PHYSICAL REVIEW D 70, 043535 (2004

Brane cosmology as a dynamical system
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We investigate the qualitative dynamical properties of a brane model for the flat isotropic universe with a
single matter component represented by a scalar field. We study the flat and quadratic potential. Three classes
of behaviors of the scale factor are determined. In particular, in the case of the brane with dark negative
radiation, via a fine tuning, the existence of oscillatory solutions is shown, which is not possible in the
traditional flat FRW model.
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[. INTRODUCTION pling, when the scalar field potential is positive defined, the
Hubble function has a monotonous evolutit®]. Then if

Since the 1970s the search of chaos in cosmological modhitially the universe is in expansion it will expand forever.
els has been one of the permanent concerns of theoretic®n the other hand, if initially the universe is in contraction it
physics; essentially for two main reasons: one is purely coswill inevitably collapse and there is no possibility of an os-
mological, to find an explanation for the homogeneity andcillatory_behavior and th_erefore of chaos. Bu'g in .the brane
isotropy of the spatial universe, and the other purely theoretc@se, with flat space, this monotonous behavior is lost, and
ical, since chaos is ubiquitous in the universe, the universénder adequate conditions oscillatory solutions exist which
itself, considered as a dynamical system, must be chaoti@'® not possible in the traditional case, because they essen-
The mixmaster model was the first stef], and it was fol-  tially depend on the dark radiation. As we just said the pres-
lowed by many researchers where, curiously enough, thénce of these oscillatory solutions are most interesting since
FRW models were almost absent. This models began to b&ey can be the first step to find chaos in more complete
studied in the 1990&ee e.g[2]) and many, most interesting, models. . .
papers followed(see e.g.[3]). From this last paper we We will alsq s.tudy the_ evolution for small 'tlmes to de-
learned that, at first order, we must find periodic solutionsScribe the radiation dominated era, and to find the matter
because second order perturbations may transform them fpminated era in the expansive case. We will see that in the
chaotic evolutions. So we began a systematic search of the§@Se Of the expanding universe, we find the same traditional
solutions in paperg4], and we found some, but only in cosmology matter dominated era, since due to the expansion,
closed spatial FRW universes. Then superstrings and branée new terms introduced by the brane become irrelevant for
entered in the cosmological scenario and recently many pdarge times. _
pers were published on the evolution of the universe using a The work is organized as follows. In Sec. Il we present
brane cosmolog}s,7—9. Good general references on branesthe general equations of the br'c_me model. In Sec. Il we
are[10,11. study the case of constant potential. In Sec. IV we study the

Therefore we are particularly interested in the study ofcase of quadratic potential with no cosmolog|cal constant. In
brane cosmological models as dynamical systgigsld, as  Sec. V we present the Lyapunov function of the just found
a logical continuation of our studies of usual FRW modelsdynamic. In Sec. VI we Con5|Qer the oscillatory solutions. In
also as dynamical systenid]. In both cases our aim is to Sec. VIl we draw our conclusions.
find the qualitative properties of the universe evolutigims

particular the existence of periodic solutipms a pure ana- Il. GENERAL EQUATIONS
lytic way (i.e. not using numerical methodsas in papers . .
[8,14]. This paper is based on Ref$,6], and[7], so we use the

¢ same notation and system of unities.

Then we will try to describe the dynamic of a scalar fiel . X , ) , )
We will consider the five-dimension space metric

confined in a brane, which is assumed fland therefore a
homogeneous and isotropic spacas in the spatially flat -
FRW model. But it is clear that in the new case we must add#!s*= gagdx*dx®=g,,,dx*dx"+b’dy?
new brane terms in the Einstein equation of the traditional
cosmology, namely: a term proportional to the square of the = —n?(7,y)d7?+a?(r,y) y;dxdx +b?(7,y)dy?,
energy density corresponding to the scalar field and a second (D)
one due to dark radiatiofv]. Since in this case the cosmo-
logical constant could be considered as extremely small wahere the first term is the time term, the second one the 3D
take it equal to zero. brane term and the last one the bulk term,B,..

It is well known that in FRW models with minimal cou- =0,1,2,3,5, u,v,...=0,1,2,3,i,j,...=1,23, v; is a
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maximal symmetric 3-dimensional metric witt=—1,0,1.
The five dimensional Einstein equation reads

- ~ 1 - ~
Gag=Ras— ERgAB: «*Tag, 2
where

Tézrré|bulk+Tg|brane’

Talbun=diag — pg ,Pg ,Pg P, P1),

where —pg=Pg=P1, to mimic a cosmological constant,

and

a(y)

é|brane b ——diag — py ,Pp P+ Pp.0).

