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Quintessence and inflation from the symmetry breaking transition of the internal manifold
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We show that even in the simple framework of pure Kaluza-Klein gravity the shape moduli can generate
potentials supporting inflation and/or quintessence. Using the shape moduli as the inflaton or quintessence field
has the additional benefit of being able to explain symmetry breaking in a natural geometric way. A numerical
analysis suggests that in these models it may be possible to obtain suffiéddings during inflation as well
as a small cosmological constant at the current efudtinout fine-tuning, while preserving the constraint
coming from the fine structure constant.
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I. INTRODUCTION mechanism, the rolling over phase potentially capable of
generating inflation, andb) the squashing field can keep
Kaluza-Klein and supergravity theories provide an elegangVolving much like a quintessence field, effecting what we
and geometric way of combiningour-dimensional gravity ~ ¢all @ “quintessential transition.” The dynamics in this case
with gauge interactions through a geometric way througH€Sembles the scenario of “quintessential inflatiof8],
dimensional reduction schemésee, for exampld1] for de- where the rolling over phase corresponds to inflation as be-

tails). One starts with a higher dimensional space-time Confore, but at late times after the transition the internal mani-

taining a four-dimensional observable or “external” universefOId keeps getting more and more squashed, accompanied by

. : . o -~ quintessence, the potential energy approaching zero asymp-
along with extra dimensions constituting the “internal man_"totically. This picture departs fundamentally from the con-

fold.” The latter remains unobserved essentially dué 10 itSoept of 4 frozen internal manifold toward that of a dynamic
smaliness. One then usually considers the vacuum to be &ne The second scenario also suggests a possible resolution
product of a four-dimensional ~vacuum manifold of the Jong-standing problem in Kaluza-Klein and supergrav-
(Minkowski, de Sitter or anti—de Sittgrand a compact in- ity dimensional reduction schemes of a latgéthe order of
ternal manifold with matching scalar curvature constantsplanck masseffective four-dimensional cosmological con-
Four-dimensional physics arises as fluctuations around thistant as it is inversely related to the compactification radius,
vacuum. For example, if one looks at the massless modeasnce the shape is fixed.
which are important for describing low energy physics of the  Previously geometric mechanisms of symmetry breaking
higher dimensional metric, then one finds a gravifanthe  have been realized by introducing additional scalar figfds
four-dimensional sector of the metriand gauge bosoriap-  However, we concentrate only on pure Kaluza-Klein gravity
pearing in the off-diagonal part of the medrieessociated with  (no extra nongeometric scalar fieldsshere the internal
the Killing vectors of the “frozen” internal manifold. The manifold is a Lie group, sa¢, and the initial isometry group
symmetries of the internal manifold translate into gaugeG, ® Gy is broken down td5, ® Hg [8]. This should perhaps
symmetries in the observed four-dimensional universe. It idbe viewed only as a toy model to be extended to supergravity
natural then to suspect that when we observe a symmetfSUGRA). It should be mentioned that ideas of using geom-
breaking in naturéthe standard model, for examjpleve are  etry of extra dimensions to break gauge symmetry can also
really observing a shadow of a symmetry breaking takingoe found in the context of “dimensional reduction by isom-
place in the internal manifold; a dynamical transition from aetries” [9], which is, however, fundamentally different from
more symmetric internal‘spherical”) space to a less sym- the Kaluza-Klein scenario.
metric (“squashed’) one. In this paper we show that this  Within the Kaluza-Klein or SUGRA framework squashed
indeed may be the case where the internal manifold starts offacuum metric$10], their stability[11], and geometric ways
with a symmetric metric, and rolls ovéor tunnels through  of breaking symmetry12] have also been studied for some
a potential barrier to reach a squashed state. Such a transitigpecial internal manifolds using a quantum field theoretic
would obviously have its cosmological implications, andapproach. However, in this paper we study the dynamics
here we perform a preliminary analysis with respect to inflafrom a cosmological viewpoint. As was suggested8hwe
tion [3,4] and quintessencis]. We find that the symmetry first identify the scalar fields corresponding to the size and
breaking can take place via two kinds of transitiof@:the  the shape of the internal manifold that are relevant to study
squashing field can make a transition from a symmetriche phase transition. We obtain an effective action of these
vacuum to a nonsymmetric vacuum as in the ordinary Higgscalar fields coupled to four-dimensional gravity and show
that the truncation is consist€frit3], i.e., the solutions of the
field equations derived from the effective action are also so-

*Electronic address: tirtho@hep.physics.mcgill.ca lutions of the complete higher dimensional Einstein’s equa-

TElectronic address: jaikumar@hep.physics.mcgill.ca tions. One can then derive a quantum mechanical action by

1In the brane-world scenari®] large extra dimensions are also treating these fields as collective coordindtibe “radii” of
possible. our observational and internal dimensioAét) and S(t),
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respectively, and a squashing variaflét)] characterizing like previous attempts at obtaining quintessence models
the internal and the external manifold. which used extra dimensions whose size could yag}, in

To study the dynamics comprehensively is a difficult task,our case it is the shape that plays the more dominant role,
but one can get significant insight by looking at the equationsilthough we do not discount the possibility that once super-
of motion (for the collective coordinatg¢seffective poten- gravity or string theory effectélike branes and fluxgsare
tials, and approximate solutions. In particular, we find solu-included, both size and shape may become important. Also,
tions that can be associated with the inflationary and quinit seems possible to embed this model in the brane-world
tessence phase. We also note that in the quintessence solutisamework, making it phenomenologically more attracfive,
the combination of the shape and the size remains fixedjlthough its direct connection to symmetry breaking and
which is not surprising since when the potential is a sum ofyauge theories would be compromised.
exponential$14], which is essentially what we have, alinear So could it be that the geometric symmetry breaking
combination of fields remains constant. Hence motivated, wenechanism in Kaluza-Klein theories can also explain infla-
make the simplifying assumption that the moduli is partiallytion and quintessence?
stabilized. This can also be achieved by several other mecha- A conclusive answer cannot yet be provided. One has to
nisms, such as by turning on the fluds], wrapping branes incorporate matter-radiation in the picture and carry out a
[16-18, etc., at least approximately, within a given cosmo-more rigorous analysis, addressing issues like primordial
logical era. Technically, this assumption simplifies the analy-density fluctuations, baryogene§s], nucleosynthesig25],
sis greatly as single scalar field potentials have been studigglic particle abundancg26], gravitational waveg6], etc.
extensively in the contexts of both inflation and quintes-Our preliminary estimates suggest that some fine-tuning may
sence. In order to perform further cosmological analysis it idoe necessary to account for the observed spectral tilt and
convenient to perform conformal rescalings of the effectiveamplitude of cosmic microwave backgrou@WB) fluctua-
field theoretic action. The scalar potential that we thus obtaiiions. In the quintessence scenarios, since the squashing field
for the squashing field is a sum of four exponential termscouples to radiation in our model, it leads to a time-varying
We note here that exponential potentials and their combinafine structure constant as well as acts as a fifth force in its
tions have previously been studied in both the contexts ofjuintessence phase. Observational bounds on the time varia-
inflation[19] and quintessendd 20] and references thergin  tion of « and fifth force experiments give similar bounds on
Depending upon the values and signs of the parameters tiie “effective coupling exponent” of the squashing field to
our potential, several interesting cases emerge, of which wihe radiation. The bounds do seem to be consistent with the
mention three at this point. quintessential inflation picture but point at the necessity of

