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Late-time cosmology in a„phantom… scalar-tensor theory: Dark energy and the cosmic speed-up
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We consider late-time cosmology in a~phantom! scalar-tensor theory with an exponential potential, as a
dark-energy model with equation of state parameter close to21 ~a bit above or below this value!. Scalar~and
also other kinds of! matter can be easily taken into account. An exact spatially flat FRW cosmology is
constructed for such theory, which admits~eternal or transient! acceleration phases for the current universe, in
correspondence with observational results. Some remarks on the possible origin of the phantom, starting from
a more fundamental theory, are also made. It is shown that quantum gravity effects may prevent~or, at least,
delay or soften! the cosmic doomsday catastrophe associated with the phantom, i.e., the otherwise unavoidable
finite-time future singularity~Big Rip!. A dark-energy model~higher-derivative scalar-tensor theory! is intro-
duced, and it is shown to admit an effective phantom and/or quintessence description with a transient accel-
eration phase. In this case, gravity favors that an initially insignificant portion of dark energy becomes domi-
nant over the standard matter and radiation components in the evolution process.
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I. INTRODUCTION

Recent astrophysical data, ranging from high redshift s
veys of supernovae to WMAP observations, indicate t
about 70 % of the total energy of our universe is to be att
uted to a weird cosmic fluid with large and negative pressu
the dark energy~see@1,2# for a recent review!, and that the
universe is currently in an accelerating phase. It also tu
out that the dark-energy equation of state parameterw is
close to21. So far, the simplest possibility proposed for th
kind of dark energy is the use of a scalar field~or a scalar-
tensor theory!. However, scalar-tensor theories are not fr
from problems, especially when they are considered dire
as dark-energy candidates.

Much attention has been drawn by scalar fields in stud
of the early time universe. A variety of scalar potentials h
been considered and a number of accelerating~inflationary!
cosmologies have been advocated. For instance, the inte
ing quintessence model@3# with w slightly bigger than21 is
quite popular for the explanation of early-~and late-! time
acceleration, especially in the case of exponential poten
@4#. Moreover, exponential scalar potentials often app
naturally after compactification in string and/or M-theor
Needless to say, such a description is model-dependent a
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still quite far from the final goal: the formulation of a plau
sible and consistent dark-energy theory.

Another line of research is related with the case where
dark-energy equation of state parameter is less than21,
since this possibility is not excluded by astrophysical da
Moreover, the recent Supernova data@5# favor the cosmo-
logical models with suchw. The typical example of a dark
energy of this kind is provided by a scalar field with negati
kinetic energy, dubbed phantom~see @6,7# and references
therein!. At first sight, such models may look rather stran
and they lead to a number of unpleasant consequences,
finite-time future singularity~the Big Rip! @8–10#. Neverthe-
less, the possibility of negative energies seems to be acc
able in classical scalar-tensor theories. Actually, many
them do contain phantoms, as the ones coming from st
and/or M-theory compactification, or higher-derivative s
pergravities, or modifications of Einstein gravity itself.
fact, the issue is somehow delicate, since what looks lik
phantom in one reference frame may radically change
nature in another frame~e.g., after a conformal transforma
tion!. In this sense, even in the absence of fundamen
physical meaning the phantom can be still useful as a c
venient mathematical tool in order to study cosmologi
models in standard scalar-tensor theories because a phan
related frame may lead to a simpler formulation of the pro
lem. Finally, there are examples where an effective phan
and/or quintessence description of the late-time unive
naturally appears, even if the starting theory does not exp
itly exhibit the phantom and/or quintessence structure.

In the present work we study different cases of a late-ti
spatially flat FRW cosmology in the~phantom! scalar-tensor
theory, mainly with exponential potentials. Such scalar

a-
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considered as a dark energy, and the possibility of deriv
the current speed-up is shown also in the presence of ma
Exact FRW cosmologies are constructed for the~phantom!
scalar-tensor theory with an exponential potential, a mo
that can be important for understanding attractors and
stability properties. The possibility of avoiding the unwant
Big Rip by simply taking into account quantum gravity e
fects, which may become dominant near future singularity
demonstrated. Finally, the present dark-energy domina
and acceleration, within the effective phantom and/or qu
tessence description, is discussed in the model where a
of higher-derivative, gravity-matter coupling is introduced

The organization of the paper is the following: In Sec.
spatially flat FRW cosmological solutions are discussed
scalar-tensor gravity with scalar matter. Explicit examples
accelerating~and decelerating! scale factors are presented f
exponential potentials when the theory contains one or
scalar fields. In Sec. III the general solution for a spatia
flat FRW cosmology, which includes eternal or transient
celeration, is found in the~phantom! scalar-tensor theory
with exponential potential. This is based on the use and
tension of a method recently developed by Russo@18#. The
comparison with particular solutions of Sec. II is done. S
tion IV is devoted to the study of the influence of quantu
gravity effects on the Big Rip singularity in phantom co
mology. It is shown that taking them into account prope
may change the future of the universe, from that with
finite-time singularity to an ordinary de Sitter space. In S
V a higher-derivative matter-gravity coupling is suggested
a sort of dark-energy model. It admits an effectively phant
and/or quintessence description and does explain the cu
dark-energy dominance over standard matter by gravity
sistance. Stability analysis of the model demonstrates tha
acceleration phase is actually transient. A summary and
look are given in the discussion. In the Appendix we outli
how the ~phantom! scalar-tensor theory may originate, v
compactification, from a higher-dimensional~super! gravity.

II. EXAMPLES OF THE ACCELERATING UNIVERSE
IN „PHANTOM … SCALAR-TENSOR THEORIES

We start from the action of multiscalar-tensor theory. S
eral illustrative examples of the~accelerating! FRW cosmol-
ogy will be presented here as simple dark-energy mod
~see@1,2# for a recent review!. A scalar field,f, which may
be later regarded as a phantom, couples with gravity. A
typical in these models, a second scalar field,x, is consid-
ered. The string-inspired Lagrangian in thed-dimensional
spacetime is

S5
1

k2E ddxA2geafS R2
g

2
]mf]mf2V~f! D

1E ddxA2gS 2
1

2
]mx]mx2U~x! D . ~1!

Herea andg are constant parameters andV(f) „U(x)… is
the potential forf (x). If the constant parameterg is nega-
tive, f has a negative kinetic energy and can be regarde
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a phantom@6,7#. We should note, however, thatg need not
be negative in order to obtain the accelerated universe a
will later see. As the matter scalarx does not couple withf
directly, the equivalence principle is not violated, althou
the effective gravitational coupling depends onf as
ke2(af/2). One may go to the Einstein frame by the sca
transformation

gmn5e2@2a/~d22)#fgEmn . ~2!

In the following, the quantities in the Einstein frame a
denoted by the indexE. After the transformation~2!, the
action ~1! has the following form:

S5
1

k2E ddxA2gEFRE2S ~d21!a2

d22
1

g

2DgE
mn]mf]nf

2e2@2a/~d22!#fV~f!G1E ddxA2gE

3S 2
e2af

2
gE

mn]mx]nx2e2@~da/~d22!#fU~x! D . ~3!

In the Einstein frame, there appears a term coupling the m
ter x with f. Even if g is negative, when

~d21!a2

d22
1

g

2
.0, ~4!

the kinetic energy off becomes positive, as for a usu
scalar field. Hence, the remarkable observation follows th
what is a phantom in one frame may not be a phantom
different frame, especially if the coupling is taken into a
count.

As a first step, one considers thed54 case and assume
x50. We now definew and Ṽ(w) as

w5fAa21
g

3
, Ṽ~w!5e2afV~f!, ~5!

and assume that the metric has the FRW form in flat spa

dsE
252dtE

21aE~ tE!2 (
i 51,2,3

~dxi !2. ~6!

HeretE is the time coordinate in the Einstein frame. Whenw
only depends on the time coordinate, the FRW equation
w equation follow:

3HE
25

3

4 S dw

dtE
D 2

1
1

2
Ṽ~w!, ~7!

053S d2w

dtE
2 13HE

dw

dtE
D 1Ṽ8~w!. ~8!

Here the Hubble parameter~in the Einstein frame! is defined
by HE[(1/aE)(daE /dtE). Note that models of this type
may have a double interpretation: as multiscalar-tensor th
9-2
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ries or as matter-scalar-tensor theories. In other words, s
scalars may be considered as matter or as part of a gra
tional theory. It has been suggested that such models
describe the inflationary early universe as quintessence@3#.

Special attention in cosmology has been paid to expon
tial potentials @4#, which often follow from string and/or
M-theory compactification. IfṼ(w) behaves as an expone
tial function of w

Ṽ~w!;V0e22(w/w0) ~9!

(V0 and w0 are constants! during some period, as in th
present universe, the solution of~7! and ~8! exists1

aE5aE0S tE

tE0
D (3/4)w0

2

, w5w0ln
tE

tE0
. ~10!

