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We consider late-time cosmology in(phantom scalar-tensor theory with an exponential potential, as a
dark-energy model with equation of state parameter closelda bit above or below this valjieScalar(and
also other kinds of matter can be easily taken into account. An exact spatially flat FRW cosmology is
constructed for such theory, which admiéternal or transieitacceleration phases for the current universe, in
correspondence with observational results. Some remarks on the possible origin of the phantom, starting from
a more fundamental theory, are also made. It is shown that quantum gravity effects may poevankeast,
delay or softephthe cosmic doomsday catastrophe associated with the phantom, i.e., the otherwise unavoidable
finite-time future singularity(Big Rip). A dark-energy modelhigher-derivative scalar-tensor thepig intro-
duced, and it is shown to admit an effective phantom and/or quintessence description with a transient accel-
eration phase. In this case, gravity favors that an initially insignificant portion of dark energy becomes domi-
nant over the standard matter and radiation components in the evolution process.
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[. INTRODUCTION still quite far from the final goal: the formulation of a plau-
sible and consistent dark-energy theory.

Recent astrophysical data, ranging from high redshift sur- Another line of research is related with the case where the
veys of supernovae to WMAP observations, indicate thatlark-energy equation of state parameter is less thdn
about 70 % of the total energy of our universe is to be attribsince this possibility is not excluded by astrophysical data.
uted to a weird cosmic fluid with large and negative pressureMoreover, the recent Supernova d@fg favor the cosmo-
the dark energysee[1,2] for a recent reviey and that the logical models with suchv. The typical example of a dark
universe is currently in an accelerating phase. It also turnenergy of this kind is provided by a scalar field with negative
out that the dark-energy equation of state parametéas kinetic energy, dubbed phantoisee[6,7] and references
close to—1. So far, the simplest possibility proposed for this therein. At first sight, such models may look rather strange
kind of dark energy is the use of a scalar fi¢tt a scalar- and they lead to a number of unpleasant consequences, as a
tensor theory However, scalar-tensor theories are not freefinite-time future singularitythe Big Rip [8—10]. Neverthe-
from problems, especially when they are considered directlyess, the possibility of negative energies seems to be accept-
as dark-energy candidates. able in classical scalar-tensor theories. Actually, many of

Much attention has been drawn by scalar fields in studieshem do contain phantoms, as the ones coming from string
of the early time universe. A variety of scalar potentials hasand/or M-theory compactification, or higher-derivative su-
been considered and a number of accelerainijptionaryy  pergravities, or modifications of Einstein gravity itself. In
cosmologies have been advocated. For instance, the intereftet, the issue is somehow delicate, since what looks like a
ing quintessence modg3] with w slightly bigger than—1is  phantom in one reference frame may radically change its
quite popular for the explanation of earlfand late} time  nature in another framée.g., after a conformal transforma-
acceleration, especially in the case of exponential potentialgon). In this sense, even in the absence of fundamental,
[4]. Moreover, exponential scalar potentials often appeaphysical meaning the phantom can be still useful as a con-
naturally after compactification in string and/or M-theory. venient mathematical tool in order to study cosmological
Needless to say, such a description is model-dependent andritodels in standard scalar-tensor theories because a phantom-

related frame may lead to a simpler formulation of the prob-

lem. Finally, there are examples where an effective phantom
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considered as a dark energy, and the possibility of deriving phanton6,7]. We should note, however, thatneed not
the current speed-up is shown also in the presence of mattdye negative in order to obtain the accelerated universe as we
Exact FRW cosmologies are constructed for thbantom  will later see. As the matter scalgrdoes not couple witkp
scalar-tensor theory with an exponential potential, a modediirectly, the equivalence principle is not violated, although
that can be important for understanding attractors and ththe effective gravitational coupling depends ap as
stability properties. The possibility of avoiding the unwantedxe™ (“*#?. One may go to the Einstein frame by the scale
Big Rip by simply taking into account quantum gravity ef- transformation
fects, which may become dominant near future singularity, is
demonstrated. Finally, the present dark-energy dominance g,,=e [2d=2leg, . 2
and acceleration, within the effective phantom and/or quin-
tessence description, is discussed in the model where a foria the following, the quantities in the Einstein frame are
of higher-derivative, gravity-matter coupling is introduced. denoted by the indek. After the transformation(2), the

The organization of the paper is the following: In Sec. Il action(1) has the following form:
spatially flat FRW cosmological solutions are discussed for
scalar-tensor gravity with scalar matter. Explicit examples of 10 & — (d-1)a® y v
acceleratindand deceleratingscale factors are presented for S= FJ d'xv—ge RE_( d—2 2|9 9uddé
exponential potentials when the theory contains one or two
scalar fields. In Sec. Ill the general solution for a spatially — g [2a/(d=2)]dy/( ) +f d\—g
flat FRW cosmology, which includes eternal or transient ac- E
celeration, is found in thdphantom scalar-tensor theory
with exponential potential. This is based on the use and ex- «
tension of a method recently developed by Rusk®]. The
comparison with particular solutions of Sec. Il is done. Sec-
tion IV is devoted to the study of the influence of quantumIn the Einstein frame, there appears a term coupling the mat-
gravity effects on the Big Rip singularity in phantom cos-ter x with ¢. Even if y is negative, when
mology. It is shown that taking them into account properly
may change the future of the universe, from that with a (d-1)a?
finite-time singularity to an ordinary de Sitter space. In Sec. d-2
V a higher-derivative matter-gravity coupling is suggested as
a sort of dark-energy model. It admits an effectively phantonthe kinetic energy of¢p becomes positive, as for a usual
and/or quintessence description and does explain the currestalar field. Hence, the remarkable observation follows that,
dark-energy dominance over standard matter by gravity aswhat is a phantom in one frame may not be a phantom in a
sistance. Stability analysis of the model demonstrates that thgifferent frame, especially if the coupling is taken into ac-
acceleration phase is actually transient. A summary and outount.
look are given in the discussion. In the Appendix we outline As a first step, one considers tde=4 case and assumes
how the (phantom scalar-tensor theory may originate, via y — 0. We now definep andV(¢) as
compactification, from a higher-dimensiorglipej gravity.

4
2

g’évﬁﬂxﬁyx—e“d“’(dZ)MU(X))- ©)

Y
+ §> 0, (4)

Y ~
— 2, —aad
Il. EXAMPLES OF THE ACCELERATING UNIVERSE p=¢\ et 3 Vig)=e “V(4), ®)
IN (PHANTOM ) SCALAR-TENSOR THEORIES

We start from the action of multiscalar-tensor theory. Sev-and assume that the metric has the FRW form in flat space

eral illustrative examples of th@ccelerating FRW cosmol-

ogy will be presented here as simple dark-energy models dséz—dtéjLaE(tE)Z' E (dxH2. (6)
(se€[1,2] for a recent review A scalar field,¢», which may i=123

be later regarded as a phantom, couples with gravity. As is ) ) ) ) ) )

typical in these models, a second scalar figld,is consid- Heretg is the time coo_rdlnate in '_[he Einstein frame. W_hﬁn
ered. The string-inspired Lagrangian in tdedimensional ~ Only depends on the time coordinate, the FRW equation and

spacetime is ¢ equation follow:
de\? 1.
1 y 2_2(2%) =
5= f ddw—gew(R—Eamm—vw) SHe 4(th TaVie) @
1 d?¢ de\ -
+f ddx\/—g(——aﬂ)(a“x—U(X)>. (1) 0=3| -5 +3Hg— | +V' (o). ®
2 dtg dte

Here a and y are constant parameters avifl$) (U(x)) is  Here the Hubble parametén the Einstein frameis defined
the potential forg (x). If the constant parameteris nega- by Hg=(1/ag)(dag/dtg). Note that models of this type
tive, ¢ has a negative kinetic energy and can be regarded asay have a double interpretation: as multiscalar-tensor theo-

043539-2



LATE-TIME COSMOLOGY IN A (PHANTOM) SCALAR- . . . PHYSICAL REVIEW D 70, 043539 (2004

ries or as matter-scalar-tensor theories. In other words, some
scalars may be considered as matter or as part of a gravita- a=e (g =3,
tional theory. It has been suggested that such models may
describe the inflationary early universe as quintessgBe
Special attention in cosmology has been paid to exponen-
tial potentials[4], which often follow from string and/or