First, for a range of parameters one can find a double-webktabilization mechanisms that freeze a specific linear combi-
potential indicating arfa)-type symmetry breaking which is nation of the size and the shape moduli. Ideally, one should
also suitable for inflation; for some typical parameter valuesncorporate the moduli stabilizing effect in our analysis,
we obtained around 56-foldings. For a different choice of which will tell us the combination of the moduli fields that
parameters when the higher dimensional cosmological corare frozen in the different cosmological eras.
stant is set to zero, quite remarkably we find that the poten- This paper is organized as follows. In Sec. |, we introduce
tial obtained resembles the one recently discussel®lh ~ our model, including a brief review of group theory and
which successfully relates the evolution of an oscillatingidentify the relevant scalar fields in the higher dimensional
quintessence field with astrophysical data on the variation ofnetric. In Sec. Il, we first obtain an effective action through
the fine structure constant. Indeed, in our model the finaglimensional reduction and then check the consistency of this
structure constant corresponding to the Kaluza-Klein gaugection. In Sec. Ill, we obtain a quantum mechanical action
fields depends on the evolving scalar fields. and equations of motion involving the shape and the size of

In our opinion however, a more interesting case is wherpur universe. We proceed to obtain symmetry breaking solu-
one can realize a symmetry breaking of tyfl® in a tions resembling inflation and quintessence. In Sec. IV, we
quintessential-inflation scenario. This can be achieved in twstudy the cosmological implications toward inflation and
ways, one by trying to combine the two scenarios discusseduintessence in more detail. Finally, we conclude with a brief
above, and the other by considering a scalar field slowlysummary and some remarks about future research directions.
rolling toward infinity. Here we mainly focus on this latter
possibility and show that indeed one can realize an inflation- Il. OUR MODEL
ary phase, followed by a period of radiation domination, and
finally a quintessential acceleration phase, with a cosmologi
cal constant energy density

As in [8] we consider our universe to be a semidirect

productMp, ;®G, whereMp, ; is the O + 1)-dimensional

observational universe ard@, a Lie group manifold, serves

a4 as the Kaluza-Klein internal spaf27]. Before we decide on
A=10 3Mp’ (1.D) an “ansatz” for the dimensional reduction, let us quickly

review the Lie group geometry.

where the Planck masM,=1.2x 10" GeV. Further, nu-

merical results in this case are consistent with the value of ——

the fine structure constant and we find the masses of the?n [23] such a scenario has been studied, when the internal mani-

broken gauge bosons to correspond to (#gpersymmetric  fold is a flat torus, whereas the novel geometric effects that we

grand unified theoryS)GUT scale. We emphasize that, un- obtain originate from the internal curvature of the extra dimensions.
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Geometry of Lie groups (left) invariant metric will be the(e.}'s and the{eg}'s. We
A Lie group elemeng can be parameterized as will always indicate group quantities by an overcircle (°),
. and those of the coset spaGéH and the subgroupl by (c)
g=exdx*(y"Tale G (2D and s), respectively. Sometimes we may omit the symbols

. . _ when it is self-evident. We will also assume the growps
whereT; gz, the Lie algebra corresponding to the Lie 9rOUP andH to be simple and the coset decomposition to be reduc-

G, and)(g‘(ym) are some given functions of the coordinatestjye and symmetric:

y™ charting the Lie group manifold. The Lie group genera-

tors Ty satisfy the usual commutation relations: Cest=Ceoct=0 (2.10
ab ab ’ :

[Ta, Tol=Ca"Te (2.2 _ o . o
A special case of the left invariant metric is the bivariant
whereCg;® are the structure constants of the Lie group. With i =G ie. i i i '
ab group metric whenH =G, i.e., it has the maximal isometry, and is

each of the generatoig,, one can associate a left and a rightinvariant under both{?ag} and {es)'s. The Killing metric
invariant vector fieldeg andeg, respectively. Both setes} given by

and{eg} can serve as vielbeins or local basis vector fields for

the tangent space of the Lie group. They are defined via the g*jo: _C”&CME (2.10)
following relations: ab ac bd
eaEe;;";‘&;ﬁ, NGaEEar?‘ﬁr%, (2.3 is an example of such a metric. Further, the Killing metric
satisfies Einstein’s field equations
A e C S (2.9 .

(2.5 and hence is consistent with its usual identification as

Kaluza-Klein vacuum, the constafntbeing referred to as the
These two reference frames are related by a local Lorentiternal curvature. Contrary to this picture of an internal
transformation manifold frozen in its maximally symmetric Killing metric,
_ o we treat it as dynamic. In particular, we want to study
es=Dz"(g)e, (2.6)  whether the manifold makes a transition from Be® Gg
o Killing metric to a (G, ® Hg)-invariant metric, thereby ef-
whereD3"(g) is the adjoint representation &. In the sub- fecting a gauge symmetry breaking froBr— Hg in four
sequent discussion we will choogeg} as the local frame of dimensions, with the broken gauge bosons associated with
reference. In this frame, a general metric @ooks like the{eg}'s acquiring masses as explained&. The metric in

this case looks like

9 'pg=en'Ta, (950)9 '=e5Ts.

gap=0a(Y™.
K

However, we are interested in metrics with special symmetry gcc 0

properties. It can be shown that in general the isometry group g°SB: ab K (2.13

of a metric will beK ®Hg, whereH,KCG. In particular & 0 7’2938
K=G=gg;=const. (2.7

where7? is the “squashing” parameter. For some values of
We will be principally concerned with such left invariant the squashing parameter, other than 1, we can also have an
metrics. These metrics are invariant under the right invarianEinstein manifold. Thus i8] it was suggested that the in-

vector fields{eg}, but not in general under the left invariant ternal manifold may make a transition from, say, the maxi-
vector fields. This follows readily from the commutation re- mally symmetric =1) Einstein space to the less symmetric

lations between them: one (Z#1). ltis clear what we have to do to understand this
dynamics; we should tredf as a collective coordinaté(t)
[eg,eg]=ngCe&, [“éa -EE]= —Cai’,rec' [Eg,eg]zo. characterizing the shape of the group manifold and study its

(2.8  dynamical equations. We know that to have a consistent di-
mensional reduction ansatz one has to also include the over-

If we want the metric to be further invariant under, s, gl sizeS(t) of the internal manifold. Thus our ansatz for the
then it has to satisfy group metric will be given by
9s5=Da"(N)D3’(h)ges  VheH. (2.9 0
ab
If we suitably choose our generatof¥s}={T¢,Ts} such 9ap(H)=S84(1) A (2.14
Oss

that {Tg} span’, then the Killing vectors of thiss, ® Hg
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Field theoretic ansatz

