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We study the expansion history of the universe up to a redshift=df.Z5 using the 194 recently published
Snla data by Tonnet al. and Barriset al. In particular we find the best fit forms of several cosmological
models andH(z) ansatze, determine the best fit values of their parameters and rank them according to
increasing value oj(rznin [the minimum value of¢? for eachH(z) ansat. We treatQ,, as a parameter using
a reasonable prior and assume flat geometry of the universe. No prior assumptions are made about validity of
energy conditions. The fitted models are fourteen and include standard cold dark (8&Bv)), cold dark
matter with cosmological constat (LCDM), dark energy with constant equation of state parameter
(quiessence third order polynomial foH(1+z), Chaplygin gas, Cardassian model,z) =wy+w;z, w(z)
=wg+zw; /(1+2), an oscillating ansatz fof(z), etc. All these models with the exception of SCDM are
consistent with the present data. However, the quality of the fit differs significantly among them and so do the
predicted forms ofw(z) and H(z) at best fit. The worst fit among the data-consistent models considered
corresponds to the simplest model LCDMﬁ(in:198.7 forQy,,=0.34) while the best fit is achieved by the
three parameter oscillating ansat)z%(ﬁ 193.8). Most of the best fit ansatze have an equation of state
parametew(z) that varies betweew(z)=—1 for z<0.5 tow(z)>0 for z>1. This implies that the sign of
the pressure of the dark energy may be alternating as the redshift increases. The goodness of fit of the
oscillatingH(z) ansatz lends further support to this possibility.
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I. INTRODUCTION mological models predict specific forms of the Hubble pa-
rameterH (z) as a function of redshift in terms of arbitrary
One of the fundamental goals of cosmology is the underparameters. These parameters are determined by fitting to the
standing of the global history of the Universe. Using objectsobserved luminocity distanag (z) using the relatiorf14—
of approximately known absolute luminocitystandard 16] (valid in a flat universe
candle$ in the nearby universe provides the current rate of
expansion. Using more distant standard candles like type la H(z)=c E(dL(Z))
supernovaéSnlag makes it possible to start seeing the varied dz\ 1+z
effects of the Universe’s expansion history. Such cosmologi-
cal observations have indicatgtl] that the Universe under- This is easily derived using the relation betwekrfz) and
goes accelerated expansion during recent redshift times. Thiee comoving distance(z) (wherez is the redshift of light
accelerating expansion has been attributed to a dark energynission
component with negative pressure which can induce repul-
sive gravity and thus cause accelerated expansion. The sim- di(2)=r(z2)(1+2) 1.2
plest and most obvious candidate for this dark en¢gjyis
the cosmological constart3] with equation of statew  and the light ray geodesic equation in a flat univecst
=plp=—1. =a(z)dr(z) wherea(z) is the scale factor.
The extremely fine tuned value of the cosmological con- Another similar approach towards determining the expan-
stant required to induce the observed accelerated expansi6ion historyH(z) is to assume an arbitrary ansatz fé(z)
has led to a variety of alternative models where the darkvhich is not necessarily physically motivatéd is “model
energy component varies with time. Many of these modeldéndependent) but is specially designed to give a good fit to
make use of a homogeneous, time dependent minimall{he data ford, (). Given a particular cosmological model
coupled scalar fields (quintessencé4,5]) whose dynamics (or ansatzfor H(z;a,, . .. a,) wherea,, ... ,a, are model
is determined by a specially designed poteriia) induc-  parameters, the maximum likelihood technique can be used
ing the appropriate time dependence of the field equation 0P determine the best fit values of parametensth 1o
statew(z) =p(¢)/p(¢). Given the observed(z), the quin- — 20 error9 as well as the goodness of the fit of the ansatz
tessence potential can in principle be determined. Othelo the data. This technique can be summarized as follows:
physically motivated models predicting late accelerated exThe observational data consist df apparent magnitudes
pansion include modified gravify6—8|, Chaplygin gag9], = mMi(z) and redshifts; with their corresponding errordm
Cardassian cosmolodyt0], theories with compactified extra and 8z;. Each apparent magnitude is related to the corre-
dimensiong 11,17, braneworld model§13], etc. Such cos- sponding luminocity distance, of the Snla by

d.(z)
Mpc

-1

(1.1

+25, (1.3

m(z)=M+5 1o
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whereM is the absolute magnitude which is assumed to bevith corresponding results in the literature where marginal-
constant for standard candles like Type la Snla. From Eqszation has been usde.g., Ref.[18] for cold dark matter
(1.1) and(1.3) it becomes clear that the luminocity distance with cosmological constamt (LCDM)].

d,(2) is the “meeting point” between the observed apparent It is straightforward to minimizey?(ay, . . .,a,) using
magnitudem(z) and the theoretical predictidd(z). numerical libraries like NAG19,2Q (see aIso_Rei{l?])_or
Thg apparent magnltude can also be ex’!:)ressled in terms Phckages like Mathematicg1] to find x2..(as, .. ..an)
the dlmegs:(pnlzsts) Hubble-constant free” luminocity dis- [22] where X2, is the minimum obtained for the best fit
tanceD, defined by parameter valuesa, ... a,. If Xﬁﬂn/(N—n)sl the fit is
Hod, (2) good and the data are consistent with the considered model
DL(2)=— (1.4  H(zag,....a).
The variabley?,, is random in the sense that it depends
as on the random data set used. Its probability distribution is a
o x? distribution forN—n degrees of freedorfiL7]. This im-
m(z)=M(M,Hg)+5 log,o(D (2)), (1.5  plies that 68% of the random data sets will givecasuch
that
whereM is the magnitude zero point offset and depends on ) ,— _ 5
M andHo as X (a1! s 5an)_X (a1! s 5an)SAXlg(n)i (11@
_ c/Hg where A)(i,(n) is 1 for n=1, 2.3 forn=2, 3.53 forn
M=M+5l0gi 7372 Mpc +25. 16 =3, etc. Thus Eq(1.10 defines closed ellipsoidal surfaces

