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Comparison of cosmological models using recent supernova data
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Department of Physics, University of Ioannina, 45110 Ioannina, Greece

~Received 26 January 2004; published 24 August 2004!

We study the expansion history of the universe up to a redshift of z51.75 using the 194 recently published
SnIa data by Tonryet al. and Barriset al. In particular we find the best fit forms of several cosmological
models andH(z) ansatze, determine the best fit values of their parameters and rank them according to
increasing value ofxmin

2 @the minimum value ofx2 for eachH(z) ansatz#. We treatV0m as a parameter using
a reasonable prior and assume flat geometry of the universe. No prior assumptions are made about validity of
energy conditions. The fitted models are fourteen and include standard cold dark matter~SCDM!, cold dark
matter with cosmological constantL ~LCDM!, dark energy with constant equation of state parameterw
~quiessence!, third order polynomial forH(11z), Chaplygin gas, Cardassian model,w(z)5w01w1z, w(z)
5w01zw1 /(11z), an oscillating ansatz forH(z), etc. All these models with the exception of SCDM are
consistent with the present data. However, the quality of the fit differs significantly among them and so do the
predicted forms ofw(z) and H(z) at best fit. The worst fit among the data-consistent models considered
corresponds to the simplest model LCDM (xmin

2 5198.7 forV0m50.34) while the best fit is achieved by the
three parameter oscillating ansatz (xmin

2 5193.8). Most of the best fit ansatze have an equation of state
parameterw(z) that varies betweenw(z).21 for z,0.5 tow(z).0 for z.1. This implies that the sign of
the pressure of the dark energy may be alternating as the redshift increases. The goodness of fit of the
oscillatingH(z) ansatz lends further support to this possibility.

DOI: 10.1103/PhysRevD.70.043531 PACS number~s!: 98.80.Cq, 95.35.1d
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I. INTRODUCTION

One of the fundamental goals of cosmology is the und
standing of the global history of the Universe. Using obje
of approximately known absolute luminocity~standard
candles! in the nearby universe provides the current rate
expansion. Using more distant standard candles like typ
supernovae~SnIa! makes it possible to start seeing the vari
effects of the Universe’s expansion history. Such cosmolo
cal observations have indicated@1# that the Universe under
goes accelerated expansion during recent redshift times.
accelerating expansion has been attributed to a dark en
component with negative pressure which can induce re
sive gravity and thus cause accelerated expansion. The
plest and most obvious candidate for this dark energy@2# is
the cosmological constant@3# with equation of statew
5p/r521.

The extremely fine tuned value of the cosmological co
stant required to induce the observed accelerated expan
has led to a variety of alternative models where the d
energy component varies with time. Many of these mod
make use of a homogeneous, time dependent minim
coupled scalar fieldf ~quintessence@4,5#! whose dynamics
is determined by a specially designed potentialV(f) induc-
ing the appropriate time dependence of the field equatio
statew(z)5p(f)/r(f). Given the observedw(z), the quin-
tessence potential can in principle be determined. O
physically motivated models predicting late accelerated
pansion include modified gravity@6–8#, Chaplygin gas@9#,
Cardassian cosmology@10#, theories with compactified extr
dimensions@11,12#, braneworld models@13#, etc. Such cos-

*Electronic address: http://leandros.physics.uoi.gr
1550-7998/2004/70~4!/043531~11!/$22.50 70 0435
r-
s

f
Ia

i-

his
rgy
l-
m-

-
ion
k
ls
lly

of

er
-

mological models predict specific forms of the Hubble p
rameterH(z) as a function of redshiftz in terms of arbitrary
parameters. These parameters are determined by fitting t
observed luminocity distancedL(z) using the relation@14–
16# ~valid in a flat universe!

H~z!5cF d

dzS dL~z!

11z D G21

. ~1.1!

This is easily derived using the relation betweendL(z) and
the comoving distancer (z) ~wherez is the redshift of light
emission!

dL~z!5r ~z!~11z! ~1.2!

and the light ray geodesic equation in a flat universecdt
5a(z)dr(z) wherea(z) is the scale factor.

Another similar approach towards determining the exp
sion historyH(z) is to assume an arbitrary ansatz forH(z)
which is not necessarily physically motivated~it is ‘‘model
independent’’! but is specially designed to give a good fit
the data fordL(z). Given a particular cosmological mode
~or ansatz! for H(z;a1 , . . . ,an) wherea1 , . . . ,an are model
parameters, the maximum likelihood technique can be u
to determine the best fit values of parameters~with 1s
22s errors! as well as the goodness of the fit of the ans
to the data. This technique can be summarized as follo
The observational data consist ofN apparent magnitude
mi(zi) and redshiftszi with their corresponding errorsdmi
and dzi . Each apparent magnitude is related to the cor
sponding luminocity distancedL of the SnIa by

m~z!5M15 log10FdL~z!