M-theory compactification. I¥(¢) behaves as an exponen-

tial function of ¢ b= ﬁzfplz))ln%. (15)
- 0] 0

te )[(3/4>¢§—ﬂ¢oJ
teo

: (14

t \ 15— Beo 11— (Be/2)T}
=3ago )

to

Y ~ —2(¢/ @)
V() ~Voe 2(¢/%0 ©  Here
(Vo and ¢o are constanjsduring some period, as in the o teo
present universe, the solution @f and(8) exists = tp=———. (16)
P Eom O 1-(Bed2)
2
tg | G te _ o .
ag=ago| {_ , (p:(polnt—_ (100  Then, cosmic acceleratiom>0 anda>0) occurs when
EO E
470 2\/a2+(7/3)>1 a7
) 1 (27 ) 3) 1) 1 Qo
=00 \Vy | g% 5/ N
FOOTON VY, 870 2 2\ o+ (yl3)
In the original(Jordan frame (1), the time coordinaté and By properly choosing the parametets ¢y, and vy, the
scale factora(t) in the FRW form of the metric present cosmic acceleration can be realized. For the matter
with p=wp, wherep is the pressure angd is the energy
. density,
ds?’=—dt?+a(t)? >, (dx)?, (12)
i=1,2,3 aoctl2Bw+1)] (18)
are related with the corresponding quantities in the EinsteiThen, effectively
frame (6) by
Yo
B‘PO/Z ~ - 2—)
dt:e—(a/2)¢th: EO d(t]é_(B‘PO/Z))' (13) W= —1+ 3 2\ o +('y/3) _ <p0(2,8—9<po)+8
1= (Beol2) 3, oo 3(26-3¢0)¢p
e
47" 2\a?+(yl3)
The action(1) with the potential(9) belongs to the class dis- (19
cussed in11]. In fact if we redefine the field> by ) ) )
2] As w diverges when the denominator in the second term
b= _7e(a/2)¢, vanishesw can take any value by properly choosiag ¢,
o

. . and y. For example, if
the action(1) can be rewritten as

1 1
= dy /— F— — Pox
S Kzf d®x./ g(F(d))R+2aMCI>(7“<D U((I))) n 0 —2 (20)
Vac+(yI3)
1
dy [—ql = = — . . .
+f d® 9( 5 IuX "X U(X))- thenw=—1. Several interesting cases deserve attention
Here , 4
2 4111+ (B when¢g>=
F(®)= a_¢,2 U(d)=V ﬁ
Ay %\ 2T
. Pox
Then, one can use the same arguments &%lihin order to fit the w<-1 if E(p§>+>2
parameters so that they satisfy the present cosmological data. The Va©+(yI3)
nonminimal scalar-gravitational coupling term, which is required by o o
renormalizability of the quantum-field theory in curved spacetime w>—1 if L>_(P(2) or L< 2,
[12,13, may have very interesting effects on the phantom cosmol- Jal+(y13) 2 Vel + (v13)
ogy (see[14] for a recent discussign (21
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4 d?¢ de\ -~ Bk? dy\?2
2<_ = - 4 T o Bel
when ¢g 3 0=3 thE+3HEth +V'(p)+ 5 e dte
—ZﬂK2872B¢U(X), (28
w<—1 if 252 3 2
JaZ+(y3) 27° d d d
e+ (73 0=—|e e X +3HEe‘ﬁ‘P—X+e‘25‘PU’()().
dtg dte dte
. Pox 3 2 Pox
w>—1 if =<5 %0 O —>2 (29
Ja?+ (y13) Va?+(y13)
(220 We again assume the exponential potentials
As is clear from(18), cosmic accelerationa(>0) occurs V(g)=Ve @e)¢  U(y)=Uox* Whe (30
when
The following ansatz exists
_1
w<-— 3. (23) ho te te Bel2
He=—, ¢=¢on:—, x=xo|:— (3D
te teo teo

Whenw< —1, the universe is not expanding but shrinking,
although the universe is still accelerating. In the case
—1, if we change the direction of time &s-t,—t, the uni-
verse is both accelerating and expanding.

In the special case whem=— 3, we find

The parameterhg, tgg, andyg should be a solution of the
following algebraic equations, which can be obtained from

(27—(29):
1
2

202 2.2
KB PoXo
Votgo+

2 4 _ 2 3 2
g3=1. (24) 0=—3n3+ 2 o3+ —

the tha_t even whewy is positive, e.g., the k!netic energy of N K_ZU {2 A= (lBeo)
¢ is positive as for usual matter, the effectiwecan still be 2 -0tEoXo '
less than—1. For example, with the choice

2Vot2, Kk2B3p2x3
0=3(— g+ 3hgeg) — T, A
Y 8
¢o=4, —5=3, (25) %o
4—(4),
_ZKZBUotéoXO ( B‘Po),

it follows that 8= %, and from(19),

0=
11y2+203 2

eol Be 3hyBe
ﬁ O(B 0 ]> OB 0
513 - 105...<-1 (26)

2 2
W:

1 _
+4U0t§0(1— B_<p) xo (e, (32)
Note that the above considerations are applicable both for the 0
early- as well as for the late-time universe. Indeed, thg-q instance. for the special example

simple solution under discussidespecially, the no-phantom
case has been considered in different situations. Later on,
eo=\E, B=2VE, V=0,

the general solution for the scalar-tensor theory with an ex- (33
ponential potential will be discussed. With a known generalh licit solution foll )
solution, it is much easier to understand the type of situation"® explicit solution follows:
that appears, be it is a transidnot eternal acceleration or an
. 5 J5 3
attractor or something else. ho=— _v- 34
. . . 0 » - Xo ) EO (34)
In the previous example the matter fieldis zero (y 12 3k 8Up
=0). We now consider the case g 0, which is closely ) )
related with the so-called double-quintessence migigl In -~ Using (16) and (33), one arrives at
the Einstein framé3), the FRW equationy equation, angy
equation have the following form: y=— 1o’ (35
, 3(de 2 1. k?  [dy)\? Then ¢ is surely a phantom with negative kinetic energy in
SHe= 7l g TaV(e) e pe T the physical Jordan framél). Since U(x)=Uyx? U(x)
corresponds to a mass term and the nragss given by
2
K
—2
+ e *PeU(y), (27) m2=2U,. (36)

043539-4



LATE-TIME COSMOLOGY IN A (PHANTOM) SCALAR-. . .

Also

V3

o (37)

tgo=

Since dt: iei(a(b/z)th: ie*(ﬁgo/Z)th: * (tEO/tE)th y
we find

t te

—==*In—. (39
teo
Then, in the physical Jordan frame one gets

— aEOeI (71/12{E0), (39)

tE —(7112)
a= ef(mﬁ/z)aE: ago t—>

B 2 tg 2
$="p="In—=="

(40)
o tEO

t
teo’

te .

X= Xot— = X0e7 (t/tEO)_
EO

(41)

Since the scale fact@behaves as an exponential function of

t, the Hubble parametéi is a constant

7 _Tm,
+12tEo +6\/§'

which is linear in the mass, of x. Equation(42) also tells
that the effectivev is —1 (similar to the cosmological con-
stani.

H (42

As a different, more complicated example one can con-

sider the case whea=0, and thereforg8=0, but the po-
tential depends on bot# and y,

1 3
SZI d4x\/—g[F(R— §3MQD§“¢>

1
- §8ﬂxﬁ"x—W(<P,X))- (43

As a=0, the Einstein frame can be regarded as a trul

physical one. Then the equations correspondin@%—(29)

are
3H2=2(%—f>2+%2(z—): 2+ K;W(cp,x). (44)
ozs(c:—tf+3Hi—f +K2W (0, X), (45)
0=(Z%+3HZ—):+W’X((,D,X). (46)

Here the derivative ofV(¢, x) with respect top (y) is ex-
pressed a8V ,(¢,x) (W,(¢,x)). The case of the exponen-
tial potentialW( ¢, x) may be of interest

PHYSICAL REVIEW D 70, 043539 (2004

W( @, x) = WoeXox—L(2+n)leole, 47)

whereW,, 7, xo, andeq are constant parameters. Assuming

ho

t t
H=—, o¢=¢on—, x=xon—, (48
t t to

with constantshy andt,, Egs.(44)—(46) reduce to the fol-

lowing algebraic equations:

K ZWOtg
2 1

3¢5 KXh
+—4 =4
4 4

0=-3hj

0=3¢3(—1+3hg)— (2+ 1) k?Wt3,

0=3x3(—1+3hg) + 7x?W,t3. (49)
Equation(49) give
37
K2x5=— mq%, (50
3¢5
3¢5(3ho—1)
K?Wg SZT (52
Equation(50) shows that
—2<9<0. (53
The effectivew is given by
S N W 54
W=t g, T T g =9

As discussed ir{53), asw>—1 we do not have a phantom.
If the second term ir{54) is small, one may obtain quintes-
sence.

