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Brane cosmology as a dynamical system
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We investigate the qualitative dynamical properties of a brane model for the flat isotropic universe with a
single matter component represented by a scalar field. We study the flat and quadratic potential. Three classes
of behaviors of the scale factor are determined. In particular, in the case of the brane with dark negative
radiation, via a fine tuning, the existence of oscillatory solutions is shown, which is not possible in the
traditional flat FRW model.
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I. INTRODUCTION

Since the 1970s the search of chaos in cosmological m
els has been one of the permanent concerns of theore
physics; essentially for two main reasons: one is purely c
mological, to find an explanation for the homogeneity a
isotropy of the spatial universe, and the other purely theo
ical, since chaos is ubiquitous in the universe, the unive
itself, considered as a dynamical system, must be cha
The mixmaster model was the first step@1#, and it was fol-
lowed by many researchers where, curiously enough,
FRW models were almost absent. This models began to
studied in the 1990s~see e.g.@2#! and many, most interesting
papers followed~see e.g.@3#!. From this last paper we
learned that, at first order, we must find periodic solutio
because second order perturbations may transform the
chaotic evolutions. So we began a systematic search of t
solutions in papers@4#, and we found some, but only i
closed spatial FRW universes. Then superstrings and br
entered in the cosmological scenario and recently many
pers were published on the evolution of the universe usin
brane cosmology@5,7–9#. Good general references on bran
are @10,11#.

Therefore we are particularly interested in the study
brane cosmological models as dynamical systems@12,13#, as
a logical continuation of our studies of usual FRW mod
also as dynamical systems@4#. In both cases our aim is to
find the qualitative properties of the universe evolutions~in
particular the existence of periodic solutions! in a pure ana-
lytic way ~i.e. not using numerical methods! as in papers
@8,14#.

Then we will try to describe the dynamic of a scalar fie
confined in a brane, which is assumed flat~and therefore a
homogeneous and isotropic space!, as in the spatially flat
FRW model. But it is clear that in the new case we must a
new brane terms in the Einstein equation of the traditio
cosmology, namely: a term proportional to the square of
energy density corresponding to the scalar field and a sec
one due to dark radiation@7#. Since in this case the cosmo
logical constant could be considered as extremely small
take it equal to zero.

It is well known that in FRW models with minimal cou
1550-7998/2004/70~4!/043535~6!/$22.50 70 0435
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pling, when the scalar field potential is positive defined,
Hubble function has a monotonous evolution@3#. Then if
initially the universe is in expansion it will expand foreve
On the other hand, if initially the universe is in contraction
will inevitably collapse and there is no possibility of an o
cillatory behavior and therefore of chaos. But in the bra
case, with flat space, this monotonous behavior is lost,
under adequate conditions oscillatory solutions exist wh
are not possible in the traditional case, because they es
tially depend on the dark radiation. As we just said the pr
ence of these oscillatory solutions are most interesting s
they can be the first step to find chaos in more comp
models.

We will also study the evolution for small times to de
scribe the radiation dominated era, and to find the ma
dominated era in the expansive case. We will see that in
case of the expanding universe, we find the same traditio
cosmology matter dominated era, since due to the expans
the new terms introduced by the brane become irrelevant
large times.

The work is organized as follows. In Sec. II we prese
the general equations of the brane model. In Sec. III
study the case of constant potential. In Sec. IV we study
case of quadratic potential with no cosmological constant
Sec. V we present the Lyapunov function of the just fou
dynamic. In Sec. VI we consider the oscillatory solutions.
Sec. VII we draw our conclusions.

II. GENERAL EQUATIONS

This paper is based on Refs.@5,6#, and@7#, so we use the
same notation and system of unities.

We will consider the five-dimension space metric

ds25g̃ABdxAdxB5gmndxmdxn1b2dy2

52n2~t,y!dt21a2~t,y!g i j dxidxj1b2~t,y!dy2,
~1!

where the first term is the time term, the second one the
brane term and the last one the bulk term,A,B,..
50,1,2,3,5, m,n, . . . 50,1,2,3, i , j , . . . 51,2,3, g i j is a
©2004 The American Physical Society35-1
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maximal symmetric 3-dimensional metric withk521,0,1.
The five dimensional Einstein equation reads

G̃AB5R̃AB2
1

2
Rg̃AB5k2T̃AB , ~2!

where

T̃B
A5T̃B

Aubulk1TB
Aubrane,

T̃B
Aubulk5diag~2rB ,PB ,PB ,PB ,PT!,

where 2rB5PB5PT , to mimic a cosmological constan
and

TB
Aubrane5

d~y!

b
diag~2rb ,pb ,pb ,pb,0!.