Cc C S S
_ . g=exd x*(y") Tglexd x*(y™) T5].
In the Kaluza-Klein reduction scheme we now know ex-
actly which scalars are relevant to studying the dynamics ofhe ansatz for the full higher dimensional vielbein is then
symmetry breaking, viz$(t)—W(x) and7(t) —©®(x). We  given by
will denote the coordinates charting the observable universe

Mp. 1 by x™ while we use careted quantities to refer to ob- em’(X) 0 0
jects corresponding to the full higher dimensional manifold. ~ 3 0 ¥ )écg ) W0 )écg )
Thusx™ will be used to collectively denot&x™,y™}. €m = (0eR"(y ()0 (x)eq "y
Although an expression of the metric of the fo(th14) is 0 0 \P(x)@(x)é,?fs‘(y)
physically clarifying, technically it is more convenient to in- (2.15
clude the scalars in the vielbein. We choose to parameterize
the group element as and
|
e,"(X) 0 0
~ o C — o S
en=| 0 wlx)égM(y) vi(x)ég™(y) . (2.16
0 0 V00 (083 (y)

. H ” 3 H ~ S S

The “flat metric” is then just a constant, B TO W (3.9
0 , . . . .
@’B= Gab K ) (2.17) With a little algebraic manipulation and guesswork one can
a 0 g obtain the connections satisfying E®.2):

We did not include the vectors in the ans&®z15—(2.17) &)abzwab,
because we are interested only in the vacuum dynamics, and
the vectors appear as fluctuations around the vacuum metric. ¢

~ [
wab:(eb\y)wal
IIl. CONSISTENT DIMENSIONAL REDUCTION

~ S S
. . wab=(eb‘lf®)wa,
Effective action

Our next task is to obtain an effective action for the ansatz 0= 0+ (02— 1) 0L wS,
(2.15—(2.17) via dimensional reduction of the higher dimen-
sional gravitational action N g
wab=®wab,
AS@:L dxbé_lﬁ. (31) ~ 29 s
167G 0¥ =, (3.5

In order to compute the scalar curvatiRewe first need to b is the vielbein vector

compute the spin connection?sag which are uniquely de-

e,=€,"9n,
fined via b =b Tm
doat &’56/\&’620, (3.2 g;d thew®y's are the group connection coefficients defined
where®? are the basis one-forms o
©%e=0" wype, wzpe=3 (CapetCrac) . (3.6
“a_ qyMma.a
w =dxTen" 33 Our next step is to evaluate the curvature two-forms
For Eq.(2.15 the one-forms are given b S At Az an
a.(219 g y A=dw?+ o N\o%. (3.7
w?=w?
’ A straightforward computation yields the following results:
~C C
waZ\I’wa, abzRab,
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[ ~S
ReG=V 1V(eb‘If)w°/\wa+‘lf 1(eb®)wacdwd/\w°,
c c c

RE=RE+{(02- D wisotii— o0+ ofito's)

HO2- 1208 0i) 020 20t A0 (02

— 1)(whsose+ wisgwity - (a1)265 9st v 2w

Naf+2W2(e40)0isLadN et
=¥ 10" 1V(eb\1’®)wc/\wa+\]§’ 1(eb®)wag§w°
AC
Aol
8s_ o 8s —2@ -2 2°8A s
RAGE=RHF-2¥ 0 4(90TV)*w?Nwy
+¥2(02%- 1)waccw°§gwd/\w
c Con ~ €
=ORB+V¥ le@w 5w \w— V¥ 20 e V)
X(eOV)w a/\cu +¥ (02— 1)wa§gw°§gwd/\w.
(3.8

The coefficients of the Riemannian tensor can now be read

off from the curvature two-forms:

Réfa: Ifzég,‘ga@e/\&)a. (3.9
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~AS [} C
Rizes=W RGeS+ (02— 1) g g05g ],
&3s<c 2 1 as
R%g=" 0 'Rz,
ass —2 -2 ass 2 gss
Rs3 O [R%&— (dV0O)“58%dpq ],

A C
RAzei=" 2O RS,
[of
RASsG= W [ RASSS+ (07— 1) 0oszwsy

C
+WTHoW)(d¥ 0O)55°gse],
‘gss_ —2m@—1 gss
Ro%pgq="V R%&d

(eCG))a)aSC.

(3.10

bcd

From the Riemann tensor it is easy to calculate the Ricci

tensor

(3.11)

Rea=R5aq -
After some simplifications one obtains
~ o S
Rab: Rab_ DV~ lVb(ea\P) -DO"~ lVb(ea®)
s
— D\PflG)*le(a‘Peb)@,

ﬁgczggg{—{\p—lmw+(6—1)\p—2(aqf)2

Here| | indicates that the sum counts a pair only once. The

Riemannian coefficients obtained are thus
R%cq=R%cd.
A C 1 C
Rpea=" V(e W) g7,

A C
a =y~ eb. wasc

B&cec —2r pacee 2 § &cc §sc & cc
R%p&d=V  [R%&+ (07— 1) (0w g + 08 o &)
C
—(a¥)?58°945],
5Sces 2 1pace
R%&=V 0~ Ra bsd »
Racss 72®72 Rgcss+ ®2_1 gsc &cs _ 8Sc gcs
[R%&+( 2 [BEW Thd] — @ [BpW &d]

C S
+ 0o + (02— 1)%e & scweg]g

Rabcd 2¥~ (ec‘lf)wajg :
RA, 5= 101V (e, W 6) 57,

~S S
cy-1/n @ c
R%&i=V " *(e,0) 0% &g,

s ° 1
+DV O PO} T A - W (07 1),

ﬁggzggg[—{W‘1D\P+®‘1D®+(I5—1)‘1"2(¢9\If)2
S -2 2, 2, ° “1o-1 a
+(D-1)0"%(90)%+(D+D)¥ 10~ 19,¥ 570}

o S 1
W kN WO

D(1-k)

S
+W 20 2%k\|. (3.12

Here we have introduced a group theoretical paranieter

G55 =koss.- (313
agg is the Killing metric of groupH while égg of course
corresponds to the Killing metric of group. For a symmet-

ric coset decomposition it is known that
C
D
k=1- - (3.19
2D
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If H is not a simple group but it is a product 0f(1)’s then
also the value ok is known:

k=0. (3.19

s
\ is defined in the usual way as in E§.12 except that now
all the quantities refer to the subgrotip In fact for Killing
metrics

> o
Il

NP

and we will explicitly substitute their values.

