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Cylindrical thin-shell wormholes
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A general formalism for the dynamics of nonrotating cylindrical thin-shell wormholes is developed. The
time evolution of the throat is explicitly obtained for thin-shell wormholes whose metric has the form associ-
ated with local cosmic strings. It is found that the throat collapses to zero radius, remains static, or expands
forever, depending only on the sign of its initial velocity.
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I. INTRODUCTION matched with the vacuum solution for the exterior, and the
integration constants appearing were determined by match-
Traversable Lorentzian wormholes, first studied by Morrising both metrics in the boundary. In all these works, the
and Thorng 1], are solutions of the Einstein field equations source determined an exterior solution with Lorentz invari-
that have two regions connected by a throat. Thes@els  ance along the axis. However, if this is not required, the
can join two parts of the same universe or two separate Unimost general solution has the well-known Weyl form, which
versed 1,2]. For static wormholes, the throat is defined as ajncludes two solutions with Lorentz invariance, one of them
two-dimensional hypersurface of minimal area that shoulctorresponding to the case solved by Gott and Hiscock. Later,
satisfy aflare-out condition[3]. For time-dependent worm- gimilar analyses were extended by several authibés$ to
holes the general definition of the throat is more complexscalar tensor theories of gravity, like that of Brans and Dicke.
(the interested reader is referred to Hdfl). All traversable |t has also been showii1] that a cosmic string can behave
wormholes must be threaded leyxotic matter that violates as a superconductor, with a current along it and a magnetic
the null energy conditioi1—4]. Recently, Visseet al. [5]  field in its exterior. This can be the result of the appearance
showed that the amount ekoticmatter that must be present of both bosonic or fermionic charge carriers. The spacetime
around the throat can be made infinitesimally small by aaround a superconducting string is then not a vacuum solu-
suitable choice of geometry of the wormhole. tion of the Einstein equations, because, besides the effective
In a gauge theory, spontaneous symmetry breaking of ghass associated with the charge carriers, in this case there is
complex scalar field leads to cylindrical topological defectsa nonlocalized magnetic contribution to the energy-
known as local cosmic strind$]. The gravitational effects momentum tensofr12].
of such objects have been the object of thorough analysis, Solutions of the Einstein field equations representing
because of the possible important consequences they coulgbrmholes associated with cosmic strings have been previ-
have had for galaxy formation, and also in the study of graviously considered in the literature. ‘@ent[13] found tra-
tational lensing. The spacetime metric around a local cosmigersable multi-wormhole solutions where the spacetime met-
string was first obtained by Vilenkiiv] in the linear approxi-  ric was asymptotic to the conical cosmic string metric. In
mation of general relativity. Local strings are characterizechther work, Clenent[14] extended cylindrical multi-cosmic
by having an energy-momentum tensor whose only non-nuktrings metrics to wormhole spacetimes with only one region
components arg;=T7. Within this framework a Dirac delta at spatial infinite, and analyzed in detail the geometry of
was used to model the radial distribution of the energy-asymptotically flat wormhole spacetimes produced by one or
momentum tensor for a string along thexis. The resulting two cosmic strings. Aros and Zamorafibs] constructed a
spacetime metric is flat but with a deficit anglee solution that can be interpreted as a traversable cylindrical
=87Gu, up to first order inGu [in grand unified theory wormhole inside the core of a global cosmic string.
(GUT) stringsG u~ 10 8], with u« the linear energy density. Thin-shell wormholes are made by cutting and pasting
Later, independently, Goft8] and HiscocK 9], extending the two manifolds[2,16] to form a geodesically complete new
analysis to the framework of theories leading to values ofbne with a throat placed in the joining shell. In this case, the
Gu closer to 1, showed that the deficit angle found by Vilen-exotic matter needed to build the wormhole is concentrated
kin is actually correct to all orders iGu. In their demon-  at the shell and the junction-condition formalism is used for
stration, they considered a source in the form of a thick cyl4ts study. Poisson and Vissgt7] made a linearized stability
inder of constant radius with both uniform linear massanalysis under spherically symmetric perturbations of a thin-
density and tension, the last one only along the axis. Thehell wormhole constructed by joining two Schwarzschild
solution of the full Einstein equations in the interior was geometries. Later, Barceland Visser[18] applied this
method to study wormholes constructed using branes with
negative tensions and Ishak and Ldk&] analyzed the sta-
*E-mail: eiroa@iafe.uba.ar bility of transparent spherically symmetric thin shells and
TE-mail: csimeone@df.uba.ar wormholes. Recently, Eiroa and Romdi20] extended the
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linearized stability analysis to Reisner-Nordstrahin-shell OH oM -1z oH

geometries, and Lobo and Crawfdi2il] to wormholes with n,=+|g¥ —  —. (6)
i 7 XY gXP|  gxXY

a cosmological constant.