Then following the deduction of paper@6# and choosingk
50, and thereforeg i j 5d i j , and theTn

mubrane as the one pro-
duced by a scalar fieldc with potentialV(c) we obtain the
following effective four-dimensional equation in the bra
(y50) @7#:

ȧ2

a2
5

k̃2

3 S 1

2
ċ21VD1

k4

36S 1

2
ċ21VD 2

1
C

a4
, ~3!

ä

a
1

2ȧ2

a2
5k̃2V1

k4

48
~4V22ċ4!1

C

a4
, ~4!

c̈523
ȧ

a
ċ2V8, ~5!

where the dots symbolize the time derivation, we have ta
n51, constantsk̃ y k are defined in Refs.@5–7#, and the
constantC, associated to the dark radiation, can take po
tive, null, or negative values. These equations are indep
dent of the metric outside the brane and the peculiar ev
tion of b @6#.

To simplify the equations, we introduce a new variable~as
in @4#!:

u5
a2

2
. ~6!

Then Klein-Gordon equation~5! reads

c̈1
3

2

u̇

u
ċ1

dV

dc
50. ~7!

We present the Friedmann equation~4! in a parametric oscil-
lator form, namely

ü5F~V,ċ !u, ~8!

where

F5
1

3
k̃2~4V2ċ2!1

1

18
k4~2V22ċ42ċ2V!. ~9!
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Finally the Einstein condition~3! reads

1

4

u̇2

u2
5

1

3
k̃2S 1

2
ċ21VD1

1

36
k4S 1

2
ċ21VD 2

1
1

4

C

u2
.

~10!

III. THE CONSTANT POTENTIAL CASE

Let us consider the case of a constant potentialV0 . The
first integral of Eq.~7! is

ċ5au23/2, ~11!

wherea is constant. Then since the system defined by E
~7!, ~8!, and ~9! has dimension four, the two first integra
Eqs.~10! and ~11! make the system a two dimensional on
therefore chaotic solutions are not possible.

Substituting Eq.~11! in Eq. ~8!, we obtain the first integra

1

2
u̇25 f C~u!, ~12!

where

f C5
1

72
k4a4

1

u4
1a2S 1

3
k̃21

1

18
k4V0D 1

u
1

C

2

1
1

2
V0S 4

3
k̃21

1

9
k4V0Du2, ~13!

where the integration constant is consistent with Eq.~10!.
Equation~12!, defines a one dimension dynamic, thus a

in this case there are not oscillatory solutionsa(t) has a
monotonous behavior as we will see. In fact, sinceu is non-
negative, if f C has no zeros thenu is monotonous, thus it
diverges or vanishes. Iff C has one zero then it is a fixe
point of Eq. ~12!, and thenu→const. These are the onl
possible solutions sinceu>0.

A. Behavior for u™1

For u!1, Eq. ~12! can be approximated as

u̇2.
1

36
k4a4

1

u4
,

then, in the first instants of the universe evolution, the sp
curvature and the dark radiation have not a dominant con
bution and every dependence ofC is lost. Then we have

u3.
1

6
k2a2t.

From Eq.~6!, the scale factora reads

a.bt1/6,

where
5-2
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b5S 4

3
k2a2D 1/6

.

Let us remember that in Ref.@7# this result is presented
just like an ansatz.

B. Asymptotic behavior of the scale factor

Let us now consider the case where the limitu→` is
possible.

The asymptotic expression of Eq.~12! is

u̇.AV0S 4

3
k̃21

1

9
k4V0Du,

that corresponds to positive constant Hubble function.
Integrating we can find the scalar factora:

a.exp
1

2
AV0S 4

3
k̃21

1

9
k4V0D t.

In the case whenV0( 4
3 k̃21 1

9 k4V0)50, the asymptotic ex-
pression of Eq.~12! is

u̇.AC

2

that only allows solutions forC.0, then a .t1/2, which
corresponds to the radiative era in the Friedmann model@15#.

IV. THE QUADRATIC POTENTIAL CASE

In the previous section we have demonstrated that w
the potential is constant, the scale factora is monotonous.
We will now study the potential

V~c!5
1

2
m2c2, ~14!

where we have considered that the cosmological consta
zero andm is the mass.

A. Properties of the model

Then we have the following properties.

1. Property 1

The dynamics of Eqs.~7! and ~8! are invariant under the
scale transformation

t→at,m→m/a, u→a2u, ~15!

k̃→k̃, k→a1/2k,C→a2C,c→c, ~16!

wherea is an arbitrary positive constant. Then we are
lowed to choosem51 with no lost of generality.
04353
n
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2. Property 2

There are fixed points only whenC50, in which case the
fixed points of Eqs.~7! and ~8!, that satisfy the constrain
~10!, arec50,ċ50,u.0,u̇50.

3. Property 3

The divergence of the vectorial field of the Eqs.~7! and
~8! is 26H. Then, when the universe is expandingH.0, we
have a dissipative behavior.

