
PHYSICAL REVIEW D 70, 043538 ~2004!
Turbulent thermalization
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We study, analytically and with lattice simulations, the decay of coherent field oscillations and the subse-
quent thermalization of the resulting stochastic classical wave field. The problem of reheating of the Universe
after inflation constitutes our prime motivation and application of the results. We identify three different stages
of these processes. During the initial stage of ‘‘parametric resonance,’’ only a small fraction of the initial
inflaton energy is transferred to fluctuations in the physically relevant case of sufficiently large couplings. A
major fraction is transferred in the prompt regime of driven turbulence. The subsequent long stage of thermal-
ization classifies as free turbulence. During the turbulent stages, the evolution of particle distribution functions
is self-similar. We show that wave kinetic theory successfully describes the late stages of our lattice calculation.
Our analytical results are general and give estimates of reheating time and temperature in terms of coupling
constants and initial inflaton amplitude.
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I. INTRODUCTION

Field theoretical systems which are a long way from th
mal equilibrium have been studied intensely in recent ye
The particular problem of how and when such systems
proach equilibrium stretches beyond obvious fundame
interest and finds many practical applications. In high-ene
physics understanding of these processes is crucial for a
cations to heavy ion collisions and to cosmology of the ea
universe. The first topic gains further importance in light
the current and future experimental search for a quark-glu
plasma at RHIC and at the forthcoming LHC. The seco
application, our main interest in this paper, is related to
problem of reheating of the universe after cosmological
flation.

Inflation provides a solution to the flatness and the ho
zon problems of standard cosmology@1–3# and explains the
generation of initial density perturbations—the seeds of g
axies and large-scale structure in our universe. During in
tion the universe is in a vacuumlike state. At the end
inflation all energy density is stored in a Bose condens
the coherently oscillating ‘‘inflaton’’ field. This state i
highly unstable: parametric, tachyonic or strong nonadiab
particle creation triggers a fast and explosive decay of
inflaton. This process, dubbed preheating@4–6#, is currently
well understood@7–14#. A generic feature is a strong and fa
amplification of fluctuation fields at low momenta, whic
may lead to various interesting physical effects during a
after preheating. These include nonthermal phase transit
@15–18# with possible formation of topological defects@19–
23#, creation of super-heavy particles@14,24#, generation of
high-frequency gravitational waves@25#, etc.

*Electronic address: micha@itp.phys.ethz.ch
†Electronic address: igor.tkachev@cern.ch
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The explosive stage of inflaton decay ends when the
of interactions of created fluctuations among themselves
with the inflaton becomes comparable to the inflaton de
rate @7–10#. The understanding of the subsequent stages
relaxation towards equilibrium, of the thermalization pr
cesses and the calculation of the final equilibrium tempe
ture is important for various applications as it links the infl
tionary phase with that of standard cosmology. Among th
one can list baryogenesis@14,26–29# and the problem of
over-abundant gravitino production in supergravity mod
@30–35#. It determines the abundances of other relics, l
super-heavy dark matter@36–39#, or axino dark matter@40#.

Knowledge of the reheating temperature is also import
for fixing constraints on the inflationary model from cosm
microwave background~CMBR! anisotropy @41–44#. In
some models cosmologically important curvature pertur
tions may be even generated during the process of therm
zation@45–49#. Last but not least: the reheating temperatu
should be larger than about 1 GeV to ensure that the stan
Big Bang nucleosynthesis@2,50# is not hampered.

There have been many efforts and successes in the un
standing of the nonequilibrium dynamics and relaxation
field theories, see e.g. Refs.@51–66#. However, the leading
asymptotic dynamics towards equilibrium remained rat
less understood and developed.

The main problem for the theoretical understanding
reheating is that initially the occupation numbers are v
large, of order of the inverse coupling constant. In additio
in many inflationary models the zero mode does not de
completely during preheating. Therefore, a simple pertur
tive approach is not justified. On the other hand, in this
gime, a description in terms of classical field theory is va
@7#, and the whole process~including preheating!, can be
studied by classical lattice simulations.

Recently, we employed this method to show@67,68# that
the classical reheating of a masslessF4 theory in 311
©2004 The American Physical Society38-1



e
ic
tic
an
ll

m

of

e
n
ic
.

a

ac
re
e,

b

th
n
w
u
at

to
o

fo
th
to
tu
.
n
n
e
-

-
ng
c
en
o

g
tia

h
ca
io

d
of
left
ored
s-
rve
i-

es
the
of
r, as

is
bu-
elf-
es
ce’’
ort

ce
her.
ay

w
he
s

est.
to
our
lts

the
of

lar
al
e

cal

for
the

e
ore
to

sid-
be

ent
n.

ted

ile

R. MICHA AND I. TKACHEV PHYSICAL REVIEW D 70, 043538 ~2004!
dimensions is characterized by aturbulent and self-similar
evolution of distribution functions towards equilibrium. Th
shape of the spectra, as well as the self-similar dynam
could be understood within the framework of wave kine
theory. This made it possible to estimate reheating time
temperature, which turned out to coincide parametrica
with the results of the simple perturbative approach.

Turbulence appears in a large variety of nonequilibriu
phenomena in nature~see Refs.@69–71# for a general intro-
duction!. It was first discussed for fluids, in the regime
large Reynolds numbers~velocities!, where viscosity is sub-
dominant. Kolmogorov identified turbulence in this regim
@72,73# as a statistically scale invariant flow of spectral e
ergy mediated by vortex interactions. The same dynam
structure may appear in systems of coupled waves, e.g
fluid surfaces or for coupled fields in a plasma@69,70,74#. In
this case the cascade is mediated by wave interactions
the phenomenon has been calledwave turbulence.

If there exists an active~stationary! source of energy in
momentum space, the turbulence is calleddriven ~station-
ary!. When the source is switched off after the stage of
tivity, the freely propagating energy cascade is often refer
to asfree turbulence. If the kinetic description is applicabl
the energy cascade is calledweak turbulence. Otherwise one
is facing astrong turbulence.

One may expect that the concept of turbulence should
relevant for the problem of reheating@7,51# already on gen-
eral grounds. Indeed, the source of energy, localized in
‘‘infrared’’ is present initially. It is represented by the inflato
field in the problem at hands. To complete the argument,
note that as the final outcome of the evolution one sho
expect cascading of energy towards a significantly separ
region of ‘‘ultraviolet,’’ high momentum modes.

The goal of the current paper is twofold. First, we want
apply the wave kinetic theory of turbulence to the problem
the Universe reheating after inflation. We derive general
mulas for the spectra of turbulent distributions and for
self-similar evolution towards equilibrium. This enables us
give asymptotic estimates of reheating time and tempera
in Minkowski space as well as in the Friedmann universe

Second, we want to test and confront these ideas to
merical lattice calculations. For our numerical integratio
we have chosen the simplest ‘‘chaotic’’ inflationary mod
@75#. While the initial ‘‘preheating’’ stage in other inflation
ary models, e.g. in hybrid inflation@76# may exhibit impor-
tant differences@12,13,77# with this model, we expect the
subsequent turbulent stages to be more universal.

We start lattice integration from ‘‘vacuum’’ initial condi
tions for fluctuations in a background of classical oscillati
inflaton field. We observe the initial parametric resonan
stage when the energy in fluctuations is growing expon
tially with time. This stage terminates when re-scattering
waves out of the resonance band becomes important@7,9#. In
the physically relevant case of sufficiently large couplin
this happens rather early, when only a small fraction of ini
inflaton energy is transferred to fluctuations@9–11#. At this
point a state of stationary turbulence should be establis
that is driven by the zero mode. On general grounds, it
be deduced that during this stage the energy in fluctuat
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should grow linearly with time. This behavior is confirme
by the results of our numerical simulations. The stage
stationary turbulence should terminate when the energy
out in the zero mode becomes smaller than the energy st
in created ‘‘particles.’’ From this moment of time, the tran
port of energy from the source is negligible and we obse
free turbulence with self-similar evolution of particle distr
butions towards thermal equilibrium.

The first stage of driven turbulence is prompt and giv
the main mechanism by which energy is drawn out of
zero mode, e.g. out of the inflaton field. The identification
this constitutes one of the new results of the present pape
opposed to the common opinion that the main mechanism
a ‘‘parametric resonance.’’ The second stage of free tur
lence is very long and can be analytically described as s
similar evolution. This is another new result and diffus
some existing claims and hopes that ‘‘parametric resonan
may bring a system to thermal equilibrium on a very sh
time scale.

Overall, the kinetic description and the results of latti
simulations are in rather good agreement with each ot
This indicates that the regime of weak wave turbulence m
be already achieved on the lattice.

The paper is organized as follows. In Sec. II we revie
the results of our numerical simulation of reheating in t
simplestlF4 model to get familiar with concepts, problem
and the typical dynamical behavior of the systems of inter
In Secs. III and IV we apply the theory of wave turbulence
the problem of reheating in general. In Sec. V we present
numerical simulations. In Sec. VI we compare lattice resu
with the kinetic approach and discuss the applicability of
latter. In Sec. VII we discuss some physical applications
our results, in particular the thermalization in the self-simi
regime. In Appendix A we give the details of our numeric
procedure. In Appendix B we review the derivation of th
kinetic equation for a system of weakly interacting classi
waves.

II. SIMPLEST MODEL OF REHEATING: NUMERICAL
RESULTS

We start with a presentation of our numerical results
the inflaton decay and the subsequent equilibration of
decay products in a simplelF4 model. The results were
already briefly reported in Ref.@67#. The numerical proce-
dure itself is described in Appendix A. At the end of th
section we will discuss some expected differences with m
complicated models. This order of presentation allows us
introduce the typical behavior in the systems under con
eration and to formulate concepts and problems. This will
useful in the discussion of the general theory of turbul
thermalization, which we carry out in the following sectio
Further numerical results, obtained for the simplestlF4

model, and numerical results obtained for more complica
multifield systems, will be presented in Secs. V and VI.

A. Results for the F4 model

In this simple model, the fieldF is the only dynamical
variable. Its initial homogeneous mode drives inflation, wh
8-2
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TURBULENT THERMALIZATION PHYSICAL REVIEW D 70, 043538 ~2004!
development and growth of fluctuations on sub-horiz
scales at the end of inflation can be viewed as a sim
model of reheating. Inflation ends when the motion of t
homogeneous mode of the field changes from the regim
‘‘slow roll’’ to the regime of oscillations. It is convenient to
work in conformal coordinates where the metric takes
form

ds25a~h!2~dh22dx2!. ~1!

We choose the case of a massless field, where the equati
motion for the rescaled fieldw[Fa after inflation ap-
proaches the flat space-time equation

hw1lw350. ~2!

This point deserves clarification, since in the Friedmann u
verse the field equations, in general, contain a linear t
proportional to2ä/a. However, this term is unimportant a
preheating and subsequent stages, see e.g. Refs.@7,9# where
it was included self-consistently in lattice integrations. I
deed, during the initial parametric resonance stage a co
ently oscillating field does induce small oscillations of t
scale factor on top of radiationlike dominated expansi
however, the corresponding resonance parameter is s
and does not lead to significant effects. With the end of pa
metric resonance stage and the subsequent chaotization
equation of state rapidly approaches that of radiation~for
massless fieldsp5r/3 regardless of distribution of particle
over momenta, and, consequently, this is true for highly n
equilibrium states as well!. The solution of Friedmann equa
tions in this case isa(h)}h, or ä50. The term proportiona
to 2ä/a is not important for the dynamics of reheating a
thermalization, and we neglect it in what follows.

All results obtained in the model Eq.~2! are equally ap-
plicable to the reheating of the Universe after inflation and
modeling of other processes of thermalization in relativis
systems, say, after heavy ion collisions.

The homogeneous component of the field, which cor
sponds to the zero momentum in the Fourier decomposit
w0(h)[^w&, is usually referred to as the ‘‘zero mode.’’ It i
convenient to make a rescaling of the field,f[w/w0(h0),
and of the space-time coordinates,xm→Alw0(h0)xm. Here,
h0 corresponds to the initial moment of time~end of infla-
tion!. In what follows dimensionless time is still denoted
h. With this rescaling, the initial condition for the zero-mod
oscillations isf0(h0)51, and the equation of motion take
the simple parameter free form

hf1f350. ~3!

All model dependence on the coupling constantl and on the
initial amplitude of the field oscillations is encoded now
the initial conditions for the small~vacuum! fluctuations of
the field with nonzero momenta~see Ref.@7# and Appendix
A!. The physical normalization of the inflationary model co
responds to a dimensionful initial amplitude ofw0(h0)
'0.3MPl and a coupling constantl;10213 @1#. The re-
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parametrization property of the system allows to choos
larger value ofl for numerical simulations. We have use
l51028.

Various quantities can be measured in a lattice calcula
and monitored as functions of time. Here we will discuss
zero mode,f0[^f&, the variance, var(f)[^f2&2f0

2 and
‘‘particle occupation’’ numbers. For definitions see Append
A.

We begin the discussion of our numerical results with
evolution of the zero mode and the variance of the fie
which are shown in Fig. 1. The zero mode is a rapidly os
lating function on the time scale of our lattice calculation.
Fig. 1 we show the amplitude of oscillations,f̄0, as a func-
tion of time.

The initial fast transfer of the zero-mode energy into flu
tuations during preheating~up to h;300) is followed by a
long and slow relaxation phase. In this late time regime
amplitude of the zero mode oscillations decreases accor
to ;h2z with z'1/3, the variance of the field~averaged
over high-frequency oscillations! drops according to;h2v

with v'2/5. In addition, we find that in this regime the ze
mode is in a nontrivial dynamical equilibrium with the ba
of highly occupied modes: when the zero mode is artificia
removed, it is recreated on a short time scale~Bose conden-
sation!.

A detailed analytical discussion of the initial linear sta
of the parametric resonance in this model can be found
in Refs.@78–80#. During this stage the occupation numbe
grow exponentially with time in a narrow band of resonan
momenta. Figure 2 shows the occupation numbers at dif

FIG. 1. Squared amplitude of the zero-mode oscillations,f̄0
2,

and variance of the field fluctuations as functions of timeh.

FIG. 2. Occupation numbers as function ofk/f̄0 at
h5100,400,2500,5000,10000.
8-3
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ent moments of time. The displayed spectrum at timeh
5100 corresponds to the stage of parametric resonance.
resonance peak is located at the theoretically predicted v
of kres.;1.27@79#. At later time, the growth of the resonanc
peak is stopped by re-scattering of particles out of the re
nance band, which leads to a broadening of the occup
region and to the appearance of multiple peaks@7# of com-
parable width, see spectrum ath5400. This structure fits
estimates for the development of turbulence in the prese
of a narrow width source located at a finitek, see Ref.@69#.
At even later times the spectra have become smooth bec
of re-scattering, and only the first peak is still visible as
small bump. With time, its position moves towards smal
momenta, reflecting the change in the effective frequenc
inflaton oscillations. However, if the particle momenta a
rescaled by the current amplitudef̄0 of the zero mode oscil-
lations, as in Fig. 2, the position of the resonance is appr
mately unchanged. Particles with small momenta are dist
uted according to a power law, which at larger momenta
bounded by a cutoff. The position of this cutoff moves w
time to the ‘‘ultraviolet.’’ This reflects a general tendency
the system to thermal equilibrium. Indeed, in a state of th
mal equilibrium the energy of the system should be conc
trated at much higher wave numbers compared to the r
nance momenta. On the other hand, energy is inputted
the system of particles in the region ofk near the resonanc
peak. Therefore, we have a continuous flux of energy ac
momentum space, from low to high momenta.

This stage of evolution (h.1500) has the following char
acteristic features:

~i! The system overall is statistically close to a Gauss
distribution of field amplitudes and conjugated mome
@58,67#.

~ii ! The spectra in the dynamically important region c
be described by a power law,k2s with s'3/2. We see that
the system is not in a thermal equilibrium which would co
respond tos51. Rather, the exponent of particle distrib
tions in the power law region corresponds to Kolmogor
turbulence@67#.

~iii ! The power law is followed by a cutoff at higherk.
Energy accumulated in particles is concentrated in the reg
were the cutoff starts. Its position is monotonously growi
toward the ultraviolet, reflecting the evolution towards th
mal equilibrium.

~iv! This motion can be described as a self-similar evo
tion @67#

n~k,t!5t2qn0~kt2p!, ~4!

wheret[h/hc andhc is some~arbitrary! late-time moment.
The best numerical fit corresponds toq'3.5p and p'1/5,
and is presented in Fig. 3. The value of the exponentp is of
prime interest since it determines the rate with which sys
approaches equilibrium.

The first and the second point in this list facilitate the u
of wave kinetic theory, see e.g. Refs.@69,81#. However, a
straightforward application is difficult and may be even
appropriate, at least at the early re-scattering stages, bec
of the following:
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~i! The zero mode does not decay completely. It may
duce ‘‘anomalous’’ terms in the collision integral, which a
absent in the usual kinetic description.

~ii ! The occupation numbers are large initially, of order
the inverse coupling constant,nk;1/l, see Fig. 2. Therefore
in addition to lowest order collisions~e.g. scattering of two
particles into two particles with different momenta!, multi-
particle collisions may be dynamically important as well.

Therefore, precise lattice calculations are needed. On
other hand, they have a limited dynamical range in mome
and in time, and one has to switch to a kinetic approach
some later stage. To determine when~and if! this is possible,
the results obtained with the use of a simple kinetic appro
should be confronted with the lattice results.

In the following sections we will develop and apply th
theory of weak wave turbulence to the models of the ty
integrated on the lattice. In particular, we will calculate
universal scaling exponents and show that they are in ag
ment with lattice results. At ‘‘early’’ times the dynamics o
the model described above is driven bym-particle interac-
tions with m53. Wave turbulence theory gives for scalin
exponents ind53 spatial dimensions:

p51/~2m21!,

s5d2m/~m21!,

v52/~2m21!,

z51/@d~m21!2m#.

B. Expected differences in more complicated models

The flux of energy over momentum space, which is n
essarily present in problems like reheating and thermal
tion after inflation, signifies that we should observe a turb
lent state during the thermalization stage and that the the
of turbulence applies. In a simplelf4 model the stage of
preheating~i.e. parametric resonance! ends when roughly
half of the inflaton energy is transferred to particles. Inde
Fig. 1 shows that the amplitude of the zero mode, which
source of energy for the turbulence problem, starts to

FIG. 3. On the right hand side we plot the wave energy
decade found in lattice integration ath53600,5100,7000,10000
On the left hand side are the same graphs transformed accordi
the relation inverse to Eq.~4!.
8-4
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TURBULENT THERMALIZATION PHYSICAL REVIEW D 70, 043538 ~2004!
crease already at the end of the parametric resonance s
In such system we expect the free turbulence regime to
low the preheating stage.

In more complicated systems, which involve other fie
coupled to the inflaton, say, some fieldx, parametric reso-
nance may end when the fraction of energy transferred to
x excitations is still negligible compared to the energy sto
in the inflaton zero mode. Indeed, parametric resonance
when the rate of re-scattering of particles out of the re
nance band became comparable to the resonant produ
rate and the maximal value of the variance ofx excitations
achieved at the end of the resonance stage is;1/g2, where
g2 is either the coupling ofx to the inflaton, or self-coupling
of x ~viz., the largest of these two!. We expect that in this
case turbulent transport will develop when the amplitude
the inflaton zero mode is still unchanging. This means t
the transfer of zero mode energy intox-field should occur in
the regime of stationary turbulence. Only when the amo
of energy in the zero mode becomes subdominant we sh
expect a transition to the regime of free turbulence. This is
important difference to the simplef4 model. In particular,
the distribution functions move much faster into the ultrav
let in this regime,p5(m21)/(2m21). We will see that the
regime of stationary turbulence is indeed present in two fi
models, see Sec. V.

III. THERMALIZATION IN THE WAVE KINETIC
REGIME: GENERAL THEORY

A. Turbulent reheating: A motivation

Kolmogorov’s turbulence is characterized by a station
transport of some conserved quantity between differ
scales in momentum~Fourier! space@72,73#. In the follow-
ing, we will restrict ourselves to systems with spatially is
tropic and homogeneous correlation functions, which app
to the cosmological conditions after inflation. Turbulen
usually appears when a source of energy or particle
present and is localized in some momentum regionkin . In
addition to the source exists a ‘‘sink’’ localized atkout. When
both, source and sink are stationary, it is natural to expect
eventual development of a stationary state with scale in
pendent transport of the conserved quantity through mom
tum space. Indeed, energy or particle number cannot a
mulate betweenkin andkout and should flow from one scal
to the other.

This is a system-independent formulation of Kolmogo
ov’s concept of turbulence, which he formulated in the co
text of hydrodynamical systems@72,73#. Zakharov applied it
to systems of coupled waves@74# in the regime of kinetic
wave interactions. His approach is based on his derivatio
the wave kinetic equations~see e.g. Refs.@69,74,81#! and is
well suited to studies of turbulence in classical field theori
We will adopt it here.

The physical scenario of reheating after inflation sha
basic ingredients with that of turbulence: there exists a lo
ized source of energy—the coherently oscillating inflat
zero mode—pumping energy into the system of particles
Fourier wave numberskin;kres. The mechanism behind thi
pumping can be parametric resonance, tachyonic amplifi
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tion, etc. Like in the turbulent scenario there do not ex
other intermediate scales~wave numbers!, where energy is
infused, accumulated, or dissipated. Thus, it seems likely
the eventual dynamics of reheating—after the explosive
gime of preheating has ended—is close to that of Kolm
orov’s turbulence.

However, in the description of reheating appear some
ferences to stationary turbulence, since:

~i! A sink does not exist.
~ii ! The source~i.e. the amplitude of inflaton zero-mod

oscillations and therefore interaction rates! can be essentially
time dependent on relevant time scales.

~iii ! Neither source nor sink exist when the inflaton h
completely decayed.

In the first case, we expect that the stationary turbul
flux of energy still will be established in some ‘‘inertial
rangekin,k,kout. Particle distributions in this range of mo
menta should not be significantly different compared to
case with a stationary sink. Indeed, in the typical turbul
problem the energy dissipates~e.g. into heat! after entering
the regionk@kout. For problems relevant to thermalizatio
after inflation, instead of dissipation the transported energ
used to populate high momentum modes atk@kout. If the
transport is reasonably ‘‘local’’ in momentum space, the fl
of energy through the inertial range should not be influen
much by processes which involvek.kout. Energy may dis-
sipate atkout or continue the flow to even higher moment
but regardless of this, we should expect the same distribu
of particles in the inertial range. However, in the latter ca
we can expect that the value ofkout increases, and since th
flux of energy is constant throughout inertial range, the to
energy of a system without a sink has to grow linearly w
time,

E~ t !}t. ~5!

This is a simple consequence of the stationarity of turbule
in the inertial range, and can be used as its signature.

A time dependent source~second point above! changes
the picture somewhat, since stationary states are not likel
develop even in a finite range ofk. However, a weak time
dependence should still allow for a close-to-stationary a
close-to-turbulent evolution. Moreover, even if the sour
eventually does not exists, particle distributions in the in
tial range as functions of momenta can still be close to t
bulent power laws. Indeed, stationary turbulent distributio
can be found as zeros of the collision integral@69#. In the
nonstationary case the collision integral is nonzero,
should approach a minimal value in the inertial range wh
may result in the same shape of particle distributions the

B. Wave turbulence by scaling analysis

The dynamics of coupled waves close to a stationary s
can be described by a wave kinetic equation~see e.g. Refs.
@69,74,82#!:

ṅk5I k@n#. ~6!

Here the functionnk , usually calledoccupation numberor
wave action, describes the average volume of phase sp
8-5
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R. MICHA AND I. TKACHEV PHYSICAL REVIEW D 70, 043538 ~2004!
occupied by the oscillations of a single mode with a wa
numberk. Its evolution is a result of resonant wave intera
tions, the effect of which is described by the collision int
gral I k@n#. The collision integral is a function of the ‘‘exter
nal’’ momentum k and a functional of the distribution
function n, which is reflected in the notations we use. Wh
we do not need to stress the functional dependence, we
also write I k as I (k). The collision integral for the case o
interest, Eq.~2!, is explicitly derived in Appendix B.

Before we proceed, let us remind the general structur
the collision integrals using as illustration the scattering
two particles into two particles, which will be referred to
a 4-particle process. This will also allow us to introduce t
necessary notations. In all cases we will write the collis
integral as

I k@n#5E dV~k,qi !F~k,qi !. ~7!

This form separates the contributions which are due to
~fixed! particle model,dV(k,qi), from those which are due
to the ~evolving! particle distribution functions,F(k,qi).
Here k is the external momentum andqi refer to momenta
over which the integration is carried out. Ifm particles par-
ticipate in the collision,i takes values from 1 tom21. E.g.
when 2 particles scatter into 2 particles,m54 and there are
3 internal momenta over which we integrate,q1 , q2 andq3,
namely

dV~k,qi !5
~2p!4uM u2

2vk
d4~km ,qim!)

i 51

3
d3qi

2v i~2p!3
. ~8!

dV contains the usual energy-momentum conservatiod
functions, which we have denoted asd4(km ,qim), the ‘‘ma-
trix element’’ squared,uM u2, of the corresponding proces
~which is a function ofk andqi) and the integration measur
over momentum space. Here,k05vk5v(k) and v i
5v(qi) refers to the particle energy.

When quantum effects are accounted for, the functionF in
our example is given by

F~k,qi !5~11nk!~11nq1
!nq2

nq3
2nknq1

~11nq2
!~11nq3

!.

~9!

In the limit n@1 termsO(n2) can be neglected andF is a
sum of termsO(n3),

F~k,qi !5~nk1nq1
!nq2

nq3
2nknq1

~nq2
1nq3

!. ~10!

The limit n@1 corresponds to interaction of classical wav
and expression Eq.~10! is also explicitly derived in Appen-
dix B. This illustrates a general rule: in the classical limit a
for interaction of m waves the functionF is a sum of terms
O(nm21) with appropriate permutations of signs and indic
In other words, in this limitF is a homogeneous functio
with respect to multiplication of each occupation number
z,

F~zn!5zm21F~zn!. ~11!
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This property is extremely important in our subseque
analysis. When quantum effects become important~i.e. when
one should properly write@11n# in F!, the classical turbu-
lence and/or self-similar evolution stops. At that mome
particle distributions relax to usual Bose-Einstein functio
We will not be concerned here with the~presumably rela-
tively short! relaxation period from the classical to the qua
tum regime, but will study in detail the turbulent evolution
the regime of classical waves.

This gives us sufficient notational details to proceed w
the discussion of turbulence. We restrict it to systems wh
are isotropic and homogeneous in configuration space, w
occupation numbers~as well as all other parameters whic
enter the collision integral! depend on the modulus of mo
menta only. We consider the classical limit in the functionF
with general m-particle interaction, in case of which Eq.~11!
holds. To keep the discussion general, in the rest of
section we will consider the case of~d11! dimensional space
time.

Often a collision integral conserves one or several qu
tities. We restrict ourselves to energy density

r5E ddk

~2p!d
vknk , ~12!

which is conserved when the expansion of the Universe
be neglected or ‘‘rotated’’ away, and particle density

n5E ddk

~2p!d
nk , ~13!

which corresponds to conserved charges, e.g. baryon n
ber.

Conservation ofn or r can be expressed as a continu
equation in Fourier space, e.g.

] t~vknk!1¹k• j k50. ~14!

Here and in what follows we will write the explicit relatio
for energy conservation, the case of conserved charges
be easily obtained by a formal substitutionvk51. In the
isotropic case only the radial component of the flux dens
j k , is nonvanishing and we get for the energy flux,Sr(p),
trough the sphere of radiusp,

~2p!d
•Sr~p!52Ep

ddkvkṅk

52
pd/2

GS 11
d

2D E
p

dkkd21vkI k@n#, ~15!

In Eq. ~15! the factor in front of the integral is the area of th
d-dimensional unit sphere. In case of stationary turbule
this flux should be scale independent, i.e. integral Eq.~15!
should not depend upon its integration limitp. This is pos-
sible if the collision integral equals zero. One can explici
look for solutionsI k@n#50, see e.g. Ref.@69#. Such solu-
tions correspond to stationary turbulence and exist with n
8-6
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trivial boundary conditions~source and sink!, in addition to
the Rayleigh-Jeans law of classical equilibrium. Here
adopt an alternative and somewhat simpler approach of
@83# to determine the turbulent solutions.

Following Ref.@83# we consider states for which the co
lision integral has certain scaling properties underj rescaling
of the external momentumk,

I jk@n#5j2nI k@n#. ~16!

To simplify notations we assume that all momenta w
made dimensionless by rescaling with some typical mom
tum scale, without explicitly writing this. The special choic
j5k21 allows us to find thek dependence of the collisio
integral, I k@n#5k2nI 1@n#. Let us additionally assume tha
the dispersion law is a homogeneous function as well,

v~jk!5jav~k!. ~17!

Relations~16! and ~17! should hold in some region of mo
menta where we expect turbulent behavior. Integrating
~15! we find

S~p!}2pd1a2n
I 1~n!

d1a2n
. ~18!

Here we indicated explicitly that the collision integral in th
turbulent state with scaling behavior Eq.~16! depends on the
exponentn. We find that the flux is scale invariant, if

n5d1a. ~19!

This condition defines the turbulent exponents which we w
specify in detail below. Note that this implies the existen
of the limit

lim
n→d1a

I 1~n!

d1a2n
5constÞ0, ~20!

as a sufficient condition for the existence of a stationary
bulent solution: if the collision integral has a zero of fir
degree atn5d1a, the turbulent flux is scale invariant an
finite.

In what follows, we consider particle models for whic
dV is a homogeneous function of all momenta

dV~jk,jqi !5jmdV~k,qi !. ~21!

Rescaling of the external momentumk by j gives

I jk5jmE dV~k,qi !F~jk,jqi !, ~22!

since integration over everyqi is from 0 to`. We will ex-
ploit this relation in two ways:

~i! Often the evolution of distribution functions involve
rescaling of their momenta, see Sec. III C. If this is the ca
the collision integral as a function of time can be found w
the help of
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E dV~k,qi !F~jk,jqi !5j2mI jk . ~23!

~ii ! Let us assume that the particle distribution functio
are power laws in the momenta,

n~q!}q2s. ~24!

This leads to the following scaling of F:

F~jk,jqi !5j2s(m21)F~k,qi !. ~25!

Combining this with Eq.~22! we find I jk5jm2s(m21)I k . A
comparison with Eqs.~16! and~19! leads us to the exponen
s which defines the scaling of particle distribution functio
in a turbulent state with constant energy transport~we will
call this energy cascadefor brevity!

s5
d1a1m

m21
. ~26!

Turbulence with constant transport of particle number~simi-
larly, we will call this stateparticle cascade! can be found at
this point by the formal substitutionv51, i.e.a50 and

s5
d1m

m21
. ~27!

Note that doing this substitution at later stages would
confusing since the explicit expression form also contains
a. Note also that on turbulent statesI @n#50, therefore,
transport of all quantities except energy is zero for ene
cascade. For particle cascade, which describes Bose con
sation@84,85#, the transport of energy is zero.

The reader should bear in mind that only those solutio
that describe the transport of energy towards the ultravio
Sr.0, are relevant for the problem of thermalization aft
inflation. The sign of fluxes for stationary turbulence
three- and four-wave collision integrals was found in R
@83#,

sgnSr5sgn@as~s2a!#. ~28!

In thermal equilibriumn}v21, i.e. s5a. Therefore, energy
turbulence is directed towards the ultraviolet if the distrib
tion function with increasing momenta falls off faster than
equilibrium, s.a. As we will see, in thelf4 model this
condition holds ind53, but is violated atd<2. Therefore,
we believe that simulations of the thermalization in th
model atd,3, see e.g. Refs.@53,57,59,64#, may not reflect
all aspects of the physical problem of reheating after inflat
correctly.

C. Self-similar evolution

In an analytical approach to non-stationary situations~e.g.
when describing free turbulence! it is usually assumed tha
the evolution is self-similar@86,87#. As we have shown, the
evolution is self-similar, indeed, at late times in our nume
cal integration of thef4 model, see Sec. II. Below we con
8-7



ro
s

n
l-
rib
n

e

d
a

-
t

.
ica
e

tio

-
th

s

is

st of
n-

ri-
fore
son
o-
-
lly

t so-

ci-

-

a-
e
n

on-
ved
ose

is

R. MICHA AND I. TKACHEV PHYSICAL REVIEW D 70, 043538 ~2004!
sider self-similar substitutions in anticipation that they p
vide a valid leading description of thermalization in the cla
of models we consider.

Let n0(k) be a distribution function at some late mome
of time t0, when the regime of self-similarity has been a
ready established. The subsequent evolution can be desc
as rescaling of momenta accompanied by a suitable cha
of the overall normalization

n~k,t!5Agn0~kA!, ~29!

where we have definedt[t/t0 , g is some constant andA
5A(t) is some time dependent function satisfyingA(1)
51. Both,A(t) andg, are determined by the solution of th
kinetic equation~6!.

In some cases the collision integral may contain an ad
tional explicit time dependence which can be isolated as
overall factorB(t). This factor may be induced by time
dependent classical backgrounds like the scale factor of
expanding universe or the zero mode of the inflaton field
is convenient to rescale the collision integral by some typ
rateG, I[BG Ĩ , such thatB and Ĩ are dimensionless. We us
B(1)51 as normalization.

When Eq.~11! holds, the factorAg of each distribution
function, Eq.~29!, can simply be taken out ofF and out of
the collision integral, which becomes a functional ofn0. Af-
ter that we can use Eq.~23! with j5A which gives

I ~k,t!5Ag(m21)2mBG Ĩ kA@n0#, ~30!

On the other hand, the left-hand side of the kinetic equa
~6! can be written as

ṅ~k,t!5Ag21ȦS gn01z
dn0

dz D , ~31!

where we have definedz[kA. UsingG as a separation con
stant, the kinetic equation can be split into two: one for
shape of the distribution function,

gn01z
dn0

dz
52 Ĩ ~z!, ~32!

and one for the dynamical evolution

Am2g(m22)21
dA

dt
52Gt0B. ~33!

We will not be concerned with Eq.~32! here and simply
assume that it has some nontrivial solution. The general
lution of Eq. ~33! is of the form

A5Q2p, ~34!

where

Q[
Gt0

p E
1

t

B~t8!dt811 ~35!

and
04353
-
s

t

ed
ge

i-
n

he
It
l

n

e

o-

p[
1

g~m22!2m
. ~36!

We fix scales using the conditionGt05p. For a time-
independent backgroundB, i.e. B[1, it than follows, that
Q5t and Eq.~34! simplifies to

A5t2p. ~37!

We will discuss this case first.

1. Self-similar evolution in time-independent background

Substituting Eq.~37! in Eq. ~29! we obtain

n~k,t!5t2gpn0~kt2p!, ~38!

In applications of turbulence theory to thermalization, th
solution is most important. Letkc be the initial value of some
characteristic momentum scale, e.g. the scale where mo
the energy carried out by a self-similar distribution is co
centrated. According to Eq.~38!, with time this scale evolves
as

kc~t!5kc~1!tp. ~39!

The exponentp determines the speed with which the dist
bution function moves over momentum space and there
defines e.g. the time scale of thermalization. This is a rea
why we will be interested mainly in the value of the exp
nentp, Eq. ~36!. In applications to thermalization after pre
heating the energy is concentrated at low momenta initia
and should propagate to high momenta. This means tha
lution Eq. ~38! is physically relevant forp.0.

The exponentg, which enters Eq.~36! can be fixed by
specifying appropriate boundary conditions, which are spe
fied below.

a. Isolated systems.If the wave energy is strictly con
served it follows that

const5E ddkvkn~k,t!

5Ag2(d1a)E ddzvzn0~z!. ~40!

This gives

g5d1a. ~41!

Similarly, for the evolution with particle number conserv
tion one obtainsg5d. Here we would like to stress th
following subtlety. Clearly, a simple self-similar substitutio
Eq. ~29! cannot account for energy and particle number c
servation simultaneously, while both quantities are conser
in a number of systems. If this is the case, one should cho
the integral which gives dominant restriction ofnk , i.e. the
energy for energy cascade~thermalization! and particle num-
ber for the inverse cascade~Bose condensation!. For the
problem of thermalization of ultrarelativistic particles th
gives
8-8
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pi5
1

~d11!~m22!2m

relativistic

energy cascade
~42!

However, describing thermalization in the nonrelativis
limit, vk5m1k2/2m with k2/m2!1, we can neglect the
kinetic energy with respect to the rest mass in the normal
tion condition~40!, i.e. we should useg5d, as in the case o
particle conservation

pi5
1

d~m22!2m

nonrelativistic

energy cascade.
~43!

b. Driven turbulence.In our lattice integrations we hav
found that particle distributions as functions ofk follow a
power law in the wake of a propagating energy fro
nk(t)5(b(t)/k)s, with exponents being in agreement with
the theoretical predictions for stationary turbulence. Such
havior is expected@86# for the regime of driven turbulence i
the presence of a stationary source@and thenb(t)5const].
However, for the case of free turbulence we are not awar
any predictions. Here we consider consequences of su
behavior assuming generalb(t) ~the case of constantb being
a particular case!.

Considering distribution the function in the region of lo
momenta,nk(t)5(b/k)s5Agn0(kA) we find

b}Ag/s215t (12g/s)p, ~44!

i.e. the transport of energy through the inertial range is
tionary if

g5s. ~45!

This generalizes the concept of stationary turbulence t
system without sink.~Notice that this requires a stationa
source in the infrared.! In this regime the total energy in
particles has to grow linearly with time. Considering t
right-hand side of relation~40! with g5s we find t
5Ag2(d1a)5tp(d1a2s), or

pt51/~d1a2s!, ~46!

where we denote the exponentp for the case of a stationar
transport aspt to distinguish it from the exponent whic
corresponds to an isolated system,pi . Substituting explicitly
the exponents of the spectra of stationary turbulence, E
~26!, we find

pt5
~m21!

~d1a!~m22!2m
5~m21!pi . ~47!

The latter relation could have been also found using Eq.~26!
and Eqs.~36! with g5s.

c. Nonstationary source.Let us consider the somewha
more general situation and assume that the energy inpu
into ~or taken out from! the system of particles changes wi
time as E(t)5E0t r . Clearly, the isolated system corre
sponds tor 50, while a stationary source corresponds tor
51. We will now haveg5(d1a)2r /p and
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p5
11r ~m22!

~d1a!~m22!2m
. ~48!

2. Time-dependent background

We now consider a time-dependentB in Eqs. ~34!, ~35!.
As an illustration we chooseB(t)5t2k, which gives

Q5
1

~12k!
~t12k21!11. ~49!

Note, and this is important for the interpretation of our n
merical results, that the linear approximation for small tim
t;1, gives Q.t, which brings us back to the situatio
considered in the previous subsection.

The late time behavior,t@1, depends on the sign of 1
2k.0. If 12k.0, the distribution propagates to the ultr
violet without bound,A(t)}t2(12k)p and kc(t)}t (12k)p.
In other words, at late timesA;t2 p̃ with

p̃5~12k!p ~50!

for any boundary conditions discussed above in Se
III C 1 a–III C 1 c.

However, A(t) approaches a finite limit att→` if 1
2k,0,

A~t5`!5F11
1

k21G2p

. ~51!

The propagation of particle distribution functions towar
the ultraviolet is limited. This has important consequenc
for the thermalization of massive particles in the expand
Universe, as we shall discuss in more detail below.

Expressions Eqs.~42!, ~47! and ~50! are the main results
of this section. They determine the speed of propagation
the particle distribution in momentum space for a spec
models.

IV. STATIONARY STATES AND SELF-SIMILAR
EVOLUTION IN SPECIFIC MODELS

Here we apply the general results of the previous sec
to a number of particular models of interest. First of all w
have to determine the scaling exponentm of dV @see Eq.
~21!#. The scaling ofv is different in relativistic and nonrel-
ativistic regimes. This is accounted for differently in the a
gument of the energy conservationd function @where in the
nonrelativistic regimev(k) is replaced byk2/2m] and in the
1/v factors of relativistic integration measure~where v is
replaced bym). To make the discussion of relativistic an
nonrelativistic cases uniform, we movev out from the rela-
tivistic integration measure and define the functionU(k,qi),

U~k,qi ![
~2p!d11uMku2

2vk )
i 51

m21

2vqi

. ~52!
8-9
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In what follows we will assume that in a dynamically inte
esting range of wave numbersU follows a scaling law

U~jk,jqi !5jbU~k,qi !. ~53!

With this definition

dV~k,qi !5U~k,qi !d
d~km ,qim! )

i 51

m21
ddqi

~2p!d
, ~54!

and we find

m5d~m22!2a1b. ~55!

We calculate the exponentsm, s, andp for two classes of
models. The first one is characterized byk-independent ma-
trix elements, the second one has no dimensionful par
eters. The scalar field models which we integrated on
lattice belong to the first class. In the absence of a zero m
in the relativistic limit in (311) dimensions they belong t
the second class as well.

A. Theory with k-independent matrix elements

For models with k-independent matrix elements the sc
ing of U is determined by thev ’s, and we haveb52m in
the relativistic regime andb50 in the nonrelativistic case
Equation~55! gives

m5d~m22!212m ~relativistic!, ~56!

m5d~m22!22 ~nonrelativistic!. ~57!

Substituting these expressions into Eqs.~42!, ~43! we find
that in this class of models the exponentsp do not depend on
the number of dimensions. In particular, for the energy c
cade in an isolated system we have

pi51/~2m21! ~relativistic!, ~58!

pi51/2 ~nonrelativistic!. ~59!

For m53 andm54 Eq. ~58! gives p51/5 andp51/7 re-
spectively.

Substituting Eqs.~56!, ~57! into Eq. ~26! we find the ex-
ponents,

s5d2
m

m21
~relativistic!, ~60!

s5d ~nonrelativistic!. ~61!

In the nonrelativistic regime both exponents,pi ands do not
depend onm.

Three-particle interactions, relativistic regime

Three-particle processes appear in thelf4 model when
interactions with the zero mode are important, see Appen
B and Sec. IV C 1.

According to Eq.~58! for m53 the front of the energy
cascade propagates with
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pi5
1

5
, ~62!

regardless of the number of spatial dimensions,d. For the
exponents of particle distributions in the inertial range i
d53 we find

s5
3

2
. ~63!

Both exponents coincide with what is observed in our n
merical experiments. Note that the exponents is expected to
appear in the case of driven turbulence. In the case of
turbulence the wake of the propagating turbulent front d
not even have to be a power law. Nevertheless, we do
serve a power law with the exponents53/2 to a very good
accuracy. This might be not a chance coincidence. Howe
in d,3 the theory predictss,1, the spectrum falling off
with k more slowly compared to thermal equilibrium, an
one can get a different shape of particle distributions ind
,3 @but we still expect the exponentp to be given by Eq.
~58!#.

B. Relativistic theory with dimensionless couplings

The lf4 model ind53 which we have simulated on th
lattice belongs to the class of models considered in this p
graph. Ind52 dimensionless couplings appear in thelf6

model. Dimensionless couplings are generic and this cas
not restricted to scalar field models, therefore we conside
separately.

If the collision integral does not contain any dimensio
full parameters, it has to scale withm51 and we find for the
exponentpi of energy conserving propagation in an isolat
system, Eq.~42!

pi5
1

~d11!~m22!21
. ~64!

For the physical case ofd53 and for a 4-particle processe
~which should dominate at late times in the models we h
considered numerically, see below! we obtain

pi5
1

7
. ~65!

Note that ford52 andm56 we havepi51/11, in agree-
ment with Eq.~58!. For the exponents of particle distribu-
tion functions in the energy cascade we find, see Eqs.~26!

s5
d12

m21
5

5

3
. ~66!

C. Explicit time dependence in the collision integral

The self-similar evolution is modified when an explic
time dependence is present. Below we consider two spe
models with explicit time dependence in the collision int
grals which appear in the problem of reheating. The first o
is directly related to the relativistic scalar model we ha
8-10
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simulated on the lattice and time dependence enters via
coupling to the zero mode. The second describes therma
tion of nonrelativistic particles and the time dependence
induced by the expansion of the Universe.

1. Nonzero classical field

Typically, oscillations of the inflaton zero mode do n
decay completely during the initial stage of parametric re
nance. Moreover, if the resonance parameter is large, p
metric decay stops early, when only a small part of the ini
inflaton energy has been transferred to particles@9#. The re-
maining oscillating zero mode serves as a source in our
bulent problem. This source acts via two different chann
The first one can be described as a direct decay into
resonance band~s!. The other channel is m-particle scatterin
when one or more particles have zero momentum. Th
particles belong to the zero mode~which is a Bose conden
sate!. While the zero mode and excitations withkÞ0 can be
viewed as the same particles but with different momentu
the formal description is different. The presence of the z
modef0 leads to new specific terms in the collision integ
with reduced number of particles participating in the inter
tion process and different~and time-dependent! couplings.

The simplest example is 2 by 2 scattering in thelf4

model when one of the incoming or outcoming particles
longs to the condensate. These scattering processes c
modeled as an effective 3-particle interaction. The cor
sponding 3-particle collision integral can be obtained fro
the 4-particle one with the substitution

np

vp
→ np

vp
1~2p!3d (3)~p!f̄0

2 . ~67!

This gives an explicit time dependence in front of the co
sion integral,B5f0

2(t)/f0
2(1), andreduces the number o

integrations by one,m53. Alternatively, the 3-particle col-
lision integral in the background of a zero mode can be
rived from first principles, see Appendix B.

The turbulent exponents for the 3-particle scattering w
out explicit time dependence@i.e. f0

2(t)51], are given by
Eqs.~62! and ~63!. Both agree with what is observed in ou
numerical experiments, see Sec. II. We show in Sec. VI
the collision integral in our lattice problem is dominated
3-particle interactions. Therefore, Eq.~63! for the exponents
seems to be indeed applicable for the system considered
merically. The question of applicability of Eq.~62! for the
exponentp deserves special consideration because the am
tude of the zero mode changes with time.

During the initial stage, when the total energy in partic
is small compared to the energy stored in the zero mode
can consider the amplitude of oscillations to be constant
the source of turbulence to be stationary. However, distri
tion functions should then evolve withpt52pi , see Eq.~47!.
At late times on the other hand we cannot neglect the de
of the zero mode. Numerical integrations show that the a
plitude of the zero mode decreases as a power law,f0

2(t)
}t2k. At late times this givesp→(12k)p, see Eq.~50!.
Numerically k52/3, however, the conclusion thatp51/15
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would be incorrect. First, for completely decayed zero mo
the 4-particle collision would dominate, leading top51/7.
Therefore, in our problem we should expectp>1/7 at all
times. Second, the conditiont@1 is not fulfilled during our
integration time. Indeed, we observed self-similarity f
3600,h,10000, see Fig. 3, which corresponds tot,3.
For t'1 the solution of Eq.~34!, ~49! for A(t) coincides
with A5t2p, while att53 it deviates by not more than 5%
Therefore, in this time intervalA(t)'t21/5. Similarly, the
quantityAg with g54 for 1,t,3 ~energy conservation! is
close numerically tot2q, whereq.3/5. Hence the indices
of self-similar evolution obtained in Sec. II are explained
free turbulence driven by three-particle interactions in
background of zero mode.

2. Nonrelativistic regime in expanding universe

Let us consider now non-relativistic particles in an e
panding universe with physical dimensiond53. We will be
working in the conformal reference frame, Eq.~1!. In these
coordinates the expansion of the universe is simply
counted for by multiplying all bare mass parameters,M, by
the scale factor. This is true both for the original field equ
tions and for the kinetic equations~which are derived from
the former!. Factors ofv in the measure Eq.~52! should be
replaced byMa(h). Therefore, in the nonrelativistic regim
the collision integral in the expanding universe can be
tained by multiplying it by the scale factor in some negati
power.

In conformal reference frame the solution of the Frie
mann equations for the scale factor as a function ot
[h/h0 can be written as

ab5bH0h0~t21!11, ~68!

whereH0 is the value of the Hubble parameter at timeh0.
For the radiation dominated expansionb51, while b51/2
for the matter dominated expansion. Hence, the funct
B(t) takes the form

B~t!5@bH0h0~t21!11#2k. ~69!

wherek53/b for the 4-particle process inlf4 theory, i.e.
k53 andk56 for radiation and matter dominated expa
sion respectively. This gives

E
1

t

B~t8!dt85
12@bH0h0~t21!11#12k

b~k21!H0h0
. ~70!

We see that in the limitt→`

A~t5`!5F11
1

b~k21!H0h0
G2p

, ~71!

wherep is given by Eq.~43!. The particle distributions can
not propagate to high momenta and are frozen out at

kc~t5`!5
kc~1!

A~t5`!
5

kc~1!

@b~k21!H0h0#p
. ~72!
8-11
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In the traditional discussion of thermalization of particl
in the expanding Universe, see e.g. Ref.@2#, the expansion
rate,H0, is compared to the to the rate of interactions, wh
in our case can be identified withh0 @see the normalization
factor in Eq. ~34!#. It is concluded that particles can no
thermalize ifH0h0.1 while they can reach thermal equilib
rium whenH0h0,1. Equation~72! tells us that thermaliza
tion is indeed impossible forH0h0.1 since the distributions
do not move towards high momenta in this case. Howeve
is not guaranteed that the equilibrium is reached eve
H0h0!1. The system may thermalize only ifkc(t5`) is
not smaller than the typical values of momenta in event
thermal equilibrium.

V. TWO INTERACTING SCALAR FIELDS: NUMERICAL
RESULTS

In this section we present the results of lattice calculati
of reheating in the model of two interacting fields. As in t
one field model presented in Sec. II, we again consider
massless case, for which the use of conformal transforma
allows mapping of the dynamics in expanding Friedma
universe into the case of Minkowski space-time. This p
mits a long integration time on a fixed lattice.

A. Model

At the end of inflation the universe is very close to
spatially flat Friedmann model. It is convenient to work
conformal coordinates where the metric takes the formds2

5a(h)2(dh22dx2). We consider two scalar fieldsF andX
whose dynamics are determined by the actionS
5*dtd3xA2gL(F,X) with Lagrangian density

L5
1

2
gmn]mF]nF1

1

2
gmn]mX]nX2V~F,X! ~73!

and potential

V~F,X!5
lF

4
F41

lFX

2
F2X21

lX

4
X4. ~74!

We identify the fieldF with the inflaton. ThereforelF

.10213 @1–3#. Inflation ends at timeh0 when ^F(h0)&

.0.35 MPl.
We use the following set of coordinate and field rescalin

which bring the system into a dimensionless form suita
for numerical integration:

dx0

dxi
J →H dh [

dx0

a
lF

1/2L

dyi [dxilF
1/2L,

~75!

F

X J →H w [FL21a~h!

x [XL21a~h!.
~76!

Re-scaling of the fields witha(h) in Eq. ~76! rotates the
scale factor away and maps the model into a scalar fi
theory in Minkowski space-time. The classical equation
motion have two independent parameters
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g[lFX /lF , h[lX /lF ~77!

and simplify to

hw1w31gx2w50, ~78!

hx1hx31gw2x50. ~79!

We chooseL5^F(h0)&, so that the initial condition for the
inflaton zero mode readŝw(h0)&51. Equations~78! and
~79!, however, are independent on the particular choice ofL.
At h5h0 all correlation functions ofF andX on subhorizon
scales characterize a vacuum of fluctuations around the
flaton mean value.

B. Results of numerical integration

We have studied the two-field model using the followin
set of coupling constants:lF510213, g530, andh was var-
ied in the range 0.1g<h<104g. We will see below that dif-
ferent values ofh lead to different duration and differen
relative importance of the specific dynamical regimes, a
was already argued for in Sec. II B. These are: the regim
parametric resonance, the regime of stationary~or driven!
turbulence and the regime of free turbulence. These iss
will be addressed later in this section, which we start w
the discussion of particle spectra.

1. Spectra

The particle spectra in the two field model at late tim
are very similar to what we have observed in the one fi
model and have the same turbulent exponents. Namely
the inertial rangenk is a power low with the exponents
53/2, for both fieldsx and f, see Fig. 4. And both fields
evolve in a self-similar way withp51/5 at sufficiently late
times, when the energy in particles became comparabl
the energy in the zero mode, see Fig. 5. Both exponens
and p, correspond to turbulence supported by 3-particle
teractions.

There are some differences however. For the conside
range of parameters, the coupling of the excitations to
medium is rather strong, which induces large effective p
ticle masses, see Appendix A 3. Therefore particles are n
relativistic already in the part of the inertial range. Name
Mx.5.5f̄ and Mf.1.7f̄. This manifests itself as
;k23-power-law behavior, which is again consistent wi
domination of 3-particle interactions, see Eq.~59!. This can
be expressed as a single power law if particle distributio
are plotted as functions of relativistic kinetic energy,

ek[vk2M , ~80!

whereM is the effective particle mass. Indeed, in the relat
istic region we havenk}k3/2}ek

3/2, while in the nonrelativ-
istic region we obtainnk}k3}ek

3/2. For this reason, the par
ticle distributions were plotted in Fig. 4 as functions ofek .
The particle distributions for thex field appear in this vari-
able as featureless single power law. This can be easily
derstood. First, the energy transport for 3-particle inter
tions in the presence of zero mode corresponds to
8-12
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TURBULENT THERMALIZATION PHYSICAL REVIEW D 70, 043538 ~2004!
transport of kinetic energy, as energy conservation law
elementary scattering process, which involves the freque
of zero-mode oscillations,v0'M , tells us, see Appendix B
Second, the collision integral, Eq.~B38!, being substituted
into expression for the energy flux, Eq.~15!, will have ap-
propriate universal scaling behavior in terms of kinetic e
ergy,ek , but not in terms ofk. Therefore, the kinetic energ
is indeed the appropriate variable for the case of 3-part
interactions in the presence of zero mode.

For h.g the spectra look stationary in the inertial ran
after rescalinge by the current zero-mode amplitudef̄0
;h21/3. This is similar to the one field case~see Fig. 4!.
However, forh<g we foundf̄0;h22/3, but the spectra still
appear stationary after rescaling byh21/3. This can be un-
derstood in the light of Eq.~44!: b(t)5t21/3 is consistent
with the choiceg54, s53/2 andp51/5. Hence, the de
creasing amplitude of distribution functions in the region
low k simply reflect the energy conservation in the syste

2. Stationary and free turbulence regimes

Let us demonstrate now that the regime of stationary
bulence does occur in the two field model. This regime
expected to appear in the case of large values of dimens
less parameters,g@1, h@1, when parametric resonanc
stops early, while the total energy is still stored in the ze
mode.

We found that in the relevant range of parameters
description in terms of particles, which we were using so
deteriorates. The reason is that in this language at large
plings there is no unique way to split the total energy den

FIG. 4. Particle distributions in the self-similar regime forh
510g as functions of the corresponding wave kinetic energies

caled by the current zero-mode amplitudef̄0. Upper and lower
panels correspond tox andf fields respectively. In both cases from
left to right the plots are taken ath51000,1500,2000.
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of the system into contributions coming from zero mode a
fluctuation field.

To deal with this problem we have quantified the ener
transfer in the following way. The quantityr0[ 1

2 ḟ0(hz)
2

gives a good measure of the total energy density store
zero-mode oscillations, if it is measured at those moment
time, hz , when the mean field crosses zero,f0(hz)50. In
this way we can get rid of the ambiguity in accounting inte
action energy between zero mode and fluctuations. Simila
we measure the energy density in the fluctuation field asrx

[^ẋ2& t and rf[^ḟ2& t for the x and f fields respectively.
Here ^ . . . & t means lattice and time averaging. We verifi
numerically that the sum of these quantities conserves w
time and equals to the initial energy density. This is not tr
however, when we measure the energy density in particle
vknk . Both measures of particle energy converge at l
times when the interaction energy becomes unimportant

This ‘‘kinetic’’ measure of the total energy density store
in particles as a function of time is shown in Fig. 6. W
compare models with two different values ofh. Three differ-
ent regimes are clearly seen in both cases.

~i! Parametric resonance:The energy densityrx grows
exponentially. This regime continues until re-scattering b
comes important. The largerh is, the earlier resonance te
minates.

~ii ! Stationary turbulence:At later time the energy density
in x particles grows linearly in time, which according to E
~5! is a sign of stationary turbulence. During this period t
energy density still stored in the zero mode dominates
total energy balance.

FIG. 5. Spectral energy distributions forx ~upper panel! andf
~lower panel! in the model withh510g. In each panel we plot the
wave energy per decade found in lattice integrations at three
ments of time,h51000, 1500 and 2000. In the lower-left corner
each panel are the same graphs transformed according to the
tion inverse to Eq.~4!.

s-
8-13
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R. MICHA AND I. TKACHEV PHYSICAL REVIEW D 70, 043538 ~2004!
~iii ! Free turbulence:At some point the energy density i
the zero mode drops below the energy density already st
in particles. Stationary turbulence cannot be sustained a
more and the regime of free turbulence, with conserved
ergy in particles, follows. We may expect self-similar evo
tion of particle distribution functions, which at late times a
good quantities.

In the model with larger self-coupling the paramet
resonance stops earlier and only a negligible part of the
flaton energy is transferred to particles during the resona
stage, see Fig 6. In this parameter range the transfer of
ergy from the inflaton intox field is dominated by a station
ary turbulence. In the Sec. VII B we show that if all couplin
constants are of order of the inflaton self-coupling, the th
malization is a very long process and the Universe rehea
unacceptably low temperature,T;100 eV. Therefore, some
couplings in the sector of physical fields~e.g. self-couplings,
or couplings to the inflaton! in a realistic model have to
exceed significantly the scale of the inflaton self-couplin
With larger couplings the thermalization proceeds fas
This is confirmed in our lattice integration, see Fig. 7.
earlier times the model with larger self-coupling conta
less energy inx particles, cf. curves ath5500. However, at
later times this model takes over and the energy contain
region moves faster towards ultraviolet in the model w
larger self-coupling.

With even larger self-coupling of thex field, or its cou-
pling to the inflaton, the period of stationary turbulen

FIG. 6. Different regimes of the evolution of thex field for two
values of self-coupling,h510g and h5100g. The dashed lines
correspond to a linear growth of energy in thex field with time,
rx}h.

FIG. 7. Spectral energy distributions at two moments of tim
h5500 ~dotted lines! andh51400 ~solid lines!. We compare two
models with different self-coupling,h510g andh5100g.
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should become even more pronounced. In light of these fi
ings, we can also understand the results of earlier pa
@9,10#. E.g., in figures presented in Ref.@10#, we see clear
signs of driven turbulence, which was not identified as su
until now. In particular, in Ref.@10# it was found that the
energy inx fluctuations grows with time asrx}t0.95. ~Small
deviation from}t law can be due to the fact that the ener
in zero mode decreases somewhat and the source dev
from stationarity.! This regime persists until the final integra
tion time, when distribution functions reach the boundary
the integration box, and even then the system is far from f
turbulence regime.

We conclude that in the models with an acceptable reh
ing temperature, the parametric resonance stops only wh
negligible fraction of the inflaton energy has decayed. The
fore, in realistic models of the type considered in the pres
paper, the major mechanism of energy transfer from the
flaton into particles is stationary turbulence.

VI. IS THE KINETIC APPROACH APPLICABLE?

In this section we confront the results of our lattice int
gration with the predictions of kinetic theory and address
validity of the kinetic description at the thermalization sta
during our integration time interval.

The particle distributions in the inertial range,n(k)
;k2s with s'3/2, which we observe in the lattice simula
tions, can be understood as corresponding to the scale in
ant energy flux for 3-particle interactions, see Eq.~63!. The
observed exponentp51/5 of the self-similar scaling of free
turbulence, can also be in accord with 3-particle interactio
see Eq.~62!. However, in our case bare 3-particle couplin
are absent and appear effectively in interactions with z
mode. Therefore, the 3-particle collision integral is mul
plied by the amplitude of zero mode squared. Since the
plitude of the zero mode oscillations decays, one can exp
p51/5 only during a small time interval, see Sec. III C 2.

Can 4-particle interactions be responsible for the obser
scalings? For 4-particle interactionspi51/7, see Eq.~65!,
which is not that far away from the lattice results, especia
if one takes into account energy influx from the zero mo
However, for particle distributions in the inertial range o
should expects55/3, which is not in a good agreement wit
the observed value ofs53/2. Further, in view of Eq.~67!
one should expect the dominance of 4-particle scattering
ing the time interval when the variances of fluctuations
larger thanf0

2. This is not the case during the time interv
encompassed by the lattice simulations, see Fig. 1.

The outlined difficulties may give an indication that th
weak turbulence description is not applicable in our case
view of the importance of the issue, we performed a deta
study of collision integrals, anomalous and higher order c
relators, as measurements on the lattice, and compared
with predictions and assumptions of kinetic theory.

A. Collision integrals

To verify the extent of agreement between kinetic theo
and lattice calculations, and to find out which proces

,

8-14



u
he

lc
he
d

en
ns
B

o
b

n

ne

a
ar
e
el
e

e
-

ig

p-
s

a
-

e
are

(
io

n-

of
at

re-
tion
cle
ical
lts,
he
ial

p

TURBULENT THERMALIZATION PHYSICAL REVIEW D 70, 043538 ~2004!
dominate the collision integral in our problem, we carry o
the following procedure. First, we numerically calculate t
collision integrals using standard expressions, Eqs.~7!–~10!,
and the particle distribution functionsnk(h) extracted from
our lattice calculations. Second, using lattice data we ca
late time derivatives of the distribution functions to see if t
relation ṅk5I k@n# holds. We limit ourselves to 3- an
4-particle collisions.

The general relations, Eqs.~7!–~10!, for 4- and 3-particle
collision integrals can be reduced to two and one dim
sional integrations respectively, if the distribution functio
are isotropic. Explicit expressions are given in Appendix
Eqs.~B38! and ~B39!.

The numerically calculated values ofI k
(3) and I k

(4) colli-

sion integrals are shown in Fig. 8 in comparison withṅk .
Note that the collision integrals andṅk take positive and
negative values. For clarity we show only absolute values
these functions and indicate schematically the boundary
tween regions whereṅk is negative and positive. Roughly, i
the inertial rangeṅk is negative~recall that in this region the
particle distributions can be approximated asnk(h)
5(f̄0 /k)s and are decreasing functions of time!, while ṅk
should be positive at larger k where the cutoff starts~recall
that energy is flowing into this region!.

We find thatI k
(3) gives a reasonable approximation toṅk

practically in all range ofk which is dynamically important,
which is to the left of the vertical dashed line in Fig. 8. O
reason for the disagreement betweenṅ(k) andI k

(3) at largerk
could be due to the fact that on the lattice some of the
lowed resonant wave interactions of the continuum limit
not present~cf. Ref. @88#!. In any case, in the region wher
I k

(3) and ṅk disagree, the occupation numbers are relativ
small, nk,102, and this region should not contribute to th
dynamics significantly.

The I k
(4) collision integral is about an order of magnitud

smaller compared withI k
(3) and is subdominant in the evolu

tion of nk , except on the very tail of the distribution, see F
8. The agreement betweenṅk andI k

(4) in the region of the tail
is not coincidental—we observe it at allh.

FIG. 8. Absolute values ofṅ(k) and of I k
(3) and I k

(4) collision

integrals ath55000. To the left of the arrowṅ(k) and collision
integrals are negative, while to the right they are positive. Occu
tion numbers,nk , are also shown for comparison.I k

(3) agrees with

ṅ(k) to the left of the vertical dashed line.
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B. Anomalous correlators

Usually, kinetic equations are derived under the assum
tion ^akaq&!^ak* aq&. However, this condition not alway
holds. For example, in the case of particle creation by
time-varying classical background~e.g. in the region of para
metric resonance!

ṅk5
v̇k

vk
Re~sk!, ~81!

where

^akaq&[skd~k1q!, ~82!

see Appendix B. In this case the anomalous correlators,sk ,
can not be neglected, sincesk;nk . This holds in general: if
coherent processes are important, the correlators Eq.~82!
may modify the dynamics ofnk . If this is the case, they
should be included into the kinetic equation. Sincesk were
neglected in the kinetic equations, Eqs.~7!–~10!, it is impor-
tant to verify if the conditionusku!nk holds in our simula-
tions.

The correlatorssk are shown for several moments of tim
in Fig. 9. In the inertial range the anomalous correlators
small indeed,usku/nk'331022, while this ratio is an order
of magnitude larger in the region of the resonance peakk
'0.5 at late times!, which is expected behavior. The rat
usku/nk is growing also in the region of largek, reaching the
value of 0.1 atk58 at late times, see Fig. 3. To avoid co
fusion, note thatk58 corresponds tok/f̄0'25, which is the
variable used in Fig. 9. We do not know if the growth
usku/nk at largek is a lattice effect, but we can conclude th
the kinetic equations in its simple form, Eqs.~7!–~10!,
should be applicable in the inertial range.