Other types of matter can be easily considered too. For
)jnstance, matter may be dust. The energy densijty;in the
Jordan framg1) behaves apq,ca 3. Then

- -3 -3
Pdust= Pod 3:Poe(&ﬂzwélE :Poe(sﬁlz)(PaE + Paust= 0.

(59

It is well known that dust has no pressure. It could corre-
spond to the baryon and/or cold dark-matter components.
Instead of(27) and (28), we obtain the following equations
of motion in the Einstein frame:

3(de\? 1. K> B
SHEZZ(d_tE +5V(e)+ e (B2 poag ®, (56)
d’e de)| o Br® .
=3 W‘F\?’HEd—tE +V’(<p)—7e wm)“’panS.
E
(57
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With the form of V(¢) as in(30), the solution occurs

te te | (23)-(Beol®)
p=poln—, ag=ap t_) (58)
EO EO
Here
2 BZo5+ 905~ 9B
0 6V, ’
2.~ (Beol2)( p2,.2 2
pok°e (B¢51+9¢5—9B¢0)
ad= 0~ . (59

2Vo(8—2B¢o—9¢))

The time-coordinaté in the Jordan frame is given by

t te | 17 (Beol2) 2t
to \teo Beo
and the scale factor can be obtained
t | (23)[2(1=Be)/(2= Beo)]
a=ag| — (61
to
The effectivew is found to be
2—Beg
w=—14+——-—-—. 62
2(1- Beg) 62
Hence, if

w<-—1. If we assumeV/,>0 (andt3>0 and poya, >>0),
Eq. (59) requires

B2e5+9¢5-9B¢o>0, 8-2Bpy—9¢5>0, (64
which give B2¢3—118¢y+8>, that is,
11—/89 11+./89
Beo<———— OF Beo>——F . (65
Numerically, B¢y<0.783... or B¢y>14.933...,

which contradict the results i(63), and there is no acceler-
ating universe. With the assumptidfy<0, the accelerating
universe takes over. For instance, with the chqiug,=3
and ¢3=% (B=+% and ¢y==*3%), we obtain t3

= — (41/24/,) andad= —[pore (Fed[2V ],

PHYSICAL REVIEW D70, 043539 (2004
1 1 1 s N
;2 R,uv_ Eg/.LVR = E(TMV_l—T,lLV)’

1 Y
TﬁvE ;2[ - Eap¢ap¢g,uv+ yaﬂ¢av¢_v( ¢)gp,v

+2e %%V, V,(e"%) ~ 29,6 *¢V(e*?)

1
T,Xw:e_‘“’s( = 59X XGuvt IuXIuX U(X)g,w) :
(66)
¢ .
Ty, and Ty, may be regarded as the effective energy-

momentum tensor op andy, respectively. In particular, in
the FRW metric(12), we find

T;’:=p"’=i[%¢2+V<¢>—6aH¢],

K2

Ti=p*=e ¢

1.,
X TU

1 . .
Tf?=p¢a26u=7[%¢2—V<¢>+2a¢>

+2a2¢%+4aH £;5) a3y,

1.
TX =p*a’s;; =e“"’|§)(2— U(X)] as;; .
(67)

The effectivew? andw* can be defined as follows:

¢ X
p p
wl=—, wX=—

; =t (68

For the first example if13)—(15), it follows that

_ 3(28—3¢0)%¢}
_@)2’
2

¢

p
8K2t2( 1

(2B8—3¢0){¢5(28B—9¢0)+8¢o}

2 ]
8K2t2( 1- %)
2

pl= (69)

which agrees withw=p/p=p,/p4 in (19). Note that the
consideration of various entropies for dark-energy models

Going back to the case of two scalars, by variation over 2The usual energy-momentum tens@i&) given by the variation

g, the Einstein equation follows:

overg,,, are related withT &} by 79:¥=e*¢T%x.
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can be done and then interesting holographic relation§or the standard scalar>0 and one can normalizé to be

among them occufsee[16] for a recent discussion v=1, but for the phantom field with negative kinetic term,
For the second example (89), one gets we havey<O0.
For the FRW metric
p’= 1242 ;o pi=- 129 ’ i
9k“tgg 9ktgg ds’= —dt2+a(t)2 (dX')z, (75)
i=1,2,3
35 5 . .
pX= . p¢= i (700 the action(74) can be rewritten as
72622, 72122,
1 . V.
Hence, S= ?f d3xdt[—6aa2+a3 §¢2—V(¢))]. (76)
wé=— 19 wxX=1 (71) . .
14 7. The potentiaM(¢) is chosen to be
However, since V() =Vge (290, (77

with constantsV, and ¢.
First we review the standard case wigh-0 following to

[18]. The field variables and ¢ are written in terms of new

it turns out thatw= —1, which is consistent witti42). We  fieldsv andu as

should also note that, in the Einstein frarf®, ¢ has a

positive kinetic energy.

p?+p¥=—(p?+pY)= : (72

726%tE,

— o+u)3 _2(v—u)
For the case of48) with (50)—(52) we find a= . 9= By (78)
3., 1. 18¢2h, , o
_ 2, =12 _ and a new time variable is defined by
Y ZKZQD + 2)( +W(¢1X) 2t2K2(2+ 7]) ’
3Vo ., |
6¢3(2—3hg) d7=dt\/—8 o~ [200-0)/b\37] (79

P=5.2¢ X Wl x)= 5 2257
(73)  Then, the actior{76) acquires the following form:

which reproduce¢s4). Having these various examples of the 1 8V, dv du _
(acceleratedevolution of the current universe, one can com- S=-— 2 TJ 3xdr] Py +1 | tumalmu),
pare it with recent astrophysical data in the way discussed

recently in[2,17]. Of course, above illustrative examples of 5

current speed-up may correspond to transient acceleration. In
other words, stability of the solutions pretending to be real- ¢0\/3y'
istic ones should be investigated in detail.

(80)

Varying overv andu, the equations of motion follow:
Ill. EXACT FRW COSMOLOGY FOR THE (PHANTOM )

2 2
SCALAR-TENSOR THEORY WITH AN EXPONENTIAL _ d“u — (du —
POTENTIAL O0=gz+(1+a) dr> (1-a), (81
In this section the exact FRW cosmology in {p&hantom) q2 2
. . ! : . v — [du —
scalar-tensor theory with an exponential potential will be dis- 0=——+(1— a)<_ —(1+a). (82
cussed. First, the method that is appropriate to obtain the dr dr

exact FRW solutions will be reviewdd 8] (for introduction

of similar variables in quantum cosmology, §46]). Subse- Since the Hamiltoniat conjugate tor is given by

quently, the formulation is extended to the phantom case
with a negative kinetic term. _ i 8Vo 3 do du _ +u—a(v—u)
! ! . L H= 5 d°x 1l¢ , (83
The action of a scalar fielep coupled with gravity is K 3 drdr

. %f d4x\/—_g( R %&M¢&“¢—V(¢) 74 the Hamiltonian constrairtt =0 yields
dv du

This action can be regarded as the action withO in (1) or drdr b

that obtained by replacing (d—1)a?/d—2]+ y/2 and

e (2¢/d=2)¢y( ) in (3) with y/2 and V(¢), respectively. In terms of the new variableg and/, which are given by

(84)
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y=dl v y=glrau (85)

the equations of motion are

U _ d
—=(1-a?)U, d—=(1—a2)V. (86)

dr?
When|a|<1, the solution 0f86) is given by

Z/[:queT\lfaz_’_u7e77'\/lfaz

[1— a2 _ _ 2
V:v+e7\l a4y e 7 1 a, (87)

with constants of the integration. andv.. The Hamil-
tonian constraint84) restricts the constants as