We are ready to compute the scalar curvature that we need

in the action.
~ ana ~ cC. sS .
R=0g"R:5=9""Rap T 0RE+0™RE . (3.16
Finally, we have
R-r—| 262 5829 g (p_q) )
“Ro|2Dy #2Dg b D)
+BB-1 (ﬁ®)2+2[s) D+1 02V 7°0
( ) o2 ( ) "ve
L5281k E B0 b
+ 7| [D+2D( )]@ ( )\I?ﬂL V20|
(3.17

Since R is independent of the group coordinates one can

perform the integration over the group in the acti@l)
which essentially just yields a volume factdg, . Thus we
have our effective D + 1)-dimensional action

Ve -1 E) |:s>”
= e "UYOR.
167G

(3.18

It is useful to perform some integration by parts. The simpli-
fied action looks like

grav—

° s
—layD@DPp—
fe 3 g G R_—1677Gf

1

Sora= 167G

o S
g fde”e*l«PD@D[R—KJFVJ, (3.19

where we have defined the kinetic- and potential-like term
for the scalar fields as

o o (0¥)2 s s (00)2
K=—|D(D-1)——+D(D-
@2
25(B-1) 7O 3.2
+2D(D-1) 5 (3.20

and

S
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cl ¢ 62 s
2D—-D——+kD
v2 o 2wp?

V=1

vee?| (3.21

We have also specialized to the case whkeris simple. At
this point it is useful to redefine the scalars:

Y=e’ and O@=¢". (3.22
The kinetic and potential terms then look like
K=—[D(D—1)(ay)+D(B—1)(76)2
+2D(D—1)a,p5°0] (3.23
and
V=% 25 20— %Bem*‘/’hrkl%e*z(‘/’”) . (3.29

The action is given by

1 o S
sg,avzﬁf dxPtle 1eP¥ P R—K+V].
(3.29

Finally, one can also include a cosmological term in the
higher dimensional action,

S 2 f dxPe? (3.26
=———F| dx“e™ " .
Cos 16'77'G
The corresponding term in the effective action is
2A o S
- _ D+1a—1Dy+D6
cos 167G dx"" e e . (3.27

Consistency of the truncation

Having obtained the dimensionally reduced field theoretic
action for our model it is time to check the consistency of
our ansat413]. We have to check that the solutions that we
obtain by varying the effective actiof8.25 are indeed so-
lutions of the full higher dimensional Einstein’s equations,
and this would mean that the truncation we performed is
legitimate.

To obtain Einstein’s field equations we essentially have to
compute the Einstein tensor

A R 1..

Gap=Rap— ER%B (3.28
Using Eqgs.(3.12 and(3.17) we obtain

. . 1 .

Gab=Rapb— EgabRa (3.29
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~ ° o S 1 o
Gss=0s8 (D—l)\If‘1D\If+D®‘1D®+§(D—1)
o -2 2, 18 8 -2 2
X(D-2)¥ %(9¥)*+ 5D(D-1)0 %(90)

S o PP _2]_ c

+DDV 1O 19, W f O+ ¥ 22 (2-D)

1LS)|<~P*2®*2+ ! B 4HP 2072 lR
8 16( ) 20
(3.30

and
~ o o S
Gsy=0s| (D-1H)Y 'OV +(D-1)0 06

1 o o 1 s S
+ E(D—l)(D—Z)\If’Z(a\If)ZJr E(D—l)(D—Z)

S )
X0 2(90)?>+(D-1)D¥ 10 19,V 570

15\?*2 ! 2 Bk\r?@*2
4 8( )
C
1 DS 2)¥ 202 1R 3.3

The pure gravity field equations read

G35=0. (3.32

Our task is to show that the field equations that one obtains
by varying the effective action3.25 also satisfy Egs.

(3.29—(3.3D.

Since

gmn=gmn

PHYSICAL REVIEW X0, 044011 (2004

5S °© S( 4 o o
grav _ —1,yD-1@D _ — -1
v - 16.G¢ yP-1@P{DR-2D(D-1)¥ OV
S o o o o
-2D(D-1)0 06 -D(D-1)(D
S S o
—2)¥?2(9¥)2—D(D—1)(D—2)0® %(90)?
So o 1 )
—2DD(D—1)\If‘1®‘1aa\Ifﬂa®+Z(D
e s ., lc
—2)¥"%2D+Dk® "~ ZDO? 1 =0 (3.39
and
5ngav_ “1q,D 3—1 3 3 -1
6~ 16.G°¢ vPe DR-2D(D-1)¥ 0¥

S S S o o
-2D(D-1)0 00 -D(D-1)(D
—2)\If*2(axp)2—5(5—2)(5—1)@*2((9@)2

S S ° 1 CS
—2D(D—1)D\If‘1®‘1aa\Paa®+\If‘ZZ 2DD

S S _, lc s 5
+Dk(D-2)0 _ED(D+2)®

oo

Subtracting Eq(3.35 from Eq.(3.34) gives us
C o S o °
D|R-2(D-1)¥ 'O¥-2DO 00— (D-1)(D
S S
—2)¥ 2(9¥)?—D(D—1)0® %(90)?
So . 1 C
—-2DDV 10 1aa«1raa®—§\1f 2(2-D)
1s 1c -
+ZDk\If‘2®‘2—§(D—4)\I"22 =0=Gg5=0.

Also, by inspection,

(3.35=G6s5=0.

i.e., there has been no field redefinition involving the four-

dimensional part of the metric, it is obvious that

5 . 5 .
iE‘Vzc;mn:>iﬁ‘vzo@Gab:o. (3.33

5gmn 5gmn
Thus we are left to show that

5Sgrav _ 5Sgrav:
4 ' 60

0t ={Gg;=0}.

A straightforward computation yields the field equations

We have thus succeeded in showing that the ad@o?b is
indeed consistent. It is easy to see that addition of the cos-
mological term(3.27) does not change the consistency of the
truncation.

IV. QUANTUM MECHANICS WITH COLLECTIVE
COORDINATES

The quantum mechanical action and equations of motion

In the previous section we obtained the dimensionally re-
duced field theoretic action for our model. Our aim now is to
look at some cosmological solutions for the background
fields, and thus we assume the fields to depend only on time.
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In other words we use the fields as collective coordinates 1 owsl.C s o, 1c oo
characterizing the observed and the internal space-time. For V=7e W=9) 2D + Dke 27— >De” . (4.9
the internal space we already have

Y(x)—S(t) and O(x)—T(t), (4.1  Itis also simple to include the cosmological tet®127) in

the quantum mechanical action
characterizing the size and the shape of the internal space,
respectively. For the external space we draw upon the stan-

S
dard cosmological picture of an expanding universe: Syme= —ZAJ

dteBS+DT+DA+W (49)

ds?= —e?Wd 2+ e2Ads?, 4.2 .
(4.2 so that the total action becomes

A(t) is the usual cosmological radius of our universe while

W(t) corresponds to a gauge freedom which will be useful Sgm,ef= Sqmg T Sgmyc - (4.10

for later computations. We will also assume that the spatial

metric ds? is flat, which recent observational data seem to Inspection of the actioii4.6) tells us that it greatly sim-

suggest, and use the symbolto denote quantities corre- Plifies if we choose the gauge
sponding to the space part of the observed space-time. Sym-

bolically the full metric then looks like ° S
W=DA+DS+DT. 4.1)

ds?= — e2W 12 + e2AM ds? + e25(0)({s?+ e2T(DFs?)

4.3 We no longer have a nonlinear sigma model, but rather a sum

of ordinary kinetic terms. One can always transform back the

To obtain a quantum mechanical action fr¢&125 we ba- results to the more familiaW=0 gauge. A similar gauge
sically need to calculat® for the metric(4.3). Again, it is  Was recently usefl8] in the context of brane gas cosmology

useful to cast the problem in terms of the vielbein. We defineit the level of the field equations. In this “canonical gauge”
the effective action becomes
eW(® 0
ent= —. (4.9

0 eflg2 Sym= J At K gm— Vaml (4.12

We can now apply the same formalism as we used to calcu-

late R. Alternatively, we can use conformal transformation With
by a scale factor exp) to obtain R from R'=0 for the

trivial vielbein ., o o >, S S .
Kgn=D(D—-1)A*+D(D-1)S°"+D(D-1)T

eW-AD ] .
en”= —)- +2[DDAS+DDAT+D(D-1)TS]  (4.13
0 Om’
In any case, one obtains and
—Pa-2W oA _ 9 A\ A2 . s s
R=De 2"[2A—2AW+ (D +1)A?]. (4.5 qu:j_lez[DA+(D—1)S] ZBEZDT_H%keZ(D—l)T

SubstitutingR and making the replacemef#.2) we have the

full guantum mechanical action for the collective coordinates B EBeZ(SH)T B 2Ae2('55+ DT+DA) (4.14
W(t), A(t), S(t), andT(t) from the effective gravitational 2 ' :
action(3.25:

. s In obtaining the effective quantum mechanical action we
sqm'g:f dtePSTPTHDA-W K +V] (4.6) have ignored the total derivative terms and dropped some
prefactors. To understand the dynamics we now look at equa-

. tions of motion which can be derived by varying the action
with (4.12:

. . o o . S S -
K=—-2DA-D(D+1)A?+D(D—-1)S$*+D(D—1)T? 58S . e, _s. Cerd
—a —0=2(D-1)A+2DS+2DT+ A (E-1SOT]

S o .. ..
+2[D(D—-1)TS+DAW] (4.7)
c 1s 1c o S
XD+ ZDke 2T— ZDe?T| — 4 A g2(DA+DS+DT) _ g
and 2 4 '
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Sam_ 2D BAL 2B(D—1)S+25(D 1)T+1 D 5 5
= :> —_ [— —
S ( ( 2 1-— e 2T-2+ 1+ — e?’=0.
. s 2D 2D
_ 1)eZ[DA+(D—l)S+DT] 2IS+[%ke_ZT— E[%eZT
2 This has two solutions
_4A|5e2(DA+ISS+I§T):O s ¢
' 2D-D
e’T=1, , (4.20
S6Sym S.. ° S.. S S .. S C
ST =0=2DDA+2(D—-1)DS+2D(D-1)T 2D+D

and correspondingly

[

o S
_+_gDAHDﬂﬁ+m%4BS+2gu§—1WGQT

N

~ ~ S C
ss. D2 D-2\( 2D+3D
= (4.20

[ s o S =
—D(B+1)e?"]—4ADe2PA+DSHDD _ TN T s
2D+D
It should be mentioned that there is a fourth equation which ) )
can, for example, be derived by varying(t) in the un- Indeed these are the right vacuum solutions for the full
gauge-fixed action. However, as is usual in general relativityPigher dimensional Einstein equations. The first one corre-
it is not linearly independent, although it can constrain theSPONds to the symmetric case and the second one to the

initial conditions. A simple rearrangement of the equationsSduashed case. o .
gives us One can now imagine a situation where the universe

started out in a symmetric pha&ay, that corresponds to the
AA . s minimum of the effective potential for the squashing fjeld
A— ——e2?(DA+DSIDTI = (4.15  but starts to roll over or tunnel through the potential barrier
D-2 (the maximum perhaps corresponding to the squashed
vacuum due to classical or quantum fluctuations and excita-
4A DS 2I§T tions, and this may be accompanied by inflation. Afterwards
- Ee e it can either settle to another minimum or continue to evolve
as a quintessence field. Indeed, associated with the squashed
=0, (4.16  vacuum solution one finds an exponential inflationary growth
of the external universe. In th&=0 gauge,

1

° S
é+ GZDA[ _eZ(Dfl)S 1

S
e2DT_ Ee2(D+1)T

2

1 . 1 s s e?AM =gl with exponentT'|= \/ ———.
i Ee2(DA+(D—1)S) Ekez(D—l)T_ezDT D(D-2)

(4.22

B s This solution is none other than the de Sitter vacuum
1+ < e2(+1)T| —q. (4.17) dr?mel?@ Gsq, Which in our dynamic universe model is just a
phase:.
D Let us now see whether our toy model of pure Kaluza-
Klein theory can also provide a “quintessential solution” of
Solutions an accelerating universe whefleis, say, rolling toward
One can immediately find the vacuum solutions, i.e.,~. - In this phase of evolution the smallest exponent in the
when the internal manifold is frozen. For const&wnd T, effesctlve potentiaVq, dominatesT essentially rolling down

S=T=0, and from Eqs(4.16 and(4.17 we have e?®~IT Thus we can ignore all the other terms in the ef-
fective action(4.12—(4.14). This effectively conceals the

L
4

o

ot 1 D\ ,; curvature ofG/H and we are left with the product space
ke " =2+ 3| 1+ e =0 (418 p+1®(G/H) S®H, whereH acquires an internal curvature
(1/4)k while G/H becomes flat. It is easy to find a de Sitter—
and type solution:
1 1 4A 3 . .
—|1—=e?T|— = e25=0, (4.19 Indeed one does not expect the internal manifold to stay at the
2 2 D-2 unstable squashed vacuum, but to slowly roll over, but provided the
slow roll conditions[28] are satisfied at the top of the hill we can
Substitutingk in Eg. (4.18 we have still get inflation.
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S(t)=A(t) and T(t)=To—A(t). (4.23 field potential which has been studied extensively in the con-
texts of both inflation and quintessence.
In the W=0 gauge, Before we implement E(5.1) it is useful to perform the

following conformal rescalings in the field theory action

8A (3.25 that we derived earlier:
e?A=eld" with exponentT ;= /C—
(D+D)(D—2)

o . S
m rm — 15/ — & 'D/(D-2)g 'D/(D-2)

(4.24 =Ae[™M, d=(A)""P', A=D (C) (5.-2)
We notice that the quintessence exponent is smaller than thﬂ’ns leads to the action
inflation exponent, as it should be.