VII. PHYSICAL APPLICATIONS

Many different effects may occur during the stage of p
heating. Some of these were discussed in the Introduc
section. They have a common physical origin: rapid parti
creation and large accompanying fluctuations of the class
fields involved. These findings are unaffected by our resu
even in the case when only a relatively small fraction of t
inflaton energy is transferred to fluctuations during the init
stage of parametric resonance.

a-

FIG. 9. Occupation numbers and absolute values ofsk at
h55000 ~dashed lines! andh510000~solid lines!.
8-15
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However, in many cases it is necessary to trace the ev
further in time, e.g. to find out when and how the symme
which was restored during preheating gets broken later on
to trace which fraction of baryon or lepton asymmetry s
vives in the process of thermalization. Finally, one needs
know when thermal equilibrium will be established. Th
gives e.g. the abundances of particular dark matter par
candidates and other, possibly cosmologically ‘‘dangero
relics like the gravitino.

The explicit time dependence of the particle distributi
functions, and the knowledge that the evolution is se
similar,n(k,t)5Agn0(kA)5t2gpn0(kt2p), which we have
found in the present paper, may be useful here. Below
discuss some applications, limiting ourselves to field va
ances and to the problem of thermalization.

A. Field variances

In some applications, basic observables like field va
ances may already give the answer to the problem in q
tion. This applies to the problem of symmetry restoration.
illustrate this, let us consider the Higgs field which
coupled to ax field. In the vacuum state without condensa
the mass squared of the Higgs field would be negat
2m2, and the corresponding symmetry is broken. In
presence of the background ofx particles, the mass get
‘‘dressed,’’meff

2 52m21g^x2&. If the field variances are suf
ficiently large, the symmetry is restored~and is broken when
^x2&<m2/g).

If anomalous correlators are negligible, the field varian
can be calculated using expression

var~x![^x2&2^x&25E ddk

~2p!d

nk

vk
. ~83!

With the help of the self-similar substitution, Eq.~29!, we
find

var~x,t!5Ag2d1avar0~x!. ~84!

Here, the left hand side is taken at conformal timeh, while
var0(x) on the right hand side is the variance at some ear
time h0.

1. Relativistic regime

a. Free turbulence.In this caseg5d1a, see Eq.~41!,
and we find witha51

var~x,t!5A2avar0~x!5t22pivar0~x!. ~85!

For systems that we have studied numerically,pi51/5 at
early times which span the integration period. Therefore
the free turbulence regime, we should expect var(x,t)
5t22/5var0(x). This is in agreement with the results of o
numerical integration, see Fig. 1. For late-time evolutio
when 4-particle interactions will start to dominate, we p
dict a slower decrease of the variance, var(x,t)
5t22/7var0(x).
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Note that these results have to be divided by the sc
factor squared if expansion of the Universe is important.

b. Driven turbulence.In the regime of stationary turbu
lence without sink, according to Eq.~45!, g5s, which gives
var(x,t)5As2d1avar0(x). Using Eq. ~60!, we find s2d
1a51/(12m) and

var~x,t!5t2pt /(12m)var0~x!5tpivar0~x!, ~86!

where relation Eq.~47! was also used. Therefore, durin
driven turbulence the variance should grow as var(x,t)
5t1/5var0(x) in the models which we have integrated n
merically. This is indeed the case as Fig. 10 shows. T
transitional period from the regime of parametric resona
to the regime of stationary turbulence ath;102 is slightly
more pronounced in Fig. 10 as compared to Fig. 6. This m
be explained by the fact that different regions of moment
space are emphasized inrx and in var(x).

2. Nonrelativistic regime

In the case of free turbulence we haveg5d, and in Eq.
~84! we have to substitutea50, which corresponds tovk
→M in Eqs. ~40!, ~83!. Therefore, var(x,t)5const. For
driven turbulence we haveg5s5d, see Eq.~61!, and Eq.
~84! again gives var(x,t)5const.

We see that in the regime of driven turbulence varian
are slowly changing functions of time@}t1/5 in the relativ-
istic case and var(x,t)5const in the nonrelativistic case#,
while energy in particles grows fast,rx}t in this regime.
This is in accord with the fact that variances can be la
right after the initial parametric resonance stage, while
amount of energy transferred during this stage is low and
energy transfers occur in the regime of driven turbulence

B. Thermalization in the absence of zero mode

We now apply the results obtained earlier in this paper
the general problem of thermalization of relativistic and no
relativistic scalar particles, both in Minkowski space-tim
and in expanding Friedmann universe. We do not rest
ourselves to the models which were studied numerically. O
analysis will be based on expression~29! with the factor
A(t) being specified for a particular modeled. This expre
sion describes a self-similar propagation of the distribut
functions into the ultraviolet. In a classical theory this ev

FIG. 10. Time dependence of the variance ofx field in the
model withh510g considered in Sec. V.
8-16
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lution continues without bound~unless we consider a nonre
ativistic theory in expanding universe!.

The classical evolution stops when a system reaches
quantum regime where it can relax to the Bose-Einstein
tribution. We adopt that this happens when in a region
momenta,kf , which saturate the energy integral, the occ
pation numbers became of order 1. In this subsection
consider the case of free turbulence. Then, one can esti
kf using energy conservation and approximating the ene
density asr;v(kf)kf

3 in the region wherenk;1. On the
other hand, initially the energy was deposited into partic
with lower momenta, denoted below aski . The relationki
;Mf , whereMf is the inflaton mass, determines the sc
of initial momenta. Eq.~39! gives for the time needed t
thermalize a system:

t th;~kf /ki !
1/p. ~87!

Actually this should be considered as a lower limit on t
thermalization time since we have to add a time which
system will spend in the quantum regime.

As an idealization of the thermalization process we c
sider the evolution of a subsystem of excitations of a fieldx,
assuming that a fixed part of energy was deposited int
initially, while since thenx evolves as an isolated system.
this subsection, for estimates of the thermalization time
neglect the presiding regimes of parametric resonance an
stationary turbulence, since they are much shorter if the
evant coupling constants are not drastically different.
consider the possibility of~partial! thermalization in the re-
gime of driven turbulence in the following subsection.

As a first step we will find the thermalization time whic
follows from the exact self-similar solutions obtained abo
Then we will show that in all cases which we consider, t
result coincide, parametrically, with the ‘‘naive’’ perturbativ
estimates. Doing this comparison we neglect all numer
coefficients.

1. Relativistic regime

Equation~87! gives

t th;~r f
1/4/Mf!1/p. ~88!

The expansion of the Universe is easily treated in confor
reference frame. We haver f5r i5cxr tot , wherecx is the
fraction of the inflaton energy deposited into the fieldx dur-
ing preheating and driven turbulence. This finalizes the
swer. The result is general and is valid for any model. T
initial inflaton energy can be written asr tot;ki

2f0
2

;Mf
2 MPl

2 , wheref0 is the initial amplitude of inflaton os
cillations. We find withp51/7, Eq.~65!, which corresponds
to a relativistic theory with dimensionless couplings

t th;cx
7/4S MPl

mf
D 7/2

;cx
7/41021. ~89!

We used here the inflaton parameters,Mf'1026MPl in
Mf

2 f2 model, or Mf5AlMPl with l'10213 in the lf4
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inflationary model. To avoid confusion, note that the defi
tion of t is different in different models since it involvest0
;G21.

We can assumecx'1 if the Universe expansion can b
neglected~this may be of interest for problems outside
inflationary cosmology!, and if the number of competing
channels~other fields beyondx to which the initial energy
can be deposited! is not large.

a. Minkowski space-time.Let us show that Eq.~88! agrees
with the ‘‘naive’’ perturbative estimate. For this estimate w
definet ast5tRG, wheretR is the perturbative estimate o
the thermalization timetR

21;sn. In the lf4 model s
;l2/T2, n;T3, T;kf and thereforetR

21;l2kf . On the
other hand, parametric resonance stops when the rate o
scattering from the resonance band becomes equal to the
of particle productionm;Mf;ki . This givesG;ki and we
find t;GtR;ki /l2kf . Now, r;kf

4 andr;ki
4nk , wherenk

correspond to the typical occupation numbers at the t
when parametric resonance stops,nk;1/l. We obtaintRG
5(r1/4/ki)

7, in agreement with Eq.~88!.
b. Friedmann universe.In this case we can estimate th

final temperature asT;kf /a(t). Let us consider a radiation
dominated universe witha(t)5H0h0(t21)11, see Eq.
~68!. We neglect the rapid epoch of stationary turbulen
and h0 corresponds to a time when the evolution ofx is
driven by its self-interaction with self-couplinglx , i.e.
h0

21;G;lx
2nk

2ki;lx
2(cxr tot)

2/ki
7 , where we have usedrx

;ki
4nk . On the other handH0;r tot

1/2/MPl . Combining this
with Eq. ~88! we find a(t)5H0h0t;cx

21/4r tot
1/4/lx

2MPl . For
the final thermalization temperature we obtainT;kf /a(t)
;cx

1/2lx
2MPl , where we have usedkf;rx

1/4. This again
agrees with the naive estimate,sn;H.

Numerically,T;lx
2MPl;100 eV, if we use the strength

of the inflaton self-coupling,l'10213. Therefore, in a real-
istic model, at least some couplings should be significan
larger than this scale.

2. Nonrelativistic regime

Now we consider the turbulent evolution of X particles
massMX towards thermalization in the nonrelativistic re
gime. A nonrelativistic regime should not be essential
thermalization of the Universe after inflation. However, d
pending on parameters, nonrelativistic particles with la
occupation numbers may be present during the initial sta
of thermalization. This happens e.g. at large values of
resonance parameter for X particles which are heavier t
the inflaton. It is interesting and important to trace the ev
lution of such particles until distributions either ‘‘freeze ou
due to Universe expansion, or enter a relativistic regime
reach the quantum domain and may approach thermal di
butions. Interestingly, we found that the latter situation m
also be realized after inflation for large values of couplin

We assume that the relaxation is due to the self-interac
lXX4. The particle number conserves in the conformal r
erence frame in this regime, and Eq.~87! gives

t th5cX
1/3pF 1

Mf
S r f

MX
D 1/3G1/p

, ~90!
8-17
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wherecX is the fraction of the inflaton energy which initiall
was deposited into the fieldX ~this fraction should be mea
sured at the time when the self-similar evolution starts!. In
the present casep51/2, see Eq.~59!, and similarly to Eq.
~89! we find for the relaxation time

t;S cX

MPl
2

MfMX
D 2/3

;FcX

Mf

MX
G2/3

108. ~91!

In this expressionMf /MX;1 since Bosons which are muc
heavier than the inflaton are not created, and in the oppo
regimeX particles would have been relativistic.

As we have seen in Sec. IV C 2 there is no real relaxat
of massive particles when the expansion has become im
tant. If some relaxation happens, it should occur during
time interval when the scale factor does not deviate sign
cantly from its initial value. Then the expansion can be n
glected and the relaxation proceeds as in Minkowski spa
time. Let us show that the expressions above agree with
‘‘naive’’ perturbative estimate in the latter case.

a. Minkowski space-time.The perturbative relaxation tim
in the final state can be estimated astR

21;vsn, wheres
;lX

2/MX
2 and n;kf

3 . Therefore tR
21;lX

2kf
4/MX

3 . On the
other hand, the rate in the initial state is given by a sim
expression, but is multiplied by large occupation numbers
the initial state @89# ~which can be viewed as Bose
amplification factor!, G;vsnnk;lX

2n2/ki
2MX

3 , where we
used n;ki

3nk . We obtain tRG;n2/kf
4ki

2;(r/MX)2/3/ki
2 ,

wherer5MXn. This agrees with Eq.~90!.
b. Friedmann universe.To estimate the thermalizatio

time and temperature we need to know the typical rate
reactions and the value of the Hubble parameter at the
ginning of self-similar evolution. For definiteness we co
sider the situation which arises after preheating in the m
sive inflaton model coupled to a heavy fieldX. We assume
that self-coupling of theX field is sufficiently large, such tha
the ‘‘parametric’’ decay of the inflaton is halted byX rescat-
tering on each other. Using results of Ref.@9# we conclude
that at the moment when the inflaton zero mode decays c
pletely, the energy density in theX field can be estimated a
rx;MX

4/lx , while the rate of re-scattering ish0
21;MX .

This givesH0h0;lx
21/2MX /MPl;q21/2, whereq is the ini-

tial resonance parameter. Sinceq can be very large, the prod
uct H0h0 can be small and the expansion is not significan
the initial stage of the self-similar evolution. On the oth
hand, the time needed to reach the quantum regime i
order t th;(kf /ki)

1/p. Since the particle number conserv
during the period of self-similar evolution we havekf

3

;MX
3/lx , while ki;MX at the end of parametric resonan

stage. This givest th;(1/lx)1/3p;lx
22/3. The condition

H0h0t th,1 giveslx
7/6.MX /MPl as a necessary condition t

reach a thermal state before the freezeout of distribu
functions. Using inflationary normalization, we conclude th
nonrelativistic particles created in ‘‘parametric resonanc
have a chance to thermalize between themselves in an
panding universe iflx.1025.
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C. A faster route to thermalization?

