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The Bousso bound requires that one-quarter of the area of a closed codimension-2 spacelike surface exceeds
the entropy flux across a certain lightsheet terminating on the surface. The bound can be violated by quantum
effects such as Hawking radiation. It is proposed that at the quantum level the bound be modified by adding to
the area the quantum entanglement entropy across the surface. The validity of this quantum Bousso bound is
proven in a two-dimensional large N dilaton gravity theory.
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[. INTRODUCTION Hawking radiation and its backreaction. We will show that
the quantum Bousso bound holds in this gravitational theory.
The generalized second law of thermodynant@SL) [1]
roughly speaking states that one-quarter of the area of black || ReviEW OF THE CLASSICAL BOUSSO BOUNDS
hole horizons plus the entropy outside the horizons is non-
decreasing. This law was formulated in an attempt to repair The Bousso bound asserts that, subject to certain assump-
inconsistencies in the ordinary second law in the presence fons, the entropy of matter that passes through certain light-

black holes. There is no precise general statement, let alori'€€ts associated with a given codimension-2 spatial surface
in spacetime is bounded by the area of that surfd¢e

proof, of the GSL, but it has been demonstrated in a com* hi bound i . e T
pelling variety of special circumstances. It indicates a deep This entropy bound provides a covariant recipe for asso-

connection between geometry, thermodynamics, and quar(f—iating a geometric entropy with any spatial surféthat is

tum mechanics which we have yet to fathom. The holc)_codlmensmn 2 in the spacetime. At each poinBpthere are

raphic principle[2,3], which also has no precise general four null directions orthogonal t®. These four null direc-
gt tp pt 8 = 1o elevat d ext F()jth GSth tions single out four unique null geodesics emanating from
statement, endeavors fo elevale and extend the 0 COBach point ofB: two future-directed and two past-directed.
texts not necessarily involving black holes. [#], a math-

. i e “- _ Without loss of generality, we choose an affine parameter
ematically precise modification of the GSL/holographic prin- , . aach of these curves such thatquals zero omB and

ciple was proposed thgt is applicable to null surfaces which,reases positively as the geodesic is followed away fBom
are not hor|zon_s[5]_. This proposed. “Bousso bound,” aI(_)ng Along each of the four geodesics, labeledibgn expan-
with a generalization stated therein, was proven, subject tgjg parameted;(\) = V,(d/d\)? can be defined. If we note
Cel’tain ConditionS, in a C|aSSica| I|m|t by Flanagan, I\/IarOIf, that each Of the future_directed geodesics is S|mp|y the ex-
and Wald([6]. tension of one of the past-directed geodesics, then the fol-
The Bousso bound, as stated, can be violated by quantuwing relations between the expansion parameters become
effects[7]. Mathematically, the proofs of the bound rely on clear: #,(0)= — 65(0), 6,(0)=— 6,(0). Therefore, at least
the local positivity of the stress tensor which does not hold intwo of the four geodesics will begin with a nonpositive ex-
the quantum world. Physically, the bound does not accounpansion. A “lightsheet” is a codimension-1 surface generated
for entropy carried by Hawking radiation. In this paper, we by following exactly one nonexpanding geodesic from each
propose that, at a semiclassical level, the bound can be rgoint of B. Each geodesic is followed until one of the fol-
stored by adding to one-quarter of the surface area the efewing occurs on it:(i) The expansion parameter becomes
tanglement entropy across the surface. We will make thiositive, 6>0, or (i) a spacetime singularity is reached.
statement fully precise, and then prove it, in a two-Note that, in spacetime dimensions greater than 2, there are
dimensional model of large N dilaton gravity. an infinite number of possible lightsheets to choose from
This paper is organized as follows. We begin by review-since, for each point oB, there are at least two contracting
ing Bousso’s covariant entropy bound in Sec. Il. We will null geodesics from which to choose.
review the lightsheet construction in general D-dimensional The original Bousso bound conjectures that Nature obeys
spacetime, although our main interest in the remainder of théhe following inequality:
paper will be four and two dimensions. In Sec. I, we will

discuss how Bousso’s bound can be violated in the presence Entropy passing through any lightsheeBof

of semiclassical effects, like Hawking radiation. This will 1

motivate us to propose a “quantum Bousso bound” in Sec. <= (Area of B) (1)
2 .