The above solutions certainly suggest that it may be pos- 1

sible to realize an inflationary or quintessence paradigm us- S= Wf d®*Ixe [R+K—-V], (5.3
ing the squashing field of the internal manifold, and this D+1
merits further investigation. Among other things, one has tQyher&
first perform a slow roll analysis of the potential for inflation.
Subsequently, one should incorporate matter-radiation into 1
the picture to study reheating, quintessence, etc. For one, this K=— —[D(D 1)(d4p)?+ D(D+ D—1)(d6)*
would no doubt ameliorate the exponential inflation and D-
quintessence to a more standard power law type. Finally, one S
needs to account for stabilizing effects like brane ge&— +2D(D—1)d,49%0], (5.4
18] or fluxes[15], because typically, in extra dimensi%nal .
cosmology, the size moduli is unstable and tends to expand. Ny 5 1 ¢ S _
In the next section we try to address some of these issues. V=2Ae 2OVrOANET2) - Z{[D+2(1_k)D]e =

S S
V. COSMOLOGICAL SCENARIOS _D(l_k)e—2(¢/— 0)+kDe—2(¢+ 0)} (55)

Partial stabilization and conformal transformation . L
Now using Eq.(5.1) the kinetic term becomes

We notice that in the quintessence solutidi24) a com-
bination of the size and the shape moduli, vi3+ T, re- K=—A%(36)? (5.6)
mains constant, and this phenomenon of a linear combination
of fields becoming frozen is recurrent in dynamics with Where
many scalar fields, specifically with exponential potentials
[14]. Recently, it has also come to attention that several other 2:;[625@ _1)- ZeS(D 1)+ S(B +D-1)],
mechanisms involving brane gas and fluxes can also stabilize
the moduli at least partially. Indeed, stabilization of moduli is (5.7
an intriguing and complicated problem which arises in al-
most all modern unified theories like string or M theory, andand the potential term becomes
ideally the stabilization mechanisms should be included be- s
fore we study cosmology with the moduli fields. However 2 (% a2(eD-Dyard-2)_ L€, 8 2

y gy VEVET,  y=M2|Re2(-D)ID-2)_ Z (1[4 2D(1—k)]e>’

here we take a short cut and assume that the moduli is, say 4
partially stabilized:

S S
_ _ 2(e+1)6 2(e—1)6
o=+ ef=const, (5.2 D(1-k)e +kDe }

at least approximately with maykevarying slowly between = MiV( 0), (5.9

different cosmological eras. If the stabilization is achieved at

a much higher scale or if it is dynamically stabilized as notedvhere

above, the corrections to the field theory poteni®aP4) can _ ~ .

be ignored. Indeed, different mechanisms may be at work at M,=e 7, A=2Age?(C~D/(b=2) (5.9

different cosmic times but as a first approximation we as-

sumee to be a constant. Technically this assumption simpli-AS iS clear from Eq(5.8), depending upon the values efk,

fies the analysis greatly as we are left with just a single scalaand A, numerous cosmological scenarios can emerge. Pend-
ing an exhaustive analysis of all of them, we focus below on
only some of the most interesting cases.

“This can also be seen from our quintessence sol@id); S(t)
is expanding. This is also related to the issue of dilaton stabilization
in string theory, the dilaton being the radion corresponding to the >We have reintroduced tHeés explicitly so that we can look at the
circular compactification of the 11-dimensional supergravity or M more general case wheth can also be a product df(1)’s, be-
theory. cause, as will soon become clear, physically it is quite interesting.
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obtain a sufficiently flat potential between the minima and
the maxima. Once the parameters have been so chosen no
further fine-tuning of the initial conditions is necessary. For
example, we find that we may start from the minimum with
an initial velocity within a rang@uv min ,vmintAv] and consis-
tently obtain a large number oé-foldings. Even when
Avlvmin~1 the number ofe-foldings diminishes only by
half.

In Planckian units inflation ends aroumg= —2 wheney
becomes large and a significant portion of the potential en-

ergy has been converted into kinetic enefgg~V(6)]; the
universe enters a deflationary or kinesis pHa$g6]. Matter
or radiation entropy can be produced through gravitational
particle production as discussed 80,6]. This is presumably
-02 : ‘ ‘ ‘ : closely followed by radiation and then a matter dominated
-10 -8 -6 —4 -2 0 era. These aspects of the evolution will be studied elsewhere.
Here, we point out that previously quintessential models with
exponential potentials have been studi2d], and the scalar
field slowly rolling down the flat exponential potential is
known to possess scaling solutions where the evolution of
the scalar field essentially mimics that of the barotropic fluid,
Consider when 1 B/2> e=1,k=0[SU(2) toU(1) be- allowing the(externa) universe to evolve as it would in the
ordinary radiation or matter dominated era. However, it is
possible for the potential energy of the quintessence field to
start dominating the matter-energy content of the universe at
a later point, leading to a second phase of inflation from
roll down (or may tunnel through the barrjefrom the po- iy thF()a universe ngver recovers. Ilfn)deed, this late inflation-

tential hil near =0 corresponding to a symmetric state ary phase has been ascribed to the small cosmological con-
(G isometry of the internal manifold. This stage is acCOM- ;2 t that we observe today, Ed.1) [31].

panied by inflation although some fine-tuning of the param- |, 5r model it is actually quite nontrivial to be able to

08 f

(6)

1>
03 f

FIG. 1. The potentiaV/(#6) for k=0.

Quintessential inflation

ing a typical examplpandA >0, the potentia] Eq. (5.8)] for
which is shown in Fig. 1. As is clear this may realize a
quintessential-inflation scenarj6]: the shape field starts to

eters is necessary to satisfy the slow roll conditions generate the hierarchy between the Planck mass and the cos-
" mological constant as stringent constraints arise from its con-
en=3 <1 (5.10 nection to particle physics, as we will exemplify belowg|f
2V + 6? is the current value of the squashing parameter, then we find
that
and _
A~M2MEV(6,). (5.12
NH=— i.<1. (5.11 However,M, is not arbitrary but instead fixed by particle
Ho physics. In the squashed internal manifold, the gauge field

) action coming from the Kaluza-Klein reduction looks like
For several cases we can obtain a reasonable number

e-foldings, around 50-60, which is generally required to
solve the cosmological flathess and horizon problems. For,

o s
e.g.,, D=8, D=1 [SU(3)—U(1)] and the parameters
=1 and A=2.49, we could obtain around 6&foldings’

Most of thee-foldings are obtained as the field rolls through +e] (5.13

the maximum, indicating that the potential is not generically .
! . where the mass matrix for the broken gauge bogonse-
flat for the entire parameter range. For a given value thfe

curvature at the maximum is determined by the paramfeter Zpondlng to the isometries along 16¢H directions is given
which has to be somewhat fine-tunémhe part in 10D to y

M2 o o c C
_ P D+1rKee—a b Lo Ad AD
Sgauge_ 167Te2(*”_+ 0)J dx [g abF;,F mn_ MzsARA m

Mgg=e *[e*’+e 2/-2]. (5.14

®0One can start the evolution either from near the potential barrieFrom Eq.(5.13) it is clear that we have in general a time-

or from the “flattish” potential minimum by giving a small initial  varying fine structure constant whose value today is given by
kick which can be imagined to arise from classical or quantum

fluctuations. i
"We checked thaé,<0.1 during the inflationary phase, although a=4—>e* Vi, (5.1
7y is a little high,=<0.5 in this particular case. Mp
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The time variation ofe depends both on how the quintes-
sence field varies, which is slow over cosmological scales,
and also on the coupling exponeat-1. To make precise
statements one has to evolve the squashing field numericall
or even analytically as exact solutions are known to exist for
exponential potential§20,14). However, we already found
out in the last subsection that requiring consistency with the g
guintessence cosmology along with the various observationa
bounds coming from time variation af and fifth force ex- lg
periments constraine— 1 to be very small €1073).

