with the inflationary and qu
tessence phase. We also note that in the quintessence so
the combination of the shape and the size remains fix
which is not surprising since when the potential is a sum
exponentials@14#, which is essentially what we have, a line
combination of fields remains constant. Hence motivated,
make the simplifying assumption that the moduli is partia
stabilized. This can also be achieved by several other me
nisms, such as by turning on the fluxes@15#, wrapping branes
@16–18#, etc., at least approximately, within a given cosm
logical era. Technically, this assumption simplifies the ana
sis greatly as single scalar field potentials have been stu
extensively in the contexts of both inflation and quinte
sence. In order to perform further cosmological analysis i
convenient to perform conformal rescalings of the effect
field theoretic action. The scalar potential that we thus ob
for the squashing field is a sum of four exponential term
We note here that exponential potentials and their comb
tions have previously been studied in both the contexts
inflation @19# and quintessence~ @20# and references therein!.
Depending upon the values and signs of the parameter
our potential, several interesting cases emerge, of which
mention three at this point.

First, for a range of parameters one can find a double-w
potential indicating an~a!-type symmetry breaking which i
also suitable for inflation; for some typical parameter valu
we obtained around 50e-foldings. For a different choice o
parameters when the higher dimensional cosmological c
stant is set to zero, quite remarkably we find that the pot
tial obtained resembles the one recently discussed in@21#,
which successfully relates the evolution of an oscillati
quintessence field with astrophysical data on the variatio
the fine structure constant. Indeed, in our model the
structure constant corresponding to the Kaluza-Klein ga
fields depends on the evolving scalar fields.

In our opinion however, a more interesting case is wh
one can realize a symmetry breaking of type~b! in a
quintessential-inflation scenario. This can be achieved in
ways, one by trying to combine the two scenarios discus
above, and the other by considering a scalar field slo
rolling toward infinity. Here we mainly focus on this latte
possibility and show that indeed one can realize an inflati
ary phase, followed by a period of radiation domination, a
finally a quintessential acceleration phase, with a cosmol
cal constant energy density

l5102123M p
4 , ~1.1!

where the Planck massM p51.231019 GeV. Further, nu-
merical results in this case are consistent with the value
the fine structure constant and we find the masses of
broken gauge bosons to correspond to the~supersymmetric!
grand unified theory~S!GUT scale. We emphasize that, u
04401
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like previous attempts at obtaining quintessence mod
which used extra dimensions whose size could vary@22#, in
our case it is the shape that plays the more dominant r
although we do not discount the possibility that once sup
gravity or string theory effects~like branes and fluxes! are
included, both size and shape may become important. A
it seems possible to embed this model in the brane-wo
framework, making it phenomenologically more attractive2

although its direct connection to symmetry breaking a
gauge theories would be compromised.

So could it be that the geometric symmetry breaki
mechanism in Kaluza-Klein theories can also explain infl
tion and quintessence?

A conclusive answer cannot yet be provided. One has
incorporate matter-radiation in the picture and carry ou
more rigorous analysis, addressing issues like primor
density fluctuations, baryogenesis@24#, nucleosynthesis@25#,
relic particle abundance@26#, gravitational waves@6#, etc.
Our preliminary estimates suggest that some fine-tuning m
be necessary to account for the observed spectral tilt
amplitude of cosmic microwave background~CMB! fluctua-
tions. In the quintessence scenarios, since the squashing
couples to radiation in our model, it leads to a time-varyi
fine structure constant as well as acts as a fifth force in
quintessence phase. Observational bounds on the time v
tion of a and fifth force experiments give similar bounds o
the ‘‘effective coupling exponent’’ of the squashing field
the radiation. The bounds do seem to be consistent with
quintessential inflation picture but point at the necessity
stabilization mechanisms that freeze a specific linear com
nation of the size and the shape moduli. Ideally, one sho
incorporate the moduli stabilizing effect in our analys
which will tell us the combination of the moduli fields tha
are frozen in the different cosmological eras.

This paper is organized as follows. In Sec. I, we introdu
our model, including a brief review of group theory an
identify the relevant scalar fields in the higher dimensio
metric. In Sec. II, we first obtain an effective action throu
dimensional reduction and then check the consistency of
action. In Sec. III, we obtain a quantum mechanical act
and equations of motion involving the shape and the size
our universe. We proceed to obtain symmetry breaking so
tions resembling inflation and quintessence. In Sec. IV,
study the cosmological implications toward inflation a
quintessence in more detail. Finally, we conclude with a b
summary and some remarks about future research direct

II. OUR MODEL

As in @8# we consider our universe to be a semidire
productMD11^ G, whereMD11 is the (D11)-dimensional
observational universe andG, a Lie group manifold, serves
as the Kaluza-Klein internal space@27#. Before we decide on
an ‘‘ansatz’’ for the dimensional reduction, let us quick
review the Lie group geometry.

2In @23# such a scenario has been studied, when the internal m
fold is a flat torus, whereas the novel geometric effects that
obtain originate from the internal curvature of the extra dimensio
1-2
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Geometry of Lie groups

A Lie group elementg can be parameterized as

g5exp@xa°~ym° !Ta° #PG ~2.1!

whereTa°PG, the Lie algebra corresponding to the Lie gro
G, andxa°(ym° ) are some given functions of the coordinat
ym° charting the Lie group manifold. The Lie group gener
tors Ta° satisfy the usual commutation relations:

@Ta° ,Tb° #5Ca°b°
c°Tc° ~2.2!

whereCa°b°
c° are the structure constants of the Lie group. W

each of the generatorsTa° , one can associate a left and a rig
invariant vector fieldea° andẽa° , respectively. Both sets$ea°%
and$ẽa°% can serve as vielbeins or local basis vector fields
the tangent space of the Lie group. They are defined via
following relations:

ea°[ea°
m° ]m° , ẽa°[ẽa°

m° ]m° , ~2.3!

ea°
m° [~em°

a° !21, ẽa°
m° [~ ẽm°

a° !21, ~2.4!

and

g21]m° g5em°
a°Ta° , ~]m° g!g215ẽm°

a°Ta° . ~2.5!

These two reference frames are related by a local Lore
transformation

ẽa°5Da°
b°~g!eb° , ~2.6!

whereDa°
b°(g) is the adjoint representation ofG. In the sub-

sequent discussion we will choose$ea°% as the local frame of
reference. In this frame, a general metric onG looks like

ga°b°5ga°b°~ym° !.

However, we are interested in metrics with special symme
properties. It can be shown that in general the isometry gr
of a metric will beKL ^ HR , whereH,K#G. In particular

K5G⇒ga°b°5const. ~2.7!

We will be principally concerned with such left invarian
metrics. These metrics are invariant under the right invar
vector fields$ẽa°%, but not in general under the left invarian
vector fields. This follows readily from the commutation r
lations between them:

@ea° ,eb° #5Ca°b°
c°ec° , @ ẽa° ,ẽb° #52Ca°b°

c°ẽc° , @ ẽa° ,eb° #50.
~2.8!