Considering the regime of free turbulence, we have
tained estimates for the thermalization time which are
agreement with ‘‘naive’’ perturbation theory. It was impo
tant in these estimates that the relativistic free turbule
propagates withp51/7. This should be true at sufficientl
late times, when all effects related to zero mode beco
insignificant. However, free turbulence driven by 3-partic
interactions in the presence of a zero mode evolves witp
51/5. The evolution of the front of particle distributions
even faster in the case of driven turbulence, whenp52/5. If
the quantum domain is already reached during one of th
two stages our estimates for thermalization should
changed.

Here we consider the question whether a subsystem ox
particles can reach the quantum region in the regime o
stationary turbulence.

Driven turbulence

The quantum domain is reached in the regime of driv
turbulence if the power law of the inertial range will exten
up to nk;1. In other words,nk5(k/kT)2s should be valid
up to k5kT . Let us consider the model were the large
coupling is the self-coupling of thex field. The normaliza-
tion of nk can be fixed if we recall that in the region of th
source,k;ki , the x-particle distribution is given bynx

;1/lx . This giveskT;kilx
21/s , or the time needed to reac

the quantum region is given by

t;lx
21/sp , ~92!

where we have used Eq.~87!.
On the other hand, the energy in the subsystem ofx par-

ticles grows in the regime of driven turbulence asrx(t)
5trx(1), andshould not exceed the total energy stored
the inflaton zero-mode oscillations. The initial energy can
estimated asrx(1);kres

4 nx , wherekres;q1/4vf andq is the
resonance parameter:q5lfxF0

2/Mf
2 in the Mf

2 F2 inflaton
model, orq5lfx /lf in thelF4 inflaton model. This gives
rx(1)/r tot;lfx /lx , and we obtain the bound

t,lx /lfx . ~93!

We conclude that the quantum domain can be reached in
regime of driven turbulence iflx.lfx

sp/(sp11)5lfx
3/8;1024.

Here we have useds53/2, p52/5 andlfx;10lf . These
values are realistic, therefore, physical implications of driv
turbulence in applications to thermalization deserve furt
study.

VIII. CONCLUSIONS

We have studied the process of thermalization of class
systems, which at some point in their evolution are in
highly nonequilibrium state with energy being concentra
in a deep ‘‘infrared’’ region of momenta. Such states na
rally appear e.g. during reheating of the Universe after c
mological inflation. We have shown that the process of
8-18
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TURBULENT THERMALIZATION PHYSICAL REVIEW D 70, 043538 ~2004!
laxation in such systems can be divided, in the general c
into three distinct stages.

In the models of the type we have considered in this
per, the initial stage of preheating@4# is powered bypara-
metric resonance. During this initial linear stage the rate o
energy transfer is the fastest. The energy in particles gr
exponentially. However, in the physical situation of reheat
after inflation, the coupling constants have to be sufficien
large to insure an acceptably short time-scale of the su
quent thermalization, while with large couplings, only a ne
ligible fraction of the initial inflaton energy is transferre
into fluctuations during the parametric resonance st
@9,10#.

We have shown that in such situations the linear stag
followed by the regime of adriven stationary turbulence.
During this stage, the energy in particles grows linearly
time. The regime of stationary turbulence stops as soon
the energy in particles starts to dominate the overall ene
balance. Therefore, this regime is a major mechanism of
ergy transfer from the oscillating inflaton zero mode in
other species in realistic models of the type we have con
ered here. This period of evolution is also prompt. It sho
be noted that the source which drives the turbulence is p
erful because coherence effects are still strong in the rele
region of momenta.

The subsequent long stage ofthermalizationclassifies as
free turbulence. This stage should be generic. The energy
particles is conserved during this epoch, while the shap
the particle distribution function changes in a self-simi
way with the front of the distribution propagating into th
ultraviolet. This stage continues until the quantum regime
reached and particles can relax to Bose-Einstein distr
tions. Applying conventional kinetic theory we have calc
lated analytically the time needed to equilibrate a system
the resulting temperature in terms of coupling constants
initial inflaton amplitude. The result coincides parametrica
with the ‘‘naive’’ perturbative estimates@1#.

We made a comparison of kinetic theory with the nume
cal integration of scalar field models on the lattice. We sh
that, at late times, the kinetic approach is applicable, res
ing in a weak wave turbulence regime@69#. In the models
considered numerically, the evolution is driven by thre
particle scattering in the background of zero-mode osci
tions. The characteristic exponents calculated within
framework of wave kinetic theory are consistent with t
results of our lattice simulations.
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APPENDIX A: NUMERICAL PROCEDURE

In our study we have developed and employed a hig
accuracy version of theLATTICEEASY code@90#. Various cor-
relation functions were measured with the use of fast Fou
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transform~FFT!, adopted fromNumerical Recepies@91#. Es-
sential details of our procedure can be found in Re
@7,9,25,90#. Here we describe specific choices of paramete
significant important differences in the integration sche
and give exact definitions of lattice observables.

The numerical integration was done on a 3D cubic latt
with periodic boundary conditions. The lattice is param
etrized by the box sizeL, and the number of lattice points pe
dimension,N. These give the lattice spacingb[L/N and the
total number of lattice sites,N3 in three dimensions.

The results presented in the paper are taken from sim
tions with 2563 lattice sites and a box sizeL chosen to fit a
particular problem. For example, in the case of Eq.~3!, L
57.5p. With this box size the infrared modes which belon
to the resonance band are still well represented, while
ultraviolet lattice cutoff is sufficiently far away from the oc
cupied modes, therefore the particle spectra are not disto
even at late times. We have studied the dependence of
results on the lattice and box size to avoid lattice artifact

The finite-differences scheme that was used is 2nd o
in time and 4th order in space.

1. Finite-differences scheme

We write the equations of motion~3! or ~78!, ~79! as
fourth order finite differences on a three-dimensional spa
cubic lattice with periodic boundary conditions. The corr
sponding equations were evolved with the use of a symp
tic integration scheme. Details are as follows.

Particle wave numbers are discrete on the latticek
5(n1 ,n2 ,n3)k0 , where 2N/2<nj<N/2 and k05(2p)/L.
The phase space is restricted tok0<k<kmax, where kmax

5A3k0N/2. To avoid distortion at high momenta, it is des
able to take large N. This, however, is limited by the cap
bilities of the computer used. The choice of small values
L is also prohibited since that will lead to infrared distortio
and may even move the resonance band out of the inte
tion box. The problem is alleviated by the choice of a finit
differences scheme which is fourth order in space. This
be quantified in the following way.

The lattice realization of the Laplacian in our scheme
given by

nLF~x!5
1

b2 (
e

F2
1

12
F~x12be!1

4

3
F~x1be!

2
5

2
F~x!1

4

3
F~x2be!2

1

12
F~x22be!G .

~A1!

The vector indexe runs over the three orthonormal direction
of the lattice.nL is a fourth order approximation, i.e. (n

2nL)F(x);O(b4) for a differentiable functionF(x). The
Fourier transform ofnL differs from that ofn, which would
be given by multiplication withk2. Therefore the dispersion
relation for a massless field on the lattice is also differe
and is given by
8-19
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vL
2~k!5

1

b2 (
i 51

3 S 5

2
2

8

3
cos~bki !1

1

6
cos~2aki ! D .

~A2!

We find thatvL
2<k2 andvL

22k2;O(k6b4) for smallk. Nu-
merically, for k<kmax/3, the relative difference betweenk
andvL is less then a percent, while for largerk it grows up
to about 30% difference atk5kmax. This means, that we ca
expect essentially undistorted self-similar and turbulent so
tions on the lattice, if the dominating modes have wave v
tors k&kmax/3. In the case of a second order realization
nL , we find a considerably smaller available phase spa
k&kmax/10. This is illustrated in Fig. 11 where we plot (k
2vL)/k as a function ofk for the second and fourth orde
calculation schemes on the latticeL57.5p, used in our in-
tegration of the problem Eq.~3!. We see that up tok510,
which essentially encompasses the support region of the
tribution functions, see Fig. 3, the dispersion law on the
tice represents the continuum correctly. That is why s
similarity was not distorted on our lattice and could ha
being detected.~The small deviations from self-similarity
which can be observed at the very tail of the distribution a
at the latest time, see Fig. 3, are caused by the distortio
the dispersion law which starts to be non-negligible here!

2. Classical approximation and stochastic initial conditions

The initial linear stage of parametric resonance ha
complete quantum description, which is best expressed in
language of Bogoliubov transformations. The quantum
scription of this linear problem can be mapped into
equivalent classical problem@7#. In our dimensionless vari
ables the initial conditions for the classical description
given by the following probability distribution for field fluc
tuations in Fourier space:

P@c,ċ#;expH 2
2

lF
E d3k2vk

c~t0!ucku2J
3dF@ċk1 ivk

c~t0!ck#. ~A3!

Here ‘‘c ’’ should be replaced by one of the fieldsf or x that
are the dynamical variables in the simulated equations~3! or
~78!, ~79!, and vk

f(h0).AkL
213, while vk

x(h0).AkL
21g.

FIG. 11. Deviation of the dispersion law for massless excitati
on the lattice, (k2vL)/k, for second and fourth order finite
difference schemes.
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The symboldF( . . . ) is a functional Dirac distribution so
that the canonical momenta are locked to the classical tra
tory.

3. Measured quantities

We measure various physical quantities both in confi
ration space and in Fourier space. In configuration space
convenient to measure the zero mode,f0[^f&, and the
variance, var(f)[^f2&2f0

2. In Fourier space we measur
particle number and other correlators.

For largeN lattice averages basically coincide with th
statistical ones~ergodic theorem!. We use this fact to mea
sure expectation values~zero modes!, variances and highe
cumulants of fields and their conjugate momenta.

a. Spatial lattice averages.For averages defined in con
figuration spacê O&[V21*d3xO, which on the lattice is
expressed as the sum over the lattice points^O&
[N23( iOi .

b. Fourier spectra.For monitoring purposes we make
FFT transform at least every period of inflaton oscillatio
The wave amplitudes of fourier transformed fields are
fined by Eq.~B20!, see Appendix B. In the dimensionles
units that we use in the numerical simulation the physi
wave amplitudes take the form

ãk
c[

1

AlF

vk
cck1 i ċk

~2p!3/2A2vk
c

, ~A4!

where again ‘‘c ’’ stands for the dynamical variablesf or x
in Eqs. ~3! or ~78!, ~79!. The dimensionless frequencies a
given byvk

c[AkL
21meff

c 2, wheremeff
f 253^w2&1g^x2& and

meff
x 25g^w2&13h^x2&. Making use of ak , we calculate

various correlators, n(k)[^ak* ak&, s(k)[^aka2k&,
^a* a* aa&, etc. The first one, which corresponds to the p
ticle occupation numbers, is of prime interest.

Note that with this simple definition of quasiparticles th
Hamiltonian is not diagonal in terms ofak

x and ak
f wave

amplitudes if interaction energy is important. Therefore,
related definition of e.g. particle number is good only f
modes with dominating kinetic energy.

APPENDIX B: KINETIC EQUATION FOR CLASSICAL
WAVES

Following the general approach of Refs.@69,81# we de-
rive the wave kinetic equation for the classical system
interest, the massivelf4 theory in d dimensions with
Hamiltonian density

H5
1

2
ḟ21

1

2
~¹f!21

M2

2
f21

l

4
f4, ~B1!

and in the presence of an oscillating classical backgrou
We assume random wave fields which are statistically u
form, i.e. the equal time correlation functions off and its
canonical conjugate momentumḟ are homogeneous and iso
tropic. We also assume the field to be weakly interacting

s

8-20
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TURBULENT THERMALIZATION PHYSICAL REVIEW D 70, 043538 ~2004!
The first step in the derivation of the kinetic equation f
an arbitrary system is to find Fourier wave amplitudes,ak ,
such that the quadratic part of the Hamiltonian is diagona
ak , i.e.:

H25E ddkvkak* ak . ~B2!

The general equation of motion for the wave amplitudes

dak

dt
5

]ak

]t
2 ivkak2 i

dHint

dak*
, ~B3!

whereHint[H2H2. The first term on the left-hand side
due to a possible explicit time-dependence in the definit
of ak , which can appear for example in case of a tim
varying background.

In the kinetic approach we want to get rid of rapidly var
ing phases of the wave amplitudes, i.e. to derive the equa
for the slowly changing ‘‘occupation numbers,’’nk;ak* ak .
To achieve this we multiply Eq.~B3! by ak* , add the
complex-conjugate expression and average. The result
contain higher order correlators induced by interaction ter
The resulting BBGKY-hierarchy of equations for Fourier c
mulants can be solved, e.g., in the random phase approx
tion in consistent perturbative expansion.

In the case of Eq.~B1! the wave amplitudes for the fluc
tuation fields are solutions of

dfk5
~2p!d/2

A2vk

~ak1a2k* !, ~B4!

dḟk5
~2p!d/2Avk

A2i
~ak2a2k* ! ~B5!

wheredfk anddḟk are Fourier transforms of the canonic
field and of its conjugate momenta respectively, shifted
the ‘‘zero mode’’f05^f& and ḟ05^ḟ&. This gives

ak[
vkdfk1 idḟk

~2p!d/2A2vk

. ~B6!