Then following the deduction of pap¢6] and choosingk
=0, and thereforey;; = §;; , and theT¥|,,ane @s the one pro-
duced by a scalar fielgh with potentialVV/(¢) we obtain the

following effective four-dimensional equation in the brane

(y=0) [7]:
a2 k?(1. 401, e
_ ~2 A Y ~
> (2¢ +v) 5l zW+V +a4, 3
E+2i—,<2v+ (4v2 o+ S, (4)
a 2 al
LA
y=-39-V', 5

where the dots symbolize the time derivation, we have take

n=1, constantx y « are defined in Refd5-7], and the

constantC, associated to the dark radiation, can take posi

dent of the metric outside the brane and the peculiar evolu

tion of b [6].
To simplify the equations, we introduce a new varialsis

in [4]):

(6)

UZ?.

Then Klein-Gordon equatio(b) reads

. 3Uu. dVv
24

g ™

We present the Friedmann equatidn in a parametric oscil-
lator form, namely

U=F(V,9)u, (8)

where

F=3K 2(4V— ¢)+1 KA 2V2— = Y2V,

. ©
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Finally the Einstein conditiori3) reads

1 2
J’__
36"

1.
(—(// +V (El/fz'i‘v

Ill. THE CONSTANT POTENTIAL CASE

Let us consider the case of a constant potetial The
first integral of Eq.(7) is
y=au (12)
where« is constant. Then since the system defined by Eqgs.
(7), (8), and (9) has dimension four, the two first integrals
Egs.(10) and(11) make the system a two dimensional one,

therefore chaotic solutions are not possible.
Substituting Eq(11) in Eq. (8), we obtain the first integral

1-2
Eu =fc(u), (12
where

1 1 1. 1 1 C

4 4 = 2| Tm2 ., o4 >

fe= 72Ka +a(3K +18KVO)U 5
1v Aoyt 4v 13
+2 0 §K +9K 0 ’ ( )

where the integration constant is consistent with @4).
Equation(12), defines a one dimension dynamic, thus also
H1 this case there are not oscillatory solutiom&@) has a
monotonous behavior as we will see. In fact, sinds non-
.negative, iff; has no zeros then is monotonous, thus it
diverges or vanishes. if- has one zero then it is a fixed

rbomt of Eq.(12), and thenu—-const. These are the only

pOSSIble solutions since=0.

A. Behavior for u<1
Foru<1, Eq.(12) can be approximated as

36 4’
then, in the first instants of the universe evolution, the space

curvature and the dark radiation have not a dominant contri-
bution and every dependence ©fis lost. Then we have

From Eg.(6), the scale factoa reads
a= IBtl/G

where
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—K2a2

3

4 1/6
o-[5e]

Let us remember that in Reff7] this result is presented

just like an ansatz.

B. Asymptotic behavior of the scale factor

Let us now consider the case where the limit-o is
possible.
The asymptotic expression of E4.2) is

4.
U= \/VO

1
§K2+ §K4VO) u

that corresponds to positive constant Hubble function.
Integrating we can find the scalar factr

t.

1 4., 1,
azexpz Vo §K +§K Vo

In the case wheq(2k2+ 3 k*V,)=0, the asymptotic ex-

pression of Eq(12) is
U=Vz

that only allows solutions folC>0, thena =t*? which
corresponds to the radiative era in the Friedmann middg!

IV. THE QUADRATIC POTENTIAL CASE
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2. Property 2

There are fixed points only whe®=0, in which case the
fixed points of Eqs(7) and (8), that satisfy the constraint

(10), are y=0,=0,u>0,u=0.

3. Property 3

The divergence of the vectorial field of the E¢%) and
(8) is —6H. Then, when the universe is expandidg-0, we
have a dissipative behavior.

4. Property 4

After the change of variables of E¢6) Hubble function

reads

10

T2 o
then, using Egs(9) and (10), Eq. (8) becomes
1 1C
H=—%x2 —¢— Kw( PP+ = mz/;)———z (18
u

From this equation we conclude that if the dark radiation
constantC is positive or null we have a simple dynamics
since Hubble function is monotonous.

Thus, only in the cas€<0 we can have an oscillatory
behavior of the scale factor.