U+U,:—U,U+. (88)

Then the spacetime metric has the following forbd]:

_ 8 (v+e‘r\/l—a2+v e—r\l—az);/(l—g)
3V, -

ds’=
X (u+e'T\ 17a2+ u_efﬂr\/lfaz)*[(zl(l+;)]d7_2

+ (U +eT\/1*a/2+ v e 7'\/17(12)2/[3(17;)]

% (u+eT\/l—a2+ u_e" T\/l—a2)2/[3(l+;)]

i=123

When r— +«, EQs.(78) and(79) give

a—v JJ.r/3(1— a)uJJ.r/3(l+ a)927/(3\/1— ai) ,

t—to, + 1_;2\/ o
— E—— -
0+ az 3\/0

Xvi/[z(l_ D[)]Ula/[Z(:H— a)]egzrl\/lfaz‘ (90)

Herety, is a constant of integration. Hencaae,ctz’?’o‘2 and the
universe is acceleratingita/dt?>0) if

2<

wWIN

(91)
Note that ifv _=u_=0, the behavior if90) is exact even if

7 is not large. The case with_=u_=0 corresponds to the
solution in Sec. Il. On the other hand, when> —x

. 1_’3(1’Z)u1_’3(”2)e’[(27’(3‘/17“2)],

1-2 |8
— 3V,

o 0

a

t—>t0__

 p @12(1= )]~ all2(1+ )] g~ (a?7/V1-a?) (92
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Herety_ is again a constant of integration. Thus, we fand

oc(—t)2’322, then the universe is shrinking but acc_elerating
(d%a/dt?>>0) if (91) is satisfied. To summarize the|<1
case, ifv_=u_=0 we find an eternal expanding solution as

in Sec. Il. In the general case, the solution is a bouncing
universe, where first the universe shrinks and then it ex-
pands.

When|a|>1, the solution 0f86) can be written as

U=u.coq 7V a?—1)+ugsin(rva?—1),
V=v.c0qmVa?—1)+vsinrVa’—1),

with constantsu., ug, v, andvg, which satisfy

(93
Vel vCs=0. (94)

The solution of(94) can be given by means of three inde-
pendent parametets,, Uy, 6y as

Vs=0oSiNGy, v=vgC0SHy, Ug=UyCOSHy,

UC: _Uosin 00. (95)
As a result, Eq(93) simplifies
V=0v4c08 7Va?—1-6p), U=uesin(TVa’—1-6).

(96)

As 6, can be absorbed into the constant shiftofin the
following we choosedy=0. The space-time metric looks as
follows:

ds2= — 8 7[22/<173)1u33/(1+2)

3V, °
x cos [24/(1=a)(71/q2—1)

s 2al(l+a)( [ 2al[3(1- )], 2all+a
><sm2”‘(1+"‘)(r az—l)de-i-vO [3( )]uo +

X o@D (7\a?— 1)sirRBA+ ) (1\[a2 1),

97)
There are singularities when
a?—1=nm, or (n+3i)m. (98)

Heren s an integer. If we writer astVa?—1=nm+&rand
assumedt is small, we find, by neglecting numerical factors,

t~(57')(2;+1)/(1+;), a~(57)1/[3(1+2)]Ntl/[3(23+1)]_
(99

Note that (2v+1)/(1+ a)>0 as|a|>1. Thenr=0 corre-
sponds tot=0. At t=0, the size of the universe diverges

(vanisheswhen 20+ 1<0 (2a+1>0). On the other hand,

if we write 7 as 7V a?— 1= (n+ w/2)7+ 87 and assumér
is small, we find, again neglecting numerical factors,

tw(éT)(l—ZZ)/(l—;), aw(57)1/[3(1—2)]~t1/[3(1—22)]_
(100
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Note that (- 2a+ 1)/(1—E)>0 once more, ane=0 cor-

responds td=0. Then, att=0 the size of the universe di-

verges(vanishep when 1-2a<0 (1—2a>0). These re-
sults for the standard scalar wit>0 are given in18].

PHYSICAL REVIEW D 70, 043539 (2004

2, 2"=-2.7%. (112
By using three real independent parametersand 6,, the
solution of(111) is given by

We now extend the above formulation to the case of a

phantom withy<<0. For this situation, we define a complex

field z and its complex conjugatg* by

. 2i(z—z*
a:e(z+z )/3, _ (—)' (101)
and define a new time variabteas in(79) by

dr==dt \/%e‘[Zi(Z‘Z*)"f’O"‘_SV]. (102

The action(76) becomes

1 /svof g
;2 X7'

+1 ez-*—z* —i?:(z—z*)_
(103

Here

- 2
o e —
boV—3y

The sign= in (103 corresponds to the sign i102). Vary-

(104

ing overz*, one obtains the following equation:
0= ¢z 1—im| 22 i 1+ia) 10
—F'F( —ia) E_ —(1+ia). ( 5)
Now, the HamiltoniarH conjugate tor is given by
1 /8V, 5 |dzdZ* e
=F—\/— —_ — —a(v—u)
H T2 3fdxd’rd7' 1€ !
(106

and the Hamiltonian constraint has the following form:

dzdz*_
dr dr

(107
By defining a new variable as
Z= e<1—i7:>Z, (108
Eqg. (1095 can be rewritten as
d’z

;=(1+a9)Z 109
The solution of(109) is given by

Z:Z+ervl+§2+z_efr\/1+;2, (110)

with complex constants of integratian. . The Hamiltonian
constraint(107) restricts the constants to satisfy

z.=b.,e% z_=ib_e %, (112

By using z. in (112), the metric of the spacetime has the

following form:

8 J1+a2 N1t al(1-ia)|24 .2
+z € 1 |“d 7

dszz 3V |{Z+

+{z, e P T\/1+§2}2/[3(1—ia)] 2

X > (dxh2, (113

i=1,2,3

When r— o, from (101) and(102), it follows that

273 1+a2)+2/[3(1+ ) IR{(1+ia)ln z, }

N - - -
tt, T ] 8 g rinne,)
e 3Vy

x e (?rN1+a?) (114

Heret, is a constant of the integration. Hencayx[ + (t
—t,)]~ @3 which tells that the universe is accelerating
sincedx 2a2(2a?+ 1)+ (t—t,)] @20, The effec-
tive w is given by

w=—1—a?<—1. (115

The case corresponds to a phantom. In general,

3;/02{1/[3(1—i;)]}—i;/(l—i?)—zz* U[B(L+ia)] +ial(1+ia)—2

A=
- e -
4(1;—a )322*2— 2(1+|a)(2:_3|a) "
9(1—ia)
2 1—-i 2+3i
(1-ia)( ) 7*7* 22|, (116

9(1+ia)

If |Z| is large, thena>0. We should note that when_
=0, Eq.(1149) gives an exact solution corresponding to those
in Sec. Il. In this case, Eq114) is valid even if|t| is not
small. The solution can be regarded as an attractor. In fact,
whent~t, , all the solutions behave as this one.

On the other hand, when— — one gets
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- 2 AIRA-i2) — 1
a~ e 27EV1H ]+ 213+ ANR(A-iain | S _%, (122)
o
Vita® [ 8 : i - -
et e N — the singularity corresponding te— —<« is cancelled, but
o2 3Vo there remains a singularity correspondingrte + . In the

o ) ) _ metric (118), the cosmological timd is defined bydt=
x g [l +adf-iahz jga?iVNiva? (117 =Pt then in case of(120, we find T=To+]t
—t.|@3)+1 Herel, is a constant of integration. The limit
t—t. (7— *) corresponds t?)—ffp. On the other hand, in

-~ = ~
the case of121), Tt +|t—t.| (#5391 Herety is a con-

stant of integration. IE?Z>§, t—t. (7— *) corresponds

Heret_ is a constant of integration again. Thusr (= (t

—t_))~ % and, once more, the universe is accelerating.
The solution(113 is almost given by the analytic con-

tinuationa— i« of that (89), which corresponds to the stan- -
dard (nonphantomscalar. The behavior obtained for the so-to t—to, again. Ifa®>3, howevert—t. (r— =) corre-
lution (113 is, however, rather different from the sponds tot— *=c. Hence, the singularity does not occur
nonphantom case. In the case of a nonphantom witl in ~ within finite time. This example shows that the tyjoe even
(89), which has been investigated [ih8], when|a|<0, the the presence itselbf the singularity is also related with the
behavior in(90) or (92) shows that there is a singularity only choice of physical metri¢frame).

in the infinite future or past, since— *%« corresponds td
—.+w%. On the other hand, Whehv|>0, the behavior in IV. QUANTUM EFFECTS MAY CHANGE THE FINITE

(99) or (100 indicates that there might be Big Rip—10] or TIME FUTURE SINGULARITY

Big Crunch singularity in the finite future. Even for non- | et us again start from the scalar-tensor theory with a

phantom matter, when the strong energy condition is appliedsingle scalar that can be an effective phantom,
a finite-time future singularity may occ(i20]. In the phan-

tom case in Eq(114) or (117), 7— * corresponds td 1 y
—0. The singularity occurs in thinite future or past. Thus, L=-=|R+ 59"70,$d,p—V(¢) |, (122
if the universe is expanding, there should be a finite-time

future singularity. This singularity is nothing but the Big Rip where 7= +1. It would be interesting to investigate the

8-10]. If there is a singularity in the past, the universe is not . . o

[expan]ding but shrinkir?g In)(chis ser?se the solution with quantum properties of such scalar-tensor gravity. Indeeq, |t_ is
. o : ) ' . . nown that the phantom theory develops a catastrophic in-

past singularity s related to that with a future singularity, bystability at the quantum level. Hence the point is that taking

reversing the direction of time. ; . )
. ) . . . into account quantum gravity effecter, simply quantum
It is possible to relate the actigii4) to the action(3) in effecty could improve the situation.

the Einstein frame by identifying,,, y, andV(4) with The calculation of the one-loop effective action in the

—1Ya21/(d — ; _
Oeyy,  [(A=1)a")/(d=2)+y/2 (with d=4), and former, non-renormalizable theory may indeed be performed

—[2al(d—2)¢] . _ . .
e V.("ﬁ) (W'th. d=4 again, . respectlvely: The (using the above parametrization and some choice for the
physical metric is obtained by rescaling the metric as thegauge condition The result is

reverse of2). Instead of75), we now assume that the physi-
cal metric is given by

1 L2 4,, | S 2_ 7 12 1 " 2
Wl—loop:_ilnFJ’ d*xv—g EV — (V") +§(V )

d?=ef4| —dt?+a(t)? >, (dx)?|. (118 ~ ~
i=123 I RAVEPAY” b {13V+ Y v lra 43R2
For 7— * =, ¢ behaves as 2 e 3 12 60 <«
+ iR2—~ZR wy )2 123
~F— Inft—t.|. (119 208 T gREudF 7(Su0")7 (123
a\—3y

The above one-loop action is found in REZ1]. In order to
consider this effective action as a finite quantum correction
to the classical one, the cut-dff should be identified with
o 1 y the corresponding physical quantity. For instance, when the
B=——-\/— 3 (120 universe is in théalmos) de Sitter phase, the natural choice
a is L2=|R|, as the curvature is strong enough and constant
[12,13. At the same time, in the region whelé|>|R|, L?
the singularity corresponding te— +« is cancelled, but should be identified withV|.
there remains a singularity correspondingrte —«. On the Hence, even in the situation witi=0, starting from the
other hand, if action(122) with the usual scalar, the phantom terms may be

Sincea behaves aa~|t—tt|_(2/3a2), if
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induced. This happens if the universe goes through a regiomhe variations of this action are given by
with negative curvature. With account to the potential, for
some fine-tuning ofV one can again arrive to the QG-

induced phantom theory, which subsequently can change the 1 W1 100p 1 |Rl|[5 _ 1 !
universe evolution. =g 94 =—5In"> §V2— y(V')?+ E(V")2
Here, we consider the action wheké is replaced with -9 K
|R| as a simple example o },
+|zV-2V"| ¢ ,dp"—2V
1 4y [ IRI|5 2_7 2, 1 2 2 * ’
Wl—loop: - _f d**V—=gIn=—715V=y(V')*+ 5 (V")
2 Mmoo 2 2 3, 13 ;, !
- - X[ zV=2V"|¢p*|—|=V+=V"| R
S RAVEPY ’ 13v+ Y\ R+ 43R2 ’ o
2V 2V Pnd TV 1V R g ~y
1 ~ . + §VM(R¢"‘)—5VM((¢,,,¢'”)¢'“)] :
R2_ Z [y NAYA
2R gRENS M J(D e (129 (125
|
1 Wi 1 |R[J1 5 . 1 pY 13y 43 1
- T n I Ty Z\2_ IN2 L\ 2 EAVAR " w_ | - ARV P2 o p2
\/—_g 59,0, 2In MZ 2g 2V (V") + 2(V) + 2V V' b b 3 V+ 12V R+ GORQB+ 4OR
—sz) P+ + §(¢ d,,u)Z _ ~ZV_2V,, drPpr+ 1—3V+ ~lvn RAV— (VAV?— Mva)
6 Pu?P T g P 2 3V 12 g
X 13V+ Y V”) 43R” R+ 43 V,V'R*+V, VAR*") — V2R¥'— gtV V R} + ! RR*”
3V 12 30~ R gol(Va @ ) 9V VR 55
b A TR TR i (T g4 )+ TR G o
20 6 P 6 P 6 27°
+(—RAV+ VAV —ghrV?2) L Ev2—7y(v')2+ 1(v")2+ sz—zv" b pP— l—3v+ va" R
2R\ 2 2 2 P 3 12
P8 Tee Yoy g (g, a0 (129
60 “ 40 6 "° 4:7p '
|
In the case of occurrence of the Big Rip singularity, the V(p)=V,e 2(# %), (128
curvature quickly grows. However, this means that quantum
effects(e.g., quantum gravity effegtbecome important not
only for the early universe, but also for the future universe. .
These quantum effects may even become dominant when tH&'en from(125 and(126), we obtain
universe approaches the Big Rip. Suppose that the quantum
correction becomes dominant owing to the fact Ht
contains higher-derivative terms. In this case one can neglect
: C oS 1 6Wioop
the classical terms. To simplify the situation even more, we Q= ——
assume that the curvature and the scalar fielake constant JV-g 99
3 12 1 IRl 4[5 4y 8
R,,=>0,,, R==, ¢=c. (127 S PO 1 O A . & ATl R S CTY27%)
e ! 2702 $o\2 g2 oy °
. . . . 2 (13 %y - 12
The potentialM(¢) is chosen as the exponential function of + %0 34— ?& Voe (2°’¢0)|7 , (129
?, 0 0
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0= 1 5\N1—I00p
V=9 99u»
1 [ 12 5 4y 8
:gl“’ __|n<_) (___+_ Vze_(4C/¢0)
47\ 1Ppl 2 g2 g) °
13 7y 12 147
| = —(2¢/g) 4
3 342 T ER
+£ §_4_7+£4 Vée—(“‘:/‘f’o)
8\2 ¢é oo
3 (13 gy 441
+W ?+?% Voe ( C¢O)—W1. (130)
Equation(129) can be solved with respect té:
~ ~ \ -1
R:|1_22:2(§_4_Z+E4)<1_3 LZ Ve (20160,
2 d5 %o\ 3 3¢5
(131

We should note, however, that E(L30 is not consistent
with the expression in131) in general. Then, Eq(130
might be regarded as an equation determiningNVe should
also note that the right-hand sididas) in (131) is not always
positive. In the case>0, wheny?<5, the rhs in(131) is

positive, but wheny?>5, it is positive if ¢53>2(y

+\y?=5) or ¢pi<£(y— \Vy?—5). On the other hand, in a

phantom casey<O0, the rhs in(131) is positive if d)S
> — (y/13). Anyway, there may occur @symptotically de

PHYSICAL REVIEW D70, 043539 (2004

yK?

t
SR T

t—
b= ¢oln N (139

Heretg is a constant of integration artgl is given by

3yk?
7¢3( 1-— )

2_
tl_ ZVO (136)

Equation(135 shows

t _t —(’y}<2/4)
a=ag——— (137
t

For a phantom withy<<0, a grows up to infinity att=t;,
which is the Big Rip singularity8—10.
In general, Eq(132 shows that

W‘_?’VH(H) :

which is positive ify<0, H>0, and¢#0. Hence, for the
phantom with negativey, the energy density increases in
general. We should also note that since the contributigrnto
from the kinetic term is negative <0, we find

pe=V(®).

For the cas&/(¢) =0, the energy density,, is not positive.

In general, the Big Rip singularity occurs due to the rapid
increase of the energy density of the phantom scalar. When
V() =0, the singularity does not occur. To be concrete, we
also consider here matter to be dust, whose energy density is

(138

(139

Sitter solution. Thus, before entering the Big Rip singularity,”.

the universe becomes a quantum de Sitter space. This quaﬂl\’en by

tative discussion indicates that the finite-time future singular-

ity may never occukor, at least may become mildeunder pd:p_g’
the conjecture that quantum effects become dominant just a

before the Big Rip. Due to the sharp increase of the curvatursvith a constanip, which we assume to be positive. When

invariants near the Big Rip, such a conjecture looks quit X T
natural. g Rip ) q e\/(¢)=0, the solution 0f(132) is given by
A similar phenomenon occurs even without quantum de

dt

(140

gravity. Indeed, let us consider again the phantom theory of
Sec. Il with the same potential. For the FRW background, if

we assume thai only depends on time, the equation of farec is a constant. Then the FRW equation has the form:

(141

mwl o

motion for ¢ is given by

OZ—’y((j:—tf-i- Hdd—f —V'(¢). (132
The energy density , is
p¢=%(z—‘f)2+w¢), (133
and the FRW equation has the following form:
6
Fsz Po- (134

HereH=a/a. Then a solution 0f132) and(134) is

6 ¥e®  po
H2=
2 =55t 5 (142
Equation(142) can be solved easily as
c? 9«?
=7 (143

a’=——+ (t—tg).
2po 4730 s

Here t; is a constant of the integration. Then, there is no
singularity and no acceleration, either.

The Big Rip singularity in(137) occurs because the po-
tential is unbounded and goes to positive infinity whén
— —o, Equation(139) tells that if V(¢) is bounded from
above and has a maximum,, as for V(¢)=0 case, the
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energy density does not grow up infinitely and the Big Rip
singularity does not occur. We now assume for the large b'=-—

negative, the potential approaches a constant,

V($)—V,, (constant when ¢p— — oo, (144
In the region, Eq(132) reduces to
d’¢ d¢o
0——7(W+3HH , (145)

which can be solved as (i141). Then the energy densify,
(133 has the following form:

yc?

p¢:£6+vm. (1406
The FRW equation becomes
6 yc?
o H2=
pr H 230 +Vi. (147

The first term in the rhs could be neglected for a large uni
verse. Then, for larg@, one gets the de Sitter space as a

solution

Vim

HZHW.

(149

Thus, one way to avoid the singularity might be that, in the

PHYSICAL REVIEW D 70, 043539 (2004

N+ 11Ny ,+ 62N, + 141IN,— 28N,,p

b”=0.
36Q41)?

(151)

Near the Big Rip singularity, the scale fac@blows up,
as in(137), att=t;. Then the curvatures behave Bs |t
—t¢ 2, and they become large. Since the quantum correc-
tion includes the square of the curvatures, the correction be-
comes large and important near the Big Rip singularity. Now
the FRW equation has the following form:

6 y(dg)|?
—H2=1|
K2H AT +V(d)+pap- (152
We now writeH and ¢ as
to—t
H=hgy+ éh, ¢=¢0Int +6¢. (153
1

Here hg, tg, andt,; are constants. We assume that when
—tg, 6h and 8¢ become very small compared with the first

terms, respectively. I, however, as the first term is a con-
stant, only the second term contributes d¢di/dt and
d?H/dt?. From (132 with the same exponential potential,
one obtains

[ ¢0  3hg 2V,t2 (_3 )
7( (ts—1)? ts_t)+¢0(ts_t)z 150

present universe for large negatigethere is an upper bound

in the potential. In this respect, it is also interesting to note +o[(ts—t) 1], (154
that there are phantomlike models, such as generalized
Chaplygin gas, where finite-time future singularity does notwhich gives
occur[22]. 5

Another way to argue this is to take into account quantum Vat?= — Yéo Sh— — 3 15
effects, say, for conformally invariant matter. Then the con- ot1= 2 b= 2(tS 0. (159

tributions coming from the conformal anomaly to the energy

densityp, and pressur@, are (see[23])

Then from(152), we have

2 d?H dH 3yhoo 2 2
=—6b'H*—|=b+b"|{ —6H— —18H*— _ 2Yo%0 “htb” _p-1
PA 3 [ e dt 0 t—t +6hg 3b+b e +o[(ts—t) "1,
156
dH 2 ( )
+3 H , (149 and
dH] (2 d*H ___ Y% ts—t
dt 3 dt3 2 §b+ b”
d?H ,dH [dH)\? .
_12HF_18H E‘g dt) [ (150 Heret, is a constant of integration. Sinéé=a/a, the scale

In general, withN scalar,N4/, spinor,N; vector fields,N,
(=0 or 1) gravitons, and\p higher-derivative conformal
scalarsp, b’, andb” are given by
b— N+ 6N1/2+ 12N1+ 61]N2_ 8NHD
120(47)?

factor is

to—t {ydo/A[(2/3)b+b"T}(ts—1)?

a=a T,

e~ Nolts=) ~{yo/8([(2/3)+b"1}(ts—t) 2+ o[(ts— 1)

(158
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In d2a/dt? or dH/dt, there appears a logarithmic singularity. (also without standard matdemodel of this kind was dis-
The behavior of the singularity, however, becomes rathecussed, with different purposes, in RE25].
milder than the case without quantum correction, where due The equation of motion has the following form:

to the singularity at=t,, the universe cannot develop be-

yond the singularity. Since the singularity becomes mild due 1 6S 1

to the quantum correction aredandH are finite att=
universe can develop to the regiort,.

ts, the

Then, essentially

9, (R*—gg*’d,¢). (165

T g Vg

the Big Rip singularity is removed due to the quantum cor-

rection.

V. GRAVITY-ASSISTED DARK-ENERGY DOMINANCE
AND EFFECTIVE PHANTOM AND /OR QUINTESSENCE
COSMOLOGY

The metric is again chosen to describe a FRW universe with
flat three-space,

ds’=—dt*+a(t)?

(dx)2. (166)
2,3

Recently, an effective phantom and/or quintessence de-

scription of the late time universe was obtained via the in-

If one assumes thap depends only ot [ ¢= ¢(t)], the

troduction of a new higher-derivative coupling between mat-solution of the scalar-field equatidt65) is given by

ter and gravity[24]. It was shown that such a model may
explain the gravity-assisted dark-energy dominance. In this

section we will consider a simpléscalaj example of this
kind of model when standard matter is also included.
The starting action is

1
S= f d4x\/—g{?R+ RYL 4+ Lm].

Here L, is the matterlike Lagrangian densifglark energy
andL,, the Lagrangian density of th@tandargl matter. By
variation overg,,,, the equation of motion follows:

(159

+Te T

(160

1 oS 1011
[_ngR_ R~V

~ g 99, 2|2

Here the effective energy momentum ten?grv is defined
by

Thr=—aR* IR¥Ly+ a( VAV = g*'V2) (R Ly)
+RATH?, (161

andT#” is given by

[ R—

(162

J_ 5% f d4XFLd)

The standard matter part of the energy momentum tensor

T4 is also defined as

(163

f d4x\/—_ng) .