In this article we study cylindrical thin-shell wormholes. )
We concentrate on the geometry of these objects and we df the orthonormal basige; e ey} [e;=V1/f(r)e,, e;
not intend to supply any explanation about the mechanisms v1/9(r)e,, e&;=vlh(r)e;, g.=z.=diag(-1,1,11)]
that might provide theexotic matter to them. In Sec. Il we we have
present the general formalism. In Secs. Il and 1V, we apply

it to vacuum and superconducting cosmic string wormholes. . 2f(a)’a+f'(a)+2f'(a)f(a)a?
Finally, in Sec. V, the results are discussed. Throughout the K== _ (7)
paper we use units such ass G=1. 2f(a)Vf(a)V1+f(a)a?
Il. CYLINDRICAL THIN-SHELL WORMHOLES . g’(a)\/1+f(a)é2 ®
S 8
The static cylindrically symmetric metric in coordinates i 2g(a)yf(a)
X*=(t,r,¢,z) can be written in the fornj22]
and
ds?>=f(r)(—dt?+dr?)+g(r)de2+h(r)dz, (1)
. h(a)Vi+f(a)a®
wheref, g, andh are positive functions of. From this ge- K== (&) (®)a 9)
ometry we can take two copiesf the region withr =a: 2h(a)vf(a)
M= ={xlr=a}, (2)  where the dot meand/dr.
The Einstein equations on the shell reduce to the Lanczos
and glue them together at the hypersurface equations:
2= ={ir-a=o}, ® ~[Kij)+[K]g=87S;, (10

to make a geodesically complete manifold\ Kt K UK T -
=M*UM . If g,,=9(r) is an increasing function far where[KD]_—Kr Ky IK] 9 [Kij] is the trace ofK;
e[a,a+e], with e>0, this construction creates a cylindri- @d S;=diag(o, = d,,=9;) is the surface stress-energy
cally symmetric thin-shell wormhole with two regions con- tensor, witha the surface energy density arf, , the sur-
nected by a throat a&. On M we can define a new radial face tensions. Then replacing Eq$)—(9) in Eq. (10 we

coordinatel = + [1,g,.dr, where the positive and negative Obtain

signs correspond, respectively, fof © and M ~, with || .
representing the proper radial distance to the throat, which is _ Ni+f(a)a®[g’(a) h'(a)
placed inl=0. To study this traversable wormhole we use 7= gmyf(a) L9(a) * h(a) |’ (1)
the standard Darmois-Israel formalig283]. For a recent re-
view of this technique, also called junction-condition formal- 1
ism, see Ref[24:| 9 =— [2f(a)a+ f(a)
The throat of the wormhole is placed at the skgllwhich ¢ 877\/@* I1+ f(a)a?

is a synchronous timelike hypersurface. We can adopt coor-
dinatest' = (7, ¢,2) in X, with 7 the proper time on the shell. h'(a) 2f'(a)]. ) h'(a) f'(a)
In order to analyze the dynamical behavior, we let the radius h(a) + f(a) a~+ ha) + f(a) ] (12
of the throat be a function of the proper tinges a(7). Then
3, is defined by the equation L

S:H(r,7)=r—a(7)=0. (4) ﬁz——SW\/f(_a)m[Zf(a)aJrf(a)
The extrinsic curvaturésecond fundamental formsssoci- , , , ,
ated with the two sides of the shell are g'(a) + 2f'(a) 2, 9 (a) + f (a)] (13)

gla f(a) ga f(a)
. [ X X gXP
Kij=-—n, PRy +FZ,3 Py &_gj 5 The surface energy density is negative, indicating the pres-
Y ence ofexoticmatter at the throat. The negative signs of the

tensions mean that they are indeed pressures.

* H y — H . X X i
wheren;, are the unit normalsr(’n,=1) to 3 in M: It is easy to see that,, ¥,, ando satisfy the equation

4t is not necessary to take both regions equal, but it is enough for 9,—0,= g(a)h’(a)—g'(a)h(a) o. (14
our purposes. ¢ g(a)h’(a)+g'(a)h(a)
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The static equations are obtained with-0 anda=0 in . . f(a(r))
Egs. (11)—(13): a(r)=a(o) f@am) (23

— ! g'(a) + h'(2) , (15)  satisfies Eq(22), with 7, an arbitrary(but fixed time. Equa-
8myf(a)l 9(@)  h(a) tion (23) can be put in the form
1 [h(a) f'(a) Vi(a)da=a(ro)Vf(a())dr, (24)
Vo= andical ha @) (16
8myf(a)l which, integrating both sides, gives
1 [g'(a) f'(a) fa(f) _
0,=— + . 1 vi(a)da=a(mo) Vf(a(m))(7— 7). (25
" gadf(a) 9(@)  f(a) a7 a(ro) ° ° °
Equations(16) and(17) can be recast in the form The time evolution of the radius of the throa7) is for-
mally obtained by calculating the integral and inverting Eq.
9,=a(a)o, (18 (25).
¥,=p(a)o, (19) I1l. VACUUM COSMIC STRING WORMHOLES
with The most general metric which can be associated to a
) , local vacuum cosmic string has the Weyl's form
g(a)[f(a)h’(a)+f'(a)h(a)]
a)= - - , (20 p\2d(d—1) p | —2d
f(a)g(a)h'(a)+g'(a)h(a)] 42— _) (_dtz+drz)+rzwg(_) de?
o o
h(a)[f(a)g'(a)+f'(a)g(a)] 2d
@)= , , : @D +|—| dz (26)
f(a)lg(a)h’(a)+g'(a)h(a)] Mo ’

The functionsf, g, and h determine the equations of state wherer, (a scaling length for the radial coordinatan,

9,(0) and (o) of the exotic matter on the shell. >0, andd are constants. We take<1, sog,,, is an increas-

Let us assume that the equations of state for the dynamig,q fnction ofr. Then the surface energy density and ten-
case have the same form as in the static one, i.e., that they d&0 < 4t the throat are

not depend on the derivatives af7), so ¥ (o) and 4,(0o)

are given by Eqs(18) and(19), with « and 8 of Egs.(20) —d(d—1) 2d(d—1)~2
and(21). Then, replacing Eqg11) and(12) in Eq. (18) [or o=— (a/ro) Vi+(afro) a . (@7
Egs.(11) and(13) in Eq. (19)], a simple second-order differ- 4ma

ential equation foa(7) is obtained

. d?(alrg) 44D+ (a/ry)4@-Yaa+d(2d—1)a?]
2f(a)a+f'(a)a?=0. (22 V=- : ’
47ra\/1+(a/rO)Zd(d‘l)a2
It is easy to see that (28

z

(d=1)%(alre) 4@+ (alrg)®@ Yaa+ (d—1)(2d—1)a?] 29

41-ra\/1+ (alrg)2dtd-1)a2

For the static case we have thﬁtPIdZO' and 4,=(d Sinced(d—1)+1 is positive for alld, from Eq.(30) we
—1)?0. Keeping these equations of state for the dynamicsee that if the initial velocity of the throai( ) is positive,
case and using E¢25), we obtain the radius of the throat increas@githout bounds with time,
while in the case of negative initial velocity it decreases to
collapse toa=0 in a finite time, and ifa(7,) =0 the throat
has constant radiuas( 7o) (static solution.

. ]Wj(d_l)ﬂ] Whend+ 0 the geometry outside the throat could be in-

dd-1)+1
+a( )

a(7o) a(p) |91

o

a(r) _

)

X[d(d—1)+1] (30)  terpreted as the one corresponding taiggly or noisy cos-

mic string. A special interesting case is the straight cosmic

o
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string wormhole, which is invariant under boostszrand | —2m r\2m?
corresponds tal=0, its metric given by dszz(r—) A?(r) (r_) (—dt?+dr?)+W3r2de?
0 0
ds?= —dt®+dr?+Wjr’de?+d 2. (31) om
r 1 2
This geometry is conical with a deficit anglep=27(1 +(E) Az(r)d ’ (36
—Wp) if 0<Wy<1 (surplus angle iWy>1). The energy
density and tensions are where
Vi+a? (r/rg)?™+k
o= (32 A(r)_T' (37)
a with ry (a scaling length for the radial coordingt&=0,
V= ———, (33) Wp>0, andm constants. If we take-1<m<1, g, is an
A7\ 1+ a2 increasing function of for every (nonnegative value ofk.
The electric current related with this metric is
and
mW,
1+a2+aa I==T 0k, (38)
V== ——. (39
-2
and the associated magnetic field strength is given by
4mayl+a d th iated ic field h is given b
The static solution has=9,= — 1/4mra and 9 ,=0, and the +om/ r\2m [ \2m -2
energy density per unit length jg=27Wyao=—Wy/2. In F,;=—F,=— —) (—) +k|  (1+Kk) Jk.
the dynamic case, using E(B0) with d=0, we have r\ro To 39

a(r)=a(ro) +al(7o)(7= 7o), (39 With our cut and paste construction, we obtain in this case a
so in this case there is a simple linear dependence with tim@ormhole that carries a currehalong the throat and a mag-
for the radius of throat. netic field outside the throat, given by Eq88) and (39),

respectively. Ifk=0, there is no current and the magnetic

IV. SUPERCONDUCTING COSMIC STRING WORMHOLES field is zero, and the Weyl's metric is recoverédking m

=—d).
The exterior metric for a superconducting cosmic string Using Egs.(11)—(13), the energy density and tensions at
has the forn{12] the throat are given by

= (@)™ M1+ k)P [(alr )M+ K] (@l ) MM Va2

47ra[(alry)>™+k]
—(a/ro)m(lfm) 2m 2( g\ 2m(m-1) )
V= — |\ m3(1+k)%+||—] +k —) aa
Al (/1) 2™+ KIV(1+K)2+ [ (a1 o) 2™+ K] alr ) 2M(m 32 fo fo
a 2m? —2m 2m
+m —) {kZ(Zm—l) — +(2m+1)| —| +4mk aZJ, (41)
o ) o
|
and and
Y,=0,+1+2 —4mk (42 4mk
7= @ m— om g. B 2
K 9,=| (1+m)2—-———— 0. 44
(alry) =|( ) (@it ™k (44)

From the static solution we obtain the equations of state
Following Sec. Il we have that the time evolution of the

¥,=m’c (43)  radius of the throat is implicitly given by the equation
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kl a(n)]P [a(r) p] 1[ a(n]? [a(r) Q} a(r) a(o)\P . a(ry)| M1
p - " B ~ +a(7o)
p lo lo q lo Mo o ro
) m(m—1) 2m) . _ 1 2m _ 1/p
—a(ro) a(rZO) lk"' a(r7(')0) ]TrOTo x| 142 a(o) rroro] | “9

(45) In both Eqs.(48) and(49), we observe that, as in the case of
vacuum cosmic string wormholes, the radius of the throat
with p=m?—m+1 andgq=m?+m+ 1 positive numbers for behaves like a positive power of for nonvanishing initial
all values ofm, and, an arbitrary(fixed) time. In all cases velocity.
Eq. (45) can be inverted numerically, and in some cases ana-

lytically, to obtaina(r). V. DISCUSSION
' The velocity and the acceleration of the throat are, respec- |, this paper we have developed a general analysis of the
tively, dynamics of cylindrical thin-shell wormholes, under a rea-
sonable assumption regarding the equations of state that re-
: : a( 7o) ™M D a(7o)/ro]?M+k late the tensions with the surface energy density ofetke
a(r)=a(7o)| o — ———-—— (46)  otic matter at the throat. The temporal evolution of the radius
a(7) [a(7)/ro]?™+k

of the throat was obtained for the general case. We applied
this formalism to cylindrical geometries of interest that ap-

and pear in the context of local cosmic strings. An observer out-
side the throat would not distinguish the geometry from that

a(ro) ™™ )2 of the exterior of a local cosmic string. For the examples

. —mé(ro)z Mo +k a( o) ]2m(m-1) stl_Jdieq, corresponding to vacuum and superconducting Cos-
a(r)= ar) A a(r) mic string wormholes, we found that the temporal evolution

+k of the throat depends mainly on its initial velocity: If it is

I'o J positive the throat expands indefinitely, in the negative case
a(7)]2m it collapses to null radius in a finite time, and when it is zero,

X{k(m—1)+(m+1)— } (47 the radius of the throat remains constant. In these examples,

o oscillatory solutions are not possible. There exists a static

solution for each value of the throat radius, but these solu-
Itis easy to see that the sign of the velocity is given by thejions are unstable under perturbations in the velocity, i.e.,
sign of the initial velocitya(ry) and the acceleration is al- instead of oscillating around or damping towards an equilib-
ways negative. As a consequence, if the initial velocity isrium position, they collapse or expand forever if a nonzero
positive, the throat expands forever, with decreasing velocityinitial velocity is given. Indeed, from Eq23), the sign of the
while in the case of negative initial velocity it contracts to initial velocity completely determines the sign of the velocity
zero radius with increasin@n modulus velocity. In the case at any time, this being a general feature of cylindrical thin-
of null initial velocity the radius of the throat remains con- shell wormholes under the hypothesis of this work. It is easy
stant. to see from Eq(22) that in the general case the acceleration
There are two limiting cases of interest, which corresponchas the opposite sign of the derivativef =f(r), so de-
to small values of the curremf wherea(7) can be approxi- pending on the metric considered, it would accelerate or de-

mately given in an explicit form. Fok<1 Eq. (45) gives celerate the expansion or contraction of the throat, but with-
out changing the sign of the velocity, which is given by its
a(7) a(g) |9 a(7) | mm-1 initial value.
PR r +a( ) )
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