5. Property 5

Let us qualitatively describe the solutions as curves in
phase space. The only solutions with physical interest are
those that(t=0)>0 namely those with an expansive initial

In the previous section we have demonstrated that wheR€havior. Then we define the tridimensional space of vari-

the potential is constant, the scale factors monotonous.
We will now study the potential

V(y)= %mz ? (14)

where we have considered that the cosmological constant is

zero andm is the mass.

A. Properties of the model

Then we have the following properties.

1. Property 1

ablesH, V andZ= % y2and we rewrite Eq(10) as

1C

H2=H3+ -~

0 4 2 ' (19)

where

1. 1
HE =31 (Z+ V) + 22k (Z+V)2. (20)

Then, using these variablés,V,Z, from property 2 we
can deduce that, whe@=0, the only fixed point isH=0,
Z=0,V=0.

On the other hand, Eq20) defines two surfaces .. in

The dynamics of Eqs(7) and (8) are invariant under the SPaceH,Z,V, namely

scale transformation

t—at,m—mla, u—a?u, (15

K— K, k— aY?k,C— a®C,— 1, (16)

1. 1
Ho=* \/—K2(2+V)+ k*Z+V)2.

Then, according to the values 6f we have the following
cases:
(i) WhenC=0, the solutions are contained eitherdn

where « is an arbitrary positive constant. Then we are al-or in 3 _ because they cannot go frol, to 3 _ or vice

lowed to choosen=1 with no lost of generality.

versa sinceH=0,Z2=0, V=0 is a fix point. From Eq(18),

043535-3



L. LARA AND M. CASTAGNINO PHYSICAL REVIEW D 70, 043535 (2004

H<0, then the trajectories contained ¥n, asymptotically ~SPOnds to a matter dominated universe, as in a flat FRW
converge to the origin, but the universe can also be exparitodel. This result is independent of the valuesince in
sive, since we may have decreasiHg-0, then the scale EG-(10) the radiative term and the brane tefthe square of
factor has only two possibilities: either—N>0 (a finite  the energy densilyare negligible with respect to the other
positive value ofu) or u—. The solutions in%_, corre-  9NeS:

spond to contracting universes that will collapse in a finite
timet;, namely lim_, a=0. V. LYAPUNOV FUNCTION

(i) WhenC=>0, from Eq.(19), we see that the expansive e propose as the Lyapunov function, relevant for our
solutions are contained in a volurne with the lower bound problem, the functions defined in Eq(6), since, by its own
2., while the contracting trajectories belongs to a volumegefinition, this function has a necessary condition, it has a
v with the upper bound._ . In both cases the trajectories constant sign. On the other hand, its derivative is given by
are confined either in the upper region (H>0) or in the Eq. (10). Then we have the following cases:
lower regionv _ (H<0). Since the origin is not a fixed point (i) If C>0, U never vanishes so is monotonous.
it belongs to a trlajecltory just in the cage~. This fact (i) If C=0, according to property 4j can only vanish
shows that, also in this case, a trajectory cannot go #0m  asymptotically, namelys do not vanish for finite times and
to v_ or vice versa. The solutions containeduifh , asymp-  thereforeu is monotonous.
totically converge to surfack ; sinceH<0. Then, since we (ii) If C<0, from Eq.(10), u can vanish and therefore we
are considering the cage>0, we haveu—=. Instead, the cannot say if it has a monotonous behavior. So in this case
trajectories ofv _ behave as lim.; a=0. can be an oscillatory solution.

In both casesi) or (ii), from the monotonous behavior of
H, we can say that the scalar field, and therefore the energy VI. THE OSCILLATORY SOLUTIONS
densityp=Z+V, is decreasing i, and growing inv_,

since the time variation of is From property 5 we know that whe@<0 oscillatory

solutions may exist.In this section we will show under what
dp conditions these oscillatory solutions are possible. We will
T 6HZ. use the followingAnsdze

(a) We decompose the square of the scale factor by

(i) WhenC<0, the sign ofH is not fix and the trajecto-
ries are confined in a bounded region by surfates(either
upper or lowey. In this case oscillatory solutions are possible
for the Hubble function.

u=U+f(t),

whereU >0 is a constant to be found afd function also to
be found.

. . (b) Let us suppose thdtsatisfies
B. Asymptotic behavior of the scale factor

We would like to find the divergent behavior affor t I L
>1, which is only possible iIC=0 as we saw in Sec. IlID. u U '
Then we can make the followingnsadze
for every time and also that
u~t% a>0. (21)
3u. -
Then Eq.(17) reads ‘5 Gw <max ¢, ). (24
U a . _ .
RS (220 From Ansaze (a) and(b), a solution of Eq(7) is
and the asymptotic expression of H@) is p=cssin(t), (25
. 3a. wherec, is a integration constant. Using E¢8) and(9) and
Y+ 5 Tt d=0. (23)  taking into account Eq(24) we obtain

As a>0 Eqg. (23 is dissipative, then lim...¢y=0. The so-
lution of the last equation are linear combinations of Bessel *As the whole treatment is independent of the Hiske under Eq.
functions like ¢3J1/o— 340+ CyY1/2-34e - Then fort>1, we (5)] for simplicity we may take a static one. In this caseCas0 we
have can use Birkhoff theoreril6] and demonstrate that the bulk has a
AdS-Schwarzschild metric, whef@in the mass of the correspond-
..~1t"3%sint. ing black hole. Then we would have a naked singularity in the bulk
that would be a major drawback to our formalism. Fortunately,
This asymptotic solution of Eq.7) must satisfy the Ein-  according to string theory, it is natural the presence of at least an-
stein condition Eq(10) and Eq.(8); then we can see that other brane. Then an extra brane can shield the singularity avoiding
a=4/3. So finally the scale factor ia~t%3 which corre-  the problem(see[10] for details.
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s \ This fine-tuning explains why it is so difficult to find these
f=F(V,y)U, ; . :
oscillatory solutions numericalfy.
whereF can be evaluated from E(R5). Integrating we have ~ As a function of Planck madd s, the brane tension is
given in the paperfs,7] by the equation

f=U(at?+ecog2t)+c;+Cot),

wherec; andc, are constant of integration and

~4
K 16
2pn 1 —6
—=—aM )\
» 49 (5)
a= 144(12K C —K"Cg),
1 Once the parameters,,e are determined it is necessary
96C sm(K c2+ 12x2). (26) to verify the consistency with the proposed ansatzs. From

Eqgs.(24) it is necessary that< 1, and this condition must be
S imposed on the brane tension. To have an oscillatory solution
In order that the ansatz of E(R4) would be verified itis ¢ is necessary that the terms associated to the brane would be

necessary that; =0, c,=0, anda=0. Then dominant, as we can see from E¢®.and(10). Moreover, to
satisfy Eqs.(28) for all t we must have tha¢<U?.
u=U(1+ecog2t)). (27 In this way we have shown the existence of periodic so-
lutions for the cas€€ <0 as we promise in property 5.
Using Egs.(25), (27) and (10) we obtain Remark.These solutions appear in our flat model as a

consequence of the brane equations and the negatoan-
stant. This is also the case of the FRW models with no

0= iK 4ghs }KZ 2. C branes, but with a spherically spatial geometry, where, as we
144 6 Cs 4U%(1+ ecog2t))? explained in the Introduction, we have also found oscillatory
solutions[4]. So in flat space model branes some how mim-

€°sirt(2t) ics the effect of a spatial curvature. Thus we conclude that, at

- m- (28 least based on the qualitative behavior of the solution, we

cannot distinguish between these two effects.

Further research on the subject will lead us to evaluate if
Whent=0 we have there is a fractal frontier between contracting and expanding
zones of phase spagas in[3]) and, most interesting, if in
more complete brane models new terms might transform pe-

1 1. C o . . .
= Aty T2, T riodic solutions into chaotic ones.
0 144KC+6K Cot —, (29
then this equation has a solutionGf<0. VIl. CONCLUSION

Using EQq.(26) and conditiona= 0, we obtain
In flat FRW cosmological model with quadratic potential
=2 there are no oscillatory solutions for the scale factor and
c§=48—4, (30)  therefore chaos is impossible. In this paper we have shown
K that for the same model but in the brane world, we have
solutions with collapsing scalar factor and oscillatory behav-
ior when the dark radiation is negative. This behavior corre-

e=30— sponds to a fine-tuning in phase space and therefore it is
pra difficult to find. On the other hand, where the potential is

constant the scale factor is monotonous.
From Egs.(29) and(30) we can find the relation between
CanduU
ACKNOWLEDGMENT
~4
C=—96—_12 (31) We are very grateful to Dr. H. Giacomini for interesting
’ discussions.

Therefore, for each value & there exists a unique oscilla-

tory solution. Then, in phase space, we have a vanishing?we have tried to do it but, for the explained reasons, the result
measure set of initial conditions for oscillatory solution are not good enough to be used as a further illustrgger similar
which are, therefore, less abundant than nonoscillatory onesumerical calculations ifi3] and[7]).
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