For simplicity, the Lagrangian density of a free massless sca-

lar is considered akg,

Lg=— 33,4, (164)

Note that for the abovd.; choice and with a higher-

d=qa 3R (167
Hereq is a constant of integration. Hence
q2
RiLa=2a0Re (168

which becomes dominant whdis small (large compared
with the Einstein term (¥?)R if a>—1 (a<—1). Thus,
one arrives at the remarkable possibility that dark energy
grows to asymptotic dominance over the usual matter with
decrease of the curvature.
Combining (159 and (160, one gets S
~ fd"'x\/_ {(1/*)R+[g?%/(2a°R*)]}, which may indicate
R~a [« D] Then the curvatur® might be stabilized to
have a nontrivial minimum due to the second tern{1iB9.
Substituting (167) into (160), the (u,v)=(t,t) compo-
nent of the equation of motion has the following form:

3 2
0=——2H"+pa+pm,

360 . o o] @(atl). atl.
de?(GH—FlZH ) T +TH
13 : 7
+ 1+Za+a2 HH?+ 1+ sa H*. (169

Herep,, is the energy density of the standard matter. Specifi-
cally, whena=—1, Eq.(169 looks like

3 1592

— | = 2
0= K2+ 520 H+ppm. (170

If p=0, this equation has only the trivial solutiti=0 (a
is a constant
Whenp,,=0, we can easily find the accelerating solution

derivative scalar curvature term in the gravitational sectoiof (169 [24],

043539-14



LATE-TIME COSMOLOGY IN A (PHANTOM) SCALAR-. . . PHYSICAL REVIEW D 70, 043539 (2004

a=apt(®* B ( H= atl doet*o, (178
3t Herex, is a constant. Then E@177) gives
6 K09 (2a-1)(a—1) 0=9ax3+9a(a+1)X2+(—4a3+27a%+ 48a+ 14)X,

a(): a+2: (171)

—2(a+1)(2a—1)(a—1). (179

2
3(a+ 1)“+1(§(2a—1)

. As clear from(175, whena— +, w=—1, which corre-
Equation(171) tells that the universe accelerates, thatais, sponds to quintessence and, wher-—, we find w
>0 if @>2. Even fora<—1, by changing the time vari- <—1, which corresponds to a phantom. Imagine that param-

able byt—ty—t (to is a constant the universe is expanding etera— +. If we assume,= (1), Eq.(179 reduces to
and accelerating. In this case, however, there is a Big Rip

singularity att=t,. 0=—4a3(1+x0) +0O(a?). (180
For the matter satisfying the relatign=wp, wherep is

the pressure ang the energy density, from the usual FRw Hence

equation, one has

Xo~ — 1. (181
aO(tZ/[S(W+l)]_ 17
(72 With xo=O(«), one obtains
F ho it foll h
oraste it follows that 0=—4a’+9aC+9ax3+0(ad). (182
2
w=—1+ ——, (173  As aresult
3hg
. . . a Ada
and an accelerating expansiohy&1) of the universe oc- x0~0,§,— 3 (183
curs if
X Note that the first solutiomy~0 corresponds to the solution
—l<w<-3. (174 in (181) because we have assumeg= O(«). The perturba-
i tion looks as
For the case 0of171), one finds
L S~ 8t 1+ 5,193+ 55t~ (4el3) (184
w=-—. (175 ,
1+a Here 6, , 3 are constants. The second term(184) may in-

dicate the instability of the solutiofl71). When a— +«,

Then if a<—1, w<-—1, what corresponds to an effective which corresponds to quintessence, the second term may be-
phantom. In this case, changingas to—t in (171), there come dominant whehn—o. On the other hand, since the
appears a Big Rip singularity at=t,. In [26], however, it case a— —« corresponds to the phantom, we replace
has been shown that the phantom energy with—1 makes —ty—t. The second term may become dominant near the
the radius of the wormhole spacetirfvehen it does occurto  Big Rip t—t,. This might, however, indicate that the Big
increase in time and thus before the Big Rip the radius beRip never occurs, since the Big Rip solution is unstable. In
comes infinite and, as a result, the Big Rip singularity mayother words, even if the present universe equation-of-state

be avoided. parameter looks asv<—1, the universe might transit to
It is interesting to investigate the stability of the solution another solution corresponding to the second terr(lL8%).
in (171). For this purpose, we write the scale factoas However, it is difficult to find the nonperturbative behavior
of the solution corresponding to the second ternilia4).
a=apt** D31+ (]8<1). (176 The a— —1 case, which correspondswo— —, can be

also considered. Let us write
Herea, is given in(171). From (169, it follows that

a=—(1l+e) (e<l). (185
22a—1)(a+1)(a—1)
== 4 o It is natural to assume thatis positive. Equatioril79 gives
2(2a3—184%2—33a—7) d& 0=—9(1+ €)x3+ 9exz+ (— 3+ 18¢)xy+ 126+ O(€?).
- £ dt (186)
9a(a+4) d25 9a d3s Its approximate solution is
e @t e tr .
Xo=4e€, ——6i—<1——6). (187
The solutions 0f177) are given as 0 23 2
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The perturbations is found to be given by On the other handyy behaves as
8= Sy(to— )4+ (to—t) " *2¢(5.co§ & (1— 1 €)In(ty—1)] pg*t™?. (196)
+osiN & (1— L e)In(ty—t) ]} (189  Sincep=4 for the radiation angg=3 for the dust and the

acceleration of the universe occurs wher 2, we may as-
Here 8y, 6., and 8, are constants. The first term decreasessumef>2 anda>2. As a result,
near the Big Rip at=ty, but the other terms oscillate rap-
idly near the Big Rip and the amplitude becomes large, (“+1)B>2 (197)
which also shows the instability of th@gransient accelera- 3 '
tion) solution(171). This may be quite an acceptable result,
on the condition that it lasts sufficiently long enough to com-When timet grows, p,, decreases further as compared with
ply with observational data. The way to avoid a finite-time pq -
future singularity due to the instability of the accelerating The essence of a gravity-assisted dark-energy dominance

cosmology may deserve some attention. is clearly seen in the example below. Let the standard matter
The casew=1 corresponds tw=<0. With dominate, as compared with the dark enepgy>p,. Then
the scale factor is given by that of the standard FRW equa-
a=1l+e (0<e<l), (189  tion
Eq. (179 gives 252\ VP
a= '8:;;'( 126, (199
0=9(1+ €)x3+ (18+ 27€)x3+ (85+90e)x— 4e+ O(€).
(190 The energy density of the standard mattgr behaves as
Its solution is pm~1"2. On the other hand, the dark energy behaves as
4 2 pd~t2a7(12lﬁ). (199)
Xo===+0(€?), —1x—+0O(e). (191
0=gs " ) g +OLe) Hence if
Thereforeé is given by 12
20— E> -2, (200

- (192 the dark energyy becomes larger as time passes. Equation
(200) can be satisfied i, 3>2 as in the dark-matter domi-
nant case.

Let us assume that in the early universe, the standard
matter and/or radiation is dominant. The universe evolves
according to(198). From (200, dark energy increases with
time growth. Wherpy=p.,, as in the present universe, the
acceleration of the universe begins. Thus, in the future the
ﬁccelerating universe evolves with the scale fadqtorl).

- 2 ~ 2
6,CO §Int + dssin §Int
Here &y, J., and 5, are constants, too. The first term in-
creases with, and thus the solutiofil71) may be unstable
again.

Even with numerical calculation for general, there
seems to be instabilities in the solutioh71) if w<O0 al-
though the solution could be stablewf>0. This may sug-

est again that the acceleration of such a dark-energy un . . . .
g d 9y However, that is most probably a transient acceleration. This

verse might be transient. . ; )
So far the standard matter contribution has been ne'S Notstrange owing to the fact that the above effective phan-

. L tom and/or quintessence description is achieved by means of
I . Wherp h I hat, be- : L .
glected erpn0, the simple assumption is t be a higher-derivative coupling between dark matter and grav-

~ 1
S~ 50t4e/85+ ?

haves as ity. It is known that higher-derivative gravitiésee[13] for a
Pm=pod ~. (1939  review may have problems with unitaritfstability) when

they are considered as fundamental theories. Hence, the

Here p, and 8 are constant. From Eq170) it follows model under discussion should be treated as a kind of effec-

tive matter-gravity theory. It would be interesting to analyze

3 P some astrophysical predictions of our modsay, rotation
t= /_Zf daaB?-4~/ab+ 9« . (194 curves of galaxigsin the way it was recently discussed, e.g.,
poK 2 in [27].

