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We study, analytically and with lattice simulations, the decay of coherent field oscillations and the subse-
guent thermalization of the resulting stochastic classical wave field. The problem of reheating of the Universe
after inflation constitutes our prime motivation and application of the results. We identify three different stages
of these processes. During the initial stage of “parametric resonance,” only a small fraction of the initial
inflaton energy is transferred to fluctuations in the physically relevant case of sufficiently large couplings. A
major fraction is transferred in the prompt regime of driven turbulence. The subsequent long stage of thermal-
ization classifies as free turbulence. During the turbulent stages, the evolution of particle distribution functions
is self-similar. We show that wave kinetic theory successfully describes the late stages of our lattice calculation.
Our analytical results are general and give estimates of reheating time and temperature in terms of coupling
constants and initial inflaton amplitude.
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[. INTRODUCTION The explosive stage of inflaton decay ends when the rate
of interactions of created fluctuations among themselves and
Field theoretical systems which are a long way from ther-with the inflaton becomes comparable to the inflaton decay
mal equilibrium have been studied intensely in recent yeargate[7—10. The understanding of the subsequent stages of
The particular problem of how and when such systems aprelaxation towards equilibrium, of the thermalization pro-
proach equilibrium stretches beyond obvious fundamentatesses and the calculation of the final equilibrium tempera-
interest and finds many practical applications. In high-energyure is important for various applications as it links the infla-
physics understanding of these processes is crucial for applitonary phase with that of standard cosmology. Among those
cations to heavy ion collisions and to cosmology of the earlyone can list baryogenes[44,26—29 and the problem of
universe. The first topic gains further importance in light of over-abundant gravitino production in supergravity models
the current and future experimental search for a quark-gluorf-30—35. It determines the abundances of other relics, like
plasma at RHIC and at the forthcoming LHC. The secondsuper-heavy dark matt¢86—39, or axino dark mattef40].
application, our main interest in this paper, is related to the Knowledge of the reheating temperature is also important
problem of reheating of the universe after cosmological infor fixing constraints on the inflationary model from cosmic
flation. microwave backgroundCMBR) anisotropy [41-44. In
Inflation provides a solution to the flatness and the hori-some models cosmologically important curvature perturba-
zon problems of standard cosmolody~3] and explains the tions may be even generated during the process of thermali-
generation of initial density perturbations—the seeds of galzation[45—49. Last but not least: the reheating temperature
axies and large-scale structure in our universe. During inflashould be larger than about 1 GeV to ensure that the standard
tion the universe is in a vacuumlike state. At the end ofBig Bang nucleosynthes[®,50] is not hampered.
inflation all energy density is stored in a Bose condensate, There have been many efforts and successes in the under-
the coherently oscillating “inflaton” field. This state is standing of the nonequilibrium dynamics and relaxation of
highly unstable: parametric, tachyonic or strong nonadiabatifield theories, see e.g. Ref&€1-66. However, the leading
particle creation triggers a fast and explosive decay of thesymptotic dynamics towards equilibrium remained rather
inflaton. This process, dubbed preheatidg 6], is currently  less understood and developed.
well understood7—14]. A generic feature is a strong and fast  The main problem for the theoretical understanding of
amplification of fluctuation fields at low momenta, which reheating is that initially the occupation numbers are very
may lead to various interesting physical effects during andarge, of order of the inverse coupling constant. In addition,
after preheating. These include nonthermal phase transitions many inflationary models the zero mode does not decay

[15-18 with possible formation of topological defedts9—  completely during preheating. Therefore, a simple perturba-
23], creation of super-heavy particl€$4,24), generation of tive approach is not justified. On the other hand, in this re-
high-frequency gravitational wavé¢g&5], etc. gime, a description in terms of classical field theory is valid

[7], and the whole procesSncluding preheating can be
studied by classical lattice simulations.
*Electronic address: micha@itp.phys.ethz.ch Recently, we employed this method to shfv,68 that
TElectronic address: igor.tkachev@cern.ch the classical reheating of a massleb$ theory in 3+1
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dimensions is characterized bytarbulent and self-similar ~ should grow linearly with time. This behavior is confirmed
evolution of distribution functions towards equilibrium. The by the results of our numerical simulations. The stage of
shape of the spectra, as well as the self-similar dynamic§tati.onary turbulence should terminate when the energy left
could be understood within the framework of wave kineticout in the zero mode becomes smaller than the energy stored
theory. This made it possible to estimate reheating time anth created “particles.” From this moment of time, the trans-
temperature, which turned out to coincide parametricallyPOrt of energy from the source is negligible and we observe
with the results of the simple perturbative approach. free turbulence with self-similar evolution of particle distri-
Turbulence appears in a large variety of nonequilibrium-Putions towards thermal equilibrium. .

phenomena in natursee Refs[69—71] for a general intro- The 'flrst stage .of driven t'urbulence is prompt and gives
duction. It was first discussed for fluids, in the regime of tN€ Main mechanism by which energy is drawn out of the
large Reynolds numbeiselocitie, where viscosity is sub- 260 mode, e.g. out of the inflaton field. The identification of
dominant. Kolmogorov identified turbulence in this regime tiS constitutes one of the new results of the present paper, as
[72,73 as a statistically scale invariant flow of spectral en-CPPOSed to the common opinion that the main mechanism is
ergy mediated by vortex interactions. The same dynamicdt Parametric resonance.” The second stage of free turbu-
structure may appear in systems of coupled waves, e.g. dRnNCe is very long and can be analytically described as self-
fluid surfaces or for coupled fields in a plasp@®,70,74. In similar evolution. This is another new result and diffuses

this case the cascade is mediated by wave interactions arf@Me €Xisting claims and hopes that “parametric resonance”
the phenomenon has been calleave turbulence may bring a system to thermal equilibrium on a very short

If there exists an activéstationary source of energy in time scale. L L .
momentum space, the turbulence is caltiiven (station- Overall, the kinetic description and the results of lattice
ary). When the source is switched off after the stage of ac_smul_atl(_)ns are in rather _good agreement with each other.
tivity, the freely propagating energy cascade is often referred NiS indicates that the regime of weak wave turbulence may
to asfree turbulence. If the kinetic description is applicable, °€ @lready achieved on the lattice. _
the energy cascade is callagak turbulenceOtherwise one _ 1he paper is organized as follows. In Sec. Il we review
is facing astrong turbulence the results of our numerical simulation of reheating in the

One may expect that the concept of turbulence should b&imPlest\®* model to get familiar with concepts, problems
relevant for the problem of reheatifig,51] already on gen- and the typical dynamical behavior of the systems of interest.

eral grounds. Indeed, the source of energy, localized in thi S€cs. Il and IV we apply the theory of wave turbulence to

“infrared” is present initially. It is represented by the inflaton the Problem of reheating in general. In Sec. V we present our
field in the problem at hands. To complete the argument, W@gmerlcal_ S|rr_1ulat|ons. In Sec. VI we compare_lattlf:_e results
note that as the final outcome of the evolution one should!ith the kinetic approach and discuss the applicability of the

expect cascading of energy towards a significantly separate@tte- In Sec. VIl we discuss some physical applications of
region of “ultraviolet,” high momentum modes. our results, in particular the thermalization in the self-similar

The goal of the current paper is twofold. First, we want to"®9ime. In Appendix A we give the details of our numerical
apply the wave kinetic theory of turbulence to the problem ofProcedure. In Appendix B we review the derivation of the
the Universe reheating after inflation. We derive general forXin€tic equation for a system of weakly interacting classical
mulas for the spectra of turbulent distributions and for theVaves.
self-similar evolution towards equilibrium. This enables us to
give asymptotic estimates of reheating time and temperature !l- SIMPLEST MODEL OF REHEATING: NUMERICAL
in Minkowski space as well as in the Friedmann universe. RESULTS

Second, we want to test and confront these ideas to nu-
merical lattice calculations. For our numerical integrationst
we have chosen the simplest “chaotic” inflationary model
[75]. While the initial “preheating” stage in other inflation-
ary models, e.g. in hybrid inflatiof76] may exhibit impor-
tant differenceq12,13,77 with this model, we expect the
subsequent turbulent stages to be more universal.

We start lattice integration from “vacuum” initial condi-

We start with a presentation of our numerical results for
he inflaton decay and the subsequent equilibration of the
decay products in a simple®* model. The results were
already briefly reported in Ref67]. The numerical proce-
dure itself is described in Appendix A. At the end of the
section we will discuss some expected differences with more
complicated models. This order of presentation allows us to
. . ) . .. _introduce the typical behavior in the systems under consid-
tions for fluctuations in a background of classical OSC'”at'ngeration and to formulate concepts and problems. This will be

inflaton field. We obser\{e the ‘”“?a' pz;_\rametri_c resonancq,sefyl in the discussion of the general theory of turbulent
stage "_Vhef‘ the energy in ﬂuctyanons IS growing eXponenft'hermalization, which we carry out in the following section.
tially with time. This stage terminates when re-scattering o

. Further numerical results, obtained for the simplagt*
waves out of the resonance band bepqmes impalrfoit In_ model, and numerical results obtained for more complicated
th? physically relevant case of sufficiently Iargg CouF?I'n.gs‘multifield systems, will be presented in Secs. V and VI.
this happens rather early, when only a small fraction of initial
inflaton energy is transferred to fluctuatiof®s-11]. At this
point a state of stationary turbulence should be established
that is driven by the zero mode. On general grounds, it can In this simple model, the field is the only dynamical
be deduced that during this stage the energy in fluctuationgariable. Its initial homogeneous mode drives inflation, while

A. Results for the ®* model
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development and growth of fluctuations on sub-horizon
scales at the end of inflation can be viewed as a simple
model of reheating. Inflation ends when the motion of the
homogeneous mode of the field changes from the regime of 10"
“slow roll” to the regime of oscillations. It is convenient to

work in conformal coordinates where the metric takes the 10°
form

8

E

ds’=a(n)*(dn*—dx?). (1)

We choose the case of a massless field, where the equation of 10 n 10
motion for the rescaled fieldp=®a after inflation ap-

proaches the flat space-time equation FIG. 1. Squared amplitude of the zero-mode oscillatiq%,

and variance of the field fluctuations as functions of time
3_

Hetre™=0. @ parametrization property of the system allows to choose a
) ) L ) ) ) Jlarger value of\ for numerical simulations. We have used
This point deserves clarification, since in the Friedmann uniy —1 -8
verse the field gquatlons, in general, contain a linear term Various quantities can be measured in a lattice calculation
proportional to—a/a. However, this term is unimportant at and monitored as functions of time. Here we will discuss the
preheating and subsequent stages, see e.g.[Redswhere  zero mode,¢y=(), the variance, vaeg)=( > — $2 and
deed, during the initial parametric resonance stage a cohef;
ently oscillating field does induce small oscillations of the  \ve pegin the discussion of our numerical results with the
scale factor on top of radiationlike dominated expansioneyolution of the zero mode and the variance of the field,
however, the corresponding resonance parameter is smalhich are shown in Fig. 1. The zero mode is a rapidly oscil-
and does not lead to significant effects. With the end of parapting function on the time scale of our lattice calculation. In

metric resonance stage and the subsequent chaotization, tE% 1 we show the amplitude of oscillatiorg as a func-
equation of state rapidly approaches that of radiatimm fi On’ of time 0

massless fieldp= p/3 regardless of distribution of particles The initial fast transfer of the zero-mode energy into fluc-

over momenta, and, consequently, this is true for highly non; __. : ; -~ .
equilibrium states as wellThe solution of Friedmann equa- tuations during preheatingip to 5 ~300) is followed by a

i o i N ) long and slow relaxation phase. In this late time regime the
tions in this case ia(7) 7, ora=0. The term proportional  amplitude of the zero mode oscillations decreases according
to —a/a is not important for the dynamics of reheating andto ~ ™% with z=~1/3, the variance of the fiel¢averaged
thermalization, and we neglect it in what follows. over high-frequency oscillationglrops according to- %

All results obtained in the model E) are equally ap-  with v~2/5. In addition, we find that in this regime the zero
plicable to the reheating of the Universe after inflation and tomode is in a nontrivial dynamical equilibrium with the bath
modeling of other processes of thermalization in relativisticof highly occupied modes: when the zero mode is artificially
systems, say, after heavy ion collisions. removed, it is recreated on a short time sd@ese conden-

The homogeneous component of the field, which corresation.
sponds to the zero momentum in the Fourier decomposition, A detailed analytical discussion of the initial linear stage
eo(n7)=(¢), is usually referred to as the “zero mode.” It is of the parametric resonance in this model can be found e.g.
convenient to make a rescaling of the fielb= ¢/ ©o( 79), in Refs.[78—8(. During this stage the occupation numbers
and of the space-time coordinateg— X\ ¢o(70)x*. Here,  grow exponentially with time in a narrow band of resonance
770 corresponds to the initial moment of tinjend of infla- momenta. Figure 2 shows the occupation numbers at differ-
tion). In what follows dimensionless time is still denoted as
7. With this rescaling, the initial condition for the zero-mode
oscillations is¢g( 7o) =1, and the equation of motion takes
the simple parameter free form