From the start we include invk the interaction with the bath
of fluctuations,

vk
25k21M213lf0

213l^df2&, ~B7!

i.e. ak correspond to ‘‘quasiparticles.’’ The second order c
relators in homogeneous and isotropic background shoul
‘‘diagonal’’

^ak* aq&5nkd
(d)~k2q!, ~B8!

^akaq&5skd
(d)~p1q!. ~B9!

1. Microscopical equations of motion

We derive equations of motion for the zero mode and
wave amplitudes starting from
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hf1M2f1lf350. ~B10!

a. Zero mode.Averaging Eq.~B10! we obtain

f̈01~M213l^df2&!f01lf0
31l^df3&50. ~B11!

In this equation̂ df3& is small compared to the other term
and may be neglected locally in time in a state which is clo
to a Gaussian. If additionallŷdf2& is either weakly varying
or small compared to all other terms in Eq.~B11! the solu-
tion is given by the Jacobian cosine cn@79,92,93#

f0~ t !.f̄0 cnS mt,
1

A2

lf̄0

m D , ~B12!

wheref̄0 is the amplitude and

m[Alf̄0
213l^df2&1M2. ~B13!

The period of this function is

T054m21KS 1

A2

l1/2f̄0

m D , ~B14!

whereK(y) is the complete elliptic integral of the first kind
This defines the effective frequency,vc52p/T0. In the
large amplitude limit,m5l1/2f̄0, we find vc.0.85m. For
arbitrarym one can write the following decomposition:

vc.m2
1

8

lf̄0
2

m
, ~B15!

which is fairly accurate, the maximum deviation from th
exact expression is 3% atm5l1/2f̄0. For small amplitude of
zero-mode oscillations, this expression can be further
proximated as

vc.MeffS 11
3lf̄0

2

8Meff
2 D , ~B16!

where Meff[(M213l^df2&)1/2. This deviates from exac
result by less than 4% atlf̄0,Meff .

For a general discussion of the kinetic equations in
background of a zero mode it might be useful to expa
f0(t) in a Fourier series. However, this decomposition
the elliptic Jacobi function is strongly dominated by the fi
harmonic withv5vc . Even atm5l1/2f̄0, the relative am-
plitude of the first harmonic is'0.96, and it approache
unity with decreasingf̄0. Therefore, in what follows we will
restrict ourselves to the first term in the Fourier decompo
tion of f0(t).

It is useful to define wave amplitudes for the zero mod

ac[A2vcf̄0e2 ivct ~B17!

in terms of which the zero mode can be represented as
8-21
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f05
ac1ac*

A2vc

. ~B18!

One can also introduce an effective occupation numbe
‘‘condensed waves,’’

nc5ac* ac52vcf̄0
2 . ~B19!

b. Wave amplitudes.The equations of motion for the wav
amplitudes with nonzero momentum can be written as

ȧk52 ivkak1
1

2

v̇k

vk
a2k* 1Ck

(3)1Ck
(4) , ~B20!

where

Ck
(3)[23ilf0E dVk12@dfp1

dfp2
2^dfp1

dfp2
&#

3d (d)~k2p12p2!,

Ck
(4)[2 ilE dVk123@dfp1

dfp2
dfp3

23dfp1
^dfp2

dfp3
&2^dfp1

dfp2
dfp3

&#

3d (d)~k2p12p22p3!,

and

dVk12[
ddp1ddp2

A2vk~2p!3d/2
, dVk123[

ddp1ddp2ddp3

A2vk~2p!5d/2
.

Ck
(3) describes three wave interactions in the background

zero mode, whileCk
(4) corresponds to four wave scatterin

The averages in these expressions appeared because, fir
separated the zero mode out of the equation for fluctuati
and, second, we used the effective frequency for quasip
cles, Eq.~B7!. Due to this choice the averages ofC(a) times
ak or ak* will have the structure of cumulants, which in tur
will deviate from zero only due to correlations induced
processes of scattering.

Multiplying Eq. ~B20! by ak* or by ak and adding the
complex-conjugate expressions, we find

ṅk5
v̇k

vk
Resk1Im I 3~k!1Im I 4~k!, ~B21!

i ṡk52vksk1
i

2

v̇k

vk
nk1I 3* ~k!1I 4* ~k! ~B22!

where

I 3~k!56lf0E dVk12̂ ak* dfp1
dfp2

&c , ~B23!

I 4~k!52lE dVk123̂ ak* dfp1
dfp2

dfp3
&c . ~B24!
04353
of
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Here^ . . . &c denotes the cumulants, which in a diagramma
language are identified withconnecteddiagrams, see e.g
Ref. @94#.

In situations whenI 3(k) and I 4(k) are negligible, Eqs.
~B21! and ~B22! describe particle creation in a time
dependent classical background, or parametric excitation
is periodic. ~Note that the quantum version of these equ
tions at this stage can be obtained by the formal substitu
nk→1/21nk .)

Note the following:
~i! In our casevk contains an rapidly oscillating term

due to interaction with the zero mode. However, at late tim
and at largek it is small. e.g., in our numerical integration i
the region ofk near the peak of the spectral energy distrib
tion, this term is of order 1023, see Figs. 1 and 3. We negle
this term in what follows.

~ii ! The coefficient in front of the integral Eq.~B23! is
rapidly oscillating. Moreover, oscillations are not harmonic
the amplitude off0 is large. Unharmonicity can be dea
with by expandingf0(t) in Fourier time series and consid
ering each of the terms separately. We restrict ourselve
the leading harmonic in this expansion since at late times
unharmonicity is small.

~iii ! The cumulants contain different combinations ofak

and ak* , see Eqs.~B4!. It is well known that the leading
contribution to the resulting kinetic equation is due to t
‘‘resonant wave interactions,’’ or, in the language of partic
physics, only those terms survive, which are on the ‘‘ma
shell.’’ In our case those will be^ap* ap1

ap2
&c and

^ap* ap1
* ap2

&c for interactions which involve the zero mode

and ^ap* ap1
* ap2

ap3
&c otherwise. We restrict our attention t

these cumulants only.
~iv! We neglect ‘‘anomalous’’ correlators,sk . These are

small in the inertial range of turbulence as our lattice cal
lations show, but may be important otherwise.

2. Leading asymptotic of collision terms in kinetic
approximation

For a free random field the cumulants Eqs.~B23! and
~B24! are zero, andṅk50 to the first order in perturbation
theory. To calculateṅk in second order one has to know th
solutions for cumulants in the first order with respect to
teractions.

We use the equation of motion for wave amplitudes, E
~B20!, to calculate the time derivatives of the cumulan
] tac* ^ap* ap1

ap2
&c and ] t^ap* ap1

* ap2
ap3

&c . Higher order corr-

elators which appear in this procedure can be used in ze
order of perturbation theory, i.e. they can be decompose
nk assuming Gaussianity. To simplify the equations we u
the following notations for products ofnk which appear in
these decompositions

F p1p2

p [ncnp1
np2

2ncnp~np1
1np2

!, ~B25!

F p2p3

pp1 [~np1np1
!np2

np3
2npnp1

~np2
1np3

!.

~B26!
8-22
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We find, keeping the terms which will have resonant beh
ior

] tac* ^ap* ap1
ap2

&c. i ~vc1vp2vp1
2vp2

!ac* ^ap* ap1
ap2

&c

1
i6ld (d)~p2p12p2!

~2p!d/2A2vc2vp2vp1
2vp2

F p1p2

p ,

~B27!

] t^ap* ap1
* ap2

ap3
&c. i ~vp1vp1

2vp2
2vp3

!^ap* ap1
* ap2

ap3
&c

1
i6ld (d)~p1p12p22p3!

~2p!3d/2A2vp2vp1
2vp2

2vp3

F p2p3

pp1 .

~B28!

These equations have the common structure,i J̇5DvJ2A.
SinceA corresponds to the zeroth order in perturbations
assumed to be time independent here. An appropriate
ticular solution for cumulants is therefore given byJ
5A/(Dv1 i e), see e.g. Ref.@69#. Using the relation Im(x
1 i e)2152pd(x) we obtain

Im ac* ^ap* ap1
ap2

&c

.3l
d (d)~p2p12p2!d~vc1vp2vp1

2vp2
!

~2p!d/221A2vc2vp2vp1
2vp2

3F p1p2

p , ~B29!

Im^ap* ap1
* ap2

ap3
&c

.3l
d (d)~p1p12p22p3!d~vp1vp1

2vp2
2vp3

!

~2p!3d/221A2vp2vp1
2vp2

2vp3

3F p2p3

pp1 . ~B30!

3. Isotropic wave kinetic equations

Applying this result to Eqs.~B23! and ~B24! we obtain
the kinetic equation for wave occupation numbersnk ,

ṅk5I k
(3)1I k

(4) , ~B31!

where

I k
(3)5E dV p1p2

k F p1p2

k 22E dV p2

kp1F kp1

p2 , ~B32!

I k
(4)5E dV p2p3

kp1 F p2p3

kp1 ~B33!

and
04353
-

it
ar-

dV p1p2

k [
18l2ddp1ddp2d (d)~k2p12p2!

~2p!d212vc2vk2vp1
2vp2

3d~vc1vk2vp1
2vp2

!, ~B34!

dV p2

kp1
ª

18l2ddp1ddp2d (d)~k1p12p2!

~2p!d212vk2vp1
2vp2

2vc

3d~vk1vp1
2vp2

2vc!, ~B35!

dV p2p3

kp1 [
18l2ddp1ddp2ddp3d (d)~k1p12p22p3!

~2p!2d212vk2vp1
2vp2

2vp3

3d~vk1vp1
2vp2

2vp3
!. ~B36!

Both terms in Eq.~B31! describe scattering processes
two waves into two other ones. In Eq.~B32! one of them
comes from the zero mode, while in Eq.~B33! all four are
from the fluctuation field. Energy conservation in the inte
actions with the zero mode,vc1vk2vp1

2vp2
5«k2«p1

2«p2
, can be written as conservation of the energies

«p[vp2vc , ~B37!

which for small zero-mode amplitude~where vc.vp50)
equals to therelativistic kinetic energy. Therefore, transpo
of energy over momentum space should be considered
transport of kinetic energy in this case.

These relations, Eqs.~B32! and ~B33!, for 3- and
4-particle collision integrals can be reduced to one and
dimensional integrations respectively, if the distributio
functions are isotropic, for details see e.g. Refs.@69,85#.

The collision integral for 3-particle interactions ind53
takes the form

I k
(3)5

9l2f̄0
2

16pvkk
S E

0

«k
d«2@n3n22nk~n31n2!#

12E
«k

`

d«2@n2~nk1n1!2nkn1# D , ~B38!

where« i[«(pi) andni[n(« i). Energy conservation in this
case corresponds to«35«k2«2 and«15«22«k .

The collision integral for 4-particle interactions inlf4

theory reduces to

I k
(4)5

9l2

32p3vkk
E

0

`

d«2E
0

`

d«3DF~n!, ~B39!

whereD[min@k,p1 ,p2 ,p3# and «15«21«32«k.0 in ar-
guments ofF(n)5(nk1n1)n2n32nkn1(n21n3).

Note an interesting fact: Apart of the prefactor, Eqs.~B39!
and ~B38! are functions of relativistic kinetic energy,I k

( i )

[(vkk)21f («k). This gives for the flux of kinetic energy in
3 dimensions@cf. with Eq. ~15!#
8-23
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Sr~k!52Ek d3p

~2p!3
«pI p

(3)

52
1

2p2E«k
d«« f ~«!, ~B40!

where we have usedpdp5vd«. Therefore, the turbulen
flux should correspond to a particle distribution being
power law of relativistic kinetic energy. Remarkably, w
have solved for the turbulent fluxes without the usual
sumption of scale-independent dispersion law, Eq.~17!. In
fact, the dispersion law was that of relativistic field theo
vk

25k21Meff
2 . We do observe a single power law for th

particle distributions as functions of kinetic energy in o
lattice integration, even in situations whenMeff

2 is large in the
inertial range, see Fig. 4, the upper panel.

4. Kinetic equation for zero mode

The kinetic equation for the wave occupation numbers
to be supplemented by the kinetic equation for the z
mode. We start with the equation
y

-
n-

tt.

v.

D

gh

tt.

s.

04353
-

,

s
o

f̈01vc
2f052l^df3& ~B41!

and repeat the procedure of the previous subsections. As
log of Eq. ~B21! we obtain

ṅc52l ImS ac*

A2vc

^df3& D . ~B42!

Substituting Eq.~B4! and solving equation for higher orde
correlators we get

ṅc52E ddk

~2p!d
I k

(3) . ~B43!

This result is not surprising since 4-particle collisions co
serve particle number. In the model we consider, 3-part
interactions are derived from the 4-particle collisions w
one of the particles being replaced by the condensate. Th
fore, Eq. ~B43! can be interpreted as a conservation of t
total occupation number, in particles and in the condens
nc1(2p)2d*ddknk5const.
s.
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