If we want the metric to be further invariant under, say,HR ,
then it has to satisfy

ga°b°5Da°
c°~h!Db°

d°~h!gc°d° ;hPH. ~2.9!

If we suitably choose our generators$Ta°%5$T
a
c ,T

a
s% such

that $T
a
s% spanH, then the Killing vectors of thisGL ^ HR
04401
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~left! invariant metric will be the$ẽ
a°
% ’s and the$e

a
s% ’s. We

will always indicate group quantities by an overcircle ( °
and those of the coset spaceG/H and the subgroupH by ~c!
and (s), respectively. Sometimes we may omit the symb
when it is self-evident. We will also assume the groupsG
andH to be simple and the coset decomposition to be red
tive and symmetric:

C
a
c
b
sc
s
5C

a
c
b
cc
c
50. ~2.10!

A special case of the left invariant metric is the bivaria
metric whenH5G, i.e., it has the maximal isometry, and
invariant under both$ẽa°% and $ea°% ’s. The Killing metric
given by

g
a°b

°
K

52C
a°c°

d°C
b°d°

c° ~2.11!

is an example of such a metric. Further, the Killing met
satisfies Einstein’s field equations

R
a°b°

5l° g
a°b°

~2.12!

and hence is consistent with its usual identification

Kaluza-Klein vacuum, the constantl° being referred to as the
internal curvature. Contrary to this picture of an intern
manifold frozen in its maximally symmetric Killing metric
we treat it as dynamic. In particular, we want to stu
whether the manifold makes a transition from theGL ^ GR
Killing metric to a (GL ^ HR)-invariant metric, thereby ef-
fecting a gauge symmetry breaking fromGR→HR in four
dimensions, with the broken gauge bosons associated
the$e

a
c% ’s acquiring masses as explained in@8#. The metric in

this case looks like

g
a°b°
S

5S g
a
c
b
c

K
0

0 T 2g
a
s
b
s

K D ~2.13!

whereT 2 is the ‘‘squashing’’ parameter. For some values
the squashing parameter, other than 1, we can also hav
Einstein manifold. Thus in@8# it was suggested that the in
ternal manifold may make a transition from, say, the ma
mally symmetric (T51) Einstein space to the less symmet
one (TÞ1). It is clear what we have to do to understand th
dynamics; we should treatT as a collective coordinateT (t)
characterizing the shape of the group manifold and study
dynamical equations. We know that to have a consistent
mensional reduction ansatz one has to also include the o
all sizeS(t) of the internal manifold. Thus our ansatz for th
group metric will be given by

ga°b°~ t !5S 2~ t !S g
a
c
b
c

K
0

0 T 2~ t !g
a
s
b
s

K D . ~2.14!
1-3
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Field theoretic ansatz

In the Kaluza-Klein reduction scheme we now know e
actly which scalars are relevant to studying the dynamics
symmetry breaking, viz.,S(t)→C(x) andT(t)→Q(x). We
will denote the coordinates charting the observable unive
MD11 by xm while we use careted quantities to refer to o
jects corresponding to the full higher dimensional manifo
Thusxm̂ will be used to collectively denote$xm,ym° %.

Although an expression of the metric of the form~2.14! is
physically clarifying, technically it is more convenient to in
clude the scalars in the vielbein. We choose to paramete
the group element as
a
tr

at
n-

04401
-
f

e
-
.

ze

g5exp@xa
c
~ym

c
!Ta

c#exp@xa
s
~ym

s
!Ta

s#.

The ansatz for the full higher dimensional vielbein is th
given by

êm̂
â5S em

a~x! 0 0

0 C~x!e°m
c a

c
~y! C~x!Q~x!e°m

c a
s
~y!

0 0 C~x!Q~x!e°m
s a

s
~y!

D
~2.15!

and
êâ
m̂5S ea

m~x! 0 0

0 C21~x!e°a
c m

c
~y! C21~x!e°a

c m
s
~y!

0 0 C21~x!Q21~x!e°a
s m

s
~y!

D . ~2.16!
an

ed

:

The ‘‘flat metric’’ is then just a constant,

ĝâb̂5S gab 0

0 g
a°b°
K D . ~2.17!

We did not include the vectors in the ansatz~2.15!–~2.17!
because we are interested only in the vacuum dynamics,
the vectors appear as fluctuations around the vacuum me

III. CONSISTENT DIMENSIONAL REDUCTION

Effective action

Our next task is to obtain an effective action for the ans
~2.15!–~2.17! via dimensional reduction of the higher dime
sional gravitational action

ŜD̂5
1

16pĜ
E dxD̂ê21R̂. ~3.1!

In order to compute the scalar curvatureR̂ we first need to
compute the spin connectionsv̂ â

b̂ which are uniquely de-
fined via

d̂v̂ â1v̂ â
b̂`v̂ b̂50, ~3.2!

wherev̂ â are the basis one-forms

v̂ â5dxm̂em̂
â. ~3.3!

For Eq.~2.15! the one-forms are given by

v̂a5va,

v̂a
c
5Cva

c
,

nd
ic.

z

v̂a
s
5CQva

s
. ~3.4!

With a little algebraic manipulation and guesswork one c
obtain the connections satisfying Eq.~3.2!:

v̂a
b5va

b ,

v̂a
c

b5~ebC!va
c
,

v̂a
s

b5~ebCQ!va
s
,

v̂a
c

b
c5va

c

b
c1~Q221!va

c

c
s
b
cvc

s
,

v̂a
c

b
s5Qva

c

b
s ,

v̂a
s

b
s5va

s

b
s , ~3.5!

eb is the vielbein vector

eb5eb
m]m ,

and theva°
b°c°’s are the group connection coefficients defin

by

va°
b°c°5ga°a°8va°8b°c° , va°b°c°5

1
2 ~Ca°b°c°1C[a°c°b° ] ! . ~3.6!

Our next step is to evaluate the curvature two-forms

R â
b̂5d̂v̂ â

b̂1v̂ â
ĉ`v̂ ĉ

b̂ . ~3.7!

A straightforward computation yields the following results

R a
b5R a

b ,
1-4
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R a
c

b5C21¹c~ebC!v̂c`v̂a
c
1C21~ebQ!va

c

c
s
d
cv̂d

c

`v̂c
s
,

R a
c

b
c5R a

c

b
c1$~Q221!@va

c

c
s
d
cvd

c

b
c
e
s2vd

c

c
s
b
cva

c

d
c
e
s1va

c

f
s
b
cv f

s

c
s
e
s#

1$~Q221!2va
c

c
s
d
cvd

c

e
s
b
c!%C22Q22v̂c

s
`v̂e

s
1$~Q2

21!~va
c

c
s
d
cvd

c

c
s
e
c1va

c

c
s
b
cvc

s

d
c
e
c!2~]C!2dd

ca
c
ge

c
b
c%C22v̂d

c

`v̂e
c
12C22~edQ!va

c

c
s
b
cv̂d`v̂c

s
,

R a
s

b5C21Q21¹c~ebCQ!v̂c`v̂a
s
1C21~ebQ!va

s

c
c
d
cv̂c

c

`v̂d
c

,

R a
s

b
s5R a

s

b
s22C22Q22~]QC!2v̂a

s
`v̂b

s

1C22~Q221!va
s

c
c
d
cvc

c

b
s
e
cv̂d

c

`v̂e
c
,

R a
c

b
s5QR a

c

b
s1C21ecQva

c

b
s
d
cv̂c`v̂d

c

2C22Q21~ecC!