Mpc G125, ~1.3!
©2004 The American Physical Society31-1



b
q

ce
n

s
s-

o

pa
te

he

e
l

d

is

ion
n
ap
e

r
ul

al-

t

odel

ds
s a

s
e.

e.
ets

od
194
3

e

nic
b-

ude

al
in-

nd
s

ect
een

e

S. NESSERIS AND L. PERIVOLAROPOULOS PHYSICAL REVIEW D70, 043531 ~2004!
whereM is the absolute magnitude which is assumed to
constant for standard candles like Type Ia SnIa. From E
~1.1! and ~1.3! it becomes clear that the luminocity distan
dL(z) is the ‘‘meeting point’’ between the observed appare
magnitudem(z) and the theoretical predictionH(z).

The apparent magnitude can also be expressed in term
the dimensionless ‘‘Hubble-constant free’’ luminocity di
tanceDL defined by

DL~z!5
H0dL~z!

c
~1.4!

as

m~z!5M̄ ~M ,H0!15 log10„DL~z!…, ~1.5!

whereM̄ is the magnitude zero point offset and depends
M andH0 as

M̄5M15 log10S c/H0

1 MpcD125. ~1.6!

The zero point offset is an additional model independent
rameter that needs to be fit along with the model parame
a1 , . . . ,an . However, sinceM̄ is model independent its
value from a specific good fit can be used directly to ot
fits of model parameters. Thus the observedmi(zi) can be
translated toDLi

obs(zi) using Eq.~1.5! for the best fit value of

M̄obs obtained from nearby SnIa. The theoretically pr
dicted value DL

th(z) in the context of a given mode
H(z;a1 , . . . ,an) can be obtained by integrating Eq.~1.1! as

DL
th~z!5~11z!E

0

z

dz8
H0

H~z8;a1 , . . . ,an!
. ~1.7!

The best fit values for the parametersa1 , . . . ,an are found
by minimizing the quantity

x2~a1 , . . . ,an!5(
i 51

N
„log10DL

obs~zi !2 log10DL
th~zi !…

2

~s log10DL(zi )
!21S ] log10DL~zi !

]zi
szi D 2 ,

~1.8!

where sz is the 1s redshift uncertainty of the data an
s log10DL(zi )

is the corresponding 1s error of log10DL
obs(zi).

The probability distribution for the parametersa1 , . . . ,an
is @17#

P~a1 , . . . ,an!5Ne2x2(a1 , . . . ,an)/2, ~1.9!

whereN is a normalization constant. If prior information
known on some of the parametersa1 , . . . ,an , then we can
either fix the known parameters using the prior informat
or ‘‘marginalize,’’ i.e., average the probability distributio
~1.9! around the known value of the parameters with an
propriate ‘‘prior’’ probability distribution. Here we use th
former approach~fix the parameters with prior information!
for simplicity. This simplification has negligible effect on ou
results as it can be verified by comparing some of our res
04353
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with corresponding results in the literature where margin
ization has been used@e.g., Ref.@18# for cold dark matter
with cosmological constantL ~LCDM!#.

It is straightforward to minimizex2(a1 , . . . ,an) using
numerical libraries like NAG@19,20# ~see also Ref.@17#! or
packages like Mathematica@21# to find xmin

2 (ā1 , . . . ,ān)
@22# where xmin

2 is the minimum obtained for the best fi

parameter valuesā1 , . . . ,ān . If xmin
2 /(N2n)&1 the fit is

good and the data are consistent with the considered m
H(z;a1 , . . . ,an).

The variablexmin
2 is random in the sense that it depen

on the random data set used. Its probability distribution i
x2 distribution forN2n degrees of freedom@17#. This im-
plies that 68% of the random data sets will give ax2 such
that

x2~a1 , . . . ,an!2x2~ ā1 , . . . ,ān!<Dx1s
2 ~n!, ~1.10!

where Dx1s
2 (n) is 1 for n51, 2.3 for n52, 3.53 for n

53, etc. Thus Eq.~1.10! defines closed ellipsoidal surface
around ā1 , . . . ,ān in the n dimensional parameter spac
The corresponding 1s range of the parameterai is the range
of ai for points contained within this ellipsoidal surfac
Similarly, it can be shown that 95.4% of the random data s
will give a x2 such that

x2~a1 , . . . ,an!2x2~ ā1 , . . . ,ān!<Dx2s
2 ~n!, ~1.11!

whereDx2s
2 (n) is 4.0 for n51, 6.17 forn52, 8.02 forn

53, etc. Thus Eq.~1.11! defines the 2s ellipsoidal surface
in parameter space and similarly for highers ’s.

II. COSMIC EXPANSION HISTORY

We now apply the above described maximum likeliho
method using a recently published data set consisting of
(N5194) SnIa@23,24#. This is a subset of the total of 25
published SnIa sample obtained by imposing constraintsAV
,0.5 ~excluding high extinction! andz.0.01 ~reducing pe-
culiar velocity effects!. Each data point at redshiftz includes
the logarithm of the Hubble-free luminocity distanc
log10@cDL

obs(z)# and the corresponding errors log10DL(z) . A
table of the data we used can be downloaded in electro
form @22#. These Hubble-free luminosity distances are o
tained assuming a best fit value for the zero point magnit
offset M̄ @18#. We adopt this same value forM̄ and choose
not to treatM̄ as an additional free parameter to fit~and
marginalize! along with the parameters of each theoretic
model studied. In the Appendix we demonstrate that marg
alization overM̄ would have negligible effect@O(1%)# on
our results. Also, comparison of our results for LCDM a
quiessence@w(z)5constant# with the corresponding result
of Ref. @18# where marginalization ofM̄ was implemented
indicates that our simplified approach has negligible eff
on the obtained results. This same conclusion has also b
reached in Ref.@25# and it’s origin is demonstrated in th
Appendix.

In the construction ofx2 using Eq.~1.8! we have used a
1-2



f SCDM

COMPARISON OF COSMOLOGICAL MODELS USING . . . PHYSICAL REVIEW D70, 043531 ~2004!
FIG. 1. The observed 194 SnIa Hubble free luminocity distances along with the theoretically predicted curves in the context o
~continuous line! and LCDM ~dashed line!.
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value of sz corresponding to uncertainties due to pecul
velocities with Dv5D(cz)5500 km/s which impliessz
5Dz5(500 km/s)/c. The minimization of Eq.~1.8! was
implemented for each theoretical model using a sim
Mathematica code which can be downloaded along with
table of the data set used@22# ~or can be sent by e-mail upo
request!.

We now proceed to apply likelihood testing to vario
theoretical models. Each model is defined by its predic
Hubble-parameterH(z). For example for LCDM we have

H2~z;V0m!5S ȧ

a
D 2

5H0
2@V0m~11z!31~12V0m!#

~2.1!

and there is a single parameterV0m to be fit from the data.
The simplest model to consider however is standard c
dark matter~SCDM! defined by

H2~z!5H0
2~11z!3 ~2.2!

with no free parameters. Using Eq.~2.2! in Eq. ~1.7! we
calculateDL

th(z). We may then findx2 using Eq.~1.8! and
minimize to findxmin

2 . In the SCDM case there are no fre
parameters to vary and no minimization is needed. We t
find x25xmin

2 5431.4, which impliesxmin
2 /dof52.2 (dof

5degrees of freedom!. Since this valuexmin
2 /dof is signifi-

cantly larger than 1 we conclude that SCDM does not p
vide a good fit to the SnIa data.

The next simplest model consistent with the flatness in
cated by WMAP@26# is LCDM defined by Eq.~2.1!. It is
straightforward to evaluateDL

th(z) numerically @using Eq.
04353
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~2.1! in Eq. ~1.7!# and use it to evaluatex2(V0m) from Eq.
~1.8!. A minimization of this expression leads to@22#

xmin
2 5x2~V0m50.34!5198.74, ~2.3!

which implies x2/dof51.03 (dof5194215193). This
model is clearly consistent with the data sincex2/dof.1.
The 1s errors on the predicted value ofV0m50.34 are
found by solving the equation

x2~Vm1s!2xmin
2 5Dx1s

2 ~n51!51 ~2.4!

which leads to

V0m50.3460.032. ~2.5!

This result is identical with the result of Ref.@18# even
though our 1s errors are slightly smaller.

In Fig. 1 we show a comparison of the observed 194 S
Hubble free luminosity distances along with the theoretica
predicted curves in the context of SCDM~continuous line!
and LCDM ~dashed line!. In this case it is even visually
obvious that LCDM provides a good fit to the data contra
to the case of SCDM. This visual distinction is not possib
when comparing the other data-compatible models discus
below with LCDM. We thus do not attempt to include th
theoretical curves corresponding to other models on the s
plot.

We now consider other more general models and ans
which, however, reduce for certain parameter values
LCDM. If these parameter values give ax2(LCDM) that is
beyond the 2s level away from the minimumxmin

2 , then we
would conclude that LCDM is disfavored compared to t
1-3
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better fit model. Even if we just find models withxmin
2

,xmin
2 (LCDM) 5198.74 but within 1s we still have useful

information since these models are more probable t
LCDM.

We start with a simple generalization of LCDM: We r
place the cosmological constant energy density by a d
energy with constant equation of state parameter. This an
has been called ‘‘quiessence’’ in the literature@27#. The form
of H(z) is

H2~z;V0m ,w!5H0
2@~V0m~11z!3

1~12V0m!~11z!3(11w)#. ~2.6!

This ansatz has two free parametersV0m andw. We use prior
information from large scale structure (V0mh50.260.03
@28# with h50.7260.08 @29#! to vary V0m in the range
V0m50.2960.05 in this and in all subsequent ansatze.
thus evaluatex2(w) and minimize with respect tow and
V0m . We find

xmin
2 5x2~w521.01,V0m50.34!5198.69. ~2.7!

Including the 1s errors we have

w521.0160.08 ~2.8!

which is identical with the corresponding result of Ref.@18#.
Thus, the minimization of this generalized ansatz give
best fit that is indistinguishable at the 1s level from LCDM.
This means either that LCDM is truly the best fit model
that we have not chosen a general enough ansatz to s
better fit.

A further generalized ansatz involves the combinat
of cosmological constant with quiessence~quiessence-L
ansatz!.

The form ofH(z) in this case is

H2~z;a1 ,w1!5H0
2@V0m~11z!31a1~11z!3(11w1)

1~12V0m2a1!#. ~2.9!

Minimizing x2(a1 ,w1 ,V0m) with respect tow1 , a1 , V0m
we find

xmin
2 5x2

„w152.36, a15~5 1023!,

V0m50.24…5195.1. ~2.10!

Including the error bars we have

w152.3620.78
10.44, a1.~5 20.9

10.4!1023. ~2.11!

Clearly the fit is better compared to LCDM but th
x2(LCDM) 5x2(a150,V0m50.34)5198.7 corresponding
to LCDM with V0m50.34 differs by less thanDx2s

2 (n52)
56.17 fromxmin

2 . Therefore, LCDM is consistent at the 2s
level ~but not at the 1s) with the best fit of this ansatz
Nevertheless, given that this fit is better it is interesting
compare the dark energy properties corresponding to this
satz at best fit with those of LCDM. These properties
well described by the effective equation of state param
04353
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w(z)5p(z)/r(z) which in general~and in this case! depends
on the redshiftz. We can expressw(z) in terms of H(z),
dH/dz, andV0m using the Friedman equations

H25
ȧ2

a2
5

8pG

3
~rm1rDE! ~2.12!

and

q[2
ä

aH2 5
4pG

3H2 @rm1~rDE13pDE!#, ~2.13!

whereq is the deceleration parameter and we have define
dark energy any other homogeneous and isotropic sourc
gravity apart from matter. Using Eqs.~2.12! and ~2.13! we
find

pDE5
H2

4pG S q2
1

2D . ~2.14!

Using Eqs.~2.12! and ~2.14! we find @30#

w~z!5
pDE~z!

rDE~z!
5

2q~z!21

3@12Vm~z!#
, ~2.15!

where

Vm~z!5
8pGrm~z!

3H2~z!
5V0m~11z!3

H0
2

H2 . ~2.16!

Using now the definitions ofq and H it is easy to show tha

q5211~11z!
d ln H

dz
. ~2.17!

Thus substituting Eq.~2.17! in Eq. ~2.15! we have

w~z!5
pDE~z!

rDE~z!
5

2

3
~11z!

d ln H

dz
21

12S H0

H D 2

V0m~11z!3

. ~2.18!

In the case of generalized Friedman equations valid in mo
fied gravity models, Eq.~2.18! can still be useful in charac
terizing the expansion history but it should not be interpre
as a property of an energy substance. Using the best fit f
of the quiessence-L ~q-L) ansatz in Eq.~2.18! we find the
predicted form ofw(z) which is plotted in Fig. 2 along with
the 1s and 2s error regions obtained by maximal variatio
of the parametersa1 and w1 within the 1s and 2s error
contours ofx2 as described in the previous section. Th
form of w(z) ~without error regions! along with the corre-
sponding forms predicted by the other ansatze discussed
low, is also shown in Fig. 3. Clearlyw(z) differs signifi-
cantly from the LCDM prediction ofw521 at redshiftsz
.0.4. In particular we findw(z).21 for z,0.4 while
w(z).2 for z*1. Thus, this ansatz gives us a hint f
the ‘‘metamorphosis’’ of dark energy from antigravit
1-4
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FIG. 2. The redshift dependence of the equation of state parameterw(z) for theq2L ansatze. The thick curve is the best fit and the lig
~dark! shaded regions represent the 1s (2s) error regions.
m
ith
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elp
(w521) at low redshifts to ‘‘hypergravity’’ (w.2) at high
redshifts. Clearly this metamorphosis~if true! cannot persist
to arbitrarily high redshifts due to constraints coming fro
large scale structure and nucleosynthesis. Thus, it is e
04353
er

not realized in nature and we havew(z)<0 at all redshifts or
it is part of an oscillating behavior of the dark energy equ
tion of state parameter. This later possibility could also h
resolve the coincidence problem@31,32# and is a prediction
rs in the
FIG. 3. The redshift dependence of the equation of state parameter for the cosmological ansatze of Table I. The numbe
parentheses indicate the value ofxmin

2 for each ansatz and its rank according to increasing value ofxmin
2 . In LCDM the best fit value

V0m50.34 was used givingxmin
2 5198.745.
1-5
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TABLE I. Best-fit parameters.

Model H(z) xmin
2 Best fit parameters

OA H2(z)5H0
2$V0m(11z)31a1cos(a2z

21a3) a1523.2220.76
10.93, a252.2820.76

10.93

~1! 1@12a1cos(a3)2V0m#} 193.8 a3520.08p60.01p, V0m50.34
Sinh1DE H2(z)5H0

2@V0m(11z)31a1(11z)3(11w1)1a2sinh(w2z) w150.1920.3
10.1, w253.6623.13

10.93

~2! 112VOm2a1] 194.3 a1520.5120.3
10.1, a250.54520.015

10.005

V0m50.32
GCG ~3! H2(z)5H0

2@V0m(11z)31(1
2V0m)AA1(12A)(11z)a#

194.8 A50.996620.0004
10.0001, a513.7520.04

10.02

V0m50.24
GQ H2~z!5H0

2@V0m~11z!31a1~11z!3(11w1)

1a2~11z!3(11w2)1~12a12a22V0m!#

w1521.1360.24,w252.4260.02

~4! 195.1 a1525722
131023, a25420.2

10.31023

V0m50.24
q-L ~5! H2(z)5H0

2@V0m(11z)31a1(11z)3(11w1)

1(12V0m2a1)]
195.1 w152.3620.78

10.44, a1.520.9
10.41023

V0m50.24
Linear H2(z)5H0

2@V0m(11z)31(12V0m) w0521.1360.09,w151.8720.01
10.08

~6! 3(11z)3(11w02w1)e3w1z] 196.4 V0m50.24
P3 H2(z)5H0

2@V0m(11z)31a3(11z)31a2(11z)2 a1522.4960.12,a250.4620.05
10.07

~7! 1a1(11z)1(12a12a22a32V0m)] 196.6 a350.3360.06,V0m50.34
Quad H2(z)5H0

2@V0m(11z)31a1(11z)1a2(11z)2 a1523.8521.27
11.16, a251.6320.63

10.79

~8! 1(12a12a22V0m)] 196.8 V0m50.34
LA H2(z)5H0

2@V0m(11z)31(12V0m)(11z)3(11w01w1) w0521.1860.10,w152.7960.05
~9! e3w1[(1/11z)21]] 197.1 V0m50.24
CG ~10! H2(z)5H0

2@V0m(11z)31(12V0m)AA1(12A)(11z)6# 197.4 A50.9260.03V0m50.24
CA ~11! H2(z)5H0

2@V0m(11z)31(12V0m) f X(z)# 198.3 q545210
18 1023, n521529

18 , V0m50.34
QUIES ~12! H2(z)5H0

2@V0m(11z)31(12V0m)(11z)3(11w)# 198.7 w521.0160.08,V0m50.34
LCDM ~13! H2(z)5H0

2@V0m(11z)31(12V0m)# 198.7 V0m50.3460.03
SCDM H2(z)5H0

2(11z)3 431.4 2
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@11# ~see also Refs.@33,34#! of many models@35–37# with
stabilized modulus@38,39# of extra dimensions.

In addition tow(z) we also plot the reduced form ofH(z)
compared to LCDM defined as

Hr
2~z!5

H2~z!2HLCDM
2 ~z!

H0
2 , ~2.19!

whereHLCDM
2 [0.3(11z)210.7. The reduced best fitHr

2(z)
for the q-L ansatz is shown in Fig. 4 along with the best
Hr(z) functions corresponding to some of the other ansa
discussed below. Even though both ansatze~q-L and
LCDM! are consistent with the data and with each othe
the 2s level, the predicted forms ofHr(z) and w(z) differ
significantly atz.0.5.

In order to shed more light to the dark energy metam
phosis puzzle we now consider more general forms ofH(z)
ansatze. For each ansatz we identify the predicted form
H(z) and the parameters requiring fitting. Then we evalu
and minimizex2 with respect to these parameters varyi
V0m in the rangeV0m50.2960.05. Finally, we identify the
best fit parameter values and the correspondingxmin

2 ~see
Table I!, plot the correspondingw(z) andH(z) ~see Figs. 3
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and 4!, and classify the models according to the goodnes
fit. This classification will lead to some interesting concl
sions about the generic properties of dark energy. Thes
and 2s regions of thew(z) andH(z) curves in the context
of a particular ansatz are not particularly useful since ot
ansatze with equally good fits can givew(z) andH(z) best
fits that are well outside the 2s regions of the initial ansatz
especially in regions withz.1 where just a few data point
are available. Thus, in order to simplify the plots of Figs.
and 4 and avoid confusion we only show the best fit cur
without the corresponding 1s and 2s regions.

We now briefly describe each one of the ansatze con
ered:

~1! Cubic Polynomial in (11z) ~P3!:

H2~z!5H0
2@V0m~11z!31a3~11z!31a2~11z!2

1a1~11z!1~12a12a22a32V0m!#,

~2.20!

wherea1 ,a2 ,a3 are unknown parameters to be fit. The on
priors used in this~and the other ansatze discussed here! are
flatness andV0m50.2960.05. In contrast to Ref.@40# we
have not fixeda350 since large scale structure data do n
1-6
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FIG. 4. The reduced Hubble parameter for some of the best and the worst fits of the cosmological ansatze of Table I. The num
parenthesis shows the rank (1213) of the corresponding ansatz in terms of goodness of fit. The LCDM curve is not flat at zero beca
its construction we used the best fit valueV0m50.34 while theHLCDM on the axis assumes the priorV0m50.30.
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exclude a nonclustering form of matter with properties sim
lar to those of hot dark matter with very large free stream
~or Jeans! length. This model has a slightly worse fit (xmin

2

5196.56), for V0m50.34, compared toq-L (xmin
2

5195.1) but it also corresponds tow(z).21 atz&0.5 and
w(z).0 at z*1. Its properties at best fit are shown in Fi
3. The values of the best fit parameters area1522.49
60.12, a250.46 20.05

10.07, and a350.3360.06. Compared to
the quadratic ansatz of Ref.@40# this cubic ansatz has slightl
betterxmin

2 and w(z) is larger than the correspondingw(z)
of the quadratic ansatz atz.1 shown in Ref.@40# and
in Fig. 3.

~2! Linder @41# ansatzw(z)5w01w1z/(11z) ~LA !:

H2~z!5H0
2@V0m~11z!3

1~12V0m!~11z!3(11w01w1)e3w1(1/11z 21)#.

~2.21!

It can easily be verified using Eq.~2.18! that the ansatz
~2.21! leads to aw(z) of the form

w~z!5w01
w1z

11z
. ~2.22!

This ansatz was suggested by Linder@41# and it is designed
to interpolate between two values ofw: w(z)5w0 at z.0
andw(z).w1 at z@1. It does not give a very good fit~com-
pared to other two parameter ansatze! to the data (xmin

2

5197.1), even though it is still better than LCDM. The re
04353
-
g

-

son is that it only allows a slow change ofw(z) with redshift
betweenw0 and w1 while the data seem to require a mo
‘‘abrupt’’ change fromw0 to w1 at z.0.5. The best fit values
of these parameters arew0521.1860.10, w152.79
60.05, andV0m50.24.

~3! Linear ansatzw(z)5w01w1z:

H2~z!5H0
2@V0m~11z!3

1~12V0m!~11z!3(11w02w1)e3w1z#. ~2.23!

This ansatz was suggested in Refs.@42–44# in a more gen-
eral power series form. It can give very good fits for lo
redshift data (z&0.5) but it cannot fit well the general form
of w(z) at z*1. At best fit it givesxmin

2 5196.4, forV0m

50.24, which is about average compared to the other
satze. The best fit parameter values arew0521.1360.09
andw151.8620.01

10.08, which leads tow(z).0.5 for z*1.
~4! Chaplygin Gas~CG! and Generalized Chaplygin Ga

~GCG! @9,45–56#:

H2~z!5H0
2@V0m~11z!31~12V0m!AA1~12A!~11z!a#,

~2.24!

where the above form ofH(z) is a generalization of the
usual Chaplygin gas ansatz which is obtained fora56
@46#. For a56 the equation of state of Chaplygin gas da
energy is

pc52
A

rc
. ~2.25!
1-7
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From the form of Eq.~2.24! it is clear that the Chaplygin ga
behaves like pressureless dust at high redshifts and lik
cosmological constant atz.0. The sound velocity of Chap
lygin gas grows rapidly and approaches the velocity of lig
at late redshifts (vs5Adpc /drc5AA/rc;t2). Thus inho-
mogeneities of Chaplygin gas do not grow~since the Jeans
length approaches the horizon! and no constraints can b
imposed from large scale structure observations. The ph
cal motivation of the Chaplygin gas equation of state~2.25!
comes from string theories@57#. In fact, considering ad
brane in ad12 dimensional space-time, the introduction
light cone variables in the resulting Nambu-Goto acti
leads to the action of a Newtonian fluid with equation
state~2.25!.

The limitation of the Chaplygin gas ansatz is that it co
strainsw(z) to w(z),0 at all finite redshifts. Thus its good
ness of fit is below average (xmin

2 5197.4 forV0m50.24 and
A50.9260.03). This limitation does not exist for the ge
eralized Chaplygin gas ansatz~arbitrary a) which gives a
much better fit (xmin

2 5194.8 for V0m50.24 and A
50.996620.0004

10.0001,a513.7520.04
10.02). This fit gives w(z).1.2

.0 for z*1 ~see Fig. 3! as do all the ansatze with abov
average goodness of fit.