O¢+ ¢3=0. ©)

All model dependence on the coupling constarand on the
initial amplitude of the field oscillations is encoded now in
the initial conditions for the smallvacuun) fluctuations of

the field with nonzero moment@ee Ref[7] and Appendix 1 k,go 10
A). The physical normalization of the inflationary model cor-
responds to a dimensionful initial amplitude afy(7g) FIG. 2. Occupation numbers as function df/¢, at

~0.3Mp and a coupling constant~10 '3 [1]. The re-  »=100,400,2500,5000,10000.
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ent moments of time. The displayed spectrum at time 000210

=100 corresponds to the stage of parametric resonance. The 4500 n = 3600
resonance peak is located at the theoretically predicted value 4000 n=>5100
of kres~1.27[79]. At later time, the growth of the resonance po ik .9
peak is stopped by re-scattering of particles out of the reso- k*n, 5500
nance band, which leads to a broadening of the occupied 2000
region and to the appearance of multiple pegKsof com- 1500

parable width, see spectrum at=400. This structure fits
estimates for the development of turbulence in the presence
of a narrow width source located at a finkesee Ref[69]. %

At even later times the spectra have become smooth because

of re-scattering, and only the first peak is still visible as a FIG. 3. On the right hand side we plot the wave energy per
small bump. With time, its position moves towards smallerdecade found in lattice integration at=3600,5100,7000,10000.
momenta, reflecting the change in the effective frequency ofPn the I(_eft h_and side are the same graphs transformed according to
inflaton oscillations. However, if the particle momenta arethe relation inverse to Ed4).

rescaled by the current amplitudg of the zero mode oscil- . .
lations, as in Fig. 2, the position of the resonance is approxi-, () The zero mode does not decay completely. It may in-
mately unchanged. Particles with small momenta are distribdUce “anomalous” terms in the collision integral, which are
uted according to a power law, which at larger momenta i@bsent in the usual kinetic description.

bounded by a cutoff. The position of this cutoff moves with (i) The occupation numbers are large initially, of order of
time to the “ultraviolet.” This reflects a general tendency of 1€ inverse coupling constam,~1/\, see Fig. 2. Therefore,

the system to thermal equilibrium. Indeed, in a state of therin addition to lowest order collisionge.g. scattering of two

mal equilibrium the energy of the system should be concenpart?Cles int_o_two particles with Qiffere_nt momehtanulti-
trated at much higher wave numbers compared to the res@@rticle collisions may be dynamically important as well.
nance momenta. On the other hand, energy is inputted into Therefore, precise lattice calculations are needed. On the
the system of particles in the region lohear the resonance ©ther hand, they have a limited dynamical range in momenta
peak. Therefore, we have a continuous flux of energy acrosad in time, and one has to switch to a kinetic approach at
momentum space, from low to high momenta. some later stage. To determine whand if) this is possible,

This stage of evolutionf>1500) has the following char- the results obtained with the use of a simple kinetic approach
acteristic features: should be confronted with the lattice results.

(i) The system overall is statistically close to a Gaussian " the following sections we will develop and apply the
theory of weak wave turbulence to the models of the type

distribution of field amplitudes and conjugated momenta, _ i .
[58,67. mtggrated on_the lattice. In particular, we will calcu!ate all
universal scaling exponents and show that they are in agree-
ment with lattice results. At “early” times the dynamics of
the model described above is driven byparticle interac-
tions with m=3. Wave turbulence theory gives for scaling

exponents ird= 3 spatial dimensions:

(ii) The spectra in the dynamically important region can
be described by a power lak, ® with s=~3/2. We see that
the system is not in a thermal equilibrium which would cor-
respond tos=1. Rather, the exponent of particle distribu-
tions in the power law region corresponds to Kolmogorov

turbulence 67].

(iii) The power law is followed by a cutoff at highér p=1/(2m-1),
Energy accumulated in particles is concentrated in the region
were the cutoff starts. Its position is monotonously growing s=d—m/(m—1),

toward the ultraviolet, reflecting the evolution towards ther-
mal equilibrium.

(iv) This motion can be described as a self-similar evolu-
tion [67]

v=2/(2m-1),

z=1[d(m—-1)—m].

n(k,7)=71"9g(k7P), (4)
wherer= 7/ 5. and 7, is some(arbitrary late-time moment. B. Expected differences in more complicated models
The best numerical fit corresponds de-3.5p and p~1/5, The flux of energy over momentum space, which is nec-
and is presented in Fig. 3. The value of the expomeistof  essarily present in problems like reheating and thermaliza-
prime interest since it determines the rate with which systention after inflation, signifies that we should observe a turbu-
approaches equilibrium. lent state during the thermalization stage and that the theory

The first and the second point in this list facilitate the useof turbulence applies. In a simples* model the stage of
of wave kinetic theory, see e.g. Ref$9,81]. However, a preheating(i.e. parametric resonancends when roughly
straightforward application is difficult and may be even in- half of the inflaton energy is transferred to particles. Indeed,
appropriate, at least at the early re-scattering stages, becausig. 1 shows that the amplitude of the zero mode, which is a
of the following: source of energy for the turbulence problem, starts to de-
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crease already at the end of the parametric resonance stagien, etc. Like in the turbulent scenario there do not exist
In such system we expect the free turbulence regime to folether intermediate scalgsvave numbens where energy is
low the preheating stage. infused, accumulated, or dissipated. Thus, it seems likely that
In more complicated systems, which involve other fieldsthe eventual dynamics of reheating—after the explosive re-
coupled to the inflaton, say, some field parametric reso- gime of preheating has ended—is close to that of Kolmog-
nance may end when the fraction of energy transferred to therov’s turbulence.
X excitations is still negligible compared to the energy stored However, in the description of reheating appear some dif-
in the inflaton zero mode. Indeed, parametric resonance endgrences to stationary turbulence, since:
when the rate of re-scattering of particles out of the reso- (i) A sink does not exist.
nance band became comparable to the resonant production (ii) The source(i.e. the amplitude of inflaton zero-mode
rate and the maximal value of the varianceyoéxcitations  oscillations and therefore interaction rgtean be essentially
achieved at the end of the resonance stage igg%, where time dependent on relevant time scales.
g? is either the coupling of to the inflaton, or self-coupling (iii) Neither source nor sink exist when the inflaton has
of y (viz., the largest of these twoWe expect that in this completely decayed.
case turbulent transport will develop when the amplitude of In the first case, we expect that the stationary turbulent
the inflaton zero mode is still unchanging. This means thaflux of energy still will be established in some “inertial”
the transfer of zero mode energy ingefield should occur in ~ rangek;, <k<Kkg. Particle distributions in this range of mo-
the regime of stationary turbulence. Only when the amountenta should not be significantly different compared to the
of energy in the zero mode becomes subdominant we shoulRse with a stationary sink. Indeed, in the typical turbulent
expect a transition to the regime of free turbulence. This is aproblem the energy dissipatés.g. into heatafter entering
important difference to the simplé* model. In particular, the regionk>k,. For problems relevant to thermalization
the distribution functions move much faster into the ultravio-after inflation, instead of dissipation the transported energy is
let in this regimep=(m—1)/(2m—1). We will see that the used to populate high momentum modeskatk,,. If the
regime of stationary turbulence is indeed present in two fieldransport is reasonably “local” in momentum space, the flux

models, see Sec. V. of energy through the inertial range should not be influenced
much by processes which involke>k, ;.. Energy may dis-
IIl. THERMALIZATION IN THE WAVE KINETIC sipate alkout or continue the flow to even higher momenta,
REGIME: GENERAL THEORY but regardless of this, we should expect the same distribution
of particles in the inertial range. However, in the latter case
A. Turbulent reheating: A motivation we can expect that the value kf, increases, and since the

Kolmogorov's turbulence is characterized by a stationaryflux of energy is constant throughout inertial range, the total
transport of some conserved quantity between differengnergy of a system without a sink has to grow linearly with
scales in momenturtFourien space[72,73. In the follow-  time,
ing, we will restrict ourselves to systems with spatially iso-
tropic and homogeneous correlation functions, which applies E(t)et. ®)

to the cosmological conditions after inflation. TurbulenceThis is a simple consequence of the stationarity of turbulence
usually appears when a source of energy or particles i the inertial range, and can be used as its signature.
present and is localized in some momentum redign In A time dependent sourcésecond point abovechanges
addition to the source exists a “sink” localizedlaj,. When  the picture somewhat, since stationary states are not likely to
both, source and sink are stationary, it is natural to expect thgevelop even in a finite range & However, a weak time
eventual development of a stationary state with scale indegependence should still allow for a close-to-stationary and
pendent transport of the conserved quantity through momerjose-to-turbulent evolution. Moreover, even if the source
tum space. Indeed, energy or particle number cannot acCiventually does not exists, particle distributions in the iner-
mulate betweetk;, andk,,; and should flow from one scale tja| range as functions of momenta can still be close to tur-
to the other. bulent power laws. Indeed, stationary turbulent distributions
This is a system-independent formulation of Kolmogor-can be found as zeros of the collision integi@®]. In the

ov’s concept of turbulence, which he formulated in the conmnonstationary case the collision integral is nonzero, but
text of hydrodynamical systeni$2,73. Zakharov applied it should approach a minimal value in the inertial range which

to systems of coupled wav¢g4] in the regime of kinetic  may result in the same shape of particle distributions there.
wave interactions. His approach is based on his derivation of

the wave kinetic equationsee e.g. Ref469,74,81) and is B. Wave turbulence by scaling analysis
well suited to studies of turbulence in classical field theories.

We will adopt it here. The dynamics of coupled waves close to a stationary state

The physical scenario of reheating after inflation share can be described by a wave kinetic equatisee e.g. Refs.

basic ingredients with that of turbulence: there exists a locai69,74,82).
ized source of energy—the coherently oscillating inflaton ne=1,{n] 6)
zero mode—pumping energy into the system of particles at kTR

Fourier wave numbers,~ k5. The mechanism behind this Here the functiom,, usually calledoccupation numbeor
pumping can be parametric resonance, tachyonic amplificawave action describes the average volume of phase space

043538-5



R. MICHA AND |. TKACHEV PHYSICAL REVIEW D 70, 043538 (2004

occupied by the oscillations of a single mode with a waveThis property is extremely important in our subsequent
numberk. Its evolution is a result of resonant wave interac-analysis. When quantum effects become importe@t when
tions, the effect of which is described by the collision inte-one should properly writel+n] in F), the classical turbu-
gral I, [n]. The collision integral is a function of the “exter- lence and/or self-similar evolution stops. At that moment
nal” momentum k and a functional of the distribution particle distributions relax to usual Bose-Einstein functions.
functionn, which is reflected in the notations we use. WhenWe will not be concerned here with tHeresumably rela-
we do not need to stress the functional dependence, we witlvely shor) relaxation period from the classical to the quan-
also writel, asl(k). The collision integral for the case of tum regime, but will study in detail the turbulent evolution in
interest, Eq(2), is explicitly derived in Appendix B. the regime of classical waves.

Before we proceed, let us remind the general structure of This gives us sufficient notational details to proceed with
the collision integrals using as illustration the scattering ofthe discussion of turbulence. We restrict it to systems which
two particles into two particles, which will be referred to as are isotropic and homogeneous in configuration space, when
a 4-particle process. This will also allow us to introduce theoccupation numbergas well as all other parameters which
necessary notations. In all cases we will write the collisionenter the collision integraldepend on the modulus of mo-
integral as menta only. We consider the classical limit in the function

with general m-particle interaction, in case of which Ex{)

_ holds. To keep the discussion general, in the rest of this
lk[n]—f dQ(k,q;)F(k,q;). (7 section we will consider the case @+ 1) dimensional space
time.

This form separates the contributions which are due to the Often a collision integral conserves one or several quan-
(fixed) particle modeldQ(k,q;), from those which are due tities. We restrict ourselves to energy density

to the (evolving particle distribution functionsfF(k,q;).

Herek is the external momentum argj refer to momenta ddk
over which the integration is carried out. i particles par- P=f ?wkn;« (12)
ticipate in the collisionj takes values from 1 tsm—1. E.g. (2m)

when 2 particles scatter into 2 particles=4 and there are \hich is conserved when the expansion of the Universe can

3 intelrnal momenta over which we integratg, 9z andds,  pe neglected or “rotated” away, and particle density
namely

d9k
41012 3 3q. = , 13
COME sk, a1 —3 (g " f(Zw)“”k 13

dQ(k,q)= 201 =1 2(2m)°

which corresponds to conserved charges, e.g. baryon num-

dQ) contains the usual energy-momentum conservation per,
functions, which we have denoted &Yk, ,q;,), the “ma- Conservation of or p can be expressed as a continuity
trix element” squared|M|?, of the corresponding process equation in Fourier space, e.g.
(which is a function ok andq;) and the integration measure
over momentum space. Her&,=w=w(k) and o A wny) + Vi j=0. (14
= w(q;) refers to the particle energy.

When quantum effects are accounted for, the fundiam  Here and in what follows we will write the explicit relation

our example is given by for energy conservation, the case of conserved charges can
be easily obtained by a formal substitutian=1. In the
F(k,0i) = (1+n)(1+ng )Ng,Ng,—NkNg, (1+Ng ) (1+Ng.). isotropic case only the radial component of the flux density,

ik, IS nonvanishing and we get for the energy fI®(p),

©) trough the sphere of radiys
In the limit n>1 termsO(n?) can be neglected arfd is a
sum of termsO(n3), (2m)%-S(p) = — fpddkwkhk
F(k,q;)=(n+ nql)nqznqs_”knql(”q2+ nq3)' (10 2 )
o _ _ _ = —f dkK " te,l\[n], (15
The limit n>1 corresponds to interaction of classical waves r 1+9
and expression Ed10) is also explicitly derived in Appen- 2

dix B. This illustrates a general rule: in the classical limit and

for interaction of m waves the functidm is a sum of terms In Eq.(15) the factor in front of the integral is the area of the
O(n™ 1) with appropriate permutations of signs and indices.d-dimensional unit sphere. In case of stationary turbulence
In other words, in this limitF is a homogeneous function this flux should be scale independent, i.e. integral @)

with respect to multiplication of each occupation number byshould not depend upon its integration linpit This is pos-

L, sible if the collision integral equals zero. One can explicitly

look for solutionsl, [n]=0, see e.g. Ref.69]. Such solu-
F(¢n)=™"F(¢n). (1)  tions correspond to stationary turbulence and exist with non-
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trivial boundary conditiongsource and sink in addition to

the Rayleigh-Jeans law of classical equilibrium. Here we

PHYSICAL REVIEW D 70, 043538 (2004

f dQ(k,q)F(Ek,&qi) =& #l & (23

adopt an alternative and somewhat simpler approach of Ref.

[83] to determine the turbulent solutions.

Following Ref.[83] we consider states for which the col-
lision integral has certain scaling properties unédleescaling
of the external momenturk

laln]=& "I\[n]. (16)

To simplify notations we assume that all momenta were

(i) Let us assume that the particle distribution functions
are power laws in the momenta,

n(q)eq>. (24)
This leads to the following scaling of F:
F(ék,&qp)=¢& 5™ DF(k,q)). (25

made dimensionless by rescaling with some typical momen- . o ] _sm-1)
tum scale, without explicitly writing this. The special choice Combining this with Eq(22) we find | 5= £~ le- A

&=k 1 allows us to find thek dependence of the collision
integral, I ,[n]=k™"I{[n]. Let us additionally assume that
the dispersion law is a homogeneous function as well,

w(&k)=E&%w (k). 17

Relations(16) and (17) should hold in some region of mo-

comparison with Eq916) and(19) leads us to the exponent
s which defines the scaling of particle distribution functions
in a turbulent state with constant energy transgom will
call this energy cascadéor brevity)

d+ta+tpu

S m—1

(26)

menta where we expect turbulent behavior. Integrating Eq.

(15) we find

()

_ Ad+a—v
S(p)*—p d+a—v’

(18

Here we indicated explicitly that the collision integral in the

turbulent state with scaling behavior E46) depends on the
exponentv. We find that the flux is scale invariant, if

v=d+a. (19

Turbulence with constant transport of particle numtsami-
larly, we will call this stateparticle cascadgcan be found at
this point by the formal substitutiom=1, i.e.a=0 and

_dtu

S= m—1"

(27)

Note that doing this substitution at later stages would be
confusing since the explicit expression faralso contains
a. Note also that on turbulent statépn]=0, therefore,
transport of all quantities except energy is zero for energy

This condition defines the turbulent exponents which we willcascade. For particle cascade, which describes Bose conden-
specify in detail below. Note that this implies the existencesation[84,85, the transport of energy is zero.

of the limit

I4,(v
lim L) =const0,

d+a—v (20

v—d+a

as a sufficient condition for the existence of a stationary tur
bulent solution: if the collision integral has a zero of first

degree atv=d+ «, the turbulent flux is scale invariant and
finite.

In what follows, we consider particle models for which
d(Q is a homogeneous function of all momenta

dQ(¢k,&a;) = £4dQ(k,q;). (21
Rescaling of the external momentuaby ¢ gives
| = §“J dQ(k,qi)F(&k, &ai), (22)

since integration over eveny; is from 0 toe. We will ex-
ploit this relation in two ways:
(i) Often the evolution of distribution functions involves

The reader should bear in mind that only those solutions
that describe the transport of energy towards the ultraviolet,
S’>0, are relevant for the problem of thermalization after
inflation. The sign of fluxes for stationary turbulence of
three- and four-wave collision integrals was found in Ref.
[83],

sgnS’=sgrf as(s— a)]. (28
In thermal equilibrium> w1, i.e.s= a. Therefore, energy
turbulence is directed towards the ultraviolet if the distribu-
tion function with increasing momenta falls off faster than in
equilibrium, s>a. As we will see, in thex ¢* model this
condition holds ind=3, but is violated atl<2. Therefore,
we believe that simulations of the thermalization in this
model atd<3, see e.g. Ref$53,57,59,64 may not reflect
all aspects of the physical problem of reheating after inflation
correctly.

C. Self-similar evolution

In an analytical approach to non-stationary situati@g.
when describing free turbulencé is usually assumed that

rescaling of their momenta, see Sec. Ill C. If this is the casethe evolution is self-similaf86,87. As we have shown, the
the collision integral as a function of time can be found withevolution is self-similar, indeed, at late times in our numeri-

the help of

cal integration of thep* model, see Sec. Il. Below we con-
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sider self-similar substitutions in anticipation that they pro- 1

vide a valid leading description of thermalization in the class p Hm-2)—p°

of models we consider. Y H
Let no(k) be a distribution function at some late moment\ye fix scales using the conditiofit,=p. For a time-

of time to, when the regime of self-similarity has been al- jyqependent backgroung, i.e. B=1, it than follows, that

ready established. The subsequent evolution can be describgfl ; ang Eq.(34) simplifies to

as rescaling of momenta accompanied by a suitable change

of the overall normalization A= 7P, (37)

(36)

n(k,7)=Ang(kA), (29 we will discuss this case first.

where we have defined=t/ty, y is some constant ané
=A(7) is some time dependent function satisfyiAgl) o ) )
—1. Both,A(7) andy, are determined by the solution of the ~ Substituting Eq(37) in Eq. (29) we obtain

kinetic equation(6). _ “p
In some cases the collision integral may contain an addi- n(k,m)=7""ng(kr"), (38)

tional explicit time dependence which can be isolated as ath, applications of turbulence theory to thermalization, this

overall factorB(). This factor may be induced by time- solution is most important. Léd. be the initial value of some

dependent classical backgrounds like the scale factor of thaﬁaracteristic momentum scale, e.g. the scale where most of

gxpanding universe or the zero ”."'Od.e of the inflaton fielq. | he energy carried out by a self-similar distribution is con-
is convenient to rescale the collision integral by some typica entrated. According to EG38), with time this scale evolves

ratel’, 1=BI'T, such thaB and are dimensionless. We use a5
B(1)=1 as normalization.

When Eq.(11) holds, the factorA” of each distribution Ko(7)=ke(1) 7P, (39
function, Eqg.(29), can simply be taken out df and out of
the collision integral, which becomes a functionalngf Af-  The exponenp determines the speed with which the distri-

1. Self-similar evolution in time-independent background

ter that we can use E@23) with £=A which gives bution function moves over momentum space and therefore
defines e.g. the time scale of thermalization. This is a reason
I(k,T)=A7(m*1)*“BF~IkA[nO], (30) why we will be interested mainly in the value of the expo-

nentp, Eq. (36). In applications to thermalization after pre-
On the other hand, the left-hand side of the kinetic equatiomeating the energy is concentrated at low momenta initially

(6) can be written as and should propagate to high momenta. This means that so-
g lution Eq. (38) is physically relevant fop>0.
- —1; Mo The exponenty, which enters Eq(36) can be fixed b
—_Av-1 +7— p t}’, q Yy
n(k,)=A A( Mot ¢ d¢ )’ @D specifying appropriate boundary conditions, which are speci-
_ _ _ fied below.
where we have definefi=kA. Usingl’ as a separation con-  a, |solated systemdf the wave energy is strictly con-

stant, the kinetic equation can be split into two: one for theseryed it follows that
shape of the distribution function,

dnp - const=J' d%wyn(k,7)
Yot ¢ az =-1(0), (32
— —(d+a) d
and one for the dynamical evolution =A7 f dwno({). (40)
dA o
AM*V(m*Z)flmz ~Tt,B. 33 This gives

y=d+a. (41
We will not be concerned with Eq.32) here and simply
assume that it has some nontrivial solution. The general so>imilarly, for the evolution with particle number conserva-
lution of Eq. (33) is of the form tion one obtainsy=d. Here we would like to stress the
following subtlety. Clearly, a simple self-similar substitution
A=0"P, (39 Eq. (29) cannot account for energy and particle number con-
servation simultaneously, while both quantities are conserved
where in a number of systems. If this is the case, one should choose
the integral which gives dominant restriction of, i.e. the
0= EJTB(T’)dT’ 1 (35) energy for energy cascadiermalization and particle num-
p J1 ber for the inverse cascad®ose condensation For the
problem of thermalization of ultrarelativistic particles this
and gives
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1 relativistic ) 1+r(m—2) 48
= 4 = .
Pi=dr)(m-2)—x energy cascade 42 P dra)(m-2)— 1
However, describing thermalization in the nonrelativistic 2. Time-dependent background

limit, o,=m-+k?2m with k?/m?<1, we can neglect the
kinetic energy with respect to the rest mass in the normaliz
tion condition(40), i.e. we should use=d, as in the case of
particle conservation

a We now consider a time-dependdbtin Egs. (34), (35).
As an illustration we choosB(7)=7"%, which gives

@ =
1 nonrelativistic (1-x)
(43

(FF=1)+1. (49)

d(m—2)— . S : :
( )T energy cascade Note, and this is important for the interpretation of our nu-

merical results, that the linear approximation for small times,
7~1, gives ®=r7, which brings us back to the situation
t considered in the previous subsection.

b. Driven turbulenceln our lattice integrations we have
found that particle distributions as functions loffollow a
power law in the wake of a propagating energy fron i X .
n(7) = (b(7)/K)%, with exponents being in agreement with The late time behaV|o'rT>.1, erends on the sign of 1
the theoretical predictions for stationary turbulence. Such be= =~ 0. If1—x>0, the d'smlz‘(*lt'f’g ppropagates to(}@i)gltra-
havior is expectefi86] for the regime of driven turbulence in Violet without bound,A(7)oc 7" """ and ke(7) = 7 -

the presence of a stationary soufed thenb(7)=const].  In other words, at late time&~ 7P with
However, for the case of free turbulence we are not aware of
any predictions. Here we consider consequences of such a 5:(1_K)p (50)
behavior assuming geneta(r) (the case of constabtbeing
a particular case for any boundary conditions discussed above in Secs.
Considering distribution the function in the region of low ||c1a=IllIC 1c.
momentan(7) = (b/k)*=A”ng(kA) we find However, A(7) approaches a finite limit at—o if 1
— k<0,
bocAy/s—l:T(l—y/s)p' (44)
-p
i.e. the transport of energy through the inertial range is sta- A(r=)=|1+ b (51)
tionary if k—1
Y=S. (45  The propagation of particle distribution functions towards

the ultraviolet is limited. This has important consequences
This generalizes the concept of stationary turbulence to &or the thermalization of massive particles in the expanding
system without sink(Notice that this requires a stationary Universe, as we shall discuss in more detail below.
source in the infrared.In this regime the total energy in Expressions Eq442), (47) and (50) are the main results
particles has to grow linearly with time. Considering the of this section. They determine the speed of propagation of
right-hand side of relation(40) with y=s we find =  the particle distribution in momentum space for a specific
=AY~ (dFa) = p(dra=s) o models.

pe=1d+a=s), (46) IV. STATIONARY STATES AND SELF-SIMILAR

where we denote the expongmfor the case of a stationary EVOLUTION IN SPECIFIC MODELS

transport asp; to distinguish it from the exponent which  Here we apply the general results of the previous section
corresponds to an isolated systegup, Substituting explicitly  to a number of particular models of interest. First of all we
the exponens of the spectra of stationary turbulence, Eg. have to determine the scaling exponentof dQ) [see Eq.
(26), we find (21)]. The scaling ofw is different in relativistic and nonrel-
ativistic regimes. This is accounted for differently in the ar-
_ (m-1) —(m-1)p, 47) gument of the energy conservatiérfunction [where in the
P+ a)(m—2)—u = Pi- nonrelativistic regimeo (k) is replaced byk?/2m] and in the
l/w factors of relativistic integration measufehere o is
The latter relation could have been also found using(E6.  replaced bym). To make the discussion of relativistic and
and Eqgs.(36) with y=s. nonrelativistic cases uniform, we moweout from the rela-
c. Nonstationary sourcelLet us consider the somewhat tivistic integration measure and define the functidg¢k,q;),
more general situation and assume that the energy inputted

into (or taken out fromthe system of particles changes with (2m)9+ 1M, |2

time as E(7)=Ey7". Clearly, the isolated system corre- Uk, g)=—-=F1—" (52)
sponds tor =0, while a stationary source corresponds to ZwkH 20

=1. We will now havey=(d+a)—r/p and s
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In what follows we will assume that in a dynamically inter-

esting range of wave numbeltsfollows a scaling law Pi=z (62)
)= &B .
Uk, £ai) = £7U(k,ay). (53 regardless of the number of spatial dimensiahsFor the
With this definition exponents of particle distributions in the inertial range in
d=3 we find
m—1 ddq
= . . ! 3
dO (k) =U (k) 6k, 3, 11 omi Y s=>. 63
and we find Both exponents coincide with what is observed in our nu-
_ o merical experiments. Note that the expongr expected to
p=dm=2)=atp. (59 appear in the case of driven turbulence. In the case of free

We calculate the exponens s, andp for two classes of turbulence the wake of the propagating turbulent front does

models. The first one is characterized bindependent ma- Ot éven have to be a power law. Nevertheless, we do ob-
trix elements, the second one has no dimensionful paranerve & power law with the exponesit-3/2 to a very good
eters. The scalar field models which we integrated on th@ccuracy. This might be not a chance coincidence. However,

lattice belong to the first class. In the absence of a zero mod8 d<3 the theory predicts<1, the spectrum falling off
in the relativistic limit in (3+ 1) dimensions they belong to With k more slowly compared to thermal equilibrium, and
the second class as well. one can get a different shape of particle distributionslin

<3 [but we still expect the exponeptto be given by Eq.
(59)].

For models with k-independent matrix elements the scal- B. Relativistic theory with dimensionless couplings
ing of U is determined by the'’s, and we haveg8=—min
the relativistic regime an@=0 in the nonrelativistic case.
Equation(55) gives

A. Theory with k-independent matrix elements

The X ¢* model ind=3 which we have simulated on the
lattice belongs to the class of models considered in this para-
graph. Ind=2 dimensionless couplings appear in the®

pu=d(m—2)—1-m (relativistic), (56) model. Dimensionless couplings are generic and this case is
not restricted to scalar field models, therefore we consider it
pu=d(m—2)—2 (nonrelativistig. (57 separately.

o _ _ ) If the collision integral does not contain any dimension-
Substituting these expressions into EG&2), (43) we find  fy|l parameters, it has to scale with=1 and we find for the

that in this class of models the exponeptdo not depend on  exponentp; of energy conserving propagation in an isolated
the number of dimensions. In particular, for the energy cassystem, Eq(42)
cade in an isolated system we have

1
pi=1/(2m—1) (relativistic), (58) =T D (m=2)=1" (64)
pi=1/2  (nonrelativistig. (59 For the physical case afi=3 and for a 4-particle processes

(which should dominate at late times in the models we have

Form=3 andm=4 Eq.(58) givesp=1/5 andp=1/7 1~ qijered numerically, see belowe obtain

spectively.
Substituting Eqs(56), (57) into Eq. (26) we find the ex- 1
ponents, pi=7. (65)
s=d— _m (relativistic), (60) Note that ford=2 andm=6 we havep;=1/11, in agree-
-1 ment with Eq.(58). For the exponens of particle distribu-
L tion functions in the energy cascade we find, see E2f.
s=d (nonrelativistig. (67
L ) d+2 5
In the nonrelativistic regime both exponens,ands do not S=—F=73. (66)
depend orm. m-1 3
Three-particle interactions, relativistic regime C. Explicit time dependence in the collision integral
Three-particle processes appear in thg* model when The self-similar evolution is modified when an explicit
interactions with the zero mode are important, see Appendixime dependence is present. Below we consider two specific
B and Sec. IVC 1. models with explicit time dependence in the collision inte-
According to Eq.(58) for m=3 the front of the energy grals which appear in the problem of reheating. The first one
cascade propagates with is directly related to the relativistic scalar model we have
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simulated on the lattice and time dependence enters via theould be incorrect. First, for completely decayed zero mode
coupling to the zero mode. The second describes thermalizéhe 4-particle collision would dominate, leading pe=1/7.
tion of nonrelativistic particles and the time dependence isTherefore, in our problem we should expgrt1/7 at all

induced by the expansion of the Universe. times. Second, the conditior®1 is not fulfilled during our
o integration time. Indeed, we observed self-similarity for
1. Nonzero classical field 3600< 7<10000, see Fig. 3, which corresponds #a 3.

Typically, oscillations of the inflaton zero mode do not For 7=1 the solution of Eq(34), (49) for A(7) coincides
decay completely during the initial stage of parametric resoWwith A= 7P, while at7=3 it deviates by not more than 5%.
nance. Moreover, if the resonance parameter is large, pardherefore, in this time intervah(r)~r~"®. Similarly, the
metric decay stops early, when only a small part of the initialduantity A” with y=4 for 1<7<3 (energy conservations
inflaton energy has been transferred to parti@sThe re-  close numerically tor 9, whereq=3/5. Hence the indices
maining osci"ating zero mode serves as a source in our tu|0f self-similar evolution obtained in Sec. Il are explained by
bulent problem. This source acts via two different channelsfree turbulence driven by three-particle interactions in the
The first one can be described as a direct decay into theackground of zero mode.
resonance bartg). The other channel is m-particle scattering
when one or more particles have zero momentum. These 2. Nonrelativistic regime in expanding universe
particles belong to the zero modenhich is a Bose conden- | et us consider now non-relativistic particles in an ex-
sate). While the zero mode and excitations wkk 0 can be panding universe with physica| dimenside= 3. We will be
viewed as the same particles but with different momentumworking in the conformal reference frame, Hq_) In these
the formal description is different. The presence of the zergoordinates the expansion of the universe is simply ac-
mode ¢, leads to new specific terms in the collision integral counted for by multiplying all bare mass parametéds,by
with reduced number of particles participating in the interacthe scale factor. This is true both for the original field equa-
tion process and differeriand time-dependentouplings.  tions and for the kinetic equatioriehich are derived from

The simplest example is 2 by 2 scattering in theé*  the formey. Factors ofw in the measure Eq52) should be
model when one of the incoming or outcoming particles bereplaced byMa( 7). Therefore, in the nonrelativistic regime
longs to the condensate. These scattering processes canthe collision integral in the expanding universe can be ob-
modeled as an effective 3-particle interaction. The corretained by multiplying it by the scale factor in some negative
sponding 3-particle collision integral can be obtained frompower.
the 4-particle one with the substitution In conformal reference frame the solution of the Fried-

mann equations for the scale factor as a functionrof
n n = 5/ 9 can be written as
=P (220 (p) 3. 6 "
P P aP=bHgyno(7—1)+1, (68)

This gives an explicit time dependence in front of the CO'”'WhereHo is the value of the Hubble parameter at timg
sion integral, B= ¢(7)/$5(1), andreduces the number of £or the radiation dominated expansibr 1, while b=1/2
integrations by onem=3. Alternatively, the 3-particle col- for the matter dominated expansion. Hence, the function
lision integral in the background of a zero mode can be deg ) takes the form
rived from first principles, see Appendix B.

The turbulent exponents for the 3-particle scattering with- B(7)=[bHg7no(7—1)+ 1] . (69)
out explicit time dependendg.e. ¢(2)(T):1], are given by
Egs.(62) and(63). Both agree with what is observed in our where k=3/b for the 4-particle process ih¢* theory, i.e.
numerical experiments, see Sec. Il. We show in Sec. VI thak=3 and k=6 for radiation and matter dominated expan-
the collision integral in our lattice problem is dominated by sion respectively. This gives
3-particle interactions. Therefore, E§3) for the exponens
seems to be indeed applicable for the system considered nu- T 1-[bHono(r—1)+1]""*
merically. The question of applicability of E¢62) for the fl B(r")d7' = b(k—1)Ho 7o
exponenp deserves special consideration because the ampli-
tude of the zero mode changes with time. We see that in the limit— oo

During the initial stage, when the total energy in particles
is small compared to the energy stored in the zero mode, we
can consider the amplitude of oscillations to be constant and A(r=0)=
the source of turbulence to be stationary. However, distribu-
tion functions should then evolve wih=2p;, see EQ(47).  \yherep is given by Eq.(43). The particle distributions can-

At late times on the other hand we cannot neglect the decay; propagate to high momenta and are frozen out at
of the zero mode. Numerical integrations show that the am-

(70

(7D

-P
1+
b(K—l)Hoﬂo}

plitude of the zero mode decreases as a power %@7) Ke(1) k(1)
o7~ %. At late times this givep— (1—«)p, see Eq.(50). k(=)= —— = ¢ _ (72
Numerically k=2/3, however, the conclusion that=1/15 A(T=2)  [b(k—1)Hg7o]
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In the traditional discussion of thermalization of particles g=Aox/No, h=Ax/\g (77
in the expanding Universe, see e.g. R&f], the expansion
rate,H,, is compared to the to the rate of interactions, whichand simplify to
in our case can be identified with, [see the normalization
factor in Eq.(34)]. It is concluded that particles can not
thermalize ifHy79>1 while they can reach thermal equilib-
rium whenHg7n,<1. Equation(72) tells us that thermaliza-
tion is indeed impossible fdf,70>1 since the distributions e choose\ =(d (7)), so that the initial condition for the
do not move towards high momenta in this case. However, ifnflaton zero mode read&p(7,))=1. Equations(78) and
is not guaranteed that the equilibrium is reached even if7g) however, are independent on the particular choic .of
Ho7p<1. The system may thermalize onlyKt(r=2) is At ;,— 5, all correlation functions of® andX on subhorizon

not smaller than the typical values of momenta in eventualgjes characterize a vacuum of fluctuations around the in-
thermal equilibrium. flaton mean value

Oe+e3+gx2e=0, (78

Ox+hx3+ge?x=0. (79

V. TWO INTERACTING SCALAR FIELDS: NUMERICAL L .
RESULTS B. Results of numerical integration

_ . _ _ We have studied the two-field model using the following
In this section we present the results of lattice calculationg g of coupling constanta:, = 10~ %3, g=30, andh was var-

of reheating in the model of two interacting fields. As in the o4 in the range 0d<h=10"g. We will see below that dif-

one field model prese_nted in Sec. II, we again consider t_hf'erent values ofh lead to different duration and different

massless case, for which the use of conformal transformatiog5iye importance of the specific dynamical regimes, as it

allows mapping of the dynamics in expanding Friedmann s aiready argued for in Sec. Il B. These are: the regime of

universe into the case of Minkowski space-time. This perya ametric resonance, the regime of stationany driven

mits a long integration time on a fixed lattice. turbulence and the regime of free turbulence. These issues
will be addressed later in this section, which we start with

A. Model the discussion of particle spectra.
At the end of inflation the universe is very close to a
spatially flat Friedmann model. It is convenient to work in 1. Spectra
conformal coordinates where the metric takes the fdish The particle spectra in the two field model at late times