arounday, ... ,a, in the n dimensional parameter space.
The zero point offset is an additional model independent PaThe Corresponding& range of the parametes is the range
rameter that needs to be fit along with the model parametergt a; for points contained within this ellipsoidal surface.
ai, ... a,. However, sinceM is model independent its Similarly, it can be shown that 95.4% of the random data sets
value from a specific good fit can be used directly to othewill give a y? such that
fits of model parameters. Thus the observedz;) can be _ _
translated td°PY(z) using Eq.(1.5) for the best fit value of X%(@y, ... @) —x¥ay, ... a)<Ax5,(n), (1.11)

M,ps Obtained from nearby Snla. The theoretically pre'whereAxga(n) is 4.0 forn=1, 6.17 forn=2, 8.02 forn

dicted value D{(2) in the context of a given model _ 3" o1 Thys Eq(1.1) defines the 2 ellipsoidal surface
H(z;ay, . .. a,) can be obtained by integrating Ed.1) as parameter space and similarly for highes.

z
DM(z)=(1+2) J'Odz’H(z,;a:"_ A (1.7 Il. COSMIC EXPANSION HISTORY
We now apply the above described maximum likelihood
The best fit values for the parameters, . . . ,a, are found method using a recently published data set consisting of 194
by minimizing the quantity (N=194) Snla[23,24. This is a subset of the total of 253
obs h ) published Snla sample obtained by imposing constragts
5 s (log1oD°A(z;) —l0g10D () <0.5 (excluding high extinctionandz>0.01 (reducing pe-
X8, - - @) =5 , [ 910910D () 2 culiar velocity effects Each data point at redshiftincludes
(Tlog, | (z) ((9—Zi<7zi the IogaLithm of the Hubble-free luminocity distance
obs;

(1.8 log;d cD;"(2)] and the corresponding er@rog b (2) - A

) ) ) table of the data we used can be downloaded in electronic
where o, is the 1o redshift uncertainty of the data and form [22). These Hubble-free luminosity distances are ob-

Tiogyp, (z) 1 the corresponding d error of logDP°Y(z). tained assuming a best fit value for the zero point magnitude
[Th]e probability distribution for the parametexs, ... &,  offset M [18]. We adopt this same value fod and choose
is[17 vl

not to treatM as an additional free parameter to (#nd
marginalize along with the parameters of each theoretical
model studied. In the Appendix we demonstrate that margin-

where\ is a normalization constant. If prior information is @lization overM would have negligible effedtO(1%)] on
known on some of the parametes, . . . ,a,, then we can  Our results. Also, comparison of our results for LCDM and
either fix the known parameters using the prior informationduiessencg¢w(z) =constan} with the corresponding results

or “marginalize,” i.e., average the probability distribution of Ref.[18] where marginalization oM was implemented
(1.9 around the known value of the parameters with an apindicates that our simplified approach has negligible effect
propriate “prior” probability distribution. Here we use the on the obtained results. This same conclusion has also been
former approaclffix the parameters with prior information reached in Ref[25] and it's origin is demonstrated in the
for simplicity. This simplification has negligible effect on our Appendix.

results as it can be verified by comparing some of our results In the construction of? using Eq.(1.8) we have used a

P(ay, ... a)=Ne X@L a2 (1.9
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FIG. 1. The observed 194 Snla Hubble free luminocity distances along with the theoretically predicted curves in the context of SCDM
(continuous ling and LCDM (dashed ling

value of o, corresponding to uncertainties due to peculiar(2.1) in Eq. (1.7)] and use it to evaluatg?(Q,y) from Eq.
velocities with Av=A(cz)=500 km/s which implieso,  (1.8). A minimization of this expression leads [22]
=Az=(500 km/s)/c. The minimization of Eql1.8) was
implemented for each theoretical model using a simple Xmin=x*(Qon=0.34=198.74, (2.3
Mathematica code which can be downloaded along with the
table of the data set us¢@2] (or can be sent by e-mail upon Which implies x*/dof=1.03 (dof=194-1=193). This
requesk model is clearly consistent with the data sing&dof=1.

We now proceed to apply likelihood testing to various The 1o errors on the predicted value &,,=0.34 are
theoretical models. Each model is defined by its predictedound by solving the equation
Hubble-paramete (z). For example for LCDM we have 5 5

X*(Qmie) = Xmin=Ax1,(n=1)=1 (2.9

t\ 2
a
H2(z;Qom) = ( 5) =HZ[ Qom(1+2)3+(1— Qom)] which leads to

(2.1 Qom,=0.34+0.032. (2.9

and there is a single parame®@p,, to be fit from the data.
The simplest model to consider however is standard col
dark matteSCDM) defined by

his result is identical with the result of Ref18] even
hough our b errors are slightly smaller.

In Fig. 1 we show a comparison of the observed 194 Snla
Hubble free luminosity distances along with the theoretically
predicted curves in the context of SCD{dontinuous ling
. ) i and LCDM (dashed ling In this case it is even visually
with no fre'? parameters. Using EQ.2) in Eq. (1.7) we  opyipus that LCDM provides a good fