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Finite volume effects for non-Gaussian multifield inflationary models
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Models of multifield inflation exhibiting primordial non-Gaussianity have recently been introduced. This is
the case, in particular, if the fluctuations of a light field scalar field, transverse to the inflaton direction, with
quartic coupling can be transferred to the metric fluctuations. So far in those calculations only the ensemble
statistical properties have been considered. We explore here how finite volume effects could affect those
properties. We show that the expected non-Gaussian properties survive at a similar level when the finite
volume effects are taken into account and also find that they can skew the metric distribution even though the
ensemble distribution is symmetric.
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I. INTRODUCTION

The observations of cosmic microwave backgrou
~CMB! anisotropies and of the large-scale structure of
universe offer a window into the physics of the inflaton. F
instance, a detailed measurement of the shape of the p
spectrum can give constraints on the shape of the infla
potential. On the other hand, the detection of non-Gaus
metric fluctuations could signal the existence of effect
couplings between the inflaton and other fields. There h
been a series of observational advances toward constra
the deviation from Gaussianity using CMB data on lar
scales (u;10°) @1#, intermediate (u;1°) @2#, and small
scales (u;108) @3#, as well as large-scale structures@4#. The
recent CMB data from the Wilkinson Microwave Anisotrop
Probe~WMAP! were also used by Komatsuet al. @5#, who
concluded that the CMB spectrum was compatible w
Gaussianity on the basis of an analysis of the bispectr
Similar analyses using Minkowski functionals@6# and the
three-point correlation function@7# reached the same conclu
sions. More recently, an analysis of the WMAP data us
measurements of the genus and its statistics@8# concluded
that the Gaussianity of the CMB field was ruled out at a 9
level. As stressed later, non-Gaussianity of primordial ori
may still have escaped detection and further investigati
are needed.

From a theoretical point of view, Gaussianity is a gene
prediction of slow-roll single field inflation@9,10#. A series
of models including features in the inflationary potent
@11#, the existence of seeds such asx2 @12#, axion @13# or
topological defects@14#, the curvaton scenario@15#, and a
varying inflaton decay rate@16# have been shown to be ab
to generate some primordial non-Gaussianity.

In Ref. @10#, we proposed a general mechanism to p
duce non-Gaussianity in the adiabatic mode, and explicit
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alizations of such models were presented in Ref.@17#. The
mechanism is based on the generation of non-Gaus
isocurvature fluctuations which are then transferred to
adiabatic modes through a bend in the classical inflaton
jectory. Natural realizations were shown to involve quar
self-interaction terms. The statistical properties of the res
ing metric fluctuations were then shown to be a superposi
of a Gaussian and a non-Gaussian contribution of the s
variance, the relative weight of the two contributions bei
related to the total bending of the trajectory in field spa
The non-Gaussian probability distribution function~PDF!
was also computed and shown to be described by a si
new parameter so that generically only two new parame
suffice in describing this class of models.

In order to infer constraints from, e.g., CMB data on the
kind of models predicting non-Gaussianity one needs to
through at least two steps.

~1! One first needs a precise prediction of the statisti
properties of the curvature in order to construct an estima
adapted to the detection of this kind of non-Gaussianity.
instance, the analysis of Komatsuet al. @5# uses the bispec
trum and Minkowski functional and constrains ax2 devia-
tion from Gaussianity. The gravitational potential was p
rametrized asF5FL1 f NL(FL

22^FL
2&) where FL is the

Gaussian linear perturbation of zero mean and it was c
cluded that258, f NL,134 at 95% C.L. This constrain
only a very peculiar type of non-Gaussianity and does
apply, e.g., to the models of Refs.@10,17#.

~2! Even if the form of the PDF is predicted theoreticall
one needs to investigate what is measured and how the m
surements are related to the theoretical predictions.

The goal of this article is to investigate the observatio
implications of the theoretical predictions of Ref.@10#. It
requires further investigations, in particular, on the effect
the finite volumes of the survey, while a detailed comparis
of our model to the existing data set, beyond the scope of
work, is still left for further study. In particular, we want t
show that these finite volume effects do not suppress
predicted non-Gaussianity.
©2004 The American Physical Society33-1
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Section II formulates the problem, focusing on the qua
tities that can actually be observed. In Sec. III, we rec
basics of the models we consider in this paper and g
simple consequences. We then develop in Sec. IV some
guments to understand the effect of the mean value of
non-Gaussian component on the size of the survey. Sectio
is devoted to the computation of the lowest order measu
cumulants. In particular, we will show that a nonvanishi
skewness appears that is directly induced by the finite
ume effects as stressed in our concluding remarks, Sec.

II. AN OVERVIEW OF FINITE VOLUME EFFECTS

Basically, what we want to measure are the statist
properties of a scalar fieldx of zero mean

^x&50,

where and from now on angular brackets^ & refer specifi-
cally to ensemble averages. Such a scalar field will be id
tified in the following with the gravitational potential, but th
actual observations may be complex linear transforms of
field, such as temperature anisotropies or polarization of
CMB or large-scale cosmic density fluctuations. The gene
questions raised by precision measurements of statis
properties of cosmic fields can be very intricate. We refer,
instance, to@18, Sec. VI# for extensive developments regar
ing such issues. We will restrict our discussion to their ov
all aspects.

In practice, while performing such measurements, t
scales enter the problem, the scaleRS at whichx is measured
~e.g., somehow smoothed! and the sizeRH of the survey. The
smoothed fieldxS can be measured at different locations
the survey. The idea is that its spatial fluctuations sho
provide us with hints of the actual statistical properties of
field. Ensemble averages, however, are inaccessible as
The values ofxS we have access to are in finite number a
are all inherited from a single stochastic process, that of
universe. One can, however, get insights into the stocha
properties ofx from geometrical averages. In the followin
we denote such a geometrical averageĀ and its connected
part Āc. For instance, one can have access to quantities
as

Xn[~xS2x̄ !n c
5dxS

n c
.

The Xn are themselves stochastic quantities that depend
the stochastic fieldx. To be more specific, we have

x̄5E x~y,t !WRH
~y!d3y ~1!

and

xS~x!5E x~y,t !WRS
~x2y!d3y, ~2!

where WR is a window function of volume unity and fo
simplicity assumed to be spherically symmetric, e.g., fo
top hat filtering we haveWR5Q(ux2yu2R)/V whereQ is
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the Heaviside function andV the volume of the ball, or
WR5exp(2ux2yu2/(2R)2)/(A2pR)3 for a Gaussian win-
dow function.

Clearly, quantities such aŝx2& cannot be estimated be
cause they contain contributions from modes of waveleng
larger than the size of the survey and that cannot be
served. Only modes with wavelengths in a given range
measurable. This is the case for a Gaussian field in partic
In this case one can show that, if the two scalesRS andRH
are in large enough ratio,Xn can be good estimates of^(xS

2x̄)n&, e.g., the expected dispersion of the measured va
Xn decreases with increasingRH /RS to a power that depend
on the power spectrum shape. In our case, however, not
can the super-Hubble modes not be measured but the m
that can be observed are correlated and also correlated t
super-Hubble modes.

In the following, we will explore the consequences
both the facts that only modes in specific wavelengths
measurable and that they are correlated. Ideally, cosmol
cal models should be able to predict the PDFs of the m
sured cumulants,

P~Xn!,

but such predictions are obviously difficult to do in gener
We will see in the following how we can estimate the
distributions for some families of multifield inflationar
models.

III. MODELS

A. Self-interacting scalar fields in de Sitter space

Before we start to investigate the statistics of the obser
quantities let us recall the basics of the models we have
mind. In the models@10,17#, the non-Gaussianities are firs
generated by an auxiliary fieldx self-interacting in a poten-
tial, typically quartic,

V~x!5
l

4!
x4. ~3!

This field is assumed to be a test field so that it does
affect the dynamics of inflation driven by another scalar fie
f. Assuming an almost de Sitter inflation and neglecting
gravitational back reaction on the evolution of the univer
its evolution will be dictated by

ẍ13Hẋ2
1

a2
Dx52

l

3!
x3 ~4!

whereH5ȧ/a is the Hubble constant andD the comoving
Laplacian. The evolution of the scale factor is given by

a~ t !5a0eHt, h52
e2Ht

H
, a~h!52

1

Hh
, ~5!

where t is the cosmic time andh, which is negative, the
conformal time.
3-2
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For a free massless scalar field (l50), the Klein-Gordon
equation~4! in the de Sitter background takes the form

v91S k22
2

h2D v50, ~6!

where we have introducedv[x/a. The general solution o
this equation is

xk~ t !52
Hh

A2k
S 11

1

ikh De2 ikh, ~7!

once the quantum fieldx is decomposed in Fourier mode
as1

x~x,t !5E d3k

~2p!3/2
@xk~ t !eik•xb̂k1H.c.#, ~8!

where@ b̂k ,b̂k8
†

#5(2p)3d(k2k8).
This implies that the fieldx has a correlator given by

^x~k!x* ~k8!&5~2p!3P~k!d~k2k8!, ~9!

whereP(k) is the power spectrum, which is equal toP(k)
5H2/2k3 on super-Hubble scales for a free scalar field livi
in de Sitter space. This is the so-called Harrison-Zel’dov
spectrum.

Moreover, the self-interaction term ofx induces nonzero
high order correlation functions. For a quartic potential t
odd order correlation functions vanish; the even order o
can be computed from a perturbation theory approach at
tree order. For instance, the four-point function in the sup
Hubble limit reads

^xk1
. . . xk4

&c52
l

3
~2p!6

logS h(
i

ki D
H2

dS (
i

k i D
3@P~k1!P~k2!P~k3!1permutations#,

~10!

as explicitly shown in Ref.@26#.

B. Second and fourth moments

When one wants to relate the expectation values of
servable quantities such as theXn to the statistical propertie
of the field, filtering effects should properly be taken in
account. The observable quantitiesdxS can be written in
terms of the Fourier modesxk as

dxS5E d3k

~2p!3/2
eik•xx~k!W̃~k! ~11!

1Note that the convention of Eq.~8! differs by a factor of (2p)3/2

compared to the one of Ref.@26#. It implies that Eq.~10! differs by
a factor of (2p)6 compared to its original form.
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W̃~k![Ŵ~kRS!2Ŵ~kRH!. ~12!

It follows immediately that

^dx
S

2&54pE k2P~k!W̃2~k!dk. ~13!

Such an expression can be easily computed in the case
Harrison-Zel’dovich spectrum and ak-space top-hat window
function. Defining kS and kH , respectively, as 1/RS and
1/RH , the second moment ofdxS reduces to

^dx
S

2&52pH2lnS kS

kH
D[sd

2 . ~14!

It follows from this calculation that the expectation valu
of the observable quantityX2 is given by

^X2&5^dx
S

2&5sd
2 . ~15!

Its ~cosmic! variance^X2
2&c

1/2 can similarly be computed an
it scales likeRS/RH in case of a Gaussian field.2

Furthermore, the expectation value ofX4 is given by

^X4&5^dx
S

4&c

5E d3k1•••d3k4

~2p!6
W̃~k1!•••W̃~k4!^xk1

•••xk4
&c .

~16!

Expressing the four-point correlator by mean of Eq.~10! and
assuming a Harrison-Zel’dovich spectrum and a top-hat w
dow function ink space, this expression finally reads

^dx
S

4&c52
4l

3H2 S H2

2 D 3E
kH

kS d3k1

k1
3 E

kH

kS d3k2

k2
3 E

kH

kS d3k3

k3
3

3W̃~ uk11k21k3u!

3 log@~k11k21k31uk11k21k3u!h#, ~17!

where W̃(uk11k21k3u), defined in Eq.~12!, simply ex-
presses the conditionkH,uk11k21k3u,kS and is inherited
for the termW̃(k4). When the ratiokS/kH is large this ex-
pression can be easily computed after noting that, in
case, one of theki generically dominates the others~the con-
tributions to the integral being roughly uniform over the i
tegration domain when the wave-vector norms are logar
mically spaced!. In this limit it is therefore possible to
approximatek11k21k3 by, say, k1 and k11k21k31uk1
1k21k3u by 2k1 . Finally, the integral reads

2The cosmic variance for the measuredX2 is expected to be
strongly affected by the existence of a nonvanishing large-s
four-point function forx. But it is beyond the scope of this paper
investigate such effects.
3-3
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^dx
S

4&c.2
4

3
l log~2hk

S

3/4k
H

1/4!
sd

6

H2
, ~18!

which corresponds to what was found in our previous w
provided the number of e-folds is identified with
log(2hk

S

3/4k
H

1/4). This means that the kurtosis of thedxS field

is significant if l log(2hk
S

3/4k
H

1/4) approaches unity. This re
sult demonstrates that the mechanism described in our
vious study survives finite volume effects. We can also n
that observable quantities are insensitive to the behavio
P(k) in the small-k limit.

Finite volume effects have, however, other consequen
due to the fact that the observable modes are correlated.
physical reason for these correlations is that they share
same history, e.g., they have been produced in the same
chastic process. We found that a random walk approach
the evolution of the localx field values gives precious in
sights into those more subtle finite volume effects.

IV. LESSONS FROM A RANDOM WALK APPROACH

From the previous definitions, it is clear thatx̄ and the
different values ofxS share the contributions of supe
Hubble modes. Those cannot be observed but they shap
values of x̄ and xS. Actually, the value ofxR at a given
scale, whether it isRH or RS, is dynamically built from the
stacking of modes that successively leave the horizon.

A random walk approach can then be used to describe
stochastic growth ofxR. It will allow two things, to get
insights into the excursion values ofx̄ and to see howxS
values are correlated through their common history. In t
approach the field value evolution is described in term o
Langevin equation during inflation.

Before we go to this equation, let us sort out how t
different scales and the evolution equation are related
gether.

A. Scales intervening in the problem

Different scales will have to be distinguished in our stud
~1! During the inflationary stage, the super-Hubble mod

of the scalar field can be treated as classical. In a de S
spacetime, the physical Hubble radius is constant,R(phys)

5H21, so that the comoving smoothing scale is time dep
dent, R5(aH)21. The evolution equation of the classic
part will thus contain a stochastic force simulating the eff
of the quantum noise due to the modes that are crossing
horizon at each time step to become classical. We thus de
a stochastic fieldxH(t), for which the filtering scale is de
pendent on and always equal to the horizon size,R

H

phys

5a(t)RH with R
H

phys;H21 so that

xH5xR51/aH . ~19!

The dynamics ofxH will follow a Langevin equation. We
investigate the dynamics and the statistical properties ofxH
in Sec. IV B.
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~2! On the other hand, the field valuesx̄ and xS can be
seen as time-dependent quantities but they correspond to
filtering of x at fixed physical scales. They identify, thoug
with xH at precisely the timeh at which the scalesRH and
RS, respectively, cross the horizon, e.g.,x̄(h521/RH0

)

5xH(h521/RH0
) and xS(h521/RS)5xH(h521/RS).

After these coincidental times the two fieldsx̄ andxS behave
classically, i.e., they follow an inflationary classical Klein
Gordon equation without stochastic source terms.

To summarize, two of the comoving scalesRS and RH0

are fixed while oneRH is a time-dependent quantity. A sketc
of the different sequences that the field dynamics follow
shown on Fig. 1.

B. The late time PDF of xH„h…

We follow a formalism first developed to deal with sel
interacting fields in a de Sitter background@19#, based on the
idea that the infrared part of the scalar field may be treate
a classical spacetime-dependent stochastic field satisfyi
Langevin equation@20,21# ~see Ref.@22# for the case of a
massless free field!.

Assuming thatx is slow rolling, the dynamics ofxH can
be obtained by averaging Eq.~4!, in which both the second
time derivative and the Laplacian term can be neglect
since xH contains only long wavelength modes. Using t
identity

ẋH k5~xk!RH
Ŵ~kRH!2kRHxkŴ8~kRH! ~20!

whereŴ8(u)5dŴ(u)/du and where we have used Eq.~5!
to express the time derivative ofRH . It follows that

ẋH52
1

3H
V̄8~xH1dx!1jQ~x,t ! ~21!

FIG. 1. The different filtered quantities and scales entering
problem.xH follows a stochastic dynamics that can be described
a Langevin equation; it has a time-dependent smoothing scal
that more and more modes contribute to the filtered field. The fi

valuesx̄ andxS evolve according to a classical Klein-Gordon equ
tion; their smoothing scale is time independent; they coincide w
xH at horizon crossing times.
3-4
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which reduces (dx!xH) to

ẋH52
1

3H

dV~xH!

dxH
1jQ~x,t !. ~22!

The term jQ(x,t) appears from the commutation betwe
(ẋ)RH

andẋH using Eq.~20!. It is a stochastic noise describ
ing the effects of the small-wavelength~quantum! part exit-
ing the horizon on the classical stochastic part. Using Eq.~8!,
one obtains its expression as

jQ~x,t !52E d3k

~2p!3/2
~kHRH!@xk~ t !Ŵ8~kRH!eik•xb̂k

1H.c.#. ~23!

Indeed,jQ is quantum noise so that we replace it heuris
cally by a Gaussian stochastic noisej with a correlator that
matches the quantum expectation value in the stand
Bunch-Davies vacuum, that is,

^j~x,t !j~x8,t8!&5^0ujQ~x,t !jQ~x8,t8!u0&. ~24!

It follows that

^j~x,t !j~x8,t8!&5E k3dk

4p2

sinkr

r

xk~ t !xk* ~ t8!

a~ t !a~ t8!
Ŵ8S k

a~ t !H D
3Ŵ8S k

a~ t8!H
D , ~25!

with r[ux2x8u, which reduces, using the expression~7! on
small scales, to@23#

^j~x,t !j~x8,t8!&5
H4hh8

4p2r
E dk sinkr~11 ikh!

3~12 ikh8!eik(h82h)Ŵ8~2kh!Ŵ8

3~2kh8!. ~26!

Even thoughxH remains a quantum operator, it was replac
by a stochastic field in such a way that, for all observab
the expectation values of the two fields are in excell
agreement.

In the following and for the sake of simplicity, we con
sider a window function reducing to a top hat in Four
space so thatŴ8 reduces to a Dirac distribution. In that cas
using the solution~7! one obtains

^j~x,t !j~x8,t8!&5
H3

4p2

sina~ t !Hr

a~ t !Hr
d~ t2t8!. ~27!

The case of more realistic window functions~such as a
Gaussian! was discussed in Ref.@23#.

From a Langevin equation of the form

ẋH52bV81aj, ^j~x,t !j~x8,t8!&5d~ t2t8!, ~28!
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where we assume the two coefficientsb and a to be inde-
pendent ofxH , one can deduce an equation@24#, the Fokker-
Planck equation, for the PDF ofxH of the form

] tP5b]xH

2 P1
a

2
]xH

@V8P#. ~29!

It follows from the Langevin equation~22! with a top-hat
window function for which the noise is given by Eq.~27!
with b521/3H and a5H3/2/2p that the one-point PDF
P(xH ,t) is a solution of

] tP5
H3

8p2
]xH

2 P1
1

3H
]xH

~V8P!. ~30!

In a cosmological context, this equation was first derived
Ref. @19# in the caseH5const, which we are interested in
and then in Ref.@22# in the caseV850. It was generalized to
more involved situations in Ref.@25#.

The solution of Eq.~30! was studied in Ref.@21# in which
it is shown thatP approaches the static equilibrium solutio

Peq5N 21expS 2
8p2

3H4
V~xH!D ,

N[E
2`

`

expS 2
8p2

3H4
V~xH!D dxH , ~31!

irrespective of the initial conditions.
For the quartic potential Eq.~3! we find

Peq~xH!5
1

2G~5/4!H S p2l

9 D 1/4

expF2
p2l

9H4
x

H

4G . ~32!

There are few lessons to learn from this result. The exc
sion values ofxH are bounded. Their distribution does n
depend on the remote past history ofx and, importantly for
the following, the typical value one can expect forxH , and
thereforex̄, is H/l1/4.

C. Consequences for the shape of the PDF ofdxS

We can then gain insights into the shape of the probab
distribution function ofdxS as a function ofx̄.

Quantitative results can be drawn from the perturbat
approach we initially developed in our previous work@10#.
We expand the filtered field in terms of the coupling const
as

xS~h!5x
S

(0)~h!1x
S

(1)~h!1•••. ~33!

x
S

(0) represents the value of the filtered field when the int
action term is switched off. In the slow-roll regime the fie
xS follows the Klein-Gordon equation~22!. Contrary to the
previously studied case ofxH , the evolution equation doe
not contain any noise term because the smoothing scaleR is
now fixed and there are no new modes enteringxS. The free
filtered fieldx

S

(0) is therefore constant and, from the discu
3-5
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sion of the previous section, it cannot be assumed to
Gaussian distributed with a zero mean: its expectation va
x

S

(0) is actually the value ofx̄ at time h51/RH . Since this
field value is going to be only weakly affected by its subs
quent evolution, in the following we will identifyx

S

(0) andx̄.

The differencedx
S

(0)[x
S

(0)2x
S

(0) has been built up from the

modes that have left the horizon between21/kH and
21/kS. It can be assumed to be Gaussian distributed wit
width precisely given bysd .

The first order term inl, xS
(1), evolves according to

3HẋS
(1)52

l

3!
@x

S

(0)#3. ~34!

In this approach the treatment of the filtering of the rig
hand side of this equation is very crude. The results we
going to find can in any case be checked against more ri
ous calculations based on the computed shape of the tris
trum. Our goal now is to capture the essential effects o
nonvanishingx̄ on the statistical properties ofdxS.

The equation of evolution~34! can be solved to get

x
S

(1)~ t !52l~ t2tH!
~x

S

(0)!3

18H
, ~35!

which also reads

x
S

(1)~ t !52
lNe

18H2
~x

S

(0)!3, ~36!

Ne being the number ofe-folds betweentH and the end of
inflation.

These results imply that

x̄'x
S

(0)2
lNe

18H2
@~x

S

(0)!313x
S

(0)sd
2#, ~37!

which explicitly shows thatx̄ andx
S

(0) are equal at leading

order inl. It also gives

dxS5dx
S

(0)2
lNe

18H2
$~dx

S

(0)!3

13~@dx
S

(0)#22sd
2!x̄13dx

S

(0)x̄2%. ~38!

It is straightforward to see thatdxS has acquired a nonzer
third order moment

dx
S

352
lNe

H2
x̄sd

4 ~39!

at leading order inl. This is a finite volume effect in the
sense that it exists for a fixed~not ensemble averaged! value
of x̄. This effect cannot be neglecteda priori. From the
study of the previous paragraph, we know thatx̄ should be
of the order ofH/l1/4, which implies that the reduced skew
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ness ofdxS, dxS

3/(dxS
2)3/2;l3/4Nesd /H, is significant as

soon asl3/4Ne approaches unity, a condition similar to th
encountered in Sec. III B.

Actually the evolution equation forxS can be solved by

xS5
x

S

(0)

A12~lNe/9H2!~x
S

(0)!2
~40!

and the distribution ofxS can then be inferred from that o
x

S

(0) , assuming that the latter is Gaussian distributed wit
nonzero mean value.3

In Fig. 2, we present the deformation of the PDF ofdxS

while x̄ is varied. As expected, it shows that whenx̄ is not
zero, the PDF gets skewed in a way that can be easily
derstood: whenx̄ is positive it gets more difficult to have
excursions toward larger values ofxS, but easier to roll
down to smaller values. It is as if the fieldx was actually
evolving in the potentiall(x1x̄)/4!. As a result one natu-
rally expects the fieldx to have a nonvanishing three-poin
function. As mentioned before, these calculations treat
smoothing in a rather simplified way but we think that f
illustrative purposes it encapsulates the main effects that
want to describe.

It nonetheless shows the way for the computation of
finite volume effects on the expected stochastic propertie
the field.

V. FINITE VOLUME EFFECTS ON HIGH ORDER
CUMULANTS

What the Langevin picture suggests is that finite volu
effects on the observed quantities are not due to the wh

3As noted in Ref.@10#, such a simple variable change implicitl
incorporates ‘‘loop order’’ effects that, because of sub-Hubble ph
ics, are not necessarily correctly estimated. In that paper we de
oped a more elaborate method which allows the reconstructio
the PDF from only the tree order contributions of each cumulant.
the two approaches eventually give the same qualitative results
here restrict our analysis to the simplest method.

FIG. 2. PDF ofdxS5dxS2x̄ for different values ofx̄. The
dashed line corresponds to a Gaussian distribution; the dot-da

line to the deformed distribution ofdxS when lNe /H251 and x̄

50, and the solid lines to the deformed distribution whenx̄ equals
0.5 and 1.
3-6
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stochastic process that created the observed field but m
to the value ofx̄ alone. In other words, we expect to have

P~Xn!5E P~ x̄ !d~Xn2^~xS2x̄ !n&x̄!dx̄. ~41!

This form ~41! implies in particular that the PDF ofXn ,
P(Xn), is expected to be peaked around the expecta
value ofdx

S

n at x̄ fixed. In particular, it implies that

^Xn
p&.^~^dx

S

n&x̄!p&. ~42!

We will explicitly check this property for the lower orde
cumulants.

In general, for small enough values ofx̄, the constrained
ensemble averages of the form^A(x)&x̄ should be given by

^A~x!&x̄.^A~x!x̄&
x̄

sx̄
2 , ~43!

wheresx̄
2 is the variance square of thex̄ fluctuations. This

relation, exact for Gaussian fields, is only approximate
general. It can be derived for stochastic variables followin
quasi-Gaussian distribution. Here, it will be valid only if th
excursion values ofx̄ are modest compared to the fluctu
tions of dxS.

Not surprisingly, it implies that the even order cumulan
are left unchanged.

A. The bispectrum

Nontrivial finite volume effects are then going to appe
at the level of the third order cumulants or correlation fun
tions. In particular, it induces a nonvanishing bispectrum
three-point correlation function of the wave vectors, which
going to be given by

^x~k1!x~k2!x~k3!&x̄.^x~k1!x~k2!x~k3!x̄&c

x̄

sx̄
2 ~44!

when x̄ is small enough. Using Eq.~10! to express

^xk1
•••xk4

&c and using that Eq.~2! implies that x̄k

5xkŴ(kRH), the previous expression reduces to

^x~k1!x~k2!x~k3!&x̄

52
l

3H2
~2p!9/2

x̄

sx̄
2logF S (

i
ki1U(

i
k iU DhG

3H P~k1!P~k2!P~k3!1PS U(
i

k iU D
3@P~k1!P~k2!1permutations#J ŴS U(

i
k iURHD .

~45!
04353
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The factorŴ(uk11•••1k3uRH), which arises from the con
tribution of modes with k,1/RH to x̄, ensures that
uk11•••1k3u is small compared to each of theki , and thus
can be neglected in the log term. It implies that for
Harrison-Zel’dovich type spectrum P(uk11•••1k3u)
@P(ki) so that the first term of Eq.~45! is negligible. As a
result we deduce that

^x~k1!x~k2!x~k3!&x̄

.2
lx̄

3H2
~2p!9/2logF S (

i
ki DhG @P~k1!P~k2!

1permutations#

PS U(
i

k iU D ŴS U(
i

k iURHD
sx̄

2 .

~46!

Now, noting that, by definition,P(k)Ŵ(kRH)d3k/sx̄
2 inte-

grates to unity and that the functionP(u( ik i u)Ŵ(u( ik i uRH)
is, for the modes we are interested in, peaked near the or
we obtain that this factor is essentially equal tod(( ik i). It
therefore implies that

^x~k1!x~k2!x~k3!&x̄

52
lx̄

3H2
~2p!9/2logF S (

i
ki DhG @P~k1!P~k2!

1permuations#dS (
i

k i D . ~47!

Here is one of the main points of this paper: Finite volum
effects induce a nonvanishing three-point function althou
the potential in whichx evolves is symmetric.

From this bispectrum it is possible to compute the th
order moment ofdxS. Its amplitude will be in agreemen
with what was obtained from the Langevin equation. It
also the three-point function one expects for a field evolv
in the potentiallx̄x/3! ~see Ref.@26# for details!.

B. The three-point cumulant

We now turn to the lowest order cumulant exhibiting
nontrivial result due to a nonvanishingx̄, that is,X3 , which
reads

X35E d3k1•••d3k3

~2p!9/2
Ŵ~ uk11k21k3uRH!

3W̃~k1!W̃~k2!W̃~k3!xk1
xk2

xk3
. ~48!

Obviously its ensemble average vanishes,

^X3&50,

but not ^X3
2&c . Let us check, as expected from our analy

@see Eqs.~41!, ~42!#, that it is well approximated by
Š(^X3&x̄)2

‹.
3-7
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To evaluate the latter expression, we start from the
pression of̂ X3&x̄ which is defined by

^X3&x̄.
x̄

sx̄
2E d3k1•••d3k3

~2p!9/2
Ŵ~ uk11•••1k3uRH!

3W̃~k1!•••W̃~k3!^xk1
•••xk3

&x̄ . ~49!

Using Eq.~47!, it reduces after integration overk3 to

^X3&x̄.2
lx̄

3H2E d3k1d3k2W̃~k1!W̃~k2!W̃~ uk11k2u!

3$P~k1!P~k2!1P~ uk11k2u!@P~k1!1P~k2!#%,

~50!

where the window functionŴ(uk11•••1k3uRH) was
aborbed during the integration overk3 due to the Dirac dis-
tribution. This expression can be computed following t
same lines as for the computation of the expectation valu
the fourth order cumulant~17!,

^X3&x̄.2
lx̄

3H2 S H2

2 D 2E
kH

kS d3k1

k1
3 E

kH

kS d3k2

k2
3

3W̃~ uk11k2u!

3 log@~k11k21uk11k2u!h#, ~51!

where, again,W̃(uk11k2u) simply expresses the condition
kH,uk11k2u,kS. A simple expression for this integral ca
be obtained whenkS is much larger thankH , where it is
possible to replacek11k2 andk11k21uk11k2u by respec-
tively eitherk1 and 2k1 or k2 and 2k2 . Finally, the integral
reads

^X3&x̄52lx̄~4p!2S H2

2 D 2

log2S kS

kH
D log~2hk

S

2/3k
H

1/3!,

~52!

e.g.,

^X3&x̄52lx̄ log~2hk
S

2/3k
H

1/3!
sd

4

H2
, ~53!

which reproduces the result~39! if Ne is identified with
log(2hk

S

2/3k
H

1/3). In conclusion, we end up with

^~^X3&x̄!2&1/2.l log~2hk
S

2/3k
H

1/3!
sd

4sx̄

H2
. ~54!

In this case, it is actually possible to compute^X3
2& from a

perturbation theory approach in order to check that its do
nant contribution is indeedŠ(^X3&x̄)2

‹. ^X3
2& is given in gen-

eral by
04353
-

of

i-

^X3
2&5E d3k1•••d3k3

~2p!9/2 E d3k18•••d3k38

~2p!9/2

3W̃~k1!•••W̃~k3!W̃~k18!•••W̃~k38!

3Ŵ~ uk11•••1k3uRH!Ŵ~ uk181•••1k38uRH!

3^xk1
•••xk3

xk
18
•••xk

38
&c . ~55!

It involves the expression of the six-point correlation fun
tion ^xk1

•••xk3
xk

18
•••xk

38
&c which, in a perturbation theory

approach, can be split into two contributions

I[^xk1

(0)xk2

(0)xk3

(1)xk
18

(0)
xk

28
(0)

xk
38

(1)
&,

II[^xk1

(0)xk2

(0)xk3

(2)xk
18

(0)
xk

28
(0)

xk
38

(0)
&,

where

x (1)~x!;2
l

18

Ne

H2
@x (0)~x!#3, x (2)~x!;

l2

8

Ne
2

H4
@x (0)~x!#5.

This implies that

I 5~2p!9
l2

182
182

Ne
2

H4
P~k1!P~k2!P~k31k1

1k2u!P~k28!P~k38!dS ( k i1( k i8 D ~56!

and

II 5~2p!9
l2

8
6!

Ne
2

H4
P~k1!P~k2!P~k18!

3P~k28!P~k38!dS ( k i1( k i8 D ~57!

where 182 and 6! are symmetry factors.
Let us evaluate the first contribution:

^X3
2&c

(I )5l2
Ne

2

H4E d3k1d3k2P~k1!P~k2!W̃~k1!W̃~k2!

3E d3k3P~ uk31k11k2u!W̃~k3!

3Ŵ2~ uk11k21k3uRH!E d3k18d
3k28P~k18!P~k28!

3W̃~k18!W̃~k28!

3W̃~ uk11k21k31k181k28u!. ~58!

The term Ŵ2(uk11k21k3uRH) implies that uk11k21k3u
!RH so thatW̃(k3);W̃(uk11k2u) andW̃(uk11k21k31k18

1k28u);W̃(uk181k28u). Settinge5k11k21k3 , we conclude
that
3-8
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^X3
2&c

(I );l2
Ne

2

H4 F E d3k1d3k2P~k1!P~k2!W̃~k1!

3W̃~k2!W̃~ uk11k2u!G2E d3eP~e!Ŵ2~eRH!.

~59!

The integral overe reduces tosx̄
2 so that

^X3
2&c

(I );l2
Ne

2

H4
sx̄

2F E d3k1d3k2P~k1!P~k2!W̃~k1!

3W̃~k2!W̃~ uk11k2u!G2

. ~60!

The second contribution reduces to

^X3
2&c

(II );90l2
Ne

2

H4E d3k1d3k2P~k1!P~k2!W̃~k1!W̃~k2!

3W̃~ uk11k2u!E d3k18d
3k28d

3k38P~k18!P~k28!P~k38!

3W̃~k18!W̃~k28!W̃~k38!Ŵ2~ uk181k281k38uRH!. ~61!

The second integral reduces to

E d3k18d
3k28d

3P~k18!P~k28!P~ uk181k28u!W̃~k18!

3W̃~k28!W̃~ uk181k28u!E d3eŴ2~eRH!.

The integral overe gives;R
H

23 so that

^X3
2&c

(II );90l2
Ne

2

H4
R

H

23E d3k1d3k2P~k1!P~k2!W̃~k1!

3W̃~k2!W̃~ uk11k2u!E d3k18d
3k28P~k18!P~k28!

3P~ uk181k28u!W̃~k18!W̃~k28!W̃~ uk181k28u!. ~62!

Due to the termW̃(uk181k28u), we deduce that, in the case
a Harrison-Zel’dovich spectrum, (RS/RH)3,uk18
1k28u

23R
H

23,1 so that this contribution is at most equal
that of Eq.~60!. As a result we have
04353
^X3
2&.^X3

2&c
(I ) . ~63!

From Eq.~60!, this reduces to

^X3
2&1/2.lNe~2p!3

sd
4sx̄

H2
, ~64!

which can be identified with the expectation value of^dx
S

3&x̄
2

over the distribution ofx̄, as obtained in Eq.~54!.
This explicit computation shows that, as expected,

fluctuations of the measured values ofX3 are mainly due to
the fluctuations ofx̄. It justifies, for instance, that one shou
expect to see a bispectrum of the form~47! for such infla-
tionary models.

VI. CONCLUSIONS

In this article we have focused on the phenomenology
the non-Gaussianity generated in models developed in R
@10,17#. Interestingly, whereas the metric perturbation sta
tics involve only two microscopic parameters related, resp
tively, to the weight of the non-Gaussian component and
its PDF, the finite volume effects imply that the statistic
properties of any observational quantity will involve a thi
parameter. This new parameter arises from the fact that
mean valuex̄ of the field over the size of the observab
universe does not vanisha priori. Obviously x̄ cannot be
determined on the basis of any observation. As describe
Sec. IV, this implies that the originally symmetric PDF ca
be skewed, and that this skewness is directly proportiona
x̄, which needs to be considered as a new parameter o
PDF while dealing with observations.

These results open the way for more detailed phenome
logical studies. To see how those properties translate to
temperature and local density fields is not easy. Such an
vestigation will probably require numerical tools such
those developed in Ref.@27#.
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