=a(7)?(d7”—dx?). We consider two scalar field andX  are very similar to what we have observed in the one field
whose dynamics are determined by the actidh model and have the same turbulent exponents. Namely, in
= fdtd®xy/—gL(®,X) with Lagrangian density the inertial rangen, is a power low with the exponerg
=3/2, for both fieldsy and ¢, see Fig. 4. And both fields
1 1 . - L -
L=>0g""9,09,®+>g"" 9, X3, X~V(®,X) (73 evolve in a self-similar way wittp=1/5 at sufficiently late
2 2 times, when the energy in particles became comparable to
the energy in the zero mode, see Fig. 5. Both exponents,
and p, correspond to turbulence supported by 3-particle in-
Ao Nax Ay teractions.
V(®,X)= TCD“F T(PZXZJF ZX4- (74) There are some differences however. For the considered
range of parameters, the coupling of the excitations to the
We identify the field® with the inflaton. Therefore., ~ Medium is rather strong, which induces large effective par-
=108 [1-3]. Inflation ends at timey, when (D (70)) ticle masses, see Appendix A 3. Therefore particles are non-
=0.35 Mp,. relativisti_c already in the part of the inertial range. Namely,
We use the following set of coordinate and field rescalingsM,=5.5¢ and M,=1.7¢. This manifests itself as
which bring the system into a dimensionless form suitable~k ™ 3-power-law behavior, which is again consistent with

and potential

for numerical integration: domination of 3-particle interactions, see Ef9). This can
d be expressed as a single power law if particle distributions
d Eﬁ 25 are plotted as functions of relativistic kinetic energy,
dXo] Y a )\(I)
N (75 = —
dx; dy; dei)\ng, e=wx—M, (80)

whereM is the effective particle mass. Indeed, in the relativ-
® ¢ =dA ta(y) istic region we haven,>k¥?x< €22, while in the nonrelativ-
X] —’( A1 (76)  istic region we obtaim,> k3= &'2. For this reason, the par-

x =XA"a(n). ) R - .

ticle distributions were plotted in Fig. 4 as functions egf.
Re-scaling of the fields witla(#) in Eg. (76) rotates the The particle distributions for thg field appear in this vari-
scale factor away and maps the model into a scalar field@ble as featureless single power law. This can be easily un-
theory in Minkowski space-time. The classical equation ofderstood. First, the energy transport for 3-particle interac-
motion have two independent parameters tions in the presence of zero mode corresponds to the
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FIG. 4. Particle distributions in the self-similar regime for FIG. 5. Spectral energy distributions fgr(upper pangland ¢

=10g as functions of the corresponding wave kinetic energies restlower panel in the model withh=10g. In each panel we plot the
caled by the current zero-mode amplitugg. Upper and lower \Wave energy per decade found in lattice integrations at three mo-

panels correspond tp and ¢ fields respectively. In both cases from Ments of time,»=1000, 1500 and 2000. In the lower-left corner of
left to right the plots are taken ag=1000,1500,2000. each panel are the same graphs transformed according to the rela-

tion inverse to Eq(4).

transport of kinetic energy, as energy conservation law in
elementary scattering process, which involves the frequenc tuation field
of zero-mode oscillationsy,~M, tells us, see Appendix B. uc_:rue:jlonl Ieth.th' bl h tified th
Second, the collision integral, EGB38), being substituted 0 eg Wi IS p.ro em we have qur?m ! |el he er21ergy
into expression for the energy flux, E€L5), will have ap-  transfer in the following way. The quantifyo=3$o(7,)"
propriate universal scaling behavior in terms of kinetic en-gives a good measure of the total energy density stored in
ergy, €., but not in terms ok. Therefore, the kinetic energy zero-mode oscillations, if it is measured at those moments of
is indeed the appropriate variable for the case of 3-particldMme, 7., when the mean field crosses zef(7,)=0. In
interactions in the presence of zero mode. this way we can get rid of the ambiguity in accounting inter-
For h>g the spectra look stationary in the inertial range @ction energy between zero mpd_e and quctuatllons..SlmllarIy,
after rescalinge by the current zero-mode amplitudgo we measure the energy density in the fluctuation fielg as
~ 7~ Y3 This is similar to the one field cagsee Fig. 4  ={(Xx°)t and p,=(¢?); for the xy and ¢ fields respectively.
However, forh=g we foundg,~ 723 but the spectra stil Here(_. ..); means lattice and time averaging. We ver|f|eq
appear s,tationary after rescaling W'l/g This can be un- numerically that the sum of these quantities conserves with
derstood in the light of Eq44): b(7)= ;_1/3 is consistent time and equals to the initial energy density. This is not true,
with the choicey=4, s=3/2 aﬁdpz 1/5. Hence. the de- however, when we measure the energy density in particles as

creasing amplitude of distribution functions in the region Ofﬁ%neks. V\I?hoég twee?:tltjarrz?:ti%fn %ﬂgfle sgsg%’eg?ﬁﬁrggngztlate
low k simply reflect the energy conservation in the system. 9y b j

This “kinetic” measure of the total energy density stored
in particles as a function of time is shown in Fig. 6. We
compare models with two different valueshofThree differ-

Let us demonstrate now that the regime of stationary turent regimes are clearly seen in both cases.
bulence does occur in the two field model. This regime is (i) Parametric resonanceThe energy density, grows
expected to appear in the case of large values of dimensiomxponentially. This regime continues until re-scattering be-
less parametersy>1, h>1, when parametric resonance comes important. The largéris, the earlier resonance ter-
stops early, while the total energy is still stored in the zerominates.
mode. (i) Stationary turbulenceAt later time the energy density

We found that in the relevant range of parameters thén y particles grows linearly in time, which according to Eqg.
description in terms of particles, which we were using so far(5) is a sign of stationary turbulence. During this period the
deteriorates. The reason is that in this language at large coenergy density still stored in the zero mode dominates the
plings there is no unique way to split the total energy densitytotal energy balance.

f the system into contributions coming from zero mode and

2. Stationary and free turbulence regimes
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should become even more pronounced. In light of these find-
ings, we can also understand the results of earlier papers
[9,10]. E.g., in figures presented in R¢fl0], we see clear
signs of driven turbulence, which was not identified as such

o) T until now. In particular, in Ref[10] it was found that the
10 & 4 energy iny fluctuations grows with time gs, t®% (Small
F ] deviation fromect law can be due to the fact that the energy
B parametric resonance 1 in zero mode decreases somewhat and the source deviates
10° k] i from stationarity) This regime persists until the final integra-

10° 10°

. tion time, when distribution functions reach the boundary of

the integration box, and even then the system is far from free
turbulence regime.

We conclude that in the models with an acceptable reheat-
ing temperature, the parametric resonance stops only when a
negligible fraction of the inflaton energy has decayed. There-
fore, in realistic models of the type considered in the present

(iii ) Free turbulenceAt some point the energy density in Paper, the major mechanism of energy transfer from the in-
the zero mode drops below the energy density already stor#fiton into particles is stationary turbulence.
in particles. Stationary turbulence cannot be sustained any-
more and the regime of free turbulence, with conserved en-
ergy in particles, follows. We may expect self-similar evolu-
tion of particle distribution functions, which at late times are  In this section we confront the results of our lattice inte-
good quantities. gration with the predictions of kinetic theory and address the

In the model with larger self-coupling the parametric validity of the kinetic description at the thermalization stage
resonance stops earlier and only a negligible part of the induring our integration time interval.
flaton energy is transferred to particles during the resonance The particle distributions in the inertial rangey(k)
stage, see Fig 6. In this parameter range the transfer of en-k™° with s~3/2, which we observe in the lattice simula-
ergy from the inflaton intgy field is dominated by a station- tions, can be understood as corresponding to the scale invari-
ary turbulence. In the Sec. VII B we show that if all coupling ant energy flux for 3-particle interactions, see ). The
constants are of order of the inflaton self-coupling, the therobserved exponemi=1/5 of the self-similar scaling of free
malization is a very long process and the Universe reheats tiurbulence, can also be in accord with 3-particle interactions,
unacceptably low temperatur&~100 eV. Therefore, some see Eq(62). However, in our case bare 3-particle couplings
couplings in the sector of physical fiel@s.g. self-couplings, are absent and appear effectively in interactions with zero
or couplings to the inflatonin a realistic model have to mode. Therefore, the 3-particle collision integral is multi-
exceed significantly the scale of the inflaton self-coupling.plied by the amplitude of zero mode squared. Since the am-
With larger couplings the thermalization proceeds fasterplitude of the zero mode oscillations decays, one can expect
This is confirmed in our lattice integration, see Fig. 7. At p=1/5 only during a small time interval, see Sec. Il C 2.
earlier times the model with larger self-coupling contains Can 4-particle interactions be responsible for the observed
less energy irny particles, cf. curves ay=500. However, at scalings? For 4-particle interactioms=1/7, see Eq(65),
later times this model takes over and the energy containingrhich is not that far away from the lattice results, especially
region moves faster towards ultraviolet in the model withif one takes into account energy influx from the zero mode.
larger self-coupling. However, for particle distributions in the inertial range one

With even larger self-coupling of theg field, or its cou- should expecs=5/3, which is not in a good agreement with
pling to the inflaton, the period of stationary turbulencethe observed value af=3/2. Further, in view of Eq(67)
one should expect the dominance of 4-particle scattering dur-
ing the time interval when the variances of fluctuations are

FIG. 6. Different regimes of the evolution of thefield for two
values of self-couplingh=10g and h=100y. The dashed lines
correspond to a linear growth of energy in tiefield with time,

Py

VI. IS THE KINETIC APPROACH APPLICABLE?

1010

3500 larger thane3. This is not the case during the time interval

000 encompassed by the lattice simulations, see Fig. 1.

2500 The outlined difficulties may give an indication that the
k4,200 1500 weak turbulence description is not applicable in our case. In

1500 F view of the importance of the issue, we performed a detailed

1000 h=100g study of collision integrals, anomalous and higher order cor-

so0E relators, as measurements on the lattice, and compared these

oi SE with predictions and assumptions of kinetic theory.

5

7 I s
10 15 20 25

k

o . A. Collision integrals
FIG. 7. Spectral energy distributions at two moments of time, 9

7=500 (dotted line$ and = 1400 (solid lineg. We compare two
models with different self-couplind)=10g andh=10Qg.

To verify the extent of agreement between kinetic theory
and lattice calculations, and to find out which processes
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FIG. 8. Absolute values ofi(k) and of 1) and 1{*) collision FIG. 9. Occupation numbers and absolute valuesopfat

integrals at7=5000. To the left of the arrom(k) and collision 7~ 2000 (dashed linesand »=10000(solid lines.
integrals are negative, while to the right they are positive. Occupa-
tion numbersp,, are also shown for comparisorf’) agrees with
n(k) to the left of the vertical dashed line. Usually, kinetic equations are derived under the assump-
tion (a.a,)<(ayay). However, this condition not always

dominate the collision integral in our problem, we carry outholds. For example, in the case of particle creation by a
the following procedure. First, we numerically calculate thetime-varying classical backgrourte.g. in the region of para-
collision integrals using standard expressions, Efjs-(10),  metric resonange
and the particle distribution functionsg(#) extracted from
our lattice calculations. Second, using lattice data we calcu-
late time derivatives of the distribution functions to see if the
relation n,=1,[n] holds. We limit ourselves to 3- and
4-particle collisions.

The general relations, Eq&7)—(10), for 4- and 3-particle _
collision integrals can be reduced to two and one dimen- (aidg)= ook ra), 82
sional integrations respectively, if the distribution functionssee Appendix B. In this case the anomalous correlatars,
are isotropic. Explicit expressions are given in Appendix B,can not be neglected, sinog~ny. This holds in general: if
Egs.(B38) and(B39). coherent processes are important, the correlators(&).

The numerically calculated values & and1{" colli-  may modify the dynamics of,. If this is the case, they
sion integrals are shown in Fig. 8 in comparison wigh. ~ should be included into the kinetic equation. Singewere
Note that the collision integrals and, take positive and neglected in the kinetic equations, E¢B—(10), it is impor-
negative values. For clarity we show only absolute values ofant to verify if the conditiono| <ny holds in our simula-
these functions and indicate schematically the boundary bdlOns.

tween regions where, is negative and positive. Roughly, in . T.he correlatorsrk are shown for several moments of time
. in Fig. 9. In the inertial range the anomalous correlators are

the i'nertiallrar?gew'k is negative(recall that jn this region the g o] indeed| o |/n,~3x 102, while this ratio is an order
particle distributions can be approximated a&(7)  of magnitude larger in the region of the resonance pdak (

B. Anomalous correlators

hk=Z—t Re(o), (81)

where

=(¢o/K)® and are decreasing functions of timevhile n,  ~0.5 at late timel which is expected behavior. The ratio
should be positive at larger k where the cutoff starezall |4, |/n, is growing also in the region of large reaching the
that energy is flowing into this region value of 0.1 ak=8 at late times, see Fig. 3. To avoid con-

We find thatl(*) gives a reasonable approximationrtp  fusion, note thak==8 corresponds ta/ ¢,~ 25, which is the
practically in all range ok which is dynamically important, variable used in Fig. 9. We do not know if the growth of
which is to the left of the vertical d.aShEd line in Flg 8. One|0-k|/nk at |argek is a lattice effect, but we can conclude that
reason for the disagreement betwedk) andlf) at largerk  the kinetic equations in its simple form, Eqé7)—(10),
could be due to the fact that on the lattice some of the alshould be applicable in the inertial range.
lowed resonant wave interactions of the continuum limit are
not presenfcf. Ref.[88]). In any case, in the region where VII. PHYSICAL APPLICATIONS

I and n, disagree, the occupation numbers are relatively
small, n,<10?, and this region should not contribute to the he

dynamlc(i)&gn_lfl-canjtly. . ) section. They have a common physical origin: rapid particle

The ™ collision ||.’1t(?%ral is about an order of magnitude . oation and large accompanying fluctuations of the classical
smaller compared with,” and is subdominant in the evolu- fig|gs involved. These findings are unaffected by our results,
tion of n, except on the very tail of the distribution, see Fig. even in the case when only a relatively small fraction of the
8. The agreement betweap and|{*) in the region of the tail inflaton energy is transferred to fluctuations during the initial
is not coincidental—we observe it at ajl stage of parametric resonance.

