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Cylindrical thin-shell wormholes
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A general formalism for the dynamics of nonrotating cylindrical thin-shell wormholes is developed. The
time evolution of the throat is explicitly obtained for thin-shell wormholes whose metric has the form associ-
ated with local cosmic strings. It is found that the throat collapses to zero radius, remains static, or expands
forever, depending only on the sign of its initial velocity.

DOI: 10.1103/PhysRevD.70.044008 PACS number~s!: 04.20.Gz, 04.40.Nr, 11.27.1d
ri
ns

un
s
ul
-
le

t

of
ct

s
o
v
m

e
nu

gy

.

o
n

y
ss
Th
as

the
tch-
he
ri-
e
ch
m
ter,

ke.
e
etic
nce
ime
olu-
tive
re is
y-

ing
evi-

et-
In

ion
of
or

ical

ing
w
the
ted
for

in-
ild

ith

nd
I. INTRODUCTION

Traversable Lorentzian wormholes, first studied by Mor
and Thorne@1#, are solutions of the Einstein field equatio
that have two regions connected by a throat. Thesetunnels
can join two parts of the same universe or two separate
verses@1,2#. For static wormholes, the throat is defined a
two-dimensional hypersurface of minimal area that sho
satisfy aflare-out condition @3#. For time-dependent worm
holes the general definition of the throat is more comp
~the interested reader is referred to Ref.@4#!. All traversable
wormholes must be threaded byexotic matter that violates
the null energy condition@1–4#. Recently, Visseret al. @5#
showed that the amount ofexoticmatter that must be presen
around the throat can be made infinitesimally small by
suitable choice of geometry of the wormhole.

In a gauge theory, spontaneous symmetry breaking
complex scalar field leads to cylindrical topological defe
known as local cosmic strings@6#. The gravitational effects
of such objects have been the object of thorough analy
because of the possible important consequences they c
have had for galaxy formation, and also in the study of gra
tational lensing. The spacetime metric around a local cos
string was first obtained by Vilenkin@7# in the linear approxi-
mation of general relativity. Local strings are characteriz
by having an energy-momentum tensor whose only non-
components areTt

t5Tz
z . Within this framework a Dirac delta

was used to model the radial distribution of the ener
momentum tensor for a string along thez axis. The resulting
spacetime metric is flat but with a deficit angleDw
58pGm, up to first order inGm @in grand unified theory
~GUT! stringsGm;1026], with m the linear energy density
Later, independently, Gott@8# and Hiscock@9#, extending the
analysis to the framework of theories leading to values
Gm closer to 1, showed that the deficit angle found by Vile
kin is actually correct to all orders inGm. In their demon-
stration, they considered a source in the form of a thick c
inder of constant radius with both uniform linear ma
density and tension, the last one only along the axis.
solution of the full Einstein equations in the interior w
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matched with the vacuum solution for the exterior, and
integration constants appearing were determined by ma
ing both metrics in the boundary. In all these works, t
source determined an exterior solution with Lorentz inva
ance along thez axis. However, if this is not required, th
most general solution has the well-known Weyl form, whi
includes two solutions with Lorentz invariance, one of the
corresponding to the case solved by Gott and Hiscock. La
similar analyses were extended by several authors@10# to
scalar tensor theories of gravity, like that of Brans and Dic
It has also been shown@11# that a cosmic string can behav
as a superconductor, with a current along it and a magn
field in its exterior. This can be the result of the appeara
of both bosonic or fermionic charge carriers. The spacet
around a superconducting string is then not a vacuum s
tion of the Einstein equations, because, besides the effec
mass associated with the charge carriers, in this case the
a nonlocalized magnetic contribution to the energ
momentum tensor@12#.

Solutions of the Einstein field equations represent
wormholes associated with cosmic strings have been pr
ously considered in the literature. Cle´ment @13# found tra-
versable multi-wormhole solutions where the spacetime m
ric was asymptotic to the conical cosmic string metric.
other work, Cle´ment @14# extended cylindrical multi-cosmic
strings metrics to wormhole spacetimes with only one reg
at spatial infinite, and analyzed in detail the geometry
asymptotically flat wormhole spacetimes produced by one
two cosmic strings. Aros and Zamorano@15# constructed a
solution that can be interpreted as a traversable cylindr
wormhole inside the core of a global cosmic string.

Thin-shell wormholes are made by cutting and past
two manifolds@2,16# to form a geodesically complete ne
one with a throat placed in the joining shell. In this case,
exotic matter needed to build the wormhole is concentra
at the shell and the junction-condition formalism is used
its study. Poisson and Visser@17# made a linearized stability
analysis under spherically symmetric perturbations of a th
shell wormhole constructed by joining two Schwarzsch
geometries. Later, Barcelo´ and Visser @18# applied this
method to study wormholes constructed using branes w
negative tensions and Ishak and Lake@19# analyzed the sta-
bility of transparent spherically symmetric thin shells a
wormholes. Recently, Eiroa and Romero@20# extended the
©2004 The American Physical Society08-1
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linearized stability analysis to Reisner-Nordstro¨m thin-shell
geometries, and Lobo and Crawford@21# to wormholes with
a cosmological constant.

In this article we study cylindrical thin-shell wormhole
We concentrate on the geometry of these objects and w
not intend to supply any explanation about the mechani
that might provide theexotic matter to them. In Sec. II we
present the general formalism. In Secs. III and IV, we ap
it to vacuum and superconducting cosmic string wormho
Finally, in Sec. V, the results are discussed. Throughout
paper we use units such asc5G51.

II. CYLINDRICAL THIN-SHELL WORMHOLES

The static cylindrically symmetric metric in coordinate
Xa5(t,r ,w,z) can be written in the form@22#

ds25 f ~r !~2dt21dr2!1g~r !dw21h~r !dz2, ~1!

where f, g, andh are positive functions ofr. From this ge-
ometry we can take two copies1 of the region withr>a:

M 65$x/r>a%, ~2!

and glue them together at the hypersurface

S[S65$x/r 2a50%, ~3!

to make a geodesically complete manifoldM
5M 1øM 2. If gww5g(r ) is an increasing function forr
P@a,a1e#, with e.0, this construction creates a cylindr
cally symmetric thin-shell wormhole with two regions co
nected by a throat atS. On M we can define a new radia
coordinatel 56*a

r grr dr, where the positive and negativ
signs correspond, respectively, toM 1 and M 2, with u l u
representing the proper radial distance to the throat, whic
placed inl 50. To study this traversable wormhole we u
the standard Darmois-Israel formalism@23#. For a recent re-
view of this technique, also called junction-condition forma
ism, see Ref.@24#.

The throat of the wormhole is placed at the shellS, which
is a synchronous timelike hypersurface. We can adopt c
dinatesj i5(t,w,z) in S, with t the proper time on the shel
In order to analyze the dynamical behavior, we let the rad
of the throat be a function of the proper time,a5a(t). Then
S is defined by the equation

S:H~r ,t!5r 2a~t!50. ~4!

The extrinsic curvature~second fundamental forms! associ-
ated with the two sides of the shell are

Ki j
652ng

6S ]2Xg

]j i]j j
1Gab

g ]Xa

]j i

]Xb

]j j D U
S

, ~5!

whereng
6 are the unit normals (ngng51) to S in M:

1It is not necessary to take both regions equal, but it is enough
our purposes.
04400
do
s

y
s.
e

is

r-

s

ng
656Ugab

]H
]Xa

]H
]XbU21/2

]H
]Xg

. ~6!

In the orthonormal basis$et̂ ,eŵ ,eẑ% @et̂5A1/f (r )et , eŵ

5A1/g(r )ew , eẑ5A1/h(r )ez , g
ı̂ ̂

5h
ı̂ ̂

5diag(21,1,1,1)]
we have

K t̂ t̂
6

57
2 f ~a!2ä1 f 8~a!12 f 8~a! f ~a!ȧ2

2 f ~a!Af ~a!A11 f ~a!ȧ2
, ~7!

K ŵŵ
6

56
g8~a!A11 f ~a!ȧ2

2g~a!Af ~a!
, ~8!

and

Kẑẑ
6

56
h8~a!A11 f ~a!ȧ2

2h~a!Af ~a!
, ~9!

where the dot meansd/dt.
The Einstein equations on the shell reduce to the Lanc

equations:

2@Kı̂ ̂#1@K#gı̂ ̂58pSı̂ ̂ , ~10!

where@K
ı̂ ̂
#[K

ı̂ ̂

12K
ı̂ ̂

2 , @K#5gı̂ ̂@Kı̂ ̂# is the trace of@Kı̂ ̂#,

and S
ı̂ ̂

5diag(s,2qw ,2qz) is the surface stress-energ

tensor, withs the surface energy density andqw,z the sur-
face tensions. Then replacing Eqs.~7!–~9! in Eq. ~10! we
obtain

s52
A11 f ~a!ȧ2

8pAf ~a!
Fg8~a!

g~a!
1

h8~a!

h~a! G , ~11!

qw52
1

8pAf ~a!A11 f ~a!ȧ2
H 2 f ~a!ä1 f ~a!

3Fh8~a!

h~a!
1

2 f 8~a!

f ~a!
G ȧ21

h8~a!

h~a!
1

f 8~a!

f ~a!
J , ~12!

qz52
1

8pAf ~a!A11 f ~a!ȧ2
H 2 f ~a!ä1 f ~a!

3Fg8~a!

g~a!
1

2 f 8~a!

f ~a!
G ȧ21

g8~a!

g~a!
1

f 8~a!

f ~a!
J . ~13!

The surface energy density is negative, indicating the p
ence ofexoticmatter at the throat. The negative signs of t
tensions mean that they are indeed pressures.

It is easy to see thatqw , qz , ands satisfy the equation

qw2qz5
g~a!h8~a!2g8~a!h~a!

g~a!h8~a!1g8~a!h~a!
s. ~14!or
8-2
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The static equations are obtained withȧ50 andä50 in
Eqs.~11!–~13!:

s52
1

8pAf ~a!
Fg8~a!

g~a!
1

h8~a!

h~a! G , ~15!

qw52
1

8pAf ~a!
Fh8~a!

h~a!
1

f 8~a!

f ~a! G , ~16!

qz52
1

8pAf ~a!
Fg8~a!

g~a!
1

f 8~a!

f ~a! G . ~17!

Equations~16! and ~17! can be recast in the form

qw5a~a!s, ~18!

qz5b~a!s, ~19!

with

a~a!5
g~a!@ f ~a!h8~a!1 f 8~a!h~a!#

f ~a!@g~a!h8~a!1g8~a!h~a!#
, ~20!

b~a!5
h~a!@ f ~a!g8~a!1 f 8~a!g~a!#

f ~a!@g~a!h8~a!1g8~a!h~a!#
. ~21!

The functionsf, g, and h determine the equations of sta
qw(s) andqz(s) of the exotic matter on the shell.

Let us assume that the equations of state for the dyna
case have the same form as in the static one, i.e., that the
not depend on the derivatives ofa(t), soqw(s) andqz(s)
are given by Eqs.~18! and ~19!, with a andb of Eqs.~20!
and ~21!. Then, replacing Eqs.~11! and ~12! in Eq. ~18! @or
Eqs.~11! and~13! in Eq. ~19!#, a simple second-order differ
ential equation fora(t) is obtained

2 f ~a!ä1 f 8~a!ȧ250. ~22!

It is easy to see that
i

04400
ic
do

ȧ~t!5ȧ~t0!Af „a~t0!…

f „a~t!…
~23!

satisfies Eq.~22!, with t0 an arbitrary~but fixed! time. Equa-
tion ~23! can be put in the form

Af ~a!da5ȧ~t0!Af „a~t0!…dt, ~24!

which, integrating both sides, gives

E
a(t0)

a(t)
Af ~a!da5ȧ~t0!Af „a~t0!…~t2t0!. ~25!

The time evolution of the radius of the throata(t) is for-
mally obtained by calculating the integral and inverting E
~25!.

III. VACUUM COSMIC STRING WORMHOLES

The most general metric which can be associated t
local vacuum cosmic string has the Weyl’s form

ds25S r

r 0
D 2d(d21)

~2dt21dr2!1r 2W0
2S r

r 0
D 22d

dw2

1S r

r 0
D 2d

dz2, ~26!

where r 0 ~a scaling length for the radial coordinate!, W0
.0, andd are constants. We taked,1, sogww is an increas-
ing function of r. Then the surface energy density and te
sions at the throat are

s52
~a/r 0!2d(d21)A11~a/r 0!2d(d21)ȧ2

4pa
, ~27!

qw52
d2~a/r 0!2d(d21)1~a/r 0!d(d21)@aä1d~2d21!ȧ2#

4paA11~a/r 0!2d(d21)ȧ2
,

~28!
qz52
~d21!2~a/r 0!2d(d21)1~a/r 0!d(d21)@aä1~d21!~2d21!ȧ2#

4paA11~a/r 0!2d(d21)ȧ2
. ~29!
to

in-

ic
For the static case we have thatqw5d2s and qz5(d
21)2s. Keeping these equations of state for the dynam
case and using Eq.~25!, we obtain

a~t!

r 0
5H Fa~t0!

r 0
Gd(d21)11

1ȧ~t0!Fa~t0!

r 0
Gd(d21)

3@d~d21!11#
t2t0

r 0
J 1/[d(d21)11]

. ~30!
c
Sinced(d21)11 is positive for alld, from Eq. ~30! we

see that if the initial velocity of the throatȧ(t0) is positive,
the radius of the throat increases~without bounds! with time,
while in the case of negative initial velocity it decreases
collapse toa50 in a finite time, and ifȧ(t0)50 the throat
has constant radiusa(t0) ~static solution!.

WhendÞ0 the geometry outside the throat could be
terpreted as the one corresponding to awiggly or noisycos-
mic string. A special interesting case is the straight cosm
8-3
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string wormhole, which is invariant under boosts inz and
corresponds tod50, its metric given by

ds252dt21dr21W0
2r 2dw21dz2. ~31!

This geometry is conical with a deficit angleDw52p(1
2W0) if 0 ,W0,1 ~surplus angle ifW0.1). The energy
density and tensions are

s52
A11ȧ2

4pa
, ~32!

qw52
ä

4pA11ȧ2
, ~33!

and

qz52
11ȧ21aä

4paA11ȧ2
. ~34!

The static solution hass5qz521/4pa andqw50, and the
energy density per unit length ism52pW0as52W0/2. In
the dynamic case, using Eq.~30! with d50, we have

a~t!5a~t0!1ȧ~t0!~t2t0!, ~35!

so in this case there is a simple linear dependence with
for the radius of throat.

IV. SUPERCONDUCTING COSMIC STRING WORMHOLES

The exterior metric for a superconducting cosmic str
has the form@12#
te

04400
e

ds25S r

r 0
D 22m

A2~r !F S r

r 0
D 2m2

~2dt21dr2!1W0
2r 2dw2G

1S r

r 0
D 2m 1

A2~r !
dz2, ~36!

where

A~r !5
~r /r 0!2m1k

11k
, ~37!

with r 0 ~a scaling length for the radial coordinate!, k>0,
W0.0, andm constants. If we take21,m,1, gww is an
increasing function ofr for every ~nonnegative! value of k.
The electric current related with this metric is

I 56
mW0

11k
Ak, ~38!

and the associated magnetic field strength is given by

Fzr52Frz5
62m

r S r

r 0
D 2mF S r

r 0
D 2m

1kG22

~11k!Ak.

~39!

With our cut and paste construction, we obtain in this cas
wormhole that carries a currentI along the throat and a mag
netic field outside the throat, given by Eqs.~38! and ~39!,
respectively. Ifk50, there is no current and the magne
field is zero, and the Weyl’s metric is recovered~taking m
52d).

Using Eqs.~11!–~13!, the energy density and tensions
the throat are given by
s5
2~a/r 0!m(12m)A~11k!21@~a/r 0!2m1k#2~a/r 0!2m(m21)ȧ2

4pa@~a/r 0!2m1k#
, ~40!

qw5
2~a/r 0!m(12m)

4pa@~a/r 0!2m1k#A~11k!21@~a/r 0!2m1k#2~a/r 0!2m(m21)ȧ2
H m2~11k!21F S a

r 0
D 2m

1kG2S a

r 0
D 2m(m21)

aä

1mS a

r 0
D 2m2Fk2~2m21!S a

r 0
D 22m

1~2m11!S a

r 0
D 2m

14mkG ȧ2J , ~41!
e

and

qz5qw1F112m2
4mk

~a/r 0!2m1k
Gs. ~42!

From the static solution we obtain the equations of sta

qw5m2s ~43!
and

qz5F ~11m!22
4mk

~a/r 0!2m1k
Gs. ~44!

Following Sec. II we have that the time evolution of th
radius of the throat is implicitly given by the equation
8-4
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k

p H Fa~t!

r 0
G p

2Fa~t0!

r 0
G pJ 1

1

q H Fa~t!

r 0
Gq

2Fa~t0!

r 0
GqJ

5ȧ~t0!Fa~t0!

r 0
Gm(m21)H k1Fa~t0!

r 0
G2mJ t2t0

r 0
,

~45!

with p[m22m11 andq[m21m11 positive numbers for
all values ofm, andt0 an arbitrary~fixed! time. In all cases
Eq. ~45! can be inverted numerically, and in some cases a
lytically, to obtaina(t).

The velocity and the acceleration of the throat are, resp
tively,

ȧ~t!5ȧ~t0!Fa~t0!

a~t! Gm(m21) @a~t0!/r 0#2m1k

@a~t!/r 0#2m1k
~46!

and

ä~t!5
2mȧ~t0!2

a~t! H Fa~t0!

r 0
G2m

1k

Fa~t!

r 0
G2m

1k
J 2

Fa~t0!

a~t! G2m(m21)

3H k~m21!1~m11!Fa~t!

r 0
G2mJ . ~47!

It is easy to see that the sign of the velocity is given by
sign of the initial velocityȧ(t0) and the acceleration is a
ways negative. As a consequence, if the initial velocity
positive, the throat expands forever, with decreasing veloc
while in the case of negative initial velocity it contracts
zero radius with increasing~in modulus! velocity. In the case
of null initial velocity the radius of the throat remains co
stant.

There are two limiting cases of interest, which correspo
to small values of the currentI, wherea(t) can be approxi-
mately given in an explicit form. Fork!1 Eq. ~45! gives

a~t!

r 0
'H S a~t0!

r 0
D q

1ȧ~t0!S a~t0!

r 0
D m(m21)

3Fk1S a~t0!

r 0
D 2mGq t2t0

r 0
J 1/q

, ~48!

and if k@1 we obtain
04400
a-

c-

e

s
y,

d

a~t!

r 0
'H S a~t0!

r 0
D p

1ȧ~t0!S a~t0!

r 0
D m(m21)

3F11
1

k S a~t0!

r 0
D 2mGp t2t0

r 0
J 1/p

. ~49!

In both Eqs.~48! and~49!, we observe that, as in the case
vacuum cosmic string wormholes, the radius of the thr
behaves like a positive power oft for nonvanishing initial
velocity.

V. DISCUSSION

In this paper we have developed a general analysis of
dynamics of cylindrical thin-shell wormholes, under a re
sonable assumption regarding the equations of state tha
late the tensions with the surface energy density of theex-
otic matter at the throat. The temporal evolution of the rad
of the throat was obtained for the general case. We app
this formalism to cylindrical geometries of interest that a
pear in the context of local cosmic strings. An observer o
side the throat would not distinguish the geometry from t
of the exterior of a local cosmic string. For the examp
studied, corresponding to vacuum and superconducting
mic string wormholes, we found that the temporal evoluti
of the throat depends mainly on its initial velocity: If it i
positive the throat expands indefinitely, in the negative c
it collapses to null radius in a finite time, and when it is ze
the radius of the throat remains constant. In these examp
oscillatory solutions are not possible. There exists a st
solution for each value of the throat radius, but these so
tions are unstable under perturbations in the velocity, i
instead of oscillating around or damping towards an equi
rium position, they collapse or expand forever if a nonze
initial velocity is given. Indeed, from Eq.~23!, the sign of the
initial velocity completely determines the sign of the veloc
at any time, this being a general feature of cylindrical th
shell wormholes under the hypothesis of this work. It is ea
to see from Eq.~22! that in the general case the accelerati
has the opposite sign of the derivative ofgrr 5 f (r ), so de-
pending on the metric considered, it would accelerate or
celerate the expansion or contraction of the throat, but w
out changing the sign of the velocity, which is given by
initial value.
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