4. Property 4

After the change of variables of Eq.~6! Hubble function
reads

H5
1

2

u̇

u
, ~17!

then, using Eqs.~9! and ~10!, Eq. ~8! becomes

Ḣ52k̃2
1

2
ċ22

1

12
k4ċ2S 1

2
ċ21

1

2
m2c2D2

1

2

C

u2
. ~18!

From this equation we conclude that if the dark radiati
constantC is positive or null we have a simple dynamic
since Hubble function is monotonous.

Thus, only in the caseC,0 we can have an oscillator
behavior of the scale factor.

5. Property 5

Let us qualitatively describe the solutions as curves
phase space. The only solutions with physical interest
those thatȧ(t50).0 namely those with an expansive initia
behavior. Then we define the tridimensional space of v
ablesH, V andZ5 1

2 ċ2and we rewrite Eq.~10! as

H25H0
21

1

4

C

u2
, ~19!

where

H0
25

1

3
k̃2~Z1V!1

1

36
k4~Z1V!2. ~20!

Then, using these variablesH,V,Z, from property 2 we
can deduce that, whenC50, the only fixed point isH50,
Z50, V50.

On the other hand, Eq.~20! defines two surfacesS6 in
spaceH,Z,V, namely

H056A1

3
k̃2~Z1V!1

1

36
k4~Z1V!2.

Then, according to the values ofC, we have the following
cases:

~i! When C50, the solutions are contained either inS1

or in S2 because they cannot go fromS1 to S2 or vice
versa sinceH50,Z50, V50 is a fix point. From Eq.~18!,
5-3
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Ḣ,0, then the trajectories contained inS1 asymptotically
converge to the origin, but the universe can also be exp
sive, since we may have decreasingH.0, then the scale
factor has only two possibilities: eitheru→N.0 ~a finite
positive value ofu) or u→`. The solutions inS2 , corre-
spond to contracting universes that will collapse in a fin
time t1 , namely limt→t1

a50.

~ii ! WhenC.0, from Eq.~19!, we see that the expansiv
solutions are contained in a volumev1 with the lower bound
S1 , while the contracting trajectories belongs to a volum
v2 with the upper boundS2 . In both cases the trajectorie
are confined either in the upper regionv1 (H.0) or in the
lower regionv2 (H,0). Since the origin is not a fixed poin
it belongs to a trajectory just in the caseu→`. This fact
shows that, also in this case, a trajectory cannot go fromv1

to v2 or vice versa. The solutions contained inv1 , asymp-

totically converge to surfaceS1 sinceḢ,0. Then, since we
are considering the caseC.0, we haveu→`. Instead, the
trajectories ofv2 behave as limt→t1

a50.
In both cases,~i! or ~ii !, from the monotonous behavior o

H, we can say that the scalar field, and therefore the en
densityr5Z1V, is decreasing inv1 and growing inv2 ,
since the time variation ofr is

dr

dt
526HZ.

~iii ! WhenC,0, the sign ofH is not fix and the trajecto-
ries are confined in a bounded region by surfacesS6 ~either
upper or lower!. In this case oscillatory solutions are possib
for the Hubble function.

B. Asymptotic behavior of the scale factor

We would like to find the divergent behavior ofu for t
@1, which is only possible ifC^0 as we saw in Sec. III D
Then we can make the followingAnsätze:

u;ta,a.0. ~21!

Then Eq.~17! reads

u̇

u
5

a

t
, ~22!

and the asymptotic expression of Eq.~7! is

c̈1
3

2

a

t
ċ1c50. ~23!

As a.0 Eq. ~23! is dissipative, then limt→`c50. The so-
lution of the last equation are linear combinations of Bes
functions like cJJ1/223/4a1cYY1/223/4a . Then for t@1, we
have

c`;t23/4asint.

This asymptotic solution of Eq.~7! must satisfy the Ein-
stein condition Eq.~10! and Eq.~8!; then we can see tha
a54/3. So finally the scale factor isa;t2/3 which corre-
04353
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sponds to a matter dominated universe, as in a flat F
model. This result is independent of the value ofC since in
Eq. ~10! the radiative term and the brane term~the square of
the energy density! are negligible with respect to the othe
ones.

V. LYAPUNOV FUNCTION

We propose as the Lyapunov function, relevant for o
problem, the functionu defined in Eq.~6!, since, by its own
definition, this function has a necessary condition, it ha
constant sign. On the other hand, its derivative is given
Eq. ~10!. Then we have the following cases:

~i! If C.0, u̇ never vanishes sou is monotonous.
~ii ! If C50, according to property 2,u̇ can only vanish

asymptotically, namelyu̇ do not vanish for finite times and
thereforeu is monotonous.