For the case of a general if the dark-energy density is
dominant: pg>p.,, the solution should behave d4471).
Hence, the energy density, of the standard matter evolves  In summary,(phantom scalar-tensor cosmology with an
as exponential scalar potential suggests the comely possibility
of a dark-energy universe with an equation-of-state param-
eterw, which is negative and very close tol. Convenient

VI. DISCUSSION

pm:poaaﬁt—[(a+l)ﬁl3ll (195
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choices of the theoretical parameters may shift the explicitliscussion the reader is addressed28]. We start from a
value ofw from above to below- 1. Moreover, such a uni- 4+ n-dimensional spacetime, whose metric is given by
verse naturally admits é&ransient or eternalacceleration

phase. A very nice property of this theory is that what ap- n

pears as a phantom in one frame may appear as a standard ds’>= >, g, dx*dx’+e***) ¥ g, dédél.
scalar in another frame. It is demonstrated that in the situa- #v=0123 hi=1

tion when a finite-time future singularity is predicted by the

growing phantom-energy density, the consideration of quan-

tum gravity effects might drastically change the future of ourFor simplicity, one may assume that the me@kj: corre-
universe, removing the singularity in a quite natural way.sponds to an Einstein manifold, where the Ricci terRgr
From another side, itis also sh_own that a hlgher—denvatlyeConstructed frorf@ij is proportional t0§ij : ﬁij _ ka”_ " Here
gravity-matter coupling term being not the phantom may in, is 4 constant. Whem=1, k always vanishes k=0).

fact provide an effective phantom and/or quintessence de\Nhenn>3, the above metric is given as the solution of the
scription of the late-time universe, suggesting the possibility,_gimensional Euclidean Einstein equation. Wher 2,

of a dark-energy model of a brand new type. In this casegjnce the two-dimensional Einstein equation is trivial, in the
gravity makes dark energy become (egolving main con-  conformal gauge the above condition for the Ricci tensor is
tribution to the total energy density—as compared with thethe Liouville equation. Under the above assumptions, the 4
standard matter and/or radiation, which was initially +pn dimensional Einstein action with matter fiefd(bosonic

dominant—which leads to the appearance of the phase Qfector of some higher-dimensional supergravign be writ-
transient acceleration. ten as

Current attention to phantom models as dark-energy can-

didates is not driven by the internal consistency and/or

beauty of this theory, which still contains a number of par- 1 1

tially resolved problems, as we have already mentioned.54+n=7f d4+nX\/—g(4+nj<R(4+”)—E%XWX—U(X)

Rather, it is the lack of a good theoretical understanding of

the present universe coming from more usual theories that

calls for alternative explanations to be considered, on one Vv

hand. On the other hand, one sees also that the cosmic-zoo — _;f d*x\/—gen?

structure, which emerges from these alternatives, is so rich K

and suitable at times, that some concepts, which so far 1

seemed to be stranglkke the idea of negative energy itsglf +nke 2¢— =3, XX~ U(X)) _ (A2)

deserve to be investigated with care and to the end. In this 2

respect, even the mild indications that have been reported of

a possible phantom origin coming from string and/or . . . ,

M-theory or on the chancédescribed aboveto avoid the HereV, is the volume o~f ther-dimensional manifold whose

Big Rip catastrophe by taking properly into account themetric tensor is given bgij . We should note that the kinetic

quantum effects seem indeed very promising. energy of¢p becomes negative, as for the phantom. Rescaling
the four-dimensional metrig,,, by g,,,—€ "%g,,,, the ac-
tion (A2) can be rewritten as

(A1)

R+n(n—=1)g"*"d,¢d,¢
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Now the kinetic energy o is positive. If we further rescale

¢ by
APPENDIX
In this Appendix several remarks are made about the pos- b= /| 3 (Ad)
sible origin of the phantom-related models coming from the - ¢ n(n+2)’

higher-dimensional theories considered in the paper. This
topic was widely investigated in the Kaluza-Klein contért
relation with the string and/or M-theoryand for a recent the four-dimensional action looks like
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_Vn 4 3 wv — o [3(n+2)]/n
S4+n—;2 d*xy—g R—Eg d,¢d,0+nke

(A5)

1 ;
— Eﬁﬂxﬁﬂx—eﬂ“gn (nQBU(X)).

The above action belongs to the same clas@l@sby iden-
tifying
W(p,x)=€ #3may y), (A6)

Comparing the above expression wi#), one obtains

[3n 2+
n+2 ¢

(A7)
Then, if
0<@o<2 E (A8)
3n
Eq. (53) follows. If
U(x)=Woe "X X, (A9)

we can obtain fow a value less than-1, and correspon-

digly the universe expands with acceleration, by a proper

choice of the parameters.

One may consider the product compactification to be

more general thafAl),

d—1 n
A= > g, dxdx’+&40 ¥ gdédg
0 =1

M v= ]

N
+et@0 Y gDdddg., (A10)
1,J=1

Since the scalar curvatureR(@ "N
dimensional spacetime is given by

in (d+n+N)-

RUETN+N) — R 4 (Wg=26M_ pp 1), ¢ )
—2nV2¢W+ k@e 24P _N(N+1)0,¢?
X 0’;M¢(2)_ 2NV2¢(2)— 2n N3M¢(1)3M¢(2),
(A1)

if we start from the +n+ N)-dimensional action coupled
with the scalar fieldy with potentialU (), we obtain

PHYSICAL REVIEW D70, 043539 (2004

S(d+n+N):%J' o+ Ny [~ @)
K

1
R — 29, Xk x=U(x)

X
VoV [ g ETINE)
= — ¢ '+No
2 fd x\—g@e"
d 1 1 2 2
x| R@—ng, MM —Na,pDHp@

+3,(NgM+Ngp@) (M +Ng?)

1
+kWe 204k @g 20— 2 g yarx—U(x)|.
(A12)

If U(x) is a constant, one may regard it as the cosmological
constant. Further rescaling the metric tensor by

gﬂv_)e*[ZI(d72)](n¢(l)+ N¢(2))glw, (A13)

we get

\VAY,
d+n+N)— N[ d, [— (@] p(d 1 1

1
— N§M¢(2)§M¢(2)_ d__zpyﬂ

X (n¢(1)+ N¢(2))&”(n¢(1)+ N¢(2))

+ k(D [2((d=2)1 (M +Ngp(2) 24D

1
+ K@ [2/(d-2))(neM+Ng@) ~24(2) _ 50,X9"X

e (2= 216D+ Ng @y | (A14)

In this frame, the kinetic term of the matter fiel{ddoes not
directly couple to the scalar fields®) and ¢(?). Then the
Newton law is not violated in the leading order of perturba-
tion. The kinetic terms of the fieldg® and ¢ can be
diagonalized by

pW=y o' +y"¢ . $P=y'p -y 4.
(A15)
Here
n+N\2
(d=2)2(n—=N)?| 1+ — )
yie 1 - d-2
2 4n2N?
(A16)
Hence
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\VAY}
S(d+n+N):T<TNf ddx /_giai[R(d)—x+(9#¢+aﬂ¢+_X_ﬁﬂd)_(wqﬁ_

+ k(Mg {[2n/(d=2)+2]y” +2Ni(d=2)y " }¢ " —{[2n/(d—2)+2]y "~ [2N/(d=2)ly "}~

+ k@ {[2N/(d=2)+2]y " +[2n/(d=2)ly " }¢ " —{-[2N/(d=2)+2]y " —[2n/(d=2)ly "} ¢~

2

Here,

n2+ N2
d—2

—+

n+N+

.
Xt= =

JB)>0,

2
—4nN

n2+ N2
d—2

1+

D=|{n+N+ N
=" d-2
2 4n2N2

e

n+N

— _ 2
=(n—N) 1+d—2

(A18)

For simplicity, the cas&®=U(x)=x=0 andd=4 is con-
sidered. Comparing the actigA17) with (43), we may iden-

tify

2x* _
e\ 39 KxoN2XTH

(A19)

From (47), one sees that

1 _ _ - +y 4+ + Ny A
— g,y oty —e @ 2HOY NSy Ny )Ty () |

(A17)
|
Woz_k(l),
2+ B . 3
TO—{(HJFZ)V FNY F\
n+2)y"—Ny~
n__(n+2)y =Ny (A20)
Xo V2x~
Using (50), an expression for can be found
2 x {(n+2)y” +Ny"}?
n=-177 52 " —- (A2
4 x*{(n+2)y* =Ny}

Since x*>0 (A18), />0 and thereforey satisfies(53).
Thenw>—1 and there is no phantom. More explicitlyis
given by

2{(n+2)y”+Ny*}
3x*t(2+ )

Numerically, withn=2 and N=5, w=0.002 695 54; with
n=3 andN=4, w=—-0.058669 1. Although not realistic,
if we choose n=6 and N=31, it follows that w
=—-0.353435.

w=—-1+ (A22)
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