Many different effects may occur during the stage of pre-
ating. Some of these were discussed in the Introduction
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However, in many cases it is necessary to trace the events e ‘
further in time, e.g. to find out when and how the symmetry
which was restored during preheating gets broken later on, or
to trace which fraction of baryon or lepton asymmetry sur- 10
vives in the process of thermalization. Finally, one needs to var(y) ¢
know when thermal equilibrium will be established. This
gives e.g. the abundances of particular dark matter particle
candidates and other, possibly cosmologically “dangerous”

10°

I RRTTT| BRI M AT

relics like the gravitino. 10° WL pre EE—

The explicit time dependence of the particle distribution n
functions, and the knowledge that the evolution is self- ] . S
similar, n(k,7) = A”ng(kA) = 7~ Pny(k7P), which we have FIG. 10. Time dependence of the variance yoffield in the

found in the present paper, may be useful here. Below w&edel withh=10g considered in Sec. V.

discuss some applications, limiting ourselves to field vari- o
ances and to the problem of thermalization. Note that these results have to be divided by the scale

factor squared if expansion of the Universe is important.

b. Driven turbulenceln the regime of stationary turbu-
lence without sink, according to E@5), y=s, which gives

In some applications, basic observables like field vari-var(y,7)=AS 9" %var(x). Using Eq.(60), we find s—d
ances may already give the answer to the problem in quest a=1/(1—m) and
tion. This applies to the problem of symmetry restoration. To
illustrate this, let us consider the Higgs field which is var(x,7)=7 P/ Myarp(y)=7Pivar(y),  (86)
coupled to ay field. In the vacuum state without condensate
the mass squared of the Higgs field would be negativewhere relation Eq(47) was also used. Therefore, during
—p?, and the corresponding symmetry is broken. In thedriven turbulence the variance should grow as yar}
presence of the background gf particles, the mass gets = 5ary(y) in the models which we have integrated nu-
“dressed,”mZq= — n2+g(x?). If the field variances are suf- merically. This is indeed the case as Fig. 10 shows. The
ficiently large, the symmetry is restoréand is broken when transitional period from the regime of parametric resonance

A. Field variances

(x®y=u?g). to the regime of stationary turbulence gt 107 is slightly
If anomalous correlators are negligible, the field variancesnore pronounced in Fig. 10 as compared to Fig. 6. This may
can be calculated using expression be explained by the fact that different regions of momentum
§ space are emphasized gy and in varfy).
d’% ny
=(v2\— ()%= _x
vari ) =(x*) = (x) _J' (277)d wy’ (83 2. Nonrelativistic regime

In the case of free turbulence we haye-d, and in Eq.
With the help of the self-similar substitution, ER9), we  (84) we have to substitutee=0, which corresponds ta,

find —M in Egs. (40), (83). Therefore, varg,7)=const. For
driven turbulence we havg=s=d, see Eq.61), and Eq.
var(x,7)=A?" 9" *vary(x). (84)  (84) again gives vary, ) =const.

We see that in the regime of driven turbulence variances
Here, the left hand side is taken at conformal timewhile  are slowly changing functions of tinfe< 7° in the relativ-
var(x) on the right hand side is the variance at some earlieistic case and vay, 7) = const in the nonrelativistic cake
time 7. while energy in particles grows fasp, o7 in this regime.

This is in accord with the fact that variances can be large

1. Relativistic regime right after the initial parametric resonance stage, while the

amount of energy transferred during this stage is low and all

a. Free turbulenceln this casey=d+a, see Eq.(41), energy transfers occur in the regime of driven turbulence.

and we find witha=1

var(x,7) =A2“var0(X): T*ZDivaro(X)_ (85) B. Thermalization in the absence of zero mode

We now apply the results obtained earlier in this paper to
For systems that we have studied numericafly=1/5 at the general problem of thermalization of relativistic and non-
early times which span the integration period. Therefore, irrelativistic scalar particles, both in Minkowski space-time
the free turbulence regime, we should expect yarf and in expanding Friedmann universe. We do not restrict
=7 ?vary(x). This is in agreement with the results of our ourselves to the models which were studied numerically. Our
numerical integration, see Fig. 1. For late-time evolution,analysis will be based on expressi¢®9) with the factor
when 4-particle interactions will start to dominate, we pre-A(7) being specified for a particular modeled. This expres-
dict a slower decrease of the variance, wat( sion describes a self-similar propagation of the distribution
=7 Nary(y). functions into the ultraviolet. In a classical theory this evo-
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lution continues without bounginless we consider a nonrel- inflationary model. To avoid confusion, note that the defini-
ativistic theory in expanding universe tion of 7 is different in different models since it involveg
The classical evolution stops when a system reaches thel' 1.
quantum regime where it can relax to the Bose-Einstein dis- We can assume,~1 if the Universe expansion can be
tribution. We adopt that this happens when in a region oheglected(this may be of interest for problems outside of
momentak;, which saturate the energy integral, the occu-inflationary cosmology and if the number of competing
pation numbers became of order 1. In this subsection wehannels(other fields beyondy to which the initial energy
consider the case of free turbulence. Then, one can estimaten be depositeds not large.
ks using energy conservation and approximating the energy a. Minkowski space-timé.et us show that Eq88) agrees
density asp~ w(k{)k} in the region wheren,~1. On the with the “naive” perturbative estimate. For this estimate we
other hand, initially the energy was deposited into particleglefiner ast=tgl", wherety is the perturbative estimate of
with lower momenta, denoted below &s. The relationk; the thermalization timet,;lwrn. In the A¢* model o
~M,, whereM is the inflaton mass, determines the scale~\?/T2, n~T3, T~k; and thereforetg*~\2%k;. On the
of initial momenta. Eq.(39) gives for the time needed to other hand, parametric resonance stops when the rate of re-
thermalize a system: scattering from the resonance band becomes equal to the rate
of particle productioru~M ,~Kk; . This givesl’~k; and we

7= (ke ki) P, (87 find 7~ I'tg~ki /\2k;. Now, p~K* andp~Kin,, wheren,

correspond to the typical occupation numbers at the time

Actually this should be considered as a lower limit on theWhen parametric resonance stopg1/\. We obtaintgl

the:r;rillzgllflon;:]rge_nsiﬂge W;nttwar:/qeréo_;ded a time which the:(p1’4/ki)7, in agreement with Eq88).
Sys Wit Spena 1 quantum regime. b. Friedmann universen this case we can estimate the
As an idealization of the thermalization process we con-

ider th luti f bsvst f itati f a field final temperature a§~Kk;/a(r). Let us consider a radiation
sider the evolution of a subsystem of excitations of a fig .fominated universe witha(7)=Hg7o(7—1)+1, see Eq.

ﬁ\si'jzlrlmnv%hglr:aa;iﬁch;i pa(rea/grvggEgg};r\:vizilgteezojtsetiém?nI 68). We neglect the rapid epoch of stationary turbulence,
Y N y " and 7, corresponds to a time when the evolution yfis

this subsection, for estimates of the thermalization time W%][iven by its self-interaction with self-coupling ,, .e.

neglect the presiding regimes of parametric resonance and Or—_; 2.2 2 2 7
stationary turbulence, since they are much shorter if the ret?0 ,~ 1~ MNiki=N(Cypiod /K, where we have useg,
evant coupling constants are not drastically different. We ™ XiNk- On the other ha”d'lowptot/Mj’l'/;l ?,(ng"n'ng this
consider the possibility ofpartia) thermalization in the re- With Eq. (88) we finda(7) =Ho7o7~¢, “pig/ A Mp. For
gime of driven turbulence in the following subsection. the final thermalization temperature we obtdirks/a(7)

As a first step we will find the thermalization time which ~C; A;Mp, Where we have used;~py”. This again
follows from the exact self-similar solutions obtained above.agrees with the naive estimaien~H.
Then we will show that in all cases which we consider, the Numerically,T~)\)2(M p~100 eV, if we use the strength
result coincide, parametrically, with the “naive” perturbative of the inflaton self-couplingh ~10~ 2. Therefore, in a real-
estimates. Doing this comparison we neglect all numericaistic model, at least some couplings should be significantly

coefficients. larger than this scale.
1. Relativistic regime 2. Nonrelativistic regime
Equation(87) gives Now we consider the turbulent evolution of X particles of
massMy towards thermalization in the nonrelativistic re-
Tth~(p%/4/|v|¢)1/p_ (88)  9ime. A nonrelativistic regime should not be essential for

thermalization of the Universe after inflation. However, de-
apending on parameters, nonrelativistic particles with large
occupation numbers may be present during the initial stages
of thermalization. This happens e.g. at large values of the
resonance parameter for X particles which are heavier than
he inflaton. It is interesting and important to trace the evo-
ution of such particles until distributions either “freeze out”
due to Universe expansion, or enter a relativistic regime, or
reach the quantum domain and may approach thermal distri-
butions. Interestingly, we found that the latter situation may
also be realized after inflation for large values of couplings.
2/ We assume that the relaxation is due to the self-interaction
s C7/4<M_Pl) ~ Tt (89) Ay X?. The particle number conserves in the conformal ref-
X X ' i i i i
erence frame in this regime, and Eg7) gives

The expansion of the Universe is easily treated in conform
reference frame. We have;=p;=c,py;, Wherec, is the
fraction of the inflaton energy deposited into the figldlur-
ing preheating and driven turbulence. This finalizes the an
swer. The result is general and is valid for any model. Th
initial inflaton energy can be written a~k’d3
~M3M3,, wheredy is the initial amplitude of inflaton os-
cillations. We find withp=1/7, Eq.(65), which corresponds
to a relativistic theory with dimensionless couplings

1/p

We used here the inflaton parametem¢~10‘6Mp, in A= C;I.(/3p[ 1 ' (90)

M%¢? model, orM,=\AMp with A~10"** in the \ ¢* My

pi )1/3
My

My
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wherecy is the fraction of the inflaton energy which initially C. A faster route to thermalization?
was deposited into the field (this fraction should be mea-
sured at the time when the self-similar evolution shars
the present casp=1/2, see Eq(59), and similarly to Eq.
(89) we find for the relaxation time

e M%I 2/3~
TP My

Considering the regime of free turbulence, we have ob-
tained estimates for the thermalization time which are in
agreement with “naive” perturbation theory. It was impor-
tant in these estimates that the relativistic free turbulence
propagates wittp=1/7. This should be true at sufficiently
o3 late times, when all effects related to zero mode become
me} 108, 91) insignificant. However, free turbulence driven by 3-particle

My interactions in the presence of a zero mode evolves with

=1/5. The evolution of the front of particle distributions is
even faster in the case of driven turbulence, wher2/5. If
In this expressioM ,/Mx~ 1 since Bosons which are much the quantum domain is already reached during one of these
heavier than the inflaton are not created, and in the oppositevo stages our estimates for thermalization should be
regimeX particles would have been relativistic. changed.