~5! Generalized Cardassian ansatz~CA!:

H2~z!5H0
2@V0m~11z!31~12V0m! f X~z!#, ~2.26!

where

f X~z!5
V0m

12V0m
~11z!3F S 11

V0m
2q21

~11z!3(12n)qD 1/q

21G .

~2.27!

This model @58,59# emerges from a generalization of th
Friedman equations and predicts accelerated expansion
cent times without any dark energy. In this model the u
verse is flat and consists only of matter and radiation. H
we follow Ref.@58# and consider the generalization~2.27! of
the original Cardassian ansatz of Ref.@10#. The original an-
satz is obtained from Eq.~2.27! by setting q51 and is
equivalent to quiessence (w5const). The generalized Ca
dassian ansatz has been fitted to SnIa data in Ref.@58# using
a much smaller SnIa dataset with redshiftsz,1. We find
~see Table I! that this ansatz gives a relatively poor fit to th
data (xmin

2 5198.3 for V0m50.34 and q50.04520.010
10.008,

n521529
18) below the average goodness of fit for the mod

considered and only slightly better compared to LCDM w
V0m50.34 (xmin

2 5198.7). The predictedw(z) increases
with z but remains negative~see Fig. 3!.

~6! Generalized Quardatic ansatz~GQuad!:

H2~z!5H0
2@V0m~11z!31a1~11z!3(11w1)

1a2~11z!3(11w2)1~12a12a22V0m!#.

~2.28!

This is another generalization of the quadratic polynomia
for H(z) of Ref. @40#. Here we do not add an arbitrary cub
term. Instead we allow the exponents of the two monom
04353
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to vary and minimize with respect to the four parametersa1 ,
a2 , w1 and w2 instead of two parametersa1 and a2 with
fixed w1522/3 andw2521/3 for the quadratic model. The
fit of the generalized ansatz is better (xmin

2 5195.1 forV0m

50.24 and a1520.0620.02
10.03, a25420.2

10.31023, w1521.13
60.24, and w252.4260.02) than the quadratic ansa
(xmin

2 5196.8 for V0m50.34, a1523.8521.27
11.16, and a2

51.6320.63
10.79) and the best fit form ofw(z) differs signifi-

cantly from the corresponding quadratic best fit particula
for z*1. In particular we find thatw(z).21 for z&0.4 and
w(z)*2 for z*1. For comparison the quadratic ansatz
Ref. @40# predicts w(z).0 for z*1 with very small 2s
errors atz.1. This disagreement of our generalized ans
with the quadratic ansatz atz.1 despite the small 2s error
regions is another indication of the limited usefulness
ploting 1s and 2s error regions ofw(z) in the context of a
particular ansatz. These regions can be easily violated in
context of another ansatz with better or similar fit.

A variant of this ansatz is one where one of the two ar
trary power law terms is replaced by an exponentially
creasing term. The corresponding ansatz (sinh1DE) is

H2~z!5H0
2@V0m~11z!31a1~11z!3(11w1)1a2sinh~w2z!

1~12a12V0m!#. ~2.29!

The results for this ansatz are almost identical to those of
~2.28! ~see Table I and Fig. 3!.

~7! Oscillating ansatz~OA!:

H2~z!5H0
2@V0m~11z!31a1cos~a2z21a3!

1~12a1cos~a3!2V0m!#. ~2.30!

This is our best fit ansatz. It gives a better fit to the data th
any of the other ansatze (xmin

2 5193.8 for V0m50.34, a1

523.2220.76
10.93, a252.2820.76

10.93, and a3520.08p60.01p).
The behavior ofw(z), however, forz*1 is qualitatively
different compared to the other ansatze~see Fig. 3!. For z
&0.3 we find w(z).21. For 0.5&z&1.2 we find w(z)
.0 with a maximumw(z.0.75).1.5. At z*1.2, w(z) be-
comes negative and continues oscillating aroundw.0 with
large amplitude. This redshift range, however, includes o
one data point atz51.75, which cannot constrain the beha
ior of w(z) andH(z) in any statistically significant way.

The quality of the fit for the oscillating ansatz combine
with indications from the better fits of other ansatze th
indicatew(z).0 for z*1 supports the idea that some typ
of oscillation probably takes place forw(z).

From the theoretical viewpoint this idea is also suppor
for two reasons:

~a! Coincidence problem resolution: An oscillating expan-
sion rate can help resolve the coincidence problem since
present accelerating phase is viewed simply as part of a
quence of accelerating and decelerating periods in the ex
sion history of the Universe@31,32#.