From an inspection of Eq5.12 and Eq.(5.195 we find
that we now have two parametets and M, to fit two
values\ anda, one coming from astrophysics and the other
from particle physics. Can this be accomplished without any
fine-tuning? From Eq95.15 and(5.12) one finds -0.1500

0.5 o 10 1.5
o . O=e
A 2(e—1)6 \7
A 4 € My V( 0c). (516 FIG. 2. (Color onling The potentialV(®) for (a) double-well
inflation (solid line) and (b) quintessence]‘(:O) (dashed ling
Now, if k#0, this gives us a large constant term
we get 50e-foldings® The fine-tuning estimates are similar
to that of the quintessential inflation case. For the choice of
parameters above, the true minimyasymmetric vacuujn
is located around,,j,=6,=—1.7. Then, usingr=1/132 we
c obtainM, ~0.0™,,. For the values mentioned, we fid
Thus although a case like>0 with e>1+D/2 has a poten- ~10?M D
tial that looks very similar to the case we are discussing here, Indeed, this scenario cannot solve the cosmological con-
one cannot get quintessence out of it without addressing thstant problem but serves as a regular inflationary scenario.
naturalnessor fine-tuning issue. Ifk=0 as in our case, we An interesting study would be to consider a double phase
can indeed generate the hierarchy without fine-tuning. In partransition where the initial isometry group is first broken
ticular, for the example choseng.,=—60 and M, to H as explained here which gives rise to inflation and then
=0.04M, gives us Eq(1.1) and a~1/150. Further, we ob- the second phase transitidh—K (where KCH) can ac-
serve count for quintessence in much the same manner as in the
quintessential-inflation case. To make matters concrete one
@ could haveSU(3)—SO(3)—SO(2)~U (1) rather than di-
M;,‘;=ZM§(1—e29c)2. (5.18 rectly going toU(1) as discussed in the earlier subsection.
Note that the phase transitiddO(3)— SO(2) also corre-
ponds tdk=0 and hence a quintessence scenario is feasible.

o

AT

4 S
M2kD+ - --. (5.17)

When6.<—1 we have the mass of the broken gauge boson$
M ~1O*2Mp. Thus this mechanism would naturally explain

gauge symmetry breaking ii8)GUT theories. Quintessence
We have so far seen two different ways that thevolu-
Double-well inflation tion can break symmetry. Now we consider the intriguing

ossibility of the opposite process, viz., symmetry restora-

Next let us look at the case when symmetry breaking. ; : P _
takes place via the usual Higgs-like mechanism. Consider thelf)n being accqmpllshed by the_: squashing field. _For the spe
cial case whem\ =0 our potential Eq(5.8) looks like

case when again the parameter lies in the range+iD/2

>e>1 with A>0, but k>0. The potential looks like a i‘/:_} ZBev“@eﬂlA_ EBev‘%(eH)wA

double well just as in the ordinary Higgs mechanigtme 4 2

solid line in Fig. 2, also typically suited for inflationary s

cosmology. The symmetric minimum is located around zero +kDe3?m(e~1)0IA | (5.19
but the nonsymmetric vacuum is the global minimum situ-

ated away from zero on the negative axis. Again for certain i
parameters the slow roll conditions are satisfied around thE/€ré we have redefine@— (A/y8) 0 to makeK have the

potential barrier so that the phase transition can be accomp§anonical form. The potential is qualitatively sketched in the
nied by inflation. To be specific let us look at the example

. o S
whenSU(3) is broken toSQ(3) (D=8 andD=3). Fore 8We checked thak,<0.1 and 7,,<0.2 during the inflationary
=1.1 andA =2.64 the slow roll conditions are satisfied and phase.
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dashed line of Fig. 2. From the form of the potential it is Since at late times only the last exponent dominates, the
clear that the picture resembles the scenario considered syuashing field essentially rolls along an exponential poten-
[23] where the quintessence fidlshjuashing fieldis trapped tial. For such attractor solutions it is known that the kinetic
at the top of the potential hill until recently. This is possible energy is a fraction of the scalar potential energy which is
due to the friction provided by the expansion of the universejdentified with the effective cosmological constant. This
as argued if23]. As the universe expands the friction due to gives us a handle to estimate thevariation

the Hubble parameter drops, and eventually the squashing .

field may start rolling slowly toward the symmetric mini- 0~10" 12 yr 1, (5.23
mum acting as a quintessence field.

It is also interesting to note th&b.19 resembles a class Which again implieg5.22). Finally one can also look at ob-
of potentials considered i21]. Motivated by the success of Servational bounds coming from variation af on cosmic
the Albrecht-Skordis potential in describingfield evolu- ~ scales. Assumind e/« to be small one finds
tion [32] consistent with big bang nucleosynthe$BBN)
and quintessence domination at the current epoch, the au- A_“%_VAQ (5.24
thors in[21] considered a sum of three exponential potentials ' '
which recovers the Albrecht-Skordis potential as a limiting ) ) )
case. In particular, it was examined if the evolving quintes-T0 match all the bounds coming from observations at differ-
sence field could account for the time variation of the fine€Nt epochs one has to perform numerical simulations with
structure constant, with reasonable success. It was also r@Ppropriate radiation-matter density as, for example, was
marked that such a potential could arise from the moduli offone in[21]. However, one can quickly estimate the ex-
the internal manifold which is indeed corroborated by ourPected variation in our model since BBN. We have seen that
results. We leave it as a future exercise to make the conneéypically to be consistent with quintessence cosmolagy
tion between the evolution of the squashing field and quin=—50 While inflation ends around~—2, so that @ggy

tessence o variation more precise in these contexts. —6;)~50. For BBN it is known that\a/a~10"? which
again seems to suggest a boundeosimilar to Eq.(5.21).