As we have seen in Sec. IV C 2 there is no real relaxation Here we consider the question whether a subsystegn of
of massive particles when the expansion has become impoparticles can reach the quantum region in the regime of a
tant. If some relaxation happens, it should occur during thestationary turbulence.
time interval when the scale factor does not deviate signifi-
cantly from its initial value. Then the expansion can be ne- Driven turbulence
glected and the relaxation proceeds as in Minkowski space- The quantum domain is reached in the regime of driven

time. Let us show that the expressions above agree with thg,ylence if the power law of the inertial range will extend
naive _perturbqtlve estllmate in the Iattgr case. up ton~1. In other wordsn,= (k/k;) S should be valid

a. Minkowski space-tim&he perturbative relaxation time up to k=ks. Let us consider the model were the largest
In tge f|2na| state can be eshmatgcli I@Sl;f“”é whereo coupling is the self-coupling of thg field. The normaliza-
~ MMy and n~ky. Thereforety "~Ayki/My. On the ton of n, can be fixed if we recall that in the region of the

expression, but is multiplied by large occupation numbers in_ 1\ . This givesk;~k\ -5 or the time needed to reach
the initial state [89] (which can be viewed as Bose- {he quantum region is givXen by

amplification factoy, T ~vonn~\4n?k’M%, where we
used n~k3n,. We obtain tgl'~n?/kfk?~ (p/My) 2k, T\ VP, (92)
wherep=Myn. This agrees with Eq90).

b. Friedmann universeTo estimate the thermalization \yhere we have used E(B7).

time and temperature we need to know the typical rate of On the other hand, the energy in the subsysterq pér-
ginning of self-similar evolution. For definiteness we con-— 75 (1), andshould not exceed the total energy stored in

sider the situation which arises after preheating in the masne inflaton zero-mode oscillations. The initial energy can be
sive inflaton model coupled to a heavy fieXd We assume  ogtimated a$)((1)~k?e§1)(v Wherek,e;ql"‘wd, andq is the

that self-coupling of th& field is sufficiently large, such that
the “parametric” decay of the inflaton is halted b§rescat-
tering on each other. Using results of REJ] we conclude
that at the moment when the inflaton zero mode decays co
pletely, the energy density in théfield can be estimated as
p,~M3%/\,, while the rate of re-scattering ig, '~My.
This givesHo 7o~ , "My /Mp~q~ 2 whereq is the ini-
tial resonance parameter. Singean be very large, the prod-
uctHg7o can be small and the expansion is not significant a
the initial stage of the self-similar evolution. On the other
hand, the time needed to reach the quantum regime is
order 7"~ (k;/k;)P. Since the particle number conserve
during the period of self-similar evolution we ha\lé’
~M)3</)\X, while ki~ My at the end of parametric resonance
stage. This givesr™~(1/\ )¥®~\_?®. The condition
Homor <1 gives)\7/6> Myx/Mp as a necessary conditionto ~ We have studied the process of thermalization of classical
reach a thermal state before the freezeout of distributiosystems, which at some point in their evolution are in a
functions. Using inflationary normalization, we conclude thathighly nonequilibrium state with energy being concentrated
nonrelativistic particles created in “parametric resonance’in a deep “infrared” region of momenta. Such states natu-
have a chance to thermalize between themselves in an erally appear e.g. during reheating of the Universe after cos-
panding universe ik > 10°°. mological inflation. We have shown that the process of re-

resonance parametay=\ 4, ®§/M? in the M5®? inflaton
model, org=»\4, /N4 in the A®* inflaton model. This gives
n{)j(l)/ptot’\*)\(ﬁx/)\)(, and we obtain the bound

T<)\X/)\¢X. (93)

We conclude that the quantum domain can be reached in the
regime of driven turbulence i ,>\5YP*D=)\3%-10"4.

Here we have uses= 3/2, p=2/5 and\ 4, ~10\n ,. These
values are realistic, therefore, physical implications of driven
Yrbulence in applications to thermalization deserve further
Sstudy.

VIIl. CONCLUSIONS
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laxation in such systems can be divided, in the general cas&ansform(FFT), adopted fronNumerical Recepie®1]. Es-
into three distinct stages. sential details of our procedure can be found in Refs.
In the models of the type we have considered in this paf7,9,25,9Q. Here we describe specific choices of parameters,
per, the initial stage of preheatirig] is powered bypara-  significant important differences in the integration scheme
metric resonanceDuring this initial linear stage the rate of and give exact definitions of lattice observables.
energy transfer is the fastest. The energy in particles grows The numerical integration was done on a 3D cubic lattice
exponentially. However, in the physical situation of reheatingwith periodic boundary conditions. The lattice is param-
after inflation, the coupling constants have to be sufficientlyetrized by the box size, and the number of lattice points per
large to insure an acceptably short time-scale of the subselimensionN. These give the lattice spacibg=L/N and the
quent thermalization, while with large couplings, only a neg-total number of lattice sitegy® in three dimensions.
ligible fraction of the initial inflaton energy is transferred  The results presented in the paper are taken from simula-
into fluctuations during the parametric resonance stagéions with 256 lattice sites and a box side chosen to fit a
[9,10]. particular problem. For example, in the case of &), L
We have shown that in such situations the linear stage is=7.57. With this box size the infrared modes which belong
followed by the regime of ariven stationary turbulence to the resonance band are still well represented, while the
During this stage, the energy in particles grows linearly inultraviolet lattice cutoff is sufficiently far away from the oc-
time. The regime of stationary turbulence stops as soon asupied modes, therefore the particle spectra are not distorted
the energy in particles starts to dominate the overall energgven at late times. We have studied the dependence of our
balance. Therefore, this regime is a major mechanism of ernresults on the lattice and box size to avoid lattice artifacts.
ergy transfer from the oscillating inflaton zero mode into  The finite-differences scheme that was used is 2nd order
other species in realistic models of the type we have considn time and 4th order in space.
ered here. This period of evolution is also prompt. It should
be noted that the source which drives the turbulence is pow-
erful because coherence effects are still strong in the relevant 1. Finite-differences scheme
region of momenta.

L . We write the equations of motiofB) or (78), (79 as
The subsequent long stage tbermalizationclassifies as d ©) (78), (79

f bul hi hould b - Th . fourth order finite differences on a three-dimensional spatial
ree turbulenceThis stage should be generic. The energy i hic |attice with periodic boundary conditions. The corre-

phartlcles_ 'is cg_nsgtr)ve_d dl;rmg _th|s (;poch, w_h||e thelfsh_ap_ia ponding equations were evolved with the use of a symplec-
the particle distribution function changes in a self-similar ;. integration scheme. Details are as follows.

way with the front of the distribution propagating into the Particle wave numbers are discrete on the lattike,
ultraviolet. This stage continues until the quantum regime is:(nl n,.Nn3)ko, Where —N/2<n;<N/2 and ko= (2m)/L
H ’ ) = J\ — .

reached and particles can relax to Bose-Einstein distribuTh : -
. . . 7 e phase space is restricted kKg<k=Kk,.x, Wherek
tions. Applying conventional kinetic theory we have calcu- _ \/§II20N/2. T(F)) avoid distortion at@r?gh mr(r)]?:]enta i isn&aésir-

ltﬁf?ezﬂil%t'cg% tr(]a?agumri ?ﬁ?gﬁgst%fggg'b"rr?tecirs]gf;ﬁg Zzable to take large N. This, however, is limited by the capa-
9 P ping ilities of the computer used. The choice of small values for

initial inflaton amplitude. The result coincides parametricaIIyL is also prohibited since that will lead to infrared distortions

with the "naive pertur_batlve es_tlm_ate[ﬁ]. . . and may even move the resonance band out of the integra-
We made a comparison of kinetic theory with the numeri-_. . . X -
tion box. The problem is alleviated by the choice of a finite-

cal integration of scalar field models on the lattice. We Showdifferences scheme which is fourth order in space. This can
that, at late times, the kinetic approach is applicable, resuItE)e quantified in the following way: pace.

Ing in a weak wave twrbulence reg!nﬁég_]. In.the models The lattice realization of the Laplacian in our scheme is
considered numerically, the evolution is driven by three- iven b

particle scattering in the background of zero-mode oscillad y
tions. The characteristic exponents calculated within the

L . . 1 1 4
framework of wave kinetic theory are consistent with the A, ®(x)= — D, | — —®(x+2be) + = D (x+be)
results of our lattice simulations. b? e 12 3
5 4 1
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In our study we have developed and employed a highebe given by multiplication witrk?. Therefore the dispersion
accuracy version of theaTTICEEASY code[90]. Various cor-  relation for a massless field on the lattice is also different,
relation functions were measured with the use of fast Fourieand is given by

APPENDIX A: NUMERICAL PROCEDURE
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04~ The symbols™(...) is afunctional Dirac distribution so
that the canonical momenta are locked to the classical trajec-
03 tory.

3. Measured quantities
2-nd 4—th ) . .. . .
We measure various physical quantities both in configu-

ration space and in Fourier space. In configuration space it is
convenient to measure the zero modg=(¢), and the
0o 5 10 15 20 25 30 variance, var$)={¢> — ¢3. In Fourier space we measure

k particle number and other correlators.

FIG. 11. Deviation of the dispersion law for massless excitations FOF largeN lattice averages basically coincide with the
on the lattice, k—w,)/k, for second and fourth order finite- statistical onegergodic theorem We use this fact to mea-

difference schemes. sure expectation valuggero modef variances and higher
cumulants of fields and their conjugate momenta.
13 (5 8 1 a. Spatial lattice averages-or averages defined in con-
wA (k)= > | 5— = cogbk)+ = cog2ak)|. figuration spaceO)=V"*[d*xO, which on the lattice is
b2 =112 3 6 expressed as the sum over the lattice poiR®)

(AZ) ENisgiOi.
_ s o » o - b. Fourier spectra.For monitoring purposes we make a
We find thatw<k* andwi —k*~O(k°b") for smallk. Nu-  FFT transform at least every period of inflaton oscillation.
merically, for k<kpa/3, the relative difference betwedn  The wave amplitudes of fourier transformed fields are de-
andw__ is less then a percent, while for lardeit grows up  fined by Eq.(B20), see Appendix B. In the dimensionless

to about 30% difference &t=Kkya«. This means, that we can units that we use in the numerical simulation the physical
expect essentially undistorted self-similar and turbulent soluwave amplitudes take the form

tions on the lattice, if the dominating modes have wave vec-

tors k=kma/3. In the case of a second order realization of ~y_ 1 ol Pt A
i i i a)= , A4
A, we find a considerably smaller available phase space, k \/E (277)3,2@

k=<knad/10. This is illustrated in Fig. 11 where we pldkt (

—w)/k as a function ofk for the second and fourth order - . .
calculation schemes on the lattite= 7.5, used in our in- where again " stands for the dynamical variables or x

tegration of the problem Eq(3). We see that up té= 10, .|n_ Egs.(3) 5578)’ (79).2The d|mer;32|clnlessz frequeznues are
which essentially encompasses the support region of the digiven by o= vki +mg", wheremg®=3(¢%) +g(x") and
tribution functions, see Fig. 3, the dispersion law on the lat/M&’ =9(¢?)+3h(x?). Making use ofa,, we calculate
tice represents the continuum correctly. That is why selfvarious  correlators, n(k)=(ayay), o(k)=(aa ),
similarity was not distorted on our lattice and could have(a*a*aa), etc. The first one, which corresponds to the par-
being detected(The small deviations from self-similarity, ticle occupation numbers, is of prime interest.
which can be observed at the very tail of the distribution and Note that with this simple definition of quasiparticles the
at the latest time, see Fig. 3, are caused by the distortion dfamiltonian is not diagonal in terms af} and ay wave
the dispersion law which starts to be non-negligible here. amplitudes if interaction energy is important. Therefore, the
related definition of e.g. particle number is good only for
2. Classical approximation and stochastic initial conditions modes with dominating kinetic energy.