~iii ! If C,0, from Eq.~10!, u̇ can vanish and therefore w
cannot say if it has a monotonous behavior. So in this casu
can be an oscillatory solution.

VI. THE OSCILLATORY SOLUTIONS

From property 5 we know that whenC,0 oscillatory
solutions may exist.1 In this section we will show under wha
conditions these oscillatory solutions are possible. We w
use the followingAnsätze:

~a! We decompose the square of the scale factor by

u5U1 f ~ t !,

whereU.0 is a constant to be found andf a function also to
be found.

~b! Let us suppose thatf satisfies

Uu̇uU'U f

UU!1,

for every time and also that

U32 u̇

u
ċU!max~ ċ,c̈ !. ~24!

From Ansätze ~a! and ~b!, a solution of Eq.~7! is

c5cssin~ t !, ~25!

wherecs is a integration constant. Using Eqs.~8! and~9! and
taking into account Eq.~24! we obtain

1As the whole treatment is independent of the bulk@see under Eq.
~5!# for simplicity we may take a static one. In this case asC,0 we
can use Birkhoff theorem@16# and demonstrate that the bulk has
AdS-Schwarzschild metric, whereC in the mass of the correspond
ing black hole. Then we would have a naked singularity in the b
that would be a major drawback to our formalism. Fortunate
according to string theory, it is natural the presence of at least
other brane. Then an extra brane can shield the singularity avoi
the problem~see@10# for details!.
5-4
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f̈ >F~V,ċ !U,

whereF can be evaluated from Eq.~25!. Integrating we have

f 5U~at21e cos~2t !1c11c2t !,

wherec1 andc2 are constant of integration and

a5
1

144
~12k̃2cs

22k4cs
4!,

e5
1

96
cs

2sin~k4cs
2112k̃2!. ~26!

In order that the ansatz of Eq.~24! would be verified it is
necessary thatc150, c250, anda50. Then

u>U~11e cos~2t !!. ~27!

Using Eqs.~25!, ~27! and ~10! we obtain

05
1

144
k4cs

41
1

6
k̃2cs

21
C

4U2~11e cos~2t !!2

2
e2sin2~2t !

~11e cos~2t !!2
. ~28!

When t50 we have

05
1

144
k4cs

41
1

6
k̃2cs

21
C

4U2
, ~29!

then this equation has a solution ifC,0.
Using Eq.~26! and conditiona50, we obtain

cs
2548

k̃2

k4
, ~30!

e530
k̃4

k4
.

From Eqs.~29! and~30! we can find the relation betwee
C andU

C5296
k̃4

k4
U2. ~31!

Therefore, for each value ofC there exists a unique oscilla
tory solution. Then, in phase space, we have a vanish
measure set of initial conditions for oscillatory solutio
which are, therefore, less abundant than nonoscillatory o
04353
g
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This fine-tuning explains why it is so difficult to find thes
oscillatory solutions numerically.2

As a function of Planck massM (5) , the brane tensionl is
given in the papers@5,7# by the equation

k̃4

k4
5

16

9
p2M (5)

26l.

Once the parameterscs ,e are determined it is necessa
to verify the consistency with the proposed ansatzs. Fr
Eqs.~24! it is necessary thate!1, and this condition must be
imposed on the brane tension. To have an oscillatory solu
it is necessary that the terms associated to the brane wou
dominant, as we can see from Eqs.~9! and~10!. Moreover, to
satisfy Eqs.~28! for all t we must have thate!U2.

In this way we have shown the existence of periodic
lutions for the caseC,0 as we promise in property 5.

Remark.These solutions appear in our flat model as
consequence of the brane equations and the negativeC con-
stant. This is also the case of the FRW models with
branes, but with a spherically spatial geometry, where, as
explained in the Introduction, we have also found oscillato
solutions@4#. So in flat space model branes some how mi
ics the effect of a spatial curvature. Thus we conclude tha
least based on the qualitative behavior of the solution,
cannot distinguish between these two effects.

Further research on the subject will lead us to evaluat
there is a fractal frontier between contracting and expand
zones of phase space~as in @3#! and, most interesting, if in
more complete brane models new terms might transform
riodic solutions into chaotic ones.

VII. CONCLUSION

In flat FRW cosmological model with quadratic potenti
there are no oscillatory solutions for the scale factor a
therefore chaos is impossible. In this paper we have sho
that for the same model but in the brane world, we ha
solutions with collapsing scalar factor and oscillatory beh
ior when the dark radiation is negative. This behavior cor
sponds to a fine-tuning in phase space and therefore
difficult to find. On the other hand, where the potential
constant the scale factor is monotonous.
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2We have tried to do it but, for the explained reasons, the re
are not good enough to be used as a further illustration~see similar
numerical calculations in@3# and @7#!.
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