Here

tE0[w0A 1

V0
S 27

8
w0

22
3

2D . ~11!

In the original~Jordan! frame ~1!, the time coordinatet and
scale factora(t) in the FRW form of the metric

ds252dt21a~ t !2 (
i 51,2,3

~dxi !2, ~12!

are related with the corresponding quantities in the Eins
frame ~6! by

dt5e2(a/2)fdtE5
tE0
bw0/2

12~bw0/2!
d~ tE

12(bw0/2)
!, ~13!

1The action~1! with the potential~9! belongs to the class dis
cussed in@11#. In fact if we redefine the fieldf by

F[
2Augu

a
e(a/2)f,

the action~1! can be rewritten as

S5
1

k2E ddxA2gS F~F!R7
1

2
]mF]mF2U~F! D

1E ddxA2gS 2
1

2
]mx]mx2U~x! D .

Here

F~F!5
a2

4ugu
F2, U~F!5V0S aF

2Augu
D 4[12A11(g/3a2)]

.

Then, one can use the same arguments as in@11# in order to fit the
parameters so that they satisfy the present cosmological data
nonminimal scalar-gravitational coupling term, which is required
renormalizability of the quantum-field theory in curved spaceti
@12,13#, may have very interesting effects on the phantom cosm
ogy ~see@14# for a recent discussion!.
04353
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a5e2(af/2)aE5aE0S tE

tE0
D @~3/4!w0

2
2bw0#

5aE0S t

t0
D $(3/4)w0

2
2bw0 /[12(bw0/2)]%

, ~14!

f5
bw0

a~12~bw0/2!!
ln

t

t0
. ~15!

Here

b[
a

Aa21~g/3!
, t0[

tE0

12~bw0/2!
. ~16!

Then, cosmic acceleration (ȧ.0 andä.0) occurs when

3

4
w0

22
w0a

2Aa21~g/3!

12F w0a

2Aa21~g/3!
G .1. ~17!

By properly choosing the parametersa, w0, and g, the
present cosmic acceleration can be realized. For the m
with p5wr, wherep is the pressure andr is the energy
density,

a}t [2/3(w11)]. ~18!

Then, effectively

w5211

2

3 S 12
w0a

2Aa21~g/3!
D

3

4
w0

22
w0a

2Aa21~g/3!

52
w0~2b29w0!18

3~2b23w0!w0
.

~19!

As w diverges when the denominator in the second te
vanishes,w can take any value by properly choosinga, w0,
andg. For example, if

w0a

Aa21~g/3!
52, ~20!

thenw521. Several interesting cases deserve attention

whenw0
2.

4

3

5 w,21 if
3

2
w0

2.
w0a

Aa21~g/3!
.2

w.21 if
w0a

Aa21~g/3!
.

3

2
w0

2 or
w0a

Aa21~g/3!
,2,

~21!
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e
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when w0
2,

4

3

5 w,21 if 2 .
w0a

Aa21~g/3!
.

3

2
w0

2

w.21 if
w0a

Aa21~g/3!
,

3

2
w0

2 or
w0a

Aa21~g/3!
.2.

~22!

As is clear from~18!, cosmic acceleration (ä.0) occurs
when

w,2 1
3 . ~23!

Whenw,21, the universe is not expanding but shrinkin
although the universe is still accelerating. In the casew,
21, if we change the direction of time ast→ts2t, the uni-
verse is both accelerating and expanding.

In the special case whenw52 1
3 , we find

w0
25 4

3 . ~24!

Note that even wheng is positive, e.g., the kinetic energy o
f is positive as for usual matter, the effectivew can still be
less than21. For example, with the choice

w054,
g

a2 53, ~25!

it follows that b5 1
& , and from~19!,

w52
11A21203

213
521.025 . . .,21. ~26!

Note that the above considerations are applicable both for
early- as well as for the late-time universe. Indeed,
simple solution under discussion~especially, the no-phantom
case! has been considered in different situations. Later
the general solution for the scalar-tensor theory with an
ponential potential will be discussed. With a known gene
solution, it is much easier to understand the type of situa
that appears, be it is a transient~or eternal! acceleration or an
attractor or something else.

In the previous example the matter fieldx is zero (x
50). We now consider the case ofxÞ0, which is closely
related with the so-called double-quintessence model@15#. In
the Einstein frame~3!, the FRW equation,w equation, andx
equation have the following form:

3HE
25

3

4 S dw

dtE
D 2

1
1

2
Ṽ~w!1

k2

4
e2bwS dx

dtE
D 2

1
k2

2
e22bwU~x!, ~27!
04353
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053S d2w

dtE
2 13HE

dw

dtE
D 1Ṽ8~w!1

bk2

2
e2bwS dx

dtE
D 2

22bk2e22bwU~x!, ~28!

05
d

dtE
S e2bw

dx

dtE
D13HEe2bw

dx

dtE
1e22bwU8~x!.

~29!

We again assume the exponential potentials

Ṽ~w!5V0e2(2/w0)w, U~x!5U0x42(4/bw0). ~30!

The following ansatz exists

HE5
h0

tE
, w5w0ln

tE

tE0
, x5x0S tE

tE0
D bw/2

. ~31!

The parametersh0 , tE0, andx0 should be a solution of the
following algebraic equations, which can be obtained fro
~27!–~29!:

0523h0
21

3

4
w0

21
1

2
V0tE0

2 1
k2b2w0

2x0
2

16

1
k2

2
U0tE0

2 x0
42(4/bw0) ,

053~2w013h0w0!2
2V0tE0

2

w0
1

k2b3w0
2x0

2

8

22k2bU0tE0
2 x0

42(4/bw0) ,

052
bw0

2 S bw0

2
11D1

3h0bw0

2

14U0tE0
2 S 12

1

bw0
Dx0

22(4/bw0) . ~32!

For instance, for the special example

w05A 10
27 , b52A 27

10 , V050, ~33!

the explicit solution follows:

h05
5

12
, x05

A5

3k
, tE05A 3

8U0
. ~34!

Using ~16! and ~33!, one arrives at

g52 49
18 a2. ~35!

Thenf is surely a phantom with negative kinetic energy
the physical Jordan frame~1!. Since U(x)5U0x2, U(x)
corresponds to a mass term and the massmx is given by

mx
252U0 . ~36!
9-4
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Also

tE05
A3

2mx
. ~37!

Since dt56e2(af/2)dtE56e2(bw/2)dtE56(tE0 /tE)dtE ,
we find

t

tE0
56 ln

tE

tE0
. ~38!

Then, in the physical Jordan frame one gets

a5e2(af/2)aE5aE0S tE

tE0
D 2(7/12)

5aE0e7(7t/12tE0), ~39!

f5
b

a
w5

2

a
ln

tE

tE0
56

2

a

t

tE0
, ~40!

x5x0

tE

tE0
5x0e6(t/tE0). ~41!

Since the scale factora behaves as an exponential function
t, the Hubble parameterH is a constant

H57
7

12tE0
57

7mx

6A3
, ~42!

which is linear in the massmx of x. Equation~42! also tells
that the effectivew is 21 ~similar to the cosmological con
stant!.

As a different, more complicated example one can c
sider the case whena50, and thereforeb50, but the po-
tential depends on bothf andx,

S5E d4xA2gH 1

k2 S R2
3

2
]mw]mw D

2
1

2
]mx]mx2W~w,x!J . ~43!

As a50, the Einstein frame can be regarded as a tr
physical one. Then the equations corresponding to~27!–~29!
are

3H25
3

4 S dw

dt D
2

1
k2

4 S dx

dt D
2

1
k2

2
W~w,x!, ~44!

053S d2w

dt2
13H

dw

dt D1k2W,w~w,x!, ~45!

05
d2x

dt2
13H

dx

dt
1W,x~w,x!. ~46!

Here the derivative ofW(w,x) with respect tow (x) is ex-
pressed asW,w(w,x) „W,x(w,x)…. The case of the exponen
tial potentialW(w,x) may be of interest
04353
-

y

W~w,x!5W0e(h/x0)x2@~21h!/w0#w, ~47!

whereW0 , h, x0, andw0 are constant parameters. Assumi

H5
h0

t
, w5w0ln

t

t0
, x5x0ln

t

t0
, ~48!

with constantsh0 and t0, Eqs.~44!–~46! reduce to the fol-
lowing algebraic equations:

0523h0
21

3w0
2

4
1

k2x0
2

4
1

k2W0t0
2

2
,

053w0
2~2113h0!2~21h!k2W0t0

2 ,

053x0
2~2113h0!1hk2W0t0

2 . ~49!

Equation~49! give

k2x0
252

3h

21h
w0

2 , ~50!

h05
3w0

2

2~21h!
, ~51!

k2W0t0
25

3w0
2~3h021!

21h
. ~52!

Equation~50! shows that

22<h<0. ~53!

The effectivew is given by

w5211
2

3h0
5211

4~21h!

9w0
2 . ~54!

As discussed in~53!, asw.21 we do not have a phantom
If the second term in~54! is small, one may obtain quintes
sence.

Other types of matter can be easily considered too.
instance, matter may be dust. The energy densityrdust in the
Jordan frame~1! behaves asrdust}a23. Then

rdust5r0a235r0e(3a/2)faE
235r0e(3b/2)waE

23 , pdust50.
~55!

It is well known that dust has no pressure. It could cor
spond to the baryon and/or cold dark-matter compone
Instead of~27! and ~28!, we obtain the following equations
of motion in the Einstein frame:

3HE
25

3

4 S dw

dtE
D 2

1
1

2
Ṽ~w!1

k2

2
e2(b/2)wr0aE

23 , ~56!

053S d2w

dtE
2 13HE

dw

dtE
D 1Ṽ8~w!2

bk2

2
e2(b/2)wr0aE

23 .

~57!
9-5



-

ve

y-

els

ELIZALDE, NOJIRI, AND ODINTSOV PHYSICAL REVIEW D70, 043539 ~2004!
With the form of Ṽ(w) as in ~30!, the solution occurs

w5w0ln
tE

tE0
, aE5a0S tE

tE0
D (2/3)2(bw0/6)

. ~58!

Here

t0
25

b2w0
219w0

229bw0

6V0
,

a0
35

r0k2e2(bw0/2)~b2w0
219w0

229bw0!

2V0~822bw029w0
2!

. ~59!

The time-coordinatet in the Jordan frame is given by

t

t0
5S tE

tE0
D 12(bw0/2)

, t0[U2tE0

bw0
U, ~60!

and the scale factor can be obtained

a5a0S t

t0
D (2/3)[2(12bw0)/~22bw0!]

. ~61!

The effectivew is found to be

w5211
22bw0

2~12bw0!
. ~62!

Hence, if

1,bw0,2, ~63!

w,21. If we assumeV0.0 ~and t0
2.0 and r0a0

23.0),
Eq. ~59! requires

b2w0
219w0

229bw0.0, 822bw029w0
2.0, ~64!

which giveb2w0
2211bw018., that is,

bw0,
112A89

2
or bw0.

111A89

2
. ~65!

Numerically, bw0,0.7830 . . . or bw0.14.9339 . . . ,
which contradict the results in~63!, and there is no acceler
ating universe. With the assumptionV0,0, the accelerating
universe takes over. For instance, with the choicebw05 3

2

and w0
25 1

9 (b56 9
2 and w056 1

3 ), we obtain t0
2

52(41/24V0) anda0
352@r0k2e2(bw0/2)/2V0#.

Going back to the case of two scalars, by variation o
gmn the Einstein equation follows:
04353
r

1

k2 S Rmn2
1

2
gmnRD5

1

2
~Tmn

f 1Tmn
x !,

Tmn
f [

1

k2 F2
g

2
]rf]rfgmn1g]mf]nf2V~f!gmn

12e2af¹m¹n~eaf!22gmne2af¹2~eaf!G ,
Tmn

x 5e2afS 2
1

2
]rx]rxgmn1]mx]nx2U~x!gmnD .

~66!

Tmn
f and Tmn

x may be regarded as the effective energ
momentum tensor off andx, respectively.2 In particular, in
the FRW metric~12!, we find

Ttt
f5rf5

1

k2 H g

2
ḟ21V~f!26aHḟJ ,

Ttt
x 5rx5e2afH 1

2
ẋ21U~x!J ,

Ti j
f5pfa2d i j 5

1

k2 H g

2
ḟ22V~f!12af̈

12a2ḟ214aHḟJ a2d i j ,

Ti j
x 5pxa2d i j 5e2afH 1

2
ẋ22U~x!J a2d i j .

~67!

The effectivewf andwx can be defined as follows:

wf5
pf

rf , wx5
px

rx . ~68!

For the first example in~13!–~15!, it follows that

rf5
3~2b23w0!2w0

2

8k2t2S 12
bw0

2 D 2 ,

pf5
~2b23w0!$w0

2~2b29w0!18w0%

8k2t2S 12
bw0

2 D 2 , ~69!

which agrees withw5p/r5pf /rf in ~19!. Note that the
consideration of various entropies for dark-energy mod

2The usual energy-momentum tensorsT mn
f,x given by the variation

over gmn are related withTmn
f,x by T mn

f,x5eafTmn
f,x .
9-6
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can be done and then interesting holographic relati
among them occur~see@16# for a recent discussion!.

For the second example in~39!, one gets

rf5
14

9k2tE0
2

, pf52
19

9k2tE0
2

,

rx5
35

72k2tE0
2

, pf5
5

72k2tE0
2

. ~70!

Hence,

wf52 19
14 , wx5 1

7 . ~71!

However, since

rf1rx52~pf1px!5
147

72k2tE0
2

, ~72!

it turns out thatw521, which is consistent with~42!. We
should also note that, in the Einstein frame~3!, f has a
positive kinetic energy.

For the case of~48! with ~50!–~52! we find

r5
3

2k2ẇ21
1

2
ẋ21W~f,x!5

18w0
2h0

2t2k2~21h!
,

p5
3

2k2ẇ21
1

2
ẋ22W~f,x!5

6w0
2~223h0!

2t2k2~21h!
,

~73!

which reproduces~54!. Having these various examples of th
~accelerated! evolution of the current universe, one can co
pare it with recent astrophysical data in the way discus
recently in@2,17#. Of course, above illustrative examples
current speed-up may correspond to transient acceleratio
other words, stability of the solutions pretending to be re
istic ones should be investigated in detail.

III. EXACT FRW COSMOLOGY FOR THE „PHANTOM …

SCALAR-TENSOR THEORY WITH AN EXPONENTIAL
POTENTIAL

In this section the exact FRW cosmology in the~phantom!
scalar-tensor theory with an exponential potential will be d
cussed. First, the method that is appropriate to obtain
exact FRW solutions will be reviewed@18# ~for introduction
of similar variables in quantum cosmology, see@19#!. Subse-
quently, the formulation is extended to the phantom c
with a negative kinetic term.

The action of a scalar fieldf coupled with gravity is

S5
1

k2E d4xA2gS R2
g

2
]mf]mf2V~f! D . ~74!

This action can be regarded as the action witha50 in ~1! or
that obtained by replacing@(d21)a2/d22#1g/2 and
e2(2a/d22)fV(f) in ~3! with g/2 and V(f), respectively.
04353
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For the standard scalarg.0 and one can normalizef to be
g51, but for the phantom field with negative kinetic term
we haveg,0.

For the FRW metric

ds252dt21a~ t !2 (
i 51,2,3

~dxi !2, ~75!

the action~74! can be rewritten as

S5
1

k2E d3xdtH 26aȧ21a3S g

2
ḟ22V~f! D J . ~76!

The potentialV(f) is chosen to be

V~f!5V0e2(2f/f0), ~77!

with constantsV0 andf0.
First we review the standard case withg.0 following to

@18#. The field variablesa andf are written in terms of new
fields v andu as

a5e(v1u)/3, f5
2~v2u!

A3g
, ~78!

and a new time variablet is defined by

dt5dtA3V0

8
e2[2(v2u)/f0A3g] . ~79!

Then, the action~76! acquires the following form:

S52
1

k2A8V0

3 E d3xdtFdv
dt

du

dt
11Gev1u2ā(v2u),

ā [
2

f0A3g
. ~80!

Varying overv andu, the equations of motion follow:

05
d2u

dt2 1~11ā !S du

dt D 2

2~12ā !, ~81!

05
d2v
dt2 1~12ā !S du

dt D 2

2~11ā !. ~82!

Since the HamiltonianH conjugate tot is given by

H52
1

k2A8V0

3 E d3xFdv
dt

du

dt
21Gev1u2ā(v2u), ~83!

the Hamiltonian constraintH50 yields

dv
dt

du

dt
51. ~84!

In terms of the new variablesV andU, which are given by
9-7
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V[e(12ā)v, U[e(11ā)u, ~85!

the equations of motion are

d2U
dt2

5~12ā2!U,
d2V
dt2

5~12ā2!V. ~86!

When uāu,1, the solution of~86! is given by

U5u1etA12ā2
1u2e2tA12ā2

,

V5v1etA12ā2
1v2e2tA12ā2

, ~87!

with constants of the integrationu6 and v6 . The Hamil-
tonian constraint~84! restricts the constants as

u1v252u2v1 . ~88!

Then the spacetime metric has the following form@18#:

ds252
8

3V0
~v1etA12ā2

1v2e2tA12ā2
!ā/~12ā !

3~u1etA12ā2
1u2e2tA12ā2

!2@~ ā/~11ā !#dt2

1~v1etA12ā2
1v2e2tA12ā2

!2/@3(12ā !]

3~u1etA12ā2
1u2e2tA12ā2

!2/@3(11ā)# (
i 51,2,3

~dxi !2.

~89!

Whent→1`, Eqs.~78! and ~79! give

a→v1
1/3(12ā)u1

1/3(11ā)e2t/~3A12ā2!,

t→t011
A12ā2

ā2
A 8

3V0

3v1
ā/@2(12ā)#u1

2ā/@2(11ā)]eā2t/A12ā2
. ~90!

Heret01 is a constant of integration. Hence,a}t2/3ā2
and the

universe is accelerating (d2a/dt2.0) if

ā2, 2
3 . ~91!

Note that ifv25u250, the behavior in~90! is exact even if
t is not large. The case withv25u250 corresponds to the
solution in Sec. II. On the other hand, whent→2`

a→v2
1/3(12ā)u2

1/3(11ā)e2@~2t/~3A12ā2)#,

t→t022
A12ā2

ā2
A 8

3V0

3v2
ā/@2(12ā)#u2

2ā/@2(11ā)]e2(ā2t/A12ā2). ~92!
04353
Here t02 is again a constant of integration. Thus, we finda

}(2t)2/3ā2
, then the universe is shrinking but accelerati

(d2a/dt2.0) if ~91! is satisfied. To summarize theuāu,1
case, ifv25u250 we find an eternal expanding solution
in Sec. II. In the general case, the solution is a bounc
universe, where first the universe shrinks and then it
pands.

When uāu.1, the solution of~86! can be written as

U5uccos~tAā221!1ussin~tAā221!,

V5vccos~tAā221!1vssin~tAā221!,
~93!

with constantsuc , us , vc , andvs , which satisfy

vcuc1vscs50. ~94!

The solution of~94! can be given by means of three ind
pendent parametersv0 , u0 , u0 as

vs5v0sinu0 , vc5v0cosu0 , us5u0cosu0 ,

uc52u0sinu0 . ~95!

As a result, Eq.~93! simplifies

V5v0cos~tAā2212u0!, U5u0sin~tAā2212u0!.
~96!

As u0 can be absorbed into the constant shift oft, in the
following we chooseu050. The space-time metric looks a
follows:

ds252
8

3V0
v0

2[2ā/(12ā)]u0
2ā/(11ā)

3cos2[2ā/(12ā)]~tAā221!

3sin2ā/(11ā)~tAā221!dt21v0
2ā/[3(12ā)]u0

2ā/11ā

3cos2/[3(12ā)]~tAā221!sin2/[3(11ā)]~tAā221!.

~97!

There are singularities when

tAā2215np, or ~n1 1
2 !p. ~98!

Heren is an integer. If we writet astAā2215np1dt and
assumedt is small, we find, by neglecting numerical factor

t;~dt!(2ā11)/(11ā), a;~dt!1/[3(11ā)];t1/[3(2ā11)].
~99!

Note that (2ā11)/(11ā).0 asuāu.1. Thent50 corre-
sponds tot50. At t50, the size of the universe diverge
~vanishes! when 2ā11,0 (2ā11.0). On the other hand

if we write t astAā2215(n1p/2)p1dt and assumedt
is small, we find, again neglecting numerical factors,

t;~dt!(122ā)/(12ā), a;~dt!1/[3(12ā)];t1/[3(122ā)] .
~100!
9-8
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Note that (122ā11)/(12ā).0 once more, andt50 cor-
responds tot50. Then, att50 the size of the universe di
verges~vanishes! when 122ā,0 (122ā.0). These re-
sults for the standard scalar withg.0 are given in@18#.

We now extend the above formulation to the case o
phantom withg,0. For this situation, we define a comple
field z and its complex conjugatez* by

a5e(z1z* )/3, f52
2i ~z2z* !

A23g
, ~101!

and define a new time variablet as in ~79! by

dt56dtA3V0

8
e2[2 i (z2z* )/f0A23g] . ~102!

The action~76! becomes

S57
1

k2A8V0

3 E d3xdtFdz

dt

dz*

dt
11Gez1z* 2 i ã̄(z2z* ).

~103!

Here

ã̄[
2

f0A23g
. ~104!

The sign7 in ~103! corresponds to the sign in~102!. Vary-
ing overz* , one obtains the following equation:

05
d2z

dt2 1~12 i ã̄ !S dz

dt D 2

2~11 i ã̄ !. ~105!

Now, the HamiltonianH conjugate tot is given by

H57
1

k2A8V0

3 E d3xFdz

dt

dz*

dt
21Gev1u2ā(v2u),

~106!

and the Hamiltonian constraint has the following form:

dz

dt

dz*

dt
51. ~107!

By defining a new variableZ as

Z[e(12 i ã̄)z, ~108!

Eq. ~105! can be rewritten as

d2Z
dt2

5~11a! 2!Z. ~109!

The solution of~109! is given by

Z5z1etA11a! 2
1z2e2tA11 ã̄2

, ~110!

with complex constants of integrationz6 . The Hamiltonian
constraint~107! restricts the constants to satisfy
04353
a

z1z2* 52z2z1* . ~111!

By using three real independent parametersb6 and u0, the
solution of ~111! is given by

z15b1eiu0 z25 ib2e2 iu0. ~112!

By using z6 in ~112!, the metric of the spacetime has th
following form:

ds252
8

3V0
u$z1etA11a! 2

1z2e2tA11 ã̄2
%a/(12 ia)u2dt2

1u$z1etA11a! 2
1z2e2tA11 ã̄2

%2/[3(12 ia)] u2

3 (
i 51,2,3

~dxi !2. ~113!

Whent→`, from ~101! and ~102!, it follows that

a;e$2t/(3A11 ã̄2)12/[3(11 ã̄2)] %R$(11 i ã̄)ln z1%,

t;t17
A11 ã̄2

ã̄2
A 8

3V0
e$2[ ã̄2/(11 ã̄2)] %I$(11 i ã̄)ln z1%

3e2( ã̄2t/A11 ã̄2). ~114!

Here t1 is a constant of the integration. Hence,a}@7(t

2t1)#2(2/3ã̄2), which tells that the universe is acceleratin

sinceä} 2
3 ã̄2( 2

3 ã̄211)@6(t2t1)#2(2/3ã̄2)22.0. The effec-
tive w is given by

w5212 ã̄2,21. ~115!

The case corresponds to a phantom. In general,

ä5
3V0

8
Z $1/[3(12 i ã̄)] %2 i ã̄/(12 i ã̄)22Z* 1/[3(11 i ã̄)] 1 i ã̄/(11 i ã̄)22

3F 4~11 ã̄2!

9
Z 2Z* 22

2~11 i ã̄ !~223i ã̄ !

9~12 i ã̄ !
z1z2Z* 2

2
2~12 i ã̄ !~213i ã̄ !

9~11 i ã̄ !
z1* z2* Z 2G . ~116!

If uZu is large, thenä.0. We should note that whenz2

50, Eq.~114! gives an exact solution corresponding to tho
in Sec. II. In this case, Eq.~114! is valid even if utu is not
small. The solution can be regarded as an attractor. In f
when t;t1 , all the solutions behave as this one.

On the other hand, whent→2` one gets
9-9
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a;e2[2t/(3A11 ã̄2)] 1$2/[3(11 ã̄2)] %R$(12 i ã̄)ln z2%,

t;t26
A11 ã̄2

ã̄2
A 8

3V0

3e2[ ã̄2/(11 ã̄2)]I$(12 i ã̄)ln z2%eã̄2t/A11 ã̄2
. ~117!

Here t2 is a constant of integration again. Thus,a}„6(t

2t2)…2(2/3ã̄2) and, once more, the universe is acceleratin
The solution~113! is almost given by the analytic con

tinuationā→ i ã̄ of that ~89!, which corresponds to the stan
dard~nonphantom! scalar. The behavior obtained for the s
lution ~113! is, however, rather different from th
nonphantom case. In the case of a nonphantom withg.0 in
~89!, which has been investigated in@18#, whenuāu,0, the
behavior in~90! or ~92! shows that there is a singularity on
in the infinite future or past, sincet→6` corresponds tot
→6`. On the other hand, whenuāu.0, the behavior in
~99! or ~100! indicates that there might be Big Rip@8–10# or
Big Crunch singularity in the finite future. Even for non
phantom matter, when the strong energy condition is appl
a finite-time future singularity may occur@20#. In the phan-
tom case in Eq.~114! or ~117!, t→6` corresponds tot
→0. The singularity occurs in thefinite future or past. Thus
if the universe is expanding, there should be a finite-ti
future singularity. This singularity is nothing but the Big R
@8–10#. If there is a singularity in the past, the universe is n
expanding but shrinking. In this sense, the solution with
past singularity is related to that with a future singularity,
reversing the direction of time.

It is possible to relate the action~74! to the action~3! in
the Einstein frame by identifyinggmn , g, and V(f) with
gEmn , @(d21)a2#/(d22)1g/2 ~with d54), and
e2[2a/(d22)f]V(f) ~with d54 again!, respectively. The
physical metric is obtained by rescaling the metric as
reverse of~2!. Instead of~75!, we now assume that the phys
cal metric is given by

ds25eb̄fS 2dt21a~ t !2 (
i 51,2,3

~dxi !2D . ~118!

For t→6`, f behaves as

f;7
4

ã̄A23g
lnut2t6u. ~119!

Sincea behaves asa;ut2t6u2(2/3ã̄2), if

b̄52
1

ã̄
A2

g

3
, ~120!

the singularity corresponding tot→1` is cancelled, but
there remains a singularity corresponding tot→2`. On the
other hand, if
04353
.

d,

e

t
a

e

b̄5
1

ã̄
A2

g

3
, ~121!

the singularity corresponding tot→2` is cancelled, but
there remains a singularity corresponding tot→1`. In the
metric ~118!, the cosmological timet̃ is defined byd t̃5

6e(b/2)fdt, then in case of ~120!, we find t̃} t̃ 01ut
2t6u(2/3ã̄2)11. Here t̃ 0 is a constant of integration. The limi
t→t6 (t→6`) corresponds tot̃→ t̃ 0. On the other hand, in

the case of~121!, t̃} t̃ 081ut2t6u2(2/3ã̄2)11. Here t̃ 08 is a con-

stant of integration. Ifã̄2. 3
2 , t→t6 (t→6`) corresponds

to t̃→ t̃ 0, again. If ã̄2. 3
2 , however,t→t6 (t→6`) corre-

sponds tot̃→6`. Hence, the singularity does not occ
within finite time. This example shows that the type~or even
the presence itself! of the singularity is also related with th
choice of physical metric~frame!.

IV. QUANTUM EFFECTS MAY CHANGE THE FINITE
TIME FUTURE SINGULARITY

Let us again start from the scalar-tensor theory with
single scalar that can be an effective phantom,

L5
1

k2 S R1
g̃

2
gmn]mf]nf2V~f! D , ~122!

where g̃561. It would be interesting to investigate th
quantum properties of such scalar-tensor gravity. Indeed,
known that the phantom theory develops a catastrophic
stability at the quantum level. Hence the point is that tak
into account quantum gravity effects~or, simply quantum
effects! could improve the situation.

The calculation of the one-loop effective action in th
former, non-renormalizable theory may indeed be perform
~using the above parametrization and some choice for
gauge condition!. The result is

W1-loop52
1

2
ln

L2

m2E d4xA2gH 5

2
V22g̃~V8!21

1

2
~V9!2

1F g̃

2
V22V9Gf ,mf ,m2F13

3
V1

g̃

12
V9GR1

43

60
Rab

2

1
1

40
R22

g̃

6
Rf ,mf ,m1

5

4
~f ,mf ,m!2J . ~123!

The above one-loop action is found in Ref.@21#. In order to
consider this effective action as a finite quantum correct
to the classical one, the cut-offL should be identified with
the corresponding physical quantity. For instance, when
universe is in the~almost! de Sitter phase, the natural choic
is L25uRu, as the curvature is strong enough and const
@12,13#. At the same time, in the region whereuVu@uRu, L2

should be identified withuVu.
Hence, even in the situation withV50, starting from the

action~122! with the usual scalar, the phantom terms may
9-10
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induced. This happens if the universe goes through a re
with negative curvature. With account to the potential,
some fine-tuning ofV one can again arrive to the QG
induced phantom theory, which subsequently can change
universe evolution.

Here, we consider the action whereL2 is replaced with
uRu as a simple example

W1-loop52
1

2E d4xA2g ln
uRu
m2 H 5

2
V22g̃~V8!21

1

2
~V9!2

1F g̃

2
V22V9Gf ,mf ,m2F13

3
V1

g̃

12
V9GR1

43

60
Rab

2

1
1

40
R22

g̃

6
Rf ,mf ,m1

5

4
~f ,mf ,m!2J . ~124!
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The variations of this action are given by

1

A2g

dW1-loop

df
52

1

2
ln

uRu
m2 H F5

2
V22g̃~V8!21

1

2
~V9!2G8

1F g̃

2
V22V9G 8f ,mf ,m22¹m

3F S g̃

2
V22V9Df ,mG2F13

3
V1

g̃

12
V9G 8R

1
g̃

3
¹m~Rf ,m!25¹m„~f ,rf ,r!f ,m

…J ,

~125!
1

A2g

dW1-loop

dgmn
52

1

2
ln

uRu
m2 H 1

2
gmnS 5

2
V22g̃~V8!21

1

2
~V9!21S g̃

2
V22V9Df ,mf ,m2S 13

3
V1

g̃

12
V9DR1

43

60
Rab

2 1
1

40
R2

2
g̃

6
Rf ,mf ,m1

5

4
~f ,mf ,m!2D 2S g̃

2
V22V9Df ,mf ,n1S 13

3
V1

g̃

12
V9DRmn2~¹m¹n2gmn¹2!

3S 13

3
V1

g̃

12
V9D 2

43

30
R r

m Rnr1
43

60
$~¹a¹nRam1¹a¹mRan!2¹2Rmn2gmn¹r¹sRrs%1

1

20
RRmn

1
1

20
~¹m¹n2gmn¹2!R1

g̃

6
Rmnf ,rf ,r2

g̃

6
~¹m¹n2gmn¹2!~f ,rf ,r!1

g̃

6
R]mf]nf2

5

2
f ,rf ,rf ,mf ,n

1~2Rmn1¹m¹n2gmn¹2!F2
1

2R
S 5

2
V22g̃~V8!21

1

2
~V9!21F g̃

2
V22V9Gf ,rf ,r2F13

3
V1

g̃

12
V9GR

1
43

60
Rab

2 1
1

40
R22

g̃

6
Rf ,rf ,r1

5

4
~f ,rf ,r!2D G J . ~126!
In the case of occurrence of the Big Rip singularity, t
curvature quickly grows. However, this means that quant
effects~e.g., quantum gravity effects! become important no
only for the early universe, but also for the future univer
These quantum effects may even become dominant when
universe approaches the Big Rip. Suppose that the quan
correction becomes dominant owing to the fact thatW1-loop
contains higher-derivative terms. In this case one can neg
the classical terms. To simplify the situation even more,
assume that the curvature and the scalar fieldf are constant

Rmn5
3

l 2 gmn , R5
12

l 2 , f5c. ~127!

The potentialV(f) is chosen as the exponential function
f,
.
he
m

ct
e

V~f!5V0e22(f/f0). ~128!

Then from~125! and ~126!, we obtain

05
1

A2g

dW1-loop

df

52
1

2
ln

uRu
m2F2

4

f0
S 5

2
2

4g̃

f0
2

1
8

f0
4D V0

2e2(4c/f0)

1
2

f0
S 13

3
1

g̃

3f0
2D V0e2(2c/f0)

12

l 2 G , ~129!
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05
1

A2g

dW1-loop

dgmn

5gmnF2
1

4
lnS 12

l 2m2D H S 5

2
2

4g̃

f0
2

1
8

f0
4D V0

2e2(4c/f0)

2S 13

3
1

g̃

3f0
2D V0e2(2c/f0)

12

l 2 1
147

5l 4J
1

1

8 S 5

2
2

4g̃

f0
2

1
8

f0
4D V0

2e2(4c/f0)

1
3

2l 2 S 13

3
1

g̃

3f0
2D V0e2(2c/f0)2

441

40l 4G . ~130!

Equation~129! can be solved with respect tol 2:

R5
12

l 2 52S 5

2
2

4g̃

f0
2

1
8

f0
4D S 13

3
1

g̃

3f0
2D 21

V0e2(2c/f0).

~131!

We should note, however, that Eq.~130! is not consistent
with the expression in~131! in general. Then, Eq.~130!
might be regarded as an equation determiningm. We should
also note that the right-hand side~rhs! in ~131! is not always
positive. In the caseg̃.0, wheng̃2,5, the rhs in~131! is
positive, but when g̃2.5, it is positive if f0

2. 4
5 (g̃

1Ag̃225) or f0
2, 4

5 (g̃2Ag̃225). On the other hand, in a
phantom caseg̃,0, the rhs in ~131! is positive if f0

2

.2(g̃/13). Anyway, there may occur a~asymptotically! de
Sitter solution. Thus, before entering the Big Rip singular
the universe becomes a quantum de Sitter space. This q
tative discussion indicates that the finite-time future singu
ity may never occur~or, at least may become milder! under
the conjecture that quantum effects become dominant
before the Big Rip. Due to the sharp increase of the curva
invariants near the Big Rip, such a conjecture looks qu
natural.

A similar phenomenon occurs even without quantu
gravity. Indeed, let us consider again the phantom theor
Sec. III with the same potential. For the FRW background
we assume thatf only depends on time, the equation
motion for f is given by

052gS d2f

dt2
13H

df

dt D 2V8~f!. ~132!

The energy densityrf is

rf5
g

2 S df

dt D
2

1V~f!, ~133!

and the FRW equation has the following form:

6

k2 H25rf . ~134!

HereH5ȧ/a. Then a solution of~132! and ~134! is
04353
,
ali-
r-

st
re
e

of
if

f5f0lnUts2t

t1
U, H52

gk2

4~ ts2t !
. ~135!

Here ts is a constant of integration andt1 is given by

t1
252

gf0
2S 12

3gk2

4 D
2V0

. ~136!

Equation~135! shows

a5a0Uts2t

t1
U2(gk2/4)

. ~137!

For a phantom withg,0, a grows up to infinity att5ts ,
which is the Big Rip singularity@8–10#.

In general, Eq.~132! shows that

drf

dt
523gHS df

dt D
2

, ~138!

which is positive ifg,0, H.0, andḟÞ0. Hence, for the
phantom with negativeg, the energy density increases
general. We should also note that since the contribution torf
from the kinetic term is negative ifg,0, we find

rf<V~f!. ~139!

For the caseV(f)50, the energy densityrf is not positive.
In general, the Big Rip singularity occurs due to the rap
increase of the energy density of the phantom scalar. W
V(f)50, the singularity does not occur. To be concrete,
also consider here matter to be dust, whose energy dens
given by

rd5
r0

a3 , ~140!

with a constantr0, which we assume to be positive. Whe
V(f)50, the solution of~132! is given by

df

dt
5

c

a3 . ~141!

Herec is a constant. Then the FRW equation has the for

6

k2 H25
gc2

2a6 1
r0

a3 . ~142!

Equation~142! can be solved easily as

a352
gc2

2r0
1

9k2

4r0
2~ t2ts!. ~143!

Here ts is a constant of the integration. Then, there is
singularity and no acceleration, either.

The Big Rip singularity in~137! occurs because the po
tential is unbounded and goes to positive infinity whenf
→2`. Equation~139! tells that if V(f) is bounded from
above and has a maximumVm as for V(f)50 case, the
9-12



ip
rg

n
a

he
d
ot
iz
o

um
n
g

l

ec-
be-

ow

st
-

l,

LATE-TIME COSMOLOGY IN A ~PHANTOM! SCALAR- . . . PHYSICAL REVIEW D 70, 043539 ~2004!
energy density does not grow up infinitely and the Big R
singularity does not occur. We now assume for the la
negativef, the potential approaches a constant,

V~f!→Vm ~constant! whenf→2`. ~144!

In the region, Eq.~132! reduces to

052gS d2f

dt2
13H

df

dt D , ~145!

which can be solved as in~141!. Then the energy densityrf
~133! has the following form:

rf5
gc2

2a6 1Vm . ~146!

The FRW equation becomes

6

k2 H25
gc2

2a6 1Vm . ~147!

The first term in the rhs could be neglected for a large u
verse. Then, for largea, one gets the de Sitter space as
solution

H2→ Vm

6k2 . ~148!

Thus, one way to avoid the singularity might be that, in t
present universe for large negativef there is an upper boun
in the potential. In this respect, it is also interesting to n
that there are phantomlike models, such as general
Chaplygin gas, where finite-time future singularity does n
occur @22#.

Another way to argue this is to take into account quant
effects, say, for conformally invariant matter. Then the co
tributions coming from the conformal anomaly to the ener
densityrA and pressurepA are ~see@23#!

rA526b8H42S 2

3
b1b9D H 26H

d2H

dt2
218H2

dH

dt

13S dH

dt D 2J , ~149!

pA5b8H 6H418H2
dH

dt J 1S 2

3
b1b9D H 22

d3H

dt3

212H
d2H

dt2
218H2

dH

dt
29S dH

dt D 2J . ~150!

In general, withN scalar,N1/2 spinor, N1 vector fields,N2
(50 or 1! gravitons, andNHD higher-derivative conforma
scalars,b, b8, andb9 are given by

b5
N16N1/2112N11611N228NHD

120~4p!2
,

04353
e

i-

e
ed
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-
y

b852
N111N1/2162N111411N2228NHD

360~4p!2
, b950.

~151!

Near the Big Rip singularity, the scale factora blows up,
as in ~137!, at t5ts . Then the curvatures behave asR}ut
2tsu22, and they become large. Since the quantum corr
tion includes the square of the curvatures, the correction
comes large and important near the Big Rip singularity. N
the FRW equation has the following form:

6

k2 H25
g

2 S df

dt D
2

1V~f!1rA . ~152!

We now writeH andf as

H5h01dh, f5f0lnUts2t

t1
U1df. ~153!

Here h0 , ts , and t1 are constants. We assume that whent
→ts , dh anddf become very small compared with the fir
terms, respectively. InH, however, as the first term is a con
stant, only the second term contributes todH/dt and
d2H/dt2. From ~132! with the same exponential potentia
one obtains

052gS 2
f0

~ ts2t !2
2

3h0

ts2t D 1
2V0t1

2

f0~ ts2t !2 S 12
2

f0
df D

1o@~ ts2t !21#, ~154!

which gives

V0t1
252

gf0
2

2
, df52

3

2
~ ts2t !. ~155!

Then from~152!, we have

05
3gh0f0

ts2t
16h0S 2

3
b1b9Dd2dh

dt2
1o@~ ts2t !21#,

~156!

and

dh5
gf0

2S 2

3
b1b9D ~ ts2t !lnUts2t

t2
U. ~157!

Heret2 is a constant of integration. SinceH5ȧ/a, the scale
factor is

a5a0Uts2t

t2
U$gf0/4[(2/3)b1b9] %(ts2t)2

3e2h0(ts2t)2$gf0/8([(2/3)b1b9] %(ts2t)21o[( ts2t)2] .

~158!
9-13



y.
he
du
e-
u

or

d
in
at
y
th

s

c

-
to

ith

rgy
ith

ifi-

n

ELIZALDE, NOJIRI, AND ODINTSOV PHYSICAL REVIEW D70, 043539 ~2004!
In d2a/dt2 or dH/dt, there appears a logarithmic singularit
The behavior of the singularity, however, becomes rat
milder than the case without quantum correction, where
to the singularity att5ts , the universe cannot develop b
yond the singularity. Since the singularity becomes mild d
to the quantum correction anda andH are finite att5ts , the
universe can develop to the regiont.ts . Then, essentially
the Big Rip singularity is removed due to the quantum c
rection.

V. GRAVITY-ASSISTED DARK-ENERGY DOMINANCE
AND EFFECTIVE PHANTOM AND ÕOR QUINTESSENCE

COSMOLOGY

Recently, an effective phantom and/or quintessence
scription of the late time universe was obtained via the
troduction of a new higher-derivative coupling between m
ter and gravity@24#. It was shown that such a model ma
explain the gravity-assisted dark-energy dominance. In
section we will consider a simple~scalar! example of this
kind of model when standard matter is also included.

The starting action is

S5E d4xA2gH 1

k2 R1RaLd1LmJ . ~159!

Here Ld is the matterlike Lagrangian density~dark energy!
andLm the Lagrangian density of the~standard! matter. By
variation overgmn , the equation of motion follows:

05
1

A2g

dS

dgmn
5

1

k2 H 1

2
gmnR2RmnJ 1T̃mn1Tm

mn .

~160!

Here the effective energy momentum tensorT̃mn is defined
by

T̃mn[2aRa21RmnLd1a~¹m¹n2gmn¹2!~Ra21Ld!

1RaTmn, ~161!

andTmn is given by

Tmn[
1

A2g

d

dgmn
S E d4xA2gLdD . ~162!

The standard matter part of the energy momentum ten
Tm

mn is also defined as

Tm
mn[

1

A2g

d

dgmn
S E d4xA2gLmD . ~163!

For simplicity, the Lagrangian density of a free massless s
lar is considered asLd ,

Ld52 1
2 ]mf]nf. ~164!

Note that for the aboveLd choice and with a higher
derivative scalar curvature term in the gravitational sec
04353
r
e

e

-

e-
-
-

is

or

a-

r

~also without standard matter!, model of this kind was dis-
cussed, with different purposes, in Ref.@25#.

The equation of motion has the following form:

05
1

A2g

dS

df
5

1

A2g
]m~RaA2ggmn]nf!. ~165!

The metric is again chosen to describe a FRW universe w
flat three-space,

ds252dt21a~ t !2 (
i 51,2,3

~dxi !2. ~166!

If one assumes thatf depends only ont @f5f(t)#, the
solution of the scalar-field equation~165! is given by

ḟ5qa23R2a. ~167!

Hereq is a constant of integration. Hence

RaLd5
q2

2a6Ra , ~168!

which becomes dominant whenR is small ~large! compared
with the Einstein term (1/k2)R if a.21 (a,21). Thus,
one arrives at the remarkable possibility that dark ene
grows to asymptotic dominance over the usual matter w
decrease of the curvature.

Combining ~159! and ~160!, one gets S
;*d4xA2g$(1/k2)R1@q2/(2a6Ra)#%, which may indicate
R;a2[6/(a11)]. Then the curvatureR might be stabilized to
have a nontrivial minimum due to the second term in~159!.

Substituting~167! into ~160!, the (m,n)5(t,t) compo-
nent of the equation of motion has the following form:

052
3

k2 H21rd1rm ,

rd[
36q2

a6 ~6Ḣ112H2!2a22H a~a11!

4
ḦH1

a11

4
Ḣ2

1S 11
13

4
a1a2D ḢH21S 11

7

2
a DH4J . ~169!

Hererm is the energy density of the standard matter. Spec
cally, whena521, Eq. ~169! looks like

052S 3

k2 1
15q2

2a6 DH21rm . ~170!

If rm50, this equation has only the trivial solutionH50 (a
is a constant!.

Whenrm50, we can easily find the accelerating solutio
of ~169! @24#,
9-14
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a5a0t (a11)/3 S H5
a11

3t D ,

a0
6[

k2q2~2a21!~a21!

3~a11!a11S 2

3
~2a21! D a12 . ~171!

Equation~171! tells that the universe accelerates, that isä
.0 if a.2. Even fora,21, by changing the time vari
able byt→t02t (t0 is a constant!, the universe is expandin
and accelerating. In this case, however, there is a Big
singularity att5t0.

For the matter satisfying the relationp5wr, wherep is
the pressure andr the energy density, from the usual FR
equation, one has

a}t2/[3(w11)]. ~172!

For a}th0 it follows that

w5211
2

3h0
, ~173!

and an accelerating expansion (h0.1) of the universe oc-
curs if

21,w,2 1
3 . ~174!

For the case of~171!, one finds

w5
12a

11a
. ~175!

Then if a,21, w,21, what corresponds to an effectiv
phantom. In this case, changingt as t02t in ~171!, there
appears a Big Rip singularity att5t0. In @26#, however, it
has been shown that the phantom energy withw,21 makes
the radius of the wormhole spacetime~when it does occur! to
increase in time and thus before the Big Rip the radius
comes infinite and, as a result, the Big Rip singularity m
be avoided.

It is interesting to investigate the stability of the solutio
in ~171!. For this purpose, we write the scale factora as

a5a0t (a11)/3~11d! ~ udu!1!. ~176!

Herea0 is given in ~171!. From ~169!, it follows that

052
2~2a21!~a11!~a21!

t4 d

2
2~2a3218a2233a27!

t3

dd

dt

1
9a~a14!

t2

d2d

dt2
1

9a

t

d3d

dt3
. ~177!

The solutions of~177! are given as
04353
ip

-
y

d}tx0. ~178!

Herex0 is a constant. Then Eq.~177! gives

059ax0
319a~a11!x0

21~24a3127a2148a114!x0

22~a11!~2a21!~a21!. ~179!

As clear from~175!, whena→1`, w*21, which corre-
sponds to quintessence and, whena→2`, we find w
&21, which corresponds to a phantom. Imagine that para
etera→6`. If we assumex05O(1), Eq.~179! reduces to

0524a3~11x0!1O~a2!. ~180!

Hence

x0;21. ~181!

With x05O(a), one obtains

0524a3x019a2x0
219ax0

31O~a3!. ~182!

As a result

x0;0,
a

3
,2

4a

3
. ~183!

Note that the first solutionx0;0 corresponds to the solutio
in ~181! because we have assumedx05O(a). The perturba-
tion looks as

d;d1t211d2ta/31d3t2(4a/3). ~184!

Hered1,2,3 are constants. The second term in~184! may in-
dicate the instability of the solution~171!. When a→1`,
which corresponds to quintessence, the second term may
come dominant whent→`. On the other hand, since th
case a→2` corresponds to the phantom, we replacet
→t02t. The second term may become dominant near
Big Rip t→t0. This might, however, indicate that the Bi
Rip never occurs, since the Big Rip solution is unstable.
other words, even if the present universe equation-of-s
parameter looks asw&21, the universe might transit to
another solution corresponding to the second term in~184!.
However, it is difficult to find the nonperturbative behavi
of the solution corresponding to the second term in~184!.

Thea→21 case, which corresponds tow→2`, can be
also considered. Let us write

a52~11e! ~e!1!. ~185!

It is natural to assume thate is positive. Equation~179! gives

0529~11e!x0
319ex0

21~23118e!x0112e1O~e2!.
~186!

Its approximate solution is

x054e, 2
3

2
e6

i

A3
S 12

7

2
e D . ~187!
9-15
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The perturbationd is found to be given by

d5d0~ t02t !4e1~ t02t !2 3/2 e$dccos@ 1
) ~12 7

2 e!ln~ t02t !#

1dssin@ 1
) ~12 7

2 e!ln~ t02t !#%. ~188!

Hered0 , dc , andds are constants. The first term decreas
near the Big Rip att5t0, but the other terms oscillate rap
idly near the Big Rip and the amplitude becomes lar
which also shows the instability of the~transient accelera
tion! solution ~171!. This may be quite an acceptable resu
on the condition that it lasts sufficiently long enough to co
ply with observational data. The way to avoid a finite-tim
future singularity due to the instability of the accelerati
cosmology may deserve some attention.

The casea*1 corresponds tow&0. With

a511e ~0,e!1!, ~189!

Eq. ~179! gives

059~11e!x0
31~18127e!x0

21~85190e!x24e1O~e2!.
~190!

Its solution is

x05
4

85
1O~e2!, 216

2i

9
1O~e!. ~191!

Therefored is given by

d;d̂0t4e/851
1

t F d̂ccosS 2

9
ln t D1 d̂ssinS 2

9
ln t D G . ~192!

Here d̂0 , d̂c , and d̂s are constants, too. The first term in
creases witht, and thus the solution~171! may be unstable
again.

Even with numerical calculation for generala, there
seems to be instabilities in the solution~171! if w,0 al-
though the solution could be stable ifw.0. This may sug-
gest again that the acceleration of such a dark-energy
verse might be transient.

So far the standard matter contribution has been
glected. WhenrmÞ0, the simple assumption is thatrm be-
haves as

rm5r0a2b. ~193!

Herer0 andb are constant. From Eq.~170! it follows

t5A 3

r0k2E daa(b/2)24Aa61
5q2k2

2
. ~194!

For the case of a generala, if the dark-energy density is
dominant: rd@rm , the solution should behave as~171!.
Hence, the energy densityrm of the standard matter evolve
as

rm5r0a0
2bt2[(a11)b/3]. ~195!
04353
s

,

,
-

i-

e-

On the other hand,rd behaves as

rd}t22. ~196!

Sinceb54 for the radiation andb53 for the dust and the
acceleration of the universe occurs whena.2, we may as-
sumeb.2 anda.2. As a result,

~a11!b

3
.2. ~197!

When timet grows,rm decreases further as compared w
rd .

The essence of a gravity-assisted dark-energy domina
is clearly seen in the example below. Let the standard ma
dominate, as compared with the dark energyrm@rd . Then
the scale factor is given by that of the standard FRW eq
tion

a5S b2r0k2

12 D 1/b

t2/b. ~198!

The energy density of the standard matterrm behaves as
rm;t22. On the other hand, the dark energy behaves as

rd;t2a2(12/b). ~199!

Hence if

2a2
12

b
.22, ~200!

the dark energyrd becomes larger as time passes. Equat
~200! can be satisfied ifa,b.2 as in the dark-matter domi
nant case.

Let us assume that in the early universe, the stand
matter and/or radiation is dominant. The universe evol
according to~198!. From ~200!, dark energy increases wit
time growth. Whenrd*rm , as in the present universe, th
acceleration of the universe begins. Thus, in the future
accelerating universe evolves with the scale factor~171!.
However, that is most probably a transient acceleration. T
is not strange owing to the fact that the above effective ph
tom and/or quintessence description is achieved by mean
a higher-derivative coupling between dark matter and gr
ity. It is known that higher-derivative gravities~see@13# for a
review! may have problems with unitarity~stability! when
they are considered as fundamental theories. Hence,
model under discussion should be treated as a kind of ef
tive matter-gravity theory. It would be interesting to analy
some astrophysical predictions of our model~say, rotation
curves of galaxies! in the way it was recently discussed, e.g
in @27#.