Let us now try to estimate the CMB fluctuations arising
from the inflationary scenarios in our model. As we noted
We have seen so far that the effective potential for thesarlier, most of thex-foldings come from the flattish maxima
squashing field that one obtains from higher dimensionajn our potential. The spectral tilt and the amplitude of the
theories may be able to realize some of the basic features @MB fluctuations would then naturally originate at the vicin-
inflationary and quintessential cosmologies. Constructing reity of the maximum. In the approximation that the maximum

alistic scenarios would, however, envisage testing these mogs generated by two competing exponentials of the form
els against various other observational bounds, most notably

Fifth force, a variation, and CMB fluctuations

coming from CMB fluctuations, data on time variation of the V= Mf(Vle’“l"—Vze*“Z(’) (5.2
fine structure constant, and fifth force experiments. Here we _
try to provide approximate estimates of these effects. whereM; is the reduced Planck mass and

First let us look at the quintessential-inflation scenario.
The low scale of the cosmological constant implies that the
qguintessence field is effectively massless and therefore Mee find
diates a “fifth force.” Various null experiments on the fifth

a2>a1, (52@

force essentially put bounds on the coupling exponent of the o [@—aq|[aVy azl(ay—ay)
scalar field to the electromagnef term: Viax—= MV, (5.27
aq CY2V2
v
|v|<1072 where S.=— F2. (5.20  From Eq.(5.27), it is clear that if«; is close toa, then

16ma a,/(a,— ay) can easily be a large number and a small hier-

archy betweev, andV, can create a large hierar¢fysuf-
ficient to explain the amplitude of CMB fluctuations. Ap-
proximately we have

Typically this places a bound on theparameter

le—1|<1073. (5.2
This suggests the importance of finding a stabilization Sy~ 60— Vimax (5.29
mechanism withe equal or very close to orfeObservations M,Z(A )il

of « variation(see Ref[21] for detail9 also seem to indicate
similar bounds. In our model so that

o . Vinax~ 107 1%= 6,,~1075.
” =|v|9<1071® yr 1, (5.22

P7ypically in our model we haver,/(a,— @)~ 10 so that even
°In our example we chose=1. a modesi/; /V,~0.1 will be able to achieve the required hierarchy.

044011-13



T. BISWAS AND P. JAIKUMAR PHYSICAL REVIEW D70, 044011 (2004

One could also compute the spectral tilt from the formula (symmetric state Quantum or classical fluctuations can then
instigate a symmetry breaking phase transition of the internal
Ne=1-6e+27, (5.29 manifold with the_rolling over phase of the s.quashipg figld
across the potential barrier being accompanied by inflation.
o o With some fine-tuning of the parameters it is possible to
which in our case implies satisfy the slow roll conditions and obtain around 50—60
e-foldings, which is sufficient to solve the cosmological
Ng=1—-2a,a,[1—(a;+ay) (50— O], (5.30  problems like the horizon and flatness problems. The fate of
the inflaton, however, differs in the two cases. In the first one

where g, is the point from which approximately 50—60 the potential does not have a second minimum but rather

e-foldings ensure. Equatiot5.30 tells us that for a randé rolls FO Z€ro a_syr_nptot_ically. This is e.ssentially the scenario
of 65, one may be able to explain the observed spectral il qumte_ssentlal inflation, where the |anato_n at a later stage
ne=0.99*+0.04 [33]. Of course, matching the spectral tilt of evolution can a_ccount for a small effect_lve cosmplogmal_
and the amplitude of CMB fluctuations with the required f:onstar)t. Indeed, in the case that we consider we find that it
50—60e-foldings will require fine-tuning of the parameters 1S Possible to generate a hierarchy between the Planck mass
as well as restrictions on the group theoretic parameters liknd the extremely small current vacuum energy density. The
the dimensions of the group and the subgroup manifold angecond scenario describes a more conventional Higgs-like
it should be interesting to explore these aspects in furthepymmetry breaking mechanism with double-well inflation.
details. What could be interesting is if one combines the two sce-

narios and consider a twin phase transition, where the first

corresponds to the usual double-well inflation whereas the

VI. SUMMARY AND FUTURE RESEARCH second gives rise to late time quintessence. First, this is re-

In [8], we had tried to explain how a dynamical internal alistic because it is believed that there were at least two

manifold can break gauge symmetry partially. In particular, 2YMmetry breaking transition§&5UT and electroweakand
transition of the internal manifold from a symmetric vacuum S€cond one would have a lot more parameters to play with in
to a squashed and hence less symmetric vacuum was su@fder to meet with experimental bounds coming from nu-
gested. In this paper we have tried to analyze in more detafleosynthesis, density perturbations, quintessence equation
when and how such a transition can occur along with itsof state, etc.

cosmological implications. For simplicity, we focused on the We also considered a third possibility where the symme-
case when the internal manifold is a simple Lie gré@upnd  try could be restored, the quintessence field starting from an
we are interested in breaking the isometry group frGm  asymmetric state at the top of a potential hill and moving
—Hpg. Further, we assumdd to be either simple or a prod- gradually toward the symmetric minimum. We also indicated
uct of U(1)’s. Wefirst studied the dynamics using collective its possible connection with cosmic variation of the fine
coordinates characterizing the sigadiug and the shape structure constant.

(squashing parameteof the internal manifold. We derived  Several issues remain open. For example, what happens
an effective potential for the squashing parameter whichyhen the fluxes are turned on? Can it really stabilize the
gives nice Newton's law type equations of motion which ismoduli? One could also introduce warping and study the
useful to obtain exact or approximate cosmological solumqdel in the context of a brane-world. This would ameliorate
tions. In particular, we obtained solutions for early and latejhe fine-tuning problems that exist in the double-well type of
times which resemble inflation and quintessence, respegsoianials that we obtained for some parameter ranges. Fi-
tively. However, to make things concrete one has to perforny 4y one can try to analyze the dynamics of the internal
a more detailed analysis. manifold without assuming any prior stabilization mecha-

Acco_rdlngl_y , we .f'rSt obtalngd the effective potential by nism. Thus, it may be that while the transition of the squash-
performing dimensional reduction and then conformal res-

calings of the higher dimensional gravitational action. To'M9 field (in the double-well cagggenerates inflation, it is the

proceed further we assumed that the moduli is partially Sta[unning of the radion that is responsible for quintessence,

bilized which gave us a potential for the squashing field as éh_er_eby eliminating the n_eed to fine-tune the initial potential
sum of four exponentials. This leads to numerous differenfNinimum for the squashing field. It may also be a case of
and interesting cosmological scenarios, especially with re@ssisted inflatior{14] where both the fields again become

gard to quintessence and inflation, of which we consideredmPortant. o _
three specifically. Finally, several other variations of the same idea can and

In the first two cases that we studied one can imagine thaghould be studied for realistic phenomenological applica-
the squashing field is initially trapped in a flat potential well tions. First, one can generalize the model from pure gravity
to supergravity. The extra fielddike dilaton) may contain
scalars that are relevant to the squashing dynamics, while the
Hin our specific example in the quintessential-inflation scenarioform fields will give rise to additional potential terms. Sec-
we found thatés, had to lie within 0.42-0.01 while for the ex- ond, it should be possible to generalize the internal mani-
ample of pure inflatiords, had to be within 0.4%0.01. folds and metrics that we considered in this paper which can
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