IV. By assuming an adiabaticity condition on the entropy
flux, we will show in Sec. V that the classical Bousso bound
can be proven in four and two dimensions. In Sec. VI, weln order to make this statement precise, we must clarify what
extend the analysis to the two-dimensional RST quantizatiome mean by the entropy that passes through a lightsheet. In
[8] of the CGHS model[9] which includes semiclassical general, this is ambiguous because entropy is not a local
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concept. However, there is a thermodynamic limit in whichequation for the expansion parameter along a null geodesic
the entropy is well-approximated by the flux of a four-vector[10],

s?. As discussed by Flanagan, Marolf, and W&dMW) in

[6], this thermodynamic limit is satisfied under the entropy de 1

condition that we will use in Secs. V and VI. The Bousso gy =~ ﬁé’z—ﬂatﬁaﬂ”r ®ap0?°— 87T pk?k",  (6)
bound as formulated so far pertains mainly to this limit.

To find the entropy flux that passes through the lightsheet, . . .
we must project? onto kP, the unique future-directed nor- whereo g, is the shear tensor andl,, is the twist tensor. For

mal to the lightsheet. Up to a sigkiis d/d\ sinced/d\ is a family of null geodesics that start off orthogonal to a spa-

null and orthogonal to all other lightsheet tangent vectors b)}|al surface, such as the case for a lightsheet, the twist tensor

construction. In order to keeg? future-directed, we choose Irfolzdesroihzlrrﬁuﬁ I';;’:?e?;slijsm:eth;itvt:e_r?]lélInir;le;gnﬁfonggkodr;_
k3= (d/d\)? if the lightsheet is future-directed, arkf= ’ 9 ' gy

. a b . _ . _
—(d/d\)? if the lightsheet is past-directed. Since we use thetlon postulates thal ,pk*k” is non-negative for all null vec

a i .
mostly positive metric signature, the entropy flux throughgcgj’sﬁiés'i‘ﬁeairfgsﬂgiitwe find that the expansion parameter
any point of the lightsheet is quaiity

s=—Kk,s?. 2 de 1
a ( ) ﬁ< — m 02. (7)
In the language of entropy flux, the entropy bound be-

comes . ) i
This gives us the focusing theorem: If the expansion param-

1 eter takes the negative valdg along a null geodesic of the
fL(B)Ss 2 (AreaofB), (3 lightsheet, then that geodesic will reach a cauéti, 6—
— o) within the finite affine timeAN<(D—2)/|6,|.
whereL (B) denotes the lightsheet & However, thereisa S0 long as energy is required to produce entropy, the fo-
generalized Bousso bouifl] in which the lightsheet is pre- Ccusing theorem ensures that the presence of entropy will
maturely terminated on a spatial surfa@é. It is clear that ~Cause the lightsheet to reach a caustic and, therefpre, termi-
the integral ofs over this terminated lightsheet equals the Nate. The more entropy we try to pass through the lightsheet,
integral over the full lightsheet d8 minus the integral over the faster the lightsheet terminates. This gives a compelling
the full lightsheet oB’. Assuming thas is everywhere posi- argument for why only a finite, bounded amount of entropy

tive, Bousso’s original entropy bound tells us that could be passed through the lightsheet. According to the
Bousso bound, this upper bound is precisely one-quarter the

1 area of the generating surface.
JL . S fL . s<7 (Area of B), 4 In practice, the covariant entropy bound can be violated in
( ) ® the presence of matter with negative energy. By mixing

whereL(B—B') denotes the lightsheet & terminated on positive-energy matter and negative-energy matter, a system
B’. In this paper, we will be interested in the generalized"‘”th zero energy can be made to carry an arbitrary amount of

Bousso bound, first proposed by FM&], which imposes entropy. Again, the entropy passing through any given light-
the much stronger bound on the terminated lightsheet sheet could be increased arbitrarily. At the classical level, we

could simply demand that the energy-momentum tensor

1 obeys the null energy condition. This is the weakest of all the
f , 5= 7[A(B)—A(B")]. (5 most common energy conditions and, as can be seen from
L(B-87) Eq. (6), is the one needed for the focusing theorem, and thus

This has been proven under suitable assumptions by FMP make the Bousso bound plausible.

[6]. Note that this generalized entropy bound directly implies However, the Bousso bound is in serious trouble once we
Bousso’s original entropy bound. include quantum effects. We know that none of the local

energy conditions can hold even at first orderiinin par-
ticular, the phenomenon of Hawking radiation violates the
null energy condition near the horizon of black holes. This

The entropy bounds so far pertain largely to the classicaallows for violations of the focusing theorem. This violation
regime. When quantum effects are included, even at thean be seen most clearly for future-directed, outgoing null
semiclassical level, we expect that the bounds must be somgeodesics that hover for a while in between the event horizon
how modified to account for the entropy carried by Hawkingand apparent horizon of an evaporating black hole. The ap-
radiation. Mathematically, the proof§] are not applicable parent horizon is the boundary of the region of trapped sur-
because quantum effects violate the positive energy condfaces, so the congruence of null geodesics is contracting in-
tion. side the apparent horizon. However, as the black hole

The classical proofs hinge on the focusing theorem ofvaporates, the apparent horizon follows a timelike trajectory
classical general relativity. The focusing theorem, in turntowards the event horizon. The null geodesic could then
derives from the Raychaudhuri equation and the null energieave the apparent horizon and begin expanding, in violation
condition. The Raychaudhuri equation provides a differentiabf the focusing theorem.

IIl. SEMICLASSICAL VIOLATIONS
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Furthermore, if7], Lowe constructs a related counterex- Bousso bound, we should certainly expect that the Bousso
ample to the covariant entropy bound in the presence of @ound will receive related quantum corrections. These cor-
critically illuminated black hole. Critical illumination is the rections should reduce S, when the lightsheets are taken
process in which matter is thrown into a black hole at exactlyto be portions of event horizons. The problem is to precisely
the same rate as energy is Hawking radiated away. In thiformulate the nature of these corrections.
scenario, the apparent horizon follows a null trajectory. If we In this context it is useful to think of the entropy in Hawk-
pick the apparent horizon to be the generating surface for ag radiation as entanglement entropy. Evolution of the quan-
lightsheet, then the lightsheet will coincide with the apparentum fields on a fixed black hole geometry is a manifestly
horizon as long as we continue to critically illuminate the unitary process prior to singularity formation. Nevertheless
black hole. By critically illuminating the black hole suffi- entropy is created outside the black hole because the outgo-
ciently long, we can pass an arbitrary amount of matteing Hawking quanta are correlated with those that fall behind
through the lightsheet. In this way, the entropy of the mattethe horizon. When a region of spatkis unobservable, we
passing through the lightsheet can be made larger than thlehould trace the quantum stateover the modes in the un-
area of the apparent horizon, thus violating the entropybservable region to obtain the observable density matrix
bound.

Hence, the original Bousso bound only has a chance of p=tro[ ) (4. (10
e o Koo i i souns GoLS1e th fll stteis I rncile ot avalable o he oy
In the remaining sections, we propose a modification of the€rver th_ere is a de facto loss of information that can be
Bousso bound which may hold in the semiclassical regime.(:h""raCterlzed by the entanglement entropy

Sen= —trplogp. (11)
IV. QUANTUM BOUSSO BOUND _
. o In general, this expression has divergences and requires fur-
The generalized Bousso bound, when specialized to blaciqer definition, which will be given below for the case of two

hole horizons, is equivalent to a classical limit of the genergimensions. Choosing to be the region behind the horizon,
alized second law of thermodynami¢§SL). To see this, e can therefore formally identify

note that the portion of the event horizon lying between any

two times constitutes a lightsheet. Since all matter falling AS,=AS. (12

into the black hole between those two times must pass ) )

through this lightsheet, the generalized entropy bound givedhis motivates a natural guess for quantum corrections to the

us the same information as the GSL. In particular, we learf30usso bound when the initial and final surfaces are closed.
that One should add to the area the entanglement entropy across

the surface. Applying this modification to the classical

1 Bousso bound5) results in a quantum Bousso bound of the
72Ae=ASy, (8)  form
. . . . 1 1 ! !
whereAAgy is the change in event horizon area, &, is f | s=< ZA(B)+Sen1(B)_ ZA(B )= Sen{ B').
the entropy of the matter that fell in. L(B—B')

When quantum effects are included, the fof@ of the (3

generalized second law is no longer valid. The quantum GSL  gjnce we cannot presently hope to solve this problem or
states, roughly speaking, that the total entropy outside thgyen define this quantum bound in exact quantum gravity, in
black hole plus one-quarter the area of the horiteither  order to go further we need to identify a small expansion
event or apparent depending on the formulatisnnonde-  parameter for approximating the exact theory. A useful pa-
creasing. The entropy outside the black hole receives an infameter, which systematically captures the quantum correc-
portant contribution from Hawking radiation. Therefore, we tjgns of Hawking radiation, is provided byN/ whereN is
must augment the left hand side by the entropy of the Hawkthe number of matter fields ar@yN is held fixed[9]. In
ing radiation, [12] it was shown in the two-dimensional RST model of
1 black hole evaporation that thsuitably defined GSL, in-
+ corporating the Hawking radiation as in ), is valid. One
4AAH+AS”>AS”" © might hope that a similar incorporation can save the Bousso
bound.
In general, we do not know how to formulate, let alone In the process of the investigations[it2] it emerged that
prove, an exact form of the GSL in a full quantum theory ofthe sumA+4S,,=A,, arises naturally in the theory as a
gravity. However, approximations to it have been formulatedkind of gquantum-corrected area. In this paper, we propose
and demonstrated in a wide variety of circumstanced.  that the required leading N/semiclassical correction to the
The AS,, term is crucial in these demonstrations, withoutgeneralized Bousso bound simply involves the replacement
which counterexamples may be easily found. of the classical area with this quantum corrected area. A pre-
Since the GSL requires an additional term at the quantunaise version of this statement will be formulated and proved
level, and the GSL is a special case of the generalizeth the RST model in Sec. VI.
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V. PROVING THE CLASSICAL BOUSSO BOUNDS rate of change of the entropy flux is less than the energy flux,

n thi " q fs of classical B which is a necessary condition for the thermodynamic ap-
n this section we reproduce prools of classical BOUSSQyqyimation to hold? Conditionii requires only that the gen-

bounds. We first give. a proof due to Bousso, Flar'1agan! 8N8ralized entropy bound is not violated infinitesimally at the
Marolf of the generalized Bousso bound in four d'mens'onsoeginning of the lightsheet. Since the square roatafou-

[13].! This simplified proof follows from conditions on the tinely appears in calculations, we borrow the notation of
initial entropy flux and an adiabaticity condition on the rate ppp\w and define

of change of the entropy flux which differ somewhat from
the conditions assumed {i6]. We then describe a two di- G=1A. (17
mensional version of the proof obtained by spherical reduc-

tion. A small modification of this gives a proof of the gener- From the Raychaudhuri equation, we have that

alized Bousso bound in the classical CGHS m¢@&lwhich ah 1 G'"(\) 1 ab 1 G"(\)
is then transcribed into Kruskal gauge for later convenience. Tapk®k®=— p= W T gy lan” s- s W
The inclusion of quantum effects in the latter will be the (18)

subject of the next section. _ _ _
where o, is the shear tensor, and the inequality follows

b
A. Slmpllfled prOOf in four dimensions from the faCt thah'abaa =0 aIWayS Now we see that

Following [6], the integral of the entropy flug over the _ f" ~
lightsheet can be written as s(v) 0 drs’(A) +5(0)
) ! (i)
s= | d*xvh(x) [ drs(x,N)A(X,N). (14
L(B—B") B 0 N
<27 f dN T ,pk?kP+s(0)
In this expression, we have chosen a coordinate system 0

(x%,x?) on the spatial surfacB, h(x) is the determinant of

eom
the induced metric o3, and the affine parameter on each ( )

null geodesic of the lightsheet has been normalized so that x o 1 G"(\)
A =1 is when the geodesic reach&s The functionA(x,\) SZWJ d\| —7- == | Ts0
is the area decrease factor for the geodesic that begins at the 0 G(M)
pointx on B. In terms of#, it is given by 1/G'(0) G'(\)

N _E(G(O)_G()\))

AEex;{J d)\e()\)}. (15 _
0 1 .G'(\)?
- —J ———+5(0)

The physical intuition for Eq(14) is simple. As we parallel 2Jo  G(A)?
propagate a small coordinate patch of ad®a\/h(x) from (il
the point &,0) onB to the point &,\) on the lightsheet, the
area contracts tod?xyh(x).A(x,\). The proper three- 1G'(\) 1 _G'(N)?
dimensional volume of an infinitesimal cube of the lightsheet Y G EJO G2
is d2xd\ Vh(x) A(x,\), and this volume times(x,\) gives (M)
the entropy flux passing through that cube. In order to prove 1G'(\)
the generalized entropy bound, it is sufficient to prove that <- > W

foldxs(A)A(k)ﬂ %[1—A(1)] (16) Consequently,

1 111
. , , f d)\s()\)G()\)zs——J’ dAG(N)G'(N)
for each of the geodesics that comprise the lightsheet. 0 2)o

Using a mostly positive metric signature, the assumed en- 1
tropy conditions are = ZTA0) = A(D]1. 19
i. §'<27T k2P 2[A0)—A(1)] (19
. S
Ii. (0)=—3.A4'(0), We have shown that, given our entropy conditions, the en-

where we use the notation, both here and henceforth, th . - . )
primes denote differentiation with respect to the affine pa:?‘)py passing through a lightsheet is bounded by one-quarter

he difference in area of the two bounding spatial surfaces.

rameterh. Conditioni is very similar to one of the condi- This s precisely the statement of the generalized Bousso
tions in[6]. It can be interpreted as the requirement that thg,q;ng.

We thank Raphael Bousso and Eanna Flanagan for explaining?lt is interesting to note that large negative energy fluxes may
this proof prior to publication. eventually constrain the entropy flux to be negative.
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It is interesting to note that nowhere in the proof did wetify the “area” of a point as being proportional to the factor
need to use the contracting lightsheet condition. The onlynultiplying the Ricci scalar in the Lagrange density. If that
indication that we should choose a contracting lightsheetvere not convincing enough, we could study the thermody-
comes from the boundary condition ii. We see from condi-namics of a black hole solution of the two-dimensional
tion ii that, in order to allow a positive, future-directed en- model. In particular, we would first determine the mass of a
tropy flux, the derivative ofA must be negative. If the light- stationary black hole solution and then compute the tempera-
sheet were expanding at=0, then a timelike entropy flux ture of the Hawking radiation on this geomefiiyeglecting
would have to be past-directed Xat0. backreactiop Integrating the thermodynamic identityS

Note also that Bousso’s entropy bound can be saturateddM/T and identifying S as one-quarter the area of the
only if G'=0 for all \. In light of the Raychaudhuri equa- event horizon, we arrive at an expression for the area of the
tion (18), we see thafl,, and the shear,, must be zero event horizon in terms of the local values of the various
everywhere along the lightsheet in order f8f to remain fields there. We then designate this function of local fields as
zero. The bound can be saturated only in this most triviathe expression that gives us the “area” of any point in the
scenario. This will not be the case for other gravitationaltwo-dimensional space.
theories we will study, such as the CGHS dilaton model, Deriving the two-dimensional entropy conditions is a
where saturation of the bound can occur in the presence sfimple matter of rewriting the four-dimensional conditions in
matter. terms of two-dimensional tensors. For example, we replace

T with (1/47)e?¢T,,. We are also interested in the two-
B. Spherical reduction dimensional entropy qu>s€4)which(4i)s related gz the four-
Our goal is to study the entropy bound in two dimensionald'me.nS'(.)nal entropy flws, ™ by ;= (1/4m)e"s, . This
models where our semiclassical analysis will be greatly Sim_relatlon is a simple consequence of the fact that the 2D flux

plified. As a guide to what phenomenological conditions Weat a point equals the 4D flux up to an overall factor of the

should be using in 2D models, we will first rederive the area of the correspondirf. Replacing 4D tensors with 2D

previous proof for the purely spherical sector of 4D Einstein-ten.sor_sé(;Ne a;”ye at the fg"SW'”g entropy conditions:
: ; i. e 2%(se?) <27T kK
Hilbert gravity.

N R
We begin with the 4D Einstein-Hilbert action coupled to S(0)= 4AC'(O).' a .
some matter Lagrangian densitj,, Note that we continue to use= —k®s, and primes denot-

ing d/d\. Putting it all together, the derivation of the entropy

R®) bound goes through in the same way as it did in the 4D case.
J d4x\/_g(45(ﬁ+£$§))- (20 in detail, we find
Writing the four-dimensional metric as s()\)=e*2‘/’(x)fxd7\[s(7\)e2¢’(x)]’+e*2¢’(”s(0)e2¢’(°)
0
(ds)P=g,,,(x)dx“dx” 0
i
+e2%9(d9%+sif9de?),
N ~
—2¢(\) N 26\, aLb Y
w,ve{0,1}, (21) <e fo dA27e”? MK T 4p(N)
and integrating over the angular coordinates we find the ac- +e 2%Mg(0)e?4(0)
tion is reduced to
(eom)
d?x\/—gle ?¢ 1R+E Y +1 20+ A 5 :
ge 2 29 W $3,¢ 2e m|- =—27re’2¢()‘)J' dx (e~ ¢()yred()
(22 0
—2¢(\) 2¢(0)
Here, the 2D matter Lagrangian density, is related taZ () te s(0)e
by ——2me YN[~ ¢'(\)+¢'(0)]
Lo=4me 2L, (23 N
—2we*2¢(*>f d\[¢'(N)]?+e 2¢Mg(0)e?¢(0)
From the equations of motion, we conclude that 0
K3KPT,, = — e~ *k2kPV, Ve~ %, (24) (i)

}\' ~ ~
wheneverk is a null vector. In this expressiof, is the <—w(e’2¢(*))’—2we*2¢(*)f d\[¢'(X)]?
energy-momentum tensor fak,, not £ 0

It is clear from the four-dimensional metric that the clas- <— (e 20y’

sical “area” of a point in the 2D model iAy=4me 2.
However, had we only been given the action, we could idenTherefore,
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1 ii
J dAs(N) < (e 240 —g=2¢(1)) W
0 <-—2(e 24Ny,
1 ) . .
= Z[Acl(o)—Acl(l)L (25) Therefore, we find the desired relation,
1
which is exactly the 4D entropy bound, only derived from fo dAs(\)<2(e 240 —g~2¢(1))
the 2D perspective.
1
C. CGHS = 7[A(0)—Ag(1)]. (28)
Although we have derived an entropy bound in a 2D
model using 2D entropy conditions, we were guaranteed suc- D. CGHS in Kruskal gauge

cess since we had spherically reduced a successful 4D proof.
We now attempt to apply the same entropy conditions t . . . . .
another 2D diIaFt)on graF\)/Fi)t))// model, namely tt?g CGHS mode?bound with r_n_anlfestly covariant equations of motion and
[9]. The CGHS model can also be derived as the sphericzﬁntmpy conditions. However, once we add the one-loop trace
reduction of a 4D model, but with charges. In what foIIows,ggrc:Tr?lg’omgrigl Orgﬁ aebliltj?ﬂ?:rtﬁ]'gréocgbfg;@&?ﬁoﬁg”;?é
we will work purely at the 2D level without any recourse to ontormag gauge. ' .
higher-dimensional physics. The CGHS action coupledl to greatly simplified in Kruskal gauge. Therefore, it behooves

. : ) o us to rederive the CGHS result in Kruskal gauge.
conformal matter fields with Lagrangian densiy, is We will assume that the lightsheet moves in the decreas-

ing x* direction. Our results for this past-directgd light-
f d?’x\—g{e " [R+4(V$)?+4]+ Lyt (260 sheet generalize simply to the other three possible lightsheet
directions. Working with thex* lightsheet, we will be inter-

In the previous section, we derived the CGHS entropy

For a null vectork?, the equations of motion give ested in the following equation of motion:
KK°T ap= — 26~ *kK°V, Ve * Ti,=—2e 'V,V.e ’+2V,e ?V,e ?. (29
+2k3k°V,e” ?V, e ?. (270 In conformal gauge, the right-hand side can be written as

_ _ _ 2e 299,90, p—2d,pd, ). In Kruskal gauge, we sep
To determine the classical “area” of a point, we look at the = 4 5o this becomes

coefficient of the Ricci scalar and learn that it is proportional
to e 2%. By studying black hole thermodynamics, the con- T,.,=—0d,9.e %% (30
stant of proportionality can be fixed #g,=8e 2%. _ . . oy

To prove the entropy bound, we start with the following ~ Sincek™=—dx™/dx=e™=? in Kruskal gauge, our en-

assumptions: tropy conditions can be rewritten in Kruskal gauge coordi-
i. €7 2¢(s&?) < 2T, k3P nates as
ii. s(0)<—3A4(0). .8, <2T, |
We will continue to uses=—k?s, and primes denoting i —S+(Xg)<%d+Ac(Xo).-

d/d\. Putting it all together, we find Recall thats=—k™s, , so—s, is positive so long as the

proper entropy fluxs is positive.

N ~ Applying these conditions, we find
S(N) =240 J dX[s(V) €240’ + e~ 2¢0)5(0)e24(0) PPYINg
0

.
X, ~ ~
0} —S+(X+)=fodx+(9+8+(x+)—s+(X§)
)\' —~ ~ ~
$2e*2¢’(")f dxe??MKkAKPT  (N) (i)
0
—2¢(\) 2¢(0) o ~
+e S(O)e $2fxxde+T++(X+)_S+(Xg)
(eom)
N ~ - (eom)
= _4e_2¢()\)f d)\(e_q}()\))”eqﬁ(}\)+4e_2¢()\)
0 B +
=29,e ] =s.(xg)
>\ ~ ~
xJ dX[ ¢’ (X)]?+e 2¢Ms(0)e?#(©) (i
0
=—4e 2N —¢'(N\)+ ¢'(0)] $2(7+e*2¢(x+).
+e~2¢Mg(0)e24(®) We find that
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1 o~ o~ 12 6 1 N
_ | gyt + - —2é4 T 4 —
jo drs(N) Lg dx"s,(xM) Q N € + 5 + 4Iog48. (39

_ fxgd~+ Ce, () Thet. term in Eq.(37) accounts for the normal-ordering
- x; X' [=s.(x7)] ambiguity. We wish to consider semiclassical excitations
built on the vacuum state which has no positive frequency
excitations according to inertial observers Bn. These in-
ertial coordinatesg™, are related to the Kruskal coordinates
by

1
= Z[Acl(o)_Acl(l)]- (31)

Had we chosen the future-directgd lightsheet, then we .
would havek™=gx"/dx=e"?? and our entropy conditions x'=e’, x =—e . (39
would have beend,(—s,)<2T,, and —s, (X;)< _ . _
—29,A4(xg). The extension tox~ lightsheets is trivial. For coherent states built on this vacuum,t.. =0 in o co-

ordinates. Its value in Kruskal coordinates is given by the

Schwarzian transformation law as
VI. STATING AND PROVING A QUANTUM BOUSSO

BOUND

1
The classical CGHS action is te=— 4(x*)?2 (40
— | d2xJ—=qgle 2¢[R+4(V )2+ 41+ L., As worked out in[12], the classical “area” of a point in
Scaks j gle ™1 (V)" 4]+ Ln} the RST model is
) . - . N N N
For N conformal matter fields, Hawking radiation and its Ay =8e 24— §¢— 5 €|094_8' (41

backreaction on the geometry can be accounted for by add-
ing to the classical CGHS action the nonlocal term

N
Su=— 25 /=900

For coherent states built on tlevacuum, the renormalized
entanglement entropy across a point has a local contribution

1| N ll X~ 42
¢+ 510935+ 510g(—x"x7) . (42

N
X | d®'V—g(x")R(X)G(x,x")R(x"), (33 Sen= g

. . . The full entanglement entropy also has an infrared term
’ ’ 2
whereG(x,x’) is the Green's function fov~. This is a one aﬁhiCh is not locally associated to the horizon and so is not

:oog_ quan(;um_ cor{:‘acnon bL.n It Ar‘ltet\r/werthelelss c?ntnlbltjrt]es cluded here. Sel2] for a detailed derivation and discus-
eading order in a N expansion. e one loop level, there g0 o< ihese points.

is the freedom of also adding a local cou_nterterm to the ac- Now, Q can be written as
tion. The large N theory becomes analytically soluble if we
add the following judiciously chosen local counterterm to the
action[8]:

3 1 1
Q= m(AC,+4Sem)— zlog(—x*x*)— log 2+ 7

N
Su= 2z f d?x\—go¢R. (34) (43)

Differentiating, we obtain
The full action for the RST model is then

1
Srst= SceHsT SpLt Syt (35 QA+ —=

" mo".,_Aqu. (44

We can once again choose Kruskal gauge, but this time ) )
p=¢+11log(N/12). In conformal and Kruskal gauges, the When analyzing the RST model, we will leave entropy

equations of motion become conditioni unchanged. In the formulation of ii, we will re-
place Ay with Ay, =Ay+4Sey. In Kruskal coordinates,
d;9_Q=-1, (36)  these become
and i 0,5, <2T
32():_1_21' —t (37) i. _S+(X5r)$%(9+Aqu(xg)_3+(x+)
+ N =+ +

=fo dx" .5, (X)) — s, (%)

where X
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0]
szfxf dX T, (X)) =5, (x3)
X
(eom)
N 1 o+
:g<(9+Q+4X—+)]X5—S+(X8—)
1 N\
=(Zﬁ+Aqu—E>]xg—S+(Xg)
(i)
L e N1 N1
< — e
T T eI
sla Ag(xH)
4 +Mqu .
We find
1 + -
J dxs(x):ijdx+s+(x+)
0 Xg
:fxfd3<+[—s+(?<+)]
X1
1
= Z[Aqu(o) _Aqu(l)]- (45)

PHYSICAL REVIEW Dr0, 044007 (2004

With our entropy conditions, we see that the covariant en-
tropy bound is satisfied once we replakg with A, .

It is interesting to note that the quantum Bousso bound
cannot be saturated for coherent states built on dhe
vacuum. The obstruction to saturation is the terNY24)
[(1/g)—(1/x*)] that shows up in the calculation of
—s,(x™). However, had we built our state on top of the
Kruskal vacuum(i.e., the Hartle-Hawking statewe would
havet, =0 and S.,=(N/6)[ ¢+ 3 log(N/12)]. As a result,
both our equations of motion and our definition/f, would
change in a way that eliminates theN/@4) (1/xy)
—(1/x™)] term from the calculations. The quantum Bousso
bound will then be saturated any time the two entropy con-
ditions are saturated.
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