The initial linear stage of parametric resonance has a
complete quantum description, which is best expressed in the APPENDIX B2 KINETIC EQUATION FOR CLASSICAL
language of Bogoliubov transformations. The quantum de- WAVES

scription of this linear problem can be mapped into an Following the general approach of Ref69,81 we de-

equivalent classical problefiY]. In our dimensionless vari- e the wave kinetic equation for the classical system of
ables the initial conditions for the classical description arnterest the massive. ¢* theory in d dimensions with

given by the following probability distribution for field fluc- 5 miltonian density
tuations in Fourier space:
2

1.1 M A
. 2 — 42, 2 2,
P[¢7¢]~9X4__xqfd3k2w5(70)|1//k|2] H= 50"+ 5 (V) - —- ¢+ 7 ¢, (B1)

X5F[¢k+iwk‘/’( 7o) . (A3) and in the presence of an oscillating classical background.
We assume random wave fields which are statistically uni-
Here “y” should be replaced by one of the fielgsor y that ~ form, i.e. the equal time correlation functions ¢fand its
are the dynamical variables in the simulated equati8hsr  canonical conjugate momentugnare homogeneous and iso-
(78), (79), and o (7o) = \/k2L+3, while of( 7o) = \/k2L+g. tropic. We also assume the field to be weakly interacting.
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The first step in the derivation of the kinetic equation for O¢p+M2p+N\¢p>=0. (B10)
an arbitrary system is to find Fourier wave amplitudas,
such that the quadratic part of the Hamiltonian is diagonal in a. Zero modeAveraging Eq.(B10) we obtain
ay, i.e.
bo+ (M2+3N(843)) po+ N3+ N(64%)=0. (B11)
H,= | d%waf ay. B2
2 f Ph Sk B2) In this equation( §¢°) is small compared to the other terms
and may be neglected locally in time in a state which is close
to a Gaussian. If additionalkd$?) is either weakly varying
or small compared to all other terms in E®11) the solu-

The general equation of motion for the wave amplitudes is

da _ ﬂ—iw a—i SHint (83)  tion is given by the Jacobian cosine [79,92,93
dt — at KK ar
. o — 1 Ny
whereH;,;=H—H,. The first term on the left-hand side is do(t) =g cnl ut,——|, (B12)
due to a possible explicit time-dependence in the definition \/5 K
of a,, which can appear for example in case of a time- _
Varying background_ Where(j)O is the amplitude and
In the kinetic approach we want to get rid of rapidly vary-

ing phases of the wave amplitudes, i.e. to derive the equation U= \/)\Z(Z)Jr 3N{(8p%)+ M2, (B13)
for the slowly changing “occupation numbersy,~ay a. _ _ o
To achieve this we multiply Eq(B3) by af, add the The period of this function is
complex-conjugate expression and average. The result will -
contain higher order correlators induced by interaction terms. To—a,-1K i A (B14)
The resulting BBGKY-hierarchy of equations for Fourier cu- 0T V2 o)

mulants can be solved, e.g., in the random phase approxima-

tion in consistent perturbative expansion. whereK (y) is the complete elliptic integral of the first kind.
In the case of Eq(B1) the wave amplitudes for the fluc- This defines the effective frequency,=27/To. In the

tuation fields are solutions of large amplitude limit,.=\"?¢y, we find w=0.854. For

50 (2 7_r)d/z( o) - arbitrary . one can write the following decomposition:
k= agtay),
\/Zwk 1 )\_%
=p—=—, B15
. 2m)P o, R o
Spy=——(a—a%y) (BS) R . -
\V2i which is fairly accurate, the maximum deviation from the

. _ ~exact expression is 3% at=\"2¢,. For small amplitude of
where 6¢y and ¢ are Fourier transforms of the canonical zero-mode oscillations, this expression can be further ap-
field and of its conjugate momenta respectively, shifted by,roximated as

the “zero mode” ¢o=(¢) and po=(¢). This gives

1+

e w0 SP+i 5y 86) =M g
T 2m”2\2e,

From the start we include im, the interaction with the bath
of fluctuations,

. (B16)

eff

3)@5)

where M = (M?+3\(5¢?))*2 This deviates from exact

result by less than 4% atdo<M .
For a general discussion of the kinetic equations in the
wﬁ:k2+M2+ 3)\¢§+ 3N(6¢?), (B7) background of a zero mode it might be useful to expand
¢o(t) in a Fourier series. However, this decomposition for
i.e. ay correspond to “quasiparticles.” The second order cor-the elliptic Jacobi function is strongly dominated by the first
relators in homogeneous and isotropic background should bgarmonic withw = .. Even atu=\Y2¢,, the relative am-

“diagonal” plitude of the first harmonic is=0.96, and it approaches
(aag)=n D (k—q) (B8) unity with decreasingp,. Therefore, in what follows we will
k=a ’ restrict ourselves to the first term in the Fourier decomposi-
aa.) =009 (p+q). (B9) tion of ¢q(t).
(@dy =07 (pta It is useful to define wave amplitudes for the zero mode
1. Microscopical equations of motion a.= moe‘“%‘ (B17)
We derive equations of motion for the zero mode and for
wave amplitudes starting from in terms of which the zero mode can be represented as
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a+a* Here( .. .). denotes the cumulants, which in a diagrammatic
bo= ¢ (B18)  language are identified witlkonnecteddiagrams, see e.g.
V2w Ref. [94].

. . . In situations whenl 3(k) andl,(k) are negligible, Egs.
One can also introduce an effective occupation number O(fBZl) and (B22) describe particle creation in a time-
“condensed waves,” dependent classical background, or parametric excitation if it
. — is periodic. (Note that the quantum version of these equa-
Ne=acac=2wedy . (B19  {ons at this stage can be obtained by the formal substitution
n—1/2+ny.)

Note the following:

(i) In our casew, contains an rapidly oscillating term,
10 due to interac_tipn with the zero mode. Hoyvevgr, at Iat.e times
A= —i o += —ka’ik+ c®+c®, (8200 and at largek it is small. e.g., in our numerical integration in

2 wy the region ofk near the peak of the spectral energy distribu-
tion, this term is of order 10°, see Figs. 1 and 3. We neglect

b. Wave amplitude§.he equations of motion for the wave
amplitudes with nonzero momentum can be written as

where this term in what follows.
(i) The coefficient in front of the integral E¢B23) is
C®=_-3i\g J dQud 8, by —(Sby S )] rapidly oscillating. Moreover, oscillations are not harmonic if
“ ° K2 TR TR PP the amplitude of¢, is large. Unharmonicity can be dealt
X 8D (k—p,—py), with by expandinggq(t) in Fourier time series and consid-

ering each of the terms separately. We restrict ourselves to
the leading harmonic in this expansion since at late times the

C(kA)E—i)\f dQy12d Sy, Oy, Oby, unharmonicity is small.
(i) The cumulants contain different combinationsagf
—35¢pl<5¢p25¢p3>—<6¢p15¢>p25¢p3>] and ai , see Eqs(B4). It is well known that the leading
§ contribution to the resulting kinetic equation is due to the
X 8D (k—py—p;— Ps), “resonant wave interactions,” or, in the language of particle
physics, only those terms survive, which are on the “mass
and shell.” In our case those will be(aja,a,), and
1 P2
d9p,dp, d9p,dp,ddp, (agag ap,)c for interactions which involve the zero mode,
A= W k123= m and (ag a’glap,za,%}C otherwise. We restrict our attention to
k k

these cumulants only.

C(®¥ describes three wave interactions in the background of a (iv) We neglect “anomalous” correlators;, . These are
zero mode, whilec(k“) corresponds to four wave scattering. sm_aII in the inertial range 'of turbulence as our lattice calcu-
The averages in these expressions appeared because, first, @#ns show, but may be important otherwise.

separated the zero mode out of the equation for fluctuations,

and, second, we used the effective frequency for quasiparti- 2. Leading asymptotic of collision terms in kinetic

cles, Eq.(B7). Due to this choice the averages®® times approximation

* H . .
ay or &y will have the structure of cumulants, which inturn 0. 5 free random field the cumulants E@B23) and

will deviate from zero only due to correlations induced by . . . .

processes of scattering. (B24) are zero, anc_hk.—O to the first order in perturbation
Multiplying Eq. (B20) by a} or by a, and adding the theor_y. To calculaten, in _second_order one _has to know the

complex-conjugate expressions, we find solutions for cumulants in the first order with respect to in-

teractions.

. @ We use the equation of motion for wave amplitudes, Eq.

ne= w—Rea'k+|m|3(k)+|m|4(k), (B21)  (B20), to calculate the time derivatives of the cumulants,
k drag (agap ap,)c and dag a:;lapzaps)(:. Higher order corr-

o elators which appear in this procedure can be used in zeroth

_ —knk+I§(k)+Ij(k) (822  order of perturbation theory, i.e. they can be decomposed in

2 wy n, assuming Gaussianity. To simplify the equations we use

the following notations for products of, which appear in

iO’k: 2wkcrk+

where these decompositions
|3(k):67\¢0f dQy i dbp, Sbp)c (B23) F bip,=NeMp,Np, = NeNp(Mp, +1p), (B25
. F 22,1335(np+ Npy) Mp,Npy = NpMp, (Np, + M)
1K) =2\ [ d0saadal 56y, 500,500)c. (824 (826)
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We find, keeping the terms which will have resonant behav-

ior
dag (a;,‘ aplap2>cz (Wt wp—wp — wpz)aé‘ <a; aplap2>c

i6N D (p—p—p)
(27T)d/2\/2wc2wp2wp12wp2 PPz’

(B27)

* 4% i _ _ * 4%
dag aplapzap3>c— (wpt oy —wp, wp3)<ap apla,[,za%)c
16NV (ptpi—po—Ps) gy
3d12 PoP3°
(2) \/pr2wp12wp22wp3 2"3

(B28)

These equations have the common structiltes A wJ—A.

PHYSICAL REVIEW D 70, 043538 (2004

_18\2d%p;dp, 8@ (k—py—py)

PPz (27T)d_12w02wk2wp12wp2

k

X 8w+ w—wp —wp, ), (B34)
ko, 188°d"p1d“p, 6D (k+py—p,)
P (277')d_12a)k2wp12wp22wc

X 8wt wp —wp,— we), (B35)

18\?d%p,d%p,d@p3 8D (k+py— p— p3)

(277)2d_12wk2wp12wp22wp3

kpp _
PoP3

X S+ wp, — wp, —wp ). (B36)
Both terms in Eq(B31) describe scattering processes of
two waves into two other ones. In E¢B32) one of them

SinceA corresponds to the zeroth order in perturbations, itcomes from the zero mode, while in E®33) all four are
assumed to be time independent here. An appropriate pafrom the fluctuation field. Energy conservation in the inter-

ticular solution for cumulants is therefore given hy
=A/(Aw+ie), see e.g. Ref[69]. Using the relation Inx%
+ie) t=—78(x) we obtain

Imag(agap ap,)c

5(d)(p_ P1—P2) S(we+ Wp™ Wy, — wpz)
(2m ¥ 202020, 20,

p
XF bp,

(B29)
Im{ag ag ap,ap,)c

5(d)(p+ P1—P2— p3) 5(wp+ wpl_ wpz_ wps)

(2m)%92 71 20p2w, 2w, 20p,

=3\

XF ™

o’ (B30)

3. Isotropic wave kinetic equations

Applying this result to Eqs(B23) and (B24) we obtain
the kinetic equation for wave occupation numbegs

=13+, (B31)
where
(3)— k ko _ kpi P2
13)= f dQ § o F 5o 2 f do »F 2, (832
1= | d*r F i (B33)
K PoP3 PoP3
and

actions with the zero modey.+ WK~ @p, ~ Wp, =8 Ep,

—€p,, Can be written as conservation of the energies
£p=wp— ¢, (B37)

which for small zero-mode amplitudevhere w.=w,-)

equals to theelativistic kinetic energy. Therefore, transport

of energy over momentum space should be considered as

transport of kinetic energy in this case.

These relations, Eqs(B32) and (B33), for 3- and
4-particle collision integrals can be reduced to one and two
dimensional integrations respectively, if the distribution
functions are isotropic, for details see e.g. RE69,85.

The collision integral for 3-particle interactions @~=3
takes the form

242
(@ N (

€k
KT 16mmgk f dey[Ngny—nN(nz+ny)]

0

+2fmdsz[n2(nk+ ny)—ngnq] |, (B39)

€k

whereeg;=¢(p;) andn;=n(g;). Energy conservation in this
case corresponds ;=g —¢, ande;=¢g,—gy.

The collision integral for 4-particle interactions g*
theory reduces to

gxz ) )
|<k4>——f dsgf desDF(n),
0

3273wk o (B39
whereD=min[k,p1,p,,p3] ande;=¢e,+e3—¢,>0 in ar-
guments ofF(n)=(n,+ny)n,n3—nn;(Ny+nNg).

Note an interesting fact: Apart of the prefactor, E@&39)
and (B38) are functions of relativistic kinetic energy,((')
= (wk) f(gy). This gives for the flux of kinetic energy in
3 dimensiongcf. with Eq. (15)]

043538-23



R. MICHA AND |. TKACHEV PHYSICAL REVIEW D 70, 043538 (2004

a3 . 2, _ 3
== [ Lo ot w2do=—\(56°) (B41)

and repeat the procedure of the previous subsections. As ana-
log of Eg.(B21) we obtain

1 (e
__FJ deef(e), (B40) -
Ne=2\ Im| ——=(5¢3 ) (B42)
where we have use@dp=wde. Therefore, the turbulent ¢ (\/2w6< )

flux should correspond to a particle distribution being a
power law of relativistic kinetic energy. Remarkably, we Substituting Eq(B4) and solving equation for higher order
have solved for the turbulent fluxes without the usual as<orrelators we get

sumption of scale-independent dispersion law, Bg). In

fact, the dispersion law was that of relativistic field theory, . d
wi=k?>+M?2;. We do observe a single power law for the nc:_f 3
particle distributions as functions of kinetic energy in our (2m)
lattice integration, even in situations whistfy is large in the
inertial range, see Fig. 4, the upper panel.

1. (B43)

This result is not surprising since 4-particle collisions con-
serve particle number. In the model we consider, 3-particle
interactions are derived from the 4-particle collisions with
one of the particles being replaced by the condensate. There-

The kinetic equation for the wave occupation numbers hafore, Eq.(B43) can be interpreted as a conservation of the
to be supplemented by the kinetic equation for the zerdotal occupation number, in particles and in the condensate,
mode. We start with the equation ne+ (27) "9/ d%n,= const.

4. Kinetic equation for zero mode
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