VI. DISCUSSION

In summary,~phantom! scalar-tensor cosmology with a
exponential scalar potential suggests the comely possib
of a dark-energy universe with an equation-of-state para
eterw, which is negative and very close to21. Convenient
9-16
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choices of the theoretical parameters may shift the exp
value ofw from above to below21. Moreover, such a uni
verse naturally admits a~transient or eternal! acceleration
phase. A very nice property of this theory is that what a
pears as a phantom in one frame may appear as a stan
scalar in another frame. It is demonstrated that in the si
tion when a finite-time future singularity is predicted by t
growing phantom-energy density, the consideration of qu
tum gravity effects might drastically change the future of o
universe, removing the singularity in a quite natural w
From another side, it is also shown that a higher-deriva
gravity-matter coupling term being not the phantom may
fact provide an effective phantom and/or quintessence
scription of the late-time universe, suggesting the possib
of a dark-energy model of a brand new type. In this ca
gravity makes dark energy become the~evolving! main con-
tribution to the total energy density—as compared with
standard matter and/or radiation, which was initia
dominant—which leads to the appearance of the phas
transient acceleration.

Current attention to phantom models as dark-energy c
didates is not driven by the internal consistency and
beauty of this theory, which still contains a number of p
tially resolved problems, as we have already mention
Rather, it is the lack of a good theoretical understanding
the present universe coming from more usual theories
calls for alternative explanations to be considered, on
hand. On the other hand, one sees also that the cosmic
structure, which emerges from these alternatives, is so
and suitable at times, that some concepts, which so
seemed to be strange~like the idea of negative energy itself!,
deserve to be investigated with care and to the end. In
respect, even the mild indications that have been reporte
a possible phantom origin coming from string and
M-theory or on the chance~described above! to avoid the
Big Rip catastrophe by taking properly into account t
quantum effects seem indeed very promising.
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APPENDIX

In this Appendix several remarks are made about the p
sible origin of the phantom-related models coming from
higher-dimensional theories considered in the paper. T
topic was widely investigated in the Kaluza-Klein context~in
relation with the string and/or M-theory!, and for a recent
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discussion the reader is addressed to@28#. We start from a
41n-dimensional spacetime, whose metric is given by

ds25 (
m,n50,1,2,3

gmndxmdxn1e2f(xm) (
i , j 51

n

g̃i j dj idj j .

~A1!

For simplicity, one may assume that the metricg̃i j corre-
sponds to an Einstein manifold, where the Ricci tensorR̃i j

constructed fromg̃i j is proportional tog̃i j : R̃i j 5kg̃i j . Here
k is a constant. Whenn51, k always vanishes (k50).
Whenn>3, the above metric is given as the solution of t
n-dimensional Euclidean Einstein equation. Whenn52,
since the two-dimensional Einstein equation is trivial, in t
conformal gauge the above condition for the Ricci tenso
the Liouville equation. Under the above assumptions, th
1n dimensional Einstein action with matter fieldx ~bosonic
sector of some higher-dimensional supergravity! can be writ-
ten as

S41n5
1

k2E d41nxA2g(41n)S R(41n)2
1

2
]mx]mx2U~x! D

5
Vn

k2E d4xA2genfS R1n~n21!gmn]mf]nf

1nke22f2
1

2
]mx]mx2U~x! D . ~A2!

HereVn is the volume of then-dimensional manifold whose
metric tensor is given byg̃i j . We should note that the kineti
energy off becomes negative, as for the phantom. Resca
the four-dimensional metricgmn by gmn→e2nfgmn , the ac-
tion ~A2! can be rewritten as

S41n5
Vn

k2E d4xA2gS R2
n~n12!

2
gmn]mf]nf

1nke2(n12)f2
1

2
]mx]mx2e2nfU~x! D .

~A3!

Now the kinetic energy off is positive. If we further rescale
f by

f5wA 3

n~n12!
, ~A4!

the four-dimensional action looks like
9-17
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S41n5
Vn

k2E d4xA2gS R2
3

2
gmn]mw]nw1nke2wA[3(n12)]/n

2
1

2
]mx]mx2e2wA3n/(n12)U~x! D . ~A5!

The above action belongs to the same class as~43! by iden-
tifying

W~w,x!5e2wA3n/(n12)U~x!. ~A6!

Comparing the above expression with~47!, one obtains

A 3n

n12
5

21h

w0
. ~A7!

Then, if

0,w0,2An12

3n
, ~A8!

Eq. ~53! follows. If

U~x!5W0e~h/x0! x, ~A9!

we can obtain forw a value less than21, and correspon-
digly the universe expands with acceleration, by a pro
choice of the parameters.

One may consider the product compactification to
more general than~A1!,

ds25 (
m,n50

d21

gmndxmdxn1e2f(1)(xm) (
i , j 51

n

gi j
(1)dj idj j

1ef(2)(xm) (
I ,J51

N

gIJ
(2)dj idj j . ~A10!

Since the scalar curvatureR(d1n1N) in (d1n1N)-
dimensional spacetime is given by

R(d1n1N)5R(d)1k(1)e22f(1)
2n~n11!]mf (1)]mf (1)

22n¹2f (1)1k(2)e22f(2)
2N~N11!]mf (2)

3]mf (2)22N¹2f (2)22nN]mf (1)]mf (2),

~A11!

if we start from the (d1n1N)-dimensional action coupled
with the scalar fieldx with potentialU(x), we obtain
04353
r

e

S(d1n1N)5
1

k2E dd1n1NxA2g(d1n1N)

3FR(d1n1M )2
1

2
]mx]mx2U~x!G

5
VnVN

k2 E ddxA2g(d)enf(1)1Nf(2)

3FR(d)2n]mf (1)]mf (1)2N]mf (2)]mf (2)

1]m~nf (1)1Nf (2)!]m~nf (1)1Nf (2)!

1k(1)e22f(1)
1k(2)e22f(2)

2
1

2
]mx]mx2U~x!G .

~A12!

If U(x) is a constant, one may regard it as the cosmolog
constant. Further rescaling the metric tensor by

gmn→e2[2/(d22)](nf(1)1Nf(2))gmn , ~A13!

we get

S(d1n1N)5
VnVN

k2 E ddxA2g(d)FR(d)2n]mf (1)]mf (1)

2N]mf (2)]mf (2)2
1

d22
]m

3~nf (1)1Nf (2)!]m~nf (1)1Nf (2)!

1k(1)e2[2/(d22)](nf(1)1Nf(2))22f(1)

1k(2)e2[2/(d22)](nf(1)1Nf(2))22f(2)
2

1

2
]mx]mx

2e2[2/(d22)](nf(1)1Nf(2))U~x!G . ~A14!

In this frame, the kinetic term of the matter fieldx does not
directly couple to the scalar fieldsf (1) and f (2). Then the
Newton law is not violated in the leading order of perturb
tion. The kinetic terms of the fieldsf (1) and f (2) can be
diagonalized by

f (1)5y2f11y1f2, f (2)5y1f12y2f2.
~A15!

Here

y6[A1

2
S 16

~d22!2~n2N!2S 11
n1N

d22 D 2

4n2N2
D .

~A16!

Hence
9-18
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S(d1n1N)5
VnVN

k2 E ddxA2g(d) FR(d)2x1]mf1]mf12x2]mf2]mf2

1k(1)e2$[2n/(d22)12]y212N/(d22)y1%f12$[2n/(d22)12]y12[2N/(d22)]y2%f2

1k(2)e2$[2N/(d22)12]y11[2n/(d22)]y2%f12$2[2N/(d22)12]y22[2n/(d22)]y1%f2

2
1

2
]mx]mx2e2[2/(d22)]$(ny21Ny1)f11(ny12Ny2)f2%U~x!G . ~A17!
,

Here,

x6[
1

2S n1N1
n21N2

d22
6AD D.0,

D[S n1N1
n21N2

d22 D 2

24nNS 11
n1N

d22 D

5~n2N!2S 11
n1N

d22 D 2

1
4n2N2

~d22!2.0. ~A18!

For simplicity, the casek(2)5U(x)5x50 andd54 is con-
sidered. Comparing the action~A17! with ~43!, we may iden-
tify

w↔A2x1

3
f1, kx↔A2x2f2. ~A19!

From ~47!, one sees that
.

v.
.

,

04353
W052k(1),

21h

w0
5$~n12!y21Ny1%A 3

2x1 ,

h

x0
52

~n12!y12Ny2

A2x2
. ~A20!

Using ~50!, an expression forh can be found

h52
2

11z
, z[

x2$~n12!y21Ny1%2

x1$~n12!y12Ny2%2
. ~A21!

Since x6.0 ~A18!, z.0 and thereforeh satisfies~53!.
Thenw.21 and there is no phantom. More explicitlyw is
given by

w5211
2$~n12!y21Ny1%

3x1~21h!
. ~A22!

Numerically, with n52 and N55, w50.002 695 54; with
n53 andN54, w520.058 669 1. Although not realistic
if we choose n56 and N531, it follows that w
520.353 435.
,
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