~b! Extra dimensions:Models with extra dimensions ge
nerically predict oscillations of the stabilized modulus of t
extra dimension size~the radion field! due to its coupling to
1-8



n
p

te

on

ri-

io
a

th
a
d
on

h

ca

le

nl

g

s
at
on

h

ril

p
-

e
t

ro
ni
n

el

fit

r.

ri-
as
ork

the

he

-

COMPARISON OF COSMOLOGICAL MODELS USING . . . PHYSICAL REVIEW D70, 043531 ~2004!
redshifting matter@11,12#. These oscillations backreact o
the expansion rate and induce oscillations of the Hubble
rameter.

Another factor pointing towards oscillating expansion ra
is the north-south pencil beam survey of Ref.@60#, which
suggests an apparent periodicity in the galaxy distributi
The number of galaxies as a function of redshift seems
clump at regularly spaced intervals of 128h21 Mpc. Recent
simulations@61# have indicated that this regularity has a p
ori probability less than 1023 in CDM universes with or
without a cosmological constant. An oscillating expans
rate could resolve this puzzle without invoking special fe
tures in the primordial fluctuations spectrum.

III. CONCLUSION

We have fitted several cosmological models using
maximum likelihood method and the most recent SnIa d
consisting of 194 data points. No priors have been use
our analysis other than those indicated by other observati
i.e., flatness andV0m50.2960.05.

We have confirmed recent studies@40,62,63# indicating an
increase of the equation of state parameter with reds
termed metamorphosis of dark energy in a recent study@40#.
We have shown, however, that the best fit ansatze indi
that this metamorphosis continues beyondw(z)50 and
leads tow(z).0 at z.1. Nucleosynthesis and large sca
structure constraints are not consistent withw(z).0 at arbi-
trarily high redshifts. Thus our best fits to the data can o
be made consistent with these constraints if some kind
oscillating behavior is realized for the effective dark ener
equation of state parameterw(z). This possibility is further
enhanced by the fact that an oscillating expansion rate an
has provided the best fit to the data among all the 13 ans
considered and also by other theoretical and observati
arguments discussed in the previous section.

At low redshifts (z,0.5) all the fitted ansatze approac
w(z).21 with w(z) approximately constant. Most~but not
all! of the better fits predictw(z) slightly less than21 ~up to
21.3) for some redshift range within@0,0.5# but not neces-
sarily at z50. There are good fits, however~like the
quiessence-L ansatz!, with xmin

2 below average for which
w(z).21 for all z implying that phantom energy@64,65#
(w,21) is consistent with the data but is not necessa
more probable than dark energy (w.21). Since there are
good fits withw(z).21 and rapidly increasingw(z) for z
.0.5, we conclude that even if the priorw.21 were used,
with the proper ansatz we would still be able to see the ra
increase ofw(z) with z. This does not agree with the con
clusion of Ref.@40# that it is the use of priors that would hid
the increase ofw(z) with redshift. Here we have shown tha
the cosmological ansatz selection can also play a crucial
in revealing or hiding the true expansion history of the u
verse. Other comparisons of particular ansatze with the S
data can also be found in the literature@66–70#.

Thus we are led to an important question:Is there a sys-
tematic way to use the SnIa data in constructing a relativ
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simple cosmological ansatz that will give the best possible
to the data given the number of parameters?Addressing this
important issue will be the subject of a subsequent pape
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APPENDIX

Here we demonstrate that the marginalization over
zero point magnitudeM̄ defined in Eq.~1.6! would have
negligible effect@O(1%)# on our results. Any model will
predict the theoretical valueDL

th(z;a1 , . . . ,an) with some
undetermined parametersai ~e.g., Vm ,VL). The best-fit
model is obtained by minimizing the quantity@18#:

x2~M̄ 8!5(
i 51

N
@ log10DL

obs~zi !20.2M̄ 82 log10DL
th~zi !#

2

~s log10DL(zi )
!21S ] log10DL~zi !

]zi
szi D 2 ,

~A1!

where M̄ 85M̄2M̄obs is a free parameter representing t
difference between the actualM̄ @see Eq.~1.6!#, and its as-
sumed valueM̄obs in the data.

Uniform marginalization overM̄ 8 corresponds to integrat
ing overM̄ 8 and therefore working with ax̄2 defined by

x̄2522 lnS E
2`

1`

e2x2/2dM̄8D , ~A2!

which after some manipulation gives

x̄2522 lnS E
2`

1`

e2(1/2)CM̄821BM̄82A/2dM̄8D , ~A3!

where

A5(
i 51

N ai
2

s i
2 5x2~M̄ 850!, B50.2(

i 51

N
ai

s i
2 ~A4!

and

C50.04(
i 51

N
1

s i
2 ~A5!

with

ai5 log10DL
data2 log10DL

th . ~A6!

Thus, the ‘‘marginalized’’ overM̄ 8 x2 is

x̄25x2~M̄ 850!2
B2

C
1 lnS C

2p D.x2~M̄ 850! ~A7!
1-9
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because in the cases considered the last two terms on
right-hand side of Eq.~A7! are of O(1) while the first is
O(102) and therefore dominates over the others. Thus
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