3~ecQC!v̂a
c
`v̂b

s

1C22~Q221!va
c

d
s
c
cvc

c

b
s
e
cv̂d

s

`v̂e
c
.

~3.8!

The coefficients of the Riemannian tensor can now be r
off from the curvature two-forms:

R â
b̂5R̂â

b̂uĉd̂uv̂
ĉ`v̂ d̂. ~3.9!

Here u u indicates that the sum counts a pair only once. T
Riemannian coefficients obtained are thus

R̂a
bcd5Ra

bcd ,

R̂a
c

bcd
c5C21¹c~ebC!dd

ca
c
,

R̂a
c

bc
c
d
s5C21ebQva

c

d
s
c
c ,

R̂a
c

b
c
c
c
d
c5C22@Ra

c

b
c
c
c
d
c1~Q221!~va

c

e
s
[c
cve

s

b
c
d
c
]1va

c

e
s
b
cve

s

[c
c
d
c
] !

2~]C!2d [c
ca
c
gd

c
]b
c#,

R̂a
c

b
c
c
c
d
s5C22Q21Ra

c

b
c
c
c
d
s ,

R̂a
c

b
c
c
s
d
s5C22Q22@Ra

c

b
c
c
s
d
s1~Q221!~va

c

[c
s
e
cve

c

b
c
d
s
]2ve

c

[c
s
b
cva

c

e
c
d
s
]

1va
c

e
s
b
cve

s

[c
s
d
s
] !1~Q221!2va

c

[c
s
e
cve

c

d
s
]b
c#,

R̂a
c

b
c
cd

s52C21~ecC!va
c

d
s
b
c ,

R̂a
s

bcd
s5C21Q21¹c~ebCu!dd

sa
s
,

R̂a
s

bc
c
d
c5C21~ebQ!va

s

[c
c
d
c
] ,
04401
d

e

R̂a
s

b
s
c
c
d
c5C22@Ra

s

b
s
c
c
d
c1~Q221!va

c

e
c
[c
cve

c

b
s
d
c
] #,

R̂a
s

b
s
c
s
d
c5C22Q21Ra

s

b
s
c
s
d
c ,

R̂a
s

b
s
c
s
d
s5C22Q22@Ra

s

b
s
c
s
d
s2~]CQ!2d [c

sa
s
gb

s
d
s
] #,

R̂a
c

b
s
c
c
d
c5C22QRa

c

b
s
c
c
d
c ,

R̂a
c

b
s
c
s
d
c5C22@Ra

c

b
s
c
s
d
c1~Q221!va

c

c
s
e
cve

c

b
s
d
c

1C21~]C!~]CQ!dd
ca

c
gb

s
c
s#,

R̂a
c

b
s
c
s
d
s5C22Q21Ra

c

b
s
c
s
d
s ,

R̂a
c

b
s
cd
c5C21~ecQ!va

c

b
s
d
c . ~3.10!

From the Riemann tensor it is easy to calculate the R
tensor

R̂b̂d̂5R̂â
b̂âd̂ . ~3.11!

After some simplifications one obtains

R̂ab5Rab2D° C21¹b~eaC!2D
s

Q21¹b~eaQ!

2D
s

C21Q21e(aCeb)Q,

R̂a
c
b
c5ga

c
b
cF2$C21hC1~D° 21!C22~]C!2

1D
s

C21Q21]aC]aQ%1C22l
°

2
1

4
C22~Q221!G ,

R̂a
s
b
s5ga

s
b
sF2$C21hC1Q21hQ1~D° 21!C22~]C!2

1~D
s

21!Q22~]Q!21~D
s

1D° !C21Q21]aC]aQ%

1C22~l° 2kl
s

!1
1

4
C22~Q221!~12k!

1C22Q22kl
sG . ~3.12!

Here we have introduced a group theoretical parameterk:

gsa
s
b
s5kg° a

s
b
s . ~3.13!

gsa
s
b
s is the Killing metric of groupH while g°

a
s
b
s of course

corresponds to the Killing metric of groupG. For a symmet-
ric coset decomposition it is known that

k512
D
c

2D
s

. ~3.14!
1-5
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If H is not a simple group but it is a product ofU(1)’s then
also the value ofk is known:

k50. ~3.15!

l
s

is defined in the usual way as in Eq.~2.12! except that now
all the quantities refer to the subgroupH. In fact for Killing
metrics

l
s

5l° 5
1

4

and we will explicitly substitute their values.
We are ready to compute the scalar curvature that we n

in the action.

R̂5gâb̂R̂âb̂5gabR̂ab1ga
c
b
c

R̂a
c
b
c1ga

s
b
s

R̂a
s
b
s . ~3.16!

Finally, we have

R̂5R2F2D°
hC

C
12D

s hQ

Q
1D° ~D° 21!

~]C!2

C2

1D
s

~D
s

21!
~]Q!2

Q2
12D

s
~D° 11!

]aC]aQ

CQ G
1

1

4 F @D
c

12D
s

~12k!#
1

C2
2D

s
~12k!

Q2

C2
1kD

s 1

C2Q2G .

~3.17!

Since R̂ is independent of the group coordinates one c
perform the integration over the group in the action~3.1!
which essentially just yields a volume factorVG . Thus we
have our effective (D11)-dimensional action

Sgrav5
VG

16pĜ
E e21CD

°

QD
s

R̂[
1

16pGE e21CD
°

QD
s

R̂.

~3.18!

It is useful to perform some integration by parts. The simp
fied action looks like

Sgrav5
1

16pGE dxD11e21CD
°
QD

s

@R2K1V#, ~3.19!

where we have defined the kinetic- and potential-like ter
for the scalar fields as

K52FD° ~D° 21!
~]C!2

C2
1D

s
~D

s
21!

~]Q!2

Q2

12D
s

~D° 21!
]aC]aQ

CQ G ~3.20!

and
04401
ed

n

-

s

V5
1

4 F2D
c 1

C2
2D

c Q2

2C2
1kD

s 1

C2Q2G . ~3.21!

We have also specialized to the case whenH is simple. At
this point it is useful to redefine the scalars:

C5ec and Q5eu. ~3.22!

The kinetic and potential terms then look like

K52@D° ~D° 21!~]c!21D
s

~D
s

21!~]u!2

12D
s

~D° 21!]ac]au# ~3.23!

and

V5
1

4 F2D
c

e22c2
1

2
D
c

e2(u2c)1kD
s

e22(c1u)G . ~3.24!

The action is given by

Sgrav5
1

16pGE dxD11e21eD
°

c1D
s

u@R2K1V#.

~3.25!

Finally, one can also include a cosmological term in t
higher dimensional action,

Ŝcos52
2L̂

16pĜ
E dxD̂ê21. ~3.26!

The corresponding term in the effective action is

Scos52
2L̂

16pGE dxD11e21eD
°

c1D
s

u. ~3.27!

Consistency of the truncation

Having obtained the dimensionally reduced field theore
action for our model it is time to check the consistency
our ansatz@13#. We have to check that the solutions that w
obtain by varying the effective action~3.25! are indeed so-
lutions of the full higher dimensional Einstein’s equation
and this would mean that the truncation we performed
legitimate.

To obtain Einstein’s field equations we essentially have
compute the Einstein tensor

Ĝâb̂5R̂âb̂2
1

2
R̂ĝâb̂ ~3.28!

Using Eqs.~3.12! and ~3.17! we obtain

Ĝab5R̂ab2
1

2
gabR̂, ~3.29!
1-6
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Ĝa
c
b
c5g

°
a
c
b
cF ~D° 21!C21hC1D

s
Q21hQ1

1

2
~D° 21!

3~D° 22!C22~]C!21
1

2
D
s

~D
s

21!Q22~]Q!2

1D
s

D° C21Q21]aC]aQ1C22
1

4
~22D

c
!

2
1

8
D
s

kC22Q221
1

16
~D

c
24!C22Q22

1

2
RG ,

~3.30!

and

Ĝa
s
b
s5g° a

s
b
sF ~D° 21!C21hC1~D

s
21!Q21hQ

1
1

2
~D° 21!~D° 22!C22~]C!21

1

2
~D

s
21!~D

s
22!

3Q22~]Q!21~D
s

21!D° C21Q21]aC]aQ

2
1

4
D
c

C222
1

8
~22D

s
!kC22Q22

1
1

16

D
c

D
s

~D
s

12!C22Q22
1

2
RG . ~3.31!

The pure gravity field equations read

Ĝâb̂50. ~3.32!

Our task is to show that the field equations that one obta
by varying the effective action~3.25! also satisfy Eqs.
~3.29!–~3.31!.

Since

ĝmn5gmn,

i.e., there has been no field redefinition involving the fo
dimensional part of the metric, it is obvious that

dSgrav

dgmn
5Ĝmn⇒

dSgrav

dgmn
50⇔Ĝab50. ~3.33!

Thus we are left to show that

H dSgrav

dC
50,

dSgrav

dQ
50J [$Ĝa°b°50%.

A straightforward computation yields the field equations
04401
s

-

dSgrav

dC
5

1

16pG
e21CD

°
21QD

s H D° R22D° ~D° 21!C21hC

22D
s

~D° 21!Q21hQ2D° ~D° 21!~D°

22!C22~]C!22D
s

~D
s

21!~D° 22!Q22~]Q!2

22D
s

D° ~D° 21!C21Q21]aC]aQ1
1

4
~D°

22!C22F2D
c

1D
s

kQ222
1

2
D
c

Q2G J 50 ~3.34!

and

dSgrav

dQ
5

1

16pG
e21CD

°
QD

s
21H D

s
R22D

s
~D° 21!C21hC

22D
s

~D
s

21!Q21hQ2D
s

~D° 21!~D°

22!C22~]C!22D
s

~D
s

22!~D
s

21!Q22~]Q!2

22D
s

~D
s

21!D° C21Q21]aC]aQ1C22
1

4 F H 2D
c

D
s

1D
s

k~D
s

22!Q222
1

2
D
c

~D
s

12!Q2J G J 50. ~3.35!

Subtracting Eq.~3.35! from Eq. ~3.34! gives us

D
c FR22~D° 21!C21hC22D

s
Q21hQ2~D° 21!~D°

22!C22~]C!22D
s

~D
s

21!Q22~]Q!2

22D
s

D° C21Q21]aC]aQ2
1

2
C22~22D

c
!

1
1

4
D
s

kC22Q222
1

8
~D

c
24!C22Q2G50⇒Ĝa

c
b
c50.

Also, by inspection,

~3.35!⇒Ĝa
s
b
s50.

We have thus succeeded in showing that the action~3.25! is
indeed consistent. It is easy to see that addition of the c
mological term~3.27! does not change the consistency of t
truncation.

IV. QUANTUM MECHANICS WITH COLLECTIVE
COORDINATES

The quantum mechanical action and equations of motion

In the previous section we obtained the dimensionally
duced field theoretic action for our model. Our aim now is
look at some cosmological solutions for the backgrou
fields, and thus we assume the fields to depend only on t
1-7
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T. BISWAS AND P. JAIKUMAR PHYSICAL REVIEW D70, 044011 ~2004!
In other words we use the fields as collective coordina
characterizing the observed and the internal space-time.
the internal space we already have

c~x!→S~ t ! and Q~x!→T~ t !, ~4.1!

characterizing the size and the shape of the internal sp
respectively. For the external space we draw upon the s
dard cosmological picture of an expanding universe:

ds252e2W(t)dt21e2A(t)d̄s2. ~4.2!

A(t) is the usual cosmological radius of our universe wh
W(t) corresponds to a gauge freedom which will be use
for later computations. We will also assume that the spa
metric d̄s2 is flat, which recent observational data seem
suggest, and use the symbol,¯ to denote quantities corre
sponding to the space part of the observed space-time. S
bolically the full metric then looks like

d̂s252e2W(t)dt21e2A(t)d̄s21e2S(t)~d
c
s21e2T(t)d

s
s2!.

~4.3!

To obtain a quantum mechanical action from~3.25! we ba-
sically need to calculateR for the metric~4.3!. Again, it is
useful to cast the problem in terms of the vielbein. We defi

em
a5S eW(t) 0

0 eA(t)dm̄
āD . ~4.4!

We can now apply the same formalism as we used to ca
late R̂. Alternatively, we can use conformal transformati
by a scale factor exp(A) to obtain R from R850 for the
trivial vielbein

em8
a5S eW(t)2A(t) 0

0 dm̄
āD .

In any case, one obtains

R5De22W@2Ä22ȦẆ1~D11!Ȧ2#. ~4.5!

SubstitutingR and making the replacement~4.2! we have the
full quantum mechanical action for the collective coordina
W(t), A(t), S(t), andT(t) from the effective gravitationa
action ~3.25!:

Sqm,g5E dteD
°

S1D
s

T1DA2W@2K1V# ~4.6!

with

K522DÄ2D~D11!Ȧ21D° ~D° 21!Ṡ21D
s

~D
s

21!Ṫ2

12@D
s

~D° 21!ṪṠ1DȦẆ# ~4.7!

and
04401
s
or

ce,
n-

l
al
o

m-

e

u-

s

V5
1

4
e2(W2S)F2D

c
1D

s
ke22T2

1

2
D
c

e2TG . ~4.8!

It is also simple to include the cosmological term~3.27! in
the quantum mechanical action

Sqm,c522LE dteD
°

S1D
s

T1DA1W ~4.9!

so that the total action becomes

Sqm,eff5Sqm,g1Sqm,c . ~4.10!

Inspection of the action~4.6! tells us that it greatly sim-
plifies if we choose the gauge

W5DA1D° S1D
s

T. ~4.11!

We no longer have a nonlinear sigma model, but rather a s
of ordinary kinetic terms. One can always transform back
results to the more familiarW50 gauge. A similar gauge
was recently used@18# in the context of brane gas cosmolog
at the level of the field equations. In this ‘‘canonical gaug
the effective action becomes

Sqm5E dt@Kqm2Vqm# ~4.12!

with

Kqm5D~D21!Ȧ21D° ~D° 21!Ṡ21D
s

~D
s

21!Ṫ2

12@DD° ȦṠ1DD
s

ȦṪ1D
s

~D° 21!ṪṠ# ~4.13!

and

Vqm5
1

4
e2[DA1(D

°
21)S]F2D

c
e2D

s
T1D

s
ke2(D

s
21)T

2
1

2
D
c

e2(D
s

11)TG22Le2(D
°

S1D
s

T1DA). ~4.14!

In obtaining the effective quantum mechanical action
have ignored the total derivative terms and dropped so
prefactors. To understand the dynamics we now look at eq
tions of motion which can be derived by varying the acti
~4.12!:

dSqm

dA
50⇒2~D21!Ä12D° S̈12D

s
T̈1e2[DA1(D

°
21)S1D

s
T]

3FD
c

1
1

2
D
s

ke22T2
1

4
D
c

e2TG24Le2(DA1D
°

S1D
s

T)50,
1-8
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dSqm

dS
50⇒2DD° Ä12D° ~D° 21!S12D

s
~D° 21!T̈1

1

2
~D°

21!e2[DA1(D
°

21)S1D
s

T]F2D
c

1D
s

ke22T2
1

2
D
c

e2TG
24LD° e2(DA1D

°
S1D

s
T)50,

dSqm

dT
50⇒2DD

s
Ä12~D° 21!D

s
S̈12D

s
~D

s
21!T̈

1
1

4
e2[DA1(D

°
21)S1D

s
T]@4D

c
D
s

12D
s

~D
s

21!ke22T

2D
c

~D
s

11!e2T#24LD
s

e2(DA1D
°

S1D
s

T)50.

It should be mentioned that there is a fourth equation wh
can, for example, be derived by varyingW(t) in the un-
gauge-fixed action. However, as is usual in general relativ
it is not linearly independent, although it can constrain
initial conditions. A simple rearrangement of the equatio
gives us

Ä2
4L

D̂22
e2(DA1D

°
S1D

s
T)50, ~4.15!

S̈1e2DAH 1

2
e2(D

°
21)SFe2D

s
T2

1

2
e2(D

s
11)TG2

4L

D̂22
e2D

°
Se2D

s
TJ

50, ~4.16!

and

T̈1
1

2
e2(DA1(D

°
21)S)F 1

2
ke2(D

s
21)T2e2D

s
T

1
1

4 S 11
D°

D
s D e2(D

s
11)TG50. ~4.17!

Solutions

One can immediately find the vacuum solutions, i.
when the internal manifold is frozen. For constantS andT,
S̈5T̈50, and from Eqs.~4.16! and ~4.17! we have

ke22T221
1

2 S 11
D°

D
s D e2T50 ~4.18!

and

1

2 F12
1

2
e2TG2

4L

D̂22
e2S50. ~4.19!

Substitutingk in Eq. ~4.18! we have
04401
h

y,
e
s

,

S 12
D
c

2D
s D e22T221S 11

D
c

2D
s D e2T50.

This has two solutions

e2T51,
2D

s
2D

c

2D
s

1D
c

, ~4.20!

and correspondingly

e2S5
D̂22

16L
, S D̂22

16L
D S 2D

s
13D

c

2D
s

1D
c D . ~4.21!

Indeed these are the right vacuum solutions for the
higher dimensional Einstein equations. The first one co
sponds to the symmetric case and the second one to
squashed case.

One can now imagine a situation where the unive
started out in a symmetric phase~say, that corresponds to th
minimum of the effective potential for the squashing field!,
but starts to roll over or tunnel through the potential barr
~the maximum perhaps corresponding to the squas
vacuum! due to classical or quantum fluctuations and exc
tions, and this may be accompanied by inflation. Afterwa
it can either settle to another minimum or continue to evo
as a quintessence field. Indeed, associated with the squa
vacuum solution one finds an exponential inflationary grow
of the external universe. In theW50 gauge,

e2A(t)5eG I t with exponentG I5A 8L

D~D̂22!
.

~4.22!

This solution is none other than the de Sitter vacu
dSD11^ Gsq, which in our dynamic universe model is just
phase.3

Let us now see whether our toy model of pure Kaluz
Klein theory can also provide a ‘‘quintessential solution’’
an accelerating universe whereT is, say, rolling toward
2`. In this phase of evolution the smallest exponent in
effective potentialVqm dominates,T essentially rolling down

e2(D
s

21)T. Thus we can ignore all the other terms in the e
fective action ~4.12!–~4.14!. This effectively conceals the
curvature ofG/H and we are left with the product spac
MD11^ (G/H)

D
c ^ H, whereH acquires an internal curvatur

(1/4)k while G/H becomes flat. It is easy to find a de Sitte
type solution:

3Indeed one does not expect the internal manifold to stay at
unstable squashed vacuum, but to slowly roll over, but provided
slow roll conditions@28# are satisfied at the top of the hill we ca
still get inflation.
1-9
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S~ t !5A~ t ! and T~ t !5T02A~ t !. ~4.23!

In the W50 gauge,

e2A(t)5eGqt with exponentGq5A 8L

~D1D
c

!~D̂22!

.

~4.24!

We notice that the quintessence exponent is smaller than
inflation exponent, as it should be.

The above solutions certainly suggest that it may be p
sible to realize an inflationary or quintessence paradigm
ing the squashing field of the internal manifold, and th
merits further investigation. Among other things, one has
first perform a slow roll analysis of the potential for inflatio
Subsequently, one should incorporate matter-radiation
the picture to study reheating, quintessence, etc. For one
would no doubt ameliorate the exponential inflation a
quintessence to a more standard power law type. Finally,
needs to account for stabilizing effects like brane gas@16–
18# or fluxes @15#, because typically, in extra dimension
cosmology, the size moduli is unstable and tends to expa4

In the next section we try to address some of these issu

V. COSMOLOGICAL SCENARIOS

Partial stabilization and conformal transformation

We notice that in the quintessence solution~4.24! a com-
bination of the size and the shape moduli, viz.,S1T, re-
mains constant, and this phenomenon of a linear combina
of fields becoming frozen is recurrent in dynamics w
many scalar fields, specifically with exponential potenti
@14#. Recently, it has also come to attention that several o
mechanisms involving brane gas and fluxes can also stab
the moduli at least partially. Indeed, stabilization of moduli
an intriguing and complicated problem which arises in
most all modern unified theories like string or M theory, a
ideally the stabilization mechanisms should be included
fore we study cosmology with the moduli fields. Howeve
here we take a short cut and assume that the moduli is,
partially stabilized:

s5c1eu5const, ~5.1!

at least approximately with maybee varying slowly between
different cosmological eras. If the stabilization is achieved
a much higher scale or if it is dynamically stabilized as no
above, the corrections to the field theory potential~3.24! can
be ignored. Indeed, different mechanisms may be at wor
different cosmic times but as a first approximation we
sumee to be a constant. Technically this assumption simp
fies the analysis greatly as we are left with just a single sc

4This can also be seen from our quintessence solution~4.24!; S(t)
is expanding. This is also related to the issue of dilaton stabiliza
in string theory, the dilaton being the radion corresponding to
circular compactification of the 11-dimensional supergravity or
theory.
04401
he
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field potential which has been studied extensively in the c
texts of both inflation and quintessence.

Before we implement Eq.~5.1! it is useful to perform the
following conformal rescalings in the field theory actio
~3.25! that we derived earlier:

ea
m5Dea8

m, F5~D!21F8, D5F8D
°

/(D̂22)Q8D
s

/(D̂22).
~5.2!

This leads to the action

S5
1

16pGD11
E dD11xe21@R1K2V#, ~5.3!

where5

K52
1

D̂22
@D° ~D21!~]c!21D

s
~D

c
1D21!~]u!2

12D
s

~D21!]ac]au#, ~5.4!

V52L̂e22(D
°

c1D
s

u)/(D̂22)2
1

4
$@D

c
12~12k!D

s
#e22c

2D
s

~12k!e22(c2u)1kD
s

e22(c1u)%. ~5.5!

Now using Eq.~5.1! the kinetic term becomes

K52A2~]u!2, ~5.6!

where

A25
1

D̂22
@e2D° ~D21!22eD

s
~D21!1D

s
~D

c
1D21!#,

~5.7!

and the potential term becomes

V5M
*
2 XL̃e2(eD

°
2D

s
)u/(D̂22)2

1

4
$@D

c
12D

s
~12k!#e2eu

2D
s

~12k!e2(e11)u1kD
s

e2(e21)u% C
[M

*
2 Ṽ~u!, ~5.8!

where

M* [e2s, L̃[2L̂e2(D21)s/(D̂22) ~5.9!

As is clear from Eq.~5.8!, depending upon the values ofe, k,
andL̃, numerous cosmological scenarios can emerge. P
ing an exhaustive analysis of all of them, we focus below
only some of the most interesting cases.

n
e 5We have reintroduced thek’s explicitly so that we can look at the
more general case whenH can also be a product ofU(1)’s, be-
cause, as will soon become clear, physically it is quite interesti
1-10
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Quintessential inflation

Consider when 11D
c

/2.e>1, k50 @SU(2) to U(1) be-
ing a typical example# andL̃.0, the potential@Eq. ~5.8!# for
which is shown in Fig. 1. As is clear this may realize
quintessential-inflation scenario@6#: the shape field starts t
roll down ~or may tunnel through the barrier! from the po-
tential hill6 near u50 corresponding to a symmetric sta
(GL isometry! of the internal manifold. This stage is accom
panied by inflation although some fine-tuning of the para
eters is necessary to satisfy the slow roll conditions

eH[3
u̇2

2V1 u̇2
!1 ~5.10!

and

hH[2
ü

H u̇
!1. ~5.11!

For several cases we can obtain a reasonable numbe
e-foldings, around 50–60, which is generally required
solve the cosmological flatness and horizon problems.

e.g., D° 58, D
s

51 @SU(3)→U(1)# and the parameterse
51 and L̃52.49, we could obtain around 60e-foldings.7

Most of thee-foldings are obtained as the field rolls throug
the maximum, indicating that the potential is not generica
flat for the entire parameter range. For a given value ofe the
curvature at the maximum is determined by the parameteL,
which has to be somewhat fine-tuned~one part in 100! to

6One can start the evolution either from near the potential bar
or from the ‘‘flattish’’ potential minimum by giving a small initia
kick which can be imagined to arise from classical or quant
fluctuations.

7We checked thateH,0.1 during the inflationary phase, althoug
hH is a little high,<0.5 in this particular case.

FIG. 1. The potentialṼ(u) for k50.
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obtain a sufficiently flat potential between the minima a
the maxima. Once the parameters have been so chose
further fine-tuning of the initial conditions is necessary. F
example, we find that we may start from the minimum w
an initial velocity within a range@vmin ,vmin1Dv# and consis-
tently obtain a large number ofe-foldings. Even when
Dv/vmin;1 the number ofe-foldings diminishes only by
half.

In Planckian units inflation ends aroundu522 wheneH
becomes large and a significant portion of the potential
ergy has been converted into kinetic energy@ u̇2;V(u)#; the
universe enters a deflationary or kinesis phase@29,6#. Matter
or radiation entropy can be produced through gravitatio
particle production as discussed in@30,6#. This is presumably
closely followed by radiation and then a matter domina
era. These aspects of the evolution will be studied elsewh
Here, we point out that previously quintessential models w
exponential potentials have been studied@20#, and the scalar
field slowly rolling down the flat exponential potential
known to possess scaling solutions where the evolution
the scalar field essentially mimics that of the barotropic flu
allowing the~external! universe to evolve as it would in th
ordinary radiation or matter dominated era. However, it
possible for the potential energy of the quintessence field
start dominating the matter-energy content of the univers
a later point, leading to a second phase of inflation fro
which the universe never recovers. Indeed, this late inflati
ary phase has been ascribed to the small cosmological
stant that we observe today, Eq.~1.1! @31#.

In our model it is actually quite nontrivial to be able t
generate the hierarchy between the Planck mass and the
mological constant as stringent constraints arise from its c
nection to particle physics, as we will exemplify below. Ifuc
is the current value of the squashing parameter, then we
that

l;M p
2M

*
2 Ṽ~uc!. ~5.12!

However,M* is not arbitrary but instead fixed by particl
physics. In the squashed internal manifold, the gauge fi
action coming from the Kaluza-Klein reduction looks lik
@8#

Sgauge5
M p

2

16pe2(c1u)E dxD11@g
K
a°b°Fmn

a° Fb°mn1Ma°b°Am
a
c
Ab

c
m

1•••# ~5.13!

where the mass matrix for the broken gauge bosons~corre-
sponding to the isometries along theG/H directions! is given
by

Ma°b°5e22c@e2u1e22u22#. ~5.14!

From Eq.~5.13! it is clear that we have in general a time
varying fine structure constant whose value today is given

a54
M

*
2

M p
2

e2(e21)uc. ~5.15!

r
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The time variation ofa depends both on how the quinte
sence field varies, which is slow over cosmological sca
and also on the coupling exponente21. To make precise
statements one has to evolve the squashing field numeri
or even analytically as exact solutions are known to exist
exponential potentials@20,14#. However, we already found
out in the last subsection that requiring consistency with
quintessence cosmology along with the various observati
bounds coming from time variation ofa and fifth force ex-
periments constrainse21 to be very small (,1023).

From an inspection of Eq.~5.12! and Eq.~5.15! we find
that we now have two parametersuc and M* to fit two
valuesl anda, one coming from astrophysics and the oth
from particle physics. Can this be accomplished without a
fine-tuning? From Eqs.~5.15! and ~5.12! one finds

l;
a

4
e22(e21)ucM p

4 Ṽ~uc!. ~5.16!

Now, if kÞ0, this gives us a large constant term

l;2
a

16
M p

4kD
s

1•••. ~5.17!

Thus although a case likek.0 with e.11D
c

/2 has a poten-
tial that looks very similar to the case we are discussing h
one cannot get quintessence out of it without addressing
naturalness~or fine-tuning! issue. Ifk50 as in our case, we
can indeed generate the hierarchy without fine-tuning. In p
ticular, for the example chosen,uc5260 and M*
50.04M p gives us Eq.~1.1! anda;1/150. Further, we ob-
serve

Ma°b°5
a

4
M p

2~12e2uc!2. ~5.18!

Whenuc!21 we have the mass of the broken gauge bos
M;1022M p . Thus this mechanism would naturally expla
gauge symmetry breaking in~S!GUT theories.

Double-well inflation

Next let us look at the case when symmetry break
takes place via the usual Higgs-like mechanism. Consider

case when again thee parameter lies in the range 11D
c

/2
.e.1 with L̃.0, but k.0. The potential looks like a
double well just as in the ordinary Higgs mechanism~the
solid line in Fig. 2!, also typically suited for inflationary
cosmology. The symmetric minimum is located around z
but the nonsymmetric vacuum is the global minimum si
ated away from zero on the negative axis. Again for cert
parameters the slow roll conditions are satisfied around
potential barrier so that the phase transition can be accom
nied by inflation. To be specific let us look at the examp

whenSU(3) is broken toSO(3) (D° 58 andD
s

53). For e

51.1 andL̃52.64 the slow roll conditions are satisfied an
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we get 50e-foldings.8 The fine-tuning estimates are simila
to that of the quintessential inflation case. For the choice
parameters above, the true minimum~asymmetric vacuum!
is located aroundumin[uc521.7. Then, usinga51/132 we
obtainM* ;0.07M p . For the values mentioned, we findM
;1022M p .

Indeed, this scenario cannot solve the cosmological c
stant problem but serves as a regular inflationary scena
An interesting study would be to consider a double ph
transition where the initial isometry groupG is first broken
to H as explained here which gives rise to inflation and th
the second phase transitionH→K ~where K,H) can ac-
count for quintessence in much the same manner as in
quintessential-inflation case. To make matters concrete
could haveSU(3)→SO(3)→SO(2);U(1) rather than di-
rectly going toU(1) as discussed in the earlier subsectio
Note that the phase transitionSO(3)→SO(2) also corre-
sponds tok50 and hence a quintessence scenario is feas

Quintessence

We have so far seen two different ways that theu evolu-
tion can break symmetry. Now we consider the intrigui
possibility of the opposite process, viz., symmetry resto
tion being accomplished by the squashing field. For the s
cial case whenL̂50 our potential Eq.~5.8! looks like

Ṽ52
1

4 F2D
c

eA32peu/A2
1

2
D
c

eA32p(e11)u/A

1kD
s

eA32p(e21)u/AG . ~5.19!

Here we have redefinedu→(A/A8p)u to makeK have the
canonical form. The potential is qualitatively sketched in t

8We checked thateH,0.1 andhH,0.2 during the inflationary
phase.

FIG. 2. ~Color online! The potentialṼ(Q) for ~a! double-well

inflation ~solid line! and ~b! quintessence (L̃50) ~dashed line!.
1-12
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dashed line of Fig. 2. From the form of the potential it
clear that the picture resembles the scenario considere
@23# where the quintessence field~squashing field! is trapped
at the top of the potential hill until recently. This is possib
due to the friction provided by the expansion of the univer
as argued in@23#. As the universe expands the friction due
the Hubble parameter drops, and eventually the squas
field may start rolling slowly toward the symmetric min
mum acting as a quintessence field.

It is also interesting to note that~5.19! resembles a clas
of potentials considered in@21#. Motivated by the success o
the Albrecht-Skordis potential in describing aQ-field evolu-
tion @32# consistent with big bang nucleosynthesis~BBN!
and quintessence domination at the current epoch, the
thors in@21# considered a sum of three exponential potent
which recovers the Albrecht-Skordis potential as a limiti
case. In particular, it was examined if the evolving quint
sence field could account for the time variation of the fi
structure constant, with reasonable success. It was also
marked that such a potential could arise from the modul
the internal manifold which is indeed corroborated by o
results. We leave it as a future exercise to make the con
tion between the evolution of the squashing field and qu
tessence ora variation more precise in these contexts.

Fifth force, a variation, and CMB fluctuations

We have seen so far that the effective potential for
squashing field that one obtains from higher dimensio
theories may be able to realize some of the basic feature
inflationary and quintessential cosmologies. Constructing
alistic scenarios would, however, envisage testing these m
els against various other observational bounds, most not
coming from CMB fluctuations, data on time variation of th
fine structure constant, and fifth force experiments. Here
try to provide approximate estimates of these effects.

First let us look at the quintessential-inflation scenar
The low scale of the cosmological constant implies that
quintessence field is effectively massless and therefore
diates a ‘‘fifth force.’’ Various null experiments on the fift
force essentially put bounds on the coupling exponent of
scalar field to the electromagneticF2 term:

unu,1023 where SF52
enu

16pa
F2. ~5.20!

Typically this places a bound on thee parameter

ue21u,1023. ~5.21!

This suggests the importance of finding a stabilizat
mechanism withe equal or very close to one.9 Observations
of a variation~see Ref.@21# for details! also seem to indicate
similar bounds. In our model

Uȧ
a
U5unuu̇,10215 yr21. ~5.22!

9In our example we chosee51.
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Since at late times only the last exponent dominates,
squashing field essentially rolls along an exponential pot
tial. For such attractor solutions it is known that the kine
energy is a fraction of the scalar potential energy which
identified with the effective cosmological constant. Th
gives us a handle to estimate theu variation

u̇'10212 yr21, ~5.23!

which again implies~5.22!. Finally one can also look at ob
servational bounds coming from variation ofa on cosmic
scales. AssumingDa/a to be small one finds

Da

a
'2nDu. ~5.24!

To match all the bounds coming from observations at diff
ent epochs one has to perform numerical simulations w
appropriate radiation-matter density as, for example, w
done in @21#. However, one can quickly estimate the e
pected variation in our model since BBN. We have seen t
typically to be consistent with quintessence cosmologyuc
;250 while inflation ends aroundu;22, so that (uBBN
2uc);50. For BBN it is known thatDa/a;1022 which
again seems to suggest a bound one similar to Eq.~5.21!.

Let us now try to estimate the CMB fluctuations arisin
from the inflationary scenarios in our model. As we not
earlier, most of thee-foldings come from the flattish maxim
in our potential. The spectral tilt and the amplitude of t
CMB fluctuations would then naturally originate at the vici
ity of the maximum. In the approximation that the maximu
is generated by two competing exponentials of the form

V5Mr
4~V1e2a1u2V2e2a2u! ~5.25!

whereMr is the reduced Planck mass and

a2.a1 , ~5.26!

we find

Vmax5Mr
4V2S a22a1

a1
D S a1V1

a2V2
D a2 /(a22a1)

. ~5.27!

From Eq. ~5.27!, it is clear that ifa1 is close toa2 then
a2 /(a22a1) can easily be a large number and a small hi
archy betweenV1 andV2 can create a large hierarchy10 suf-
ficient to explain the amplitude of CMB fluctuations. Ap
proximately we have

dH;
60AVmax

Mr
2~Du! infl

~5.28!

so that

Vmax;10212⇒dH;1025.

10Typically in our model we havea2 /(a22a1);10 so that even
a modestV1 /V2;0.1 will be able to achieve the required hierarch
1-13
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One could also compute the spectral tilt from the formula

nS5126e12h, ~5.29!

which in our case implies

nS5122a1a2@12~a11a2!~u502umax!#, ~5.30!

where u50 is the point from which approximately 50–6
e-foldings ensure. Equation~5.30! tells us that for a range11

of u50 one may be able to explain the observed spectral
nS50.9960.04 @33#. Of course, matching the spectral t
and the amplitude of CMB fluctuations with the requir
50–60e-foldings will require fine-tuning of the paramete
as well as restrictions on the group theoretic parameters
the dimensions of the group and the subgroup manifold
it should be interesting to explore these aspects in fur
details.

VI. SUMMARY AND FUTURE RESEARCH

In @8#, we had tried to explain how a dynamical intern
manifold can break gauge symmetry partially. In particula
transition of the internal manifold from a symmetric vacuu
to a squashed and hence less symmetric vacuum was
gested. In this paper we have tried to analyze in more de
when and how such a transition can occur along with
cosmological implications. For simplicity, we focused on t
case when the internal manifold is a simple Lie groupG and
we are interested in breaking the isometry group fromGR
→HR . Further, we assumedH to be either simple or a prod
uct of U(1)’s. Wefirst studied the dynamics using collectiv
coordinates characterizing the size~radius! and the shape
~squashing parameter! of the internal manifold. We derived
an effective potential for the squashing parameter wh
gives nice Newton’s law type equations of motion which
useful to obtain exact or approximate cosmological so
tions. In particular, we obtained solutions for early and l
times which resemble inflation and quintessence, resp
tively. However, to make things concrete one has to perfo
a more detailed analysis.

Accordingly, we first obtained the effective potential b
performing dimensional reduction and then conformal r
calings of the higher dimensional gravitational action.
proceed further we assumed that the moduli is partially
bilized which gave us a potential for the squashing field a
sum of four exponentials. This leads to numerous differ
and interesting cosmological scenarios, especially with
gard to quintessence and inflation, of which we conside
three specifically.

In the first two cases that we studied one can imagine
the squashing field is initially trapped in a flat potential w

11In our specific example in the quintessential-inflation scena
we found thatu50 had to lie within 0.4260.01 while for the ex-
ample of pure inflationu50 had to be within 0.4960.01.
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~symmetric state!. Quantum or classical fluctuations can th
instigate a symmetry breaking phase transition of the inte
manifold with the rolling over phase of the squashing fie
across the potential barrier being accompanied by inflat
With some fine-tuning of the parameters it is possible
satisfy the slow roll conditions and obtain around 50–
e-foldings, which is sufficient to solve the cosmologic
problems like the horizon and flatness problems. The fate
the inflaton, however, differs in the two cases. In the first o
the potential does not have a second minimum but ra
rolls to zero asymptotically. This is essentially the scena
of quintessential inflation, where the inflaton at a later sta
of evolution can account for a small effective cosmologic
constant. Indeed, in the case that we consider we find th
is possible to generate a hierarchy between the Planck m
and the extremely small current vacuum energy density.
second scenario describes a more conventional Higgs
symmetry breaking mechanism with double-well inflatio
What could be interesting is if one combines the two s
narios and consider a twin phase transition, where the
corresponds to the usual double-well inflation whereas
second gives rise to late time quintessence. First, this is
alistic because it is believed that there were at least
symmetry breaking transitions~GUT and electroweak! and
second one would have a lot more parameters to play wit
order to meet with experimental bounds coming from n
cleosynthesis, density perturbations, quintessence equ
of state, etc.

We also considered a third possibility where the symm
try could be restored, the quintessence field starting from
asymmetric state at the top of a potential hill and movi
gradually toward the symmetric minimum. We also indicat
its possible connection with cosmic variation of the fi
structure constant.

Several issues remain open. For example, what happ
when the fluxes are turned on? Can it really stabilize
moduli? One could also introduce warping and study
model in the context of a brane-world. This would ameliora
the fine-tuning problems that exist in the double-well type
potentials that we obtained for some parameter ranges
nally, one can try to analyze the dynamics of the inter
manifold without assuming any prior stabilization mech
nism. Thus, it may be that while the transition of the squa
ing field ~in the double-well case! generates inflation, it is the
running of the radion that is responsible for quintessen
thereby eliminating the need to fine-tune the initial poten
minimum for the squashing field. It may also be a case
assisted inflation@14# where both the fields again becom
important.

Finally, several other variations of the same idea can
should be studied for realistic phenomenological appli
tions. First, one can generalize the model from pure gra
to supergravity. The extra fields~like dilaton! may contain
scalars that are relevant to the squashing dynamics, while
form fields will give rise to additional potential terms. Se
ond, it should be possible to generalize the internal ma
folds and metrics that we considered in this paper which

o
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change some of the parameters and even the nature o
effective potentials. For example, it should not be too di
cult to generalize this mechanism to more complicated in
nal manifolds like the coset spaces~and in particular those
that can give standard-model-like gauge groups!, and at least
in principle to some of the more interesting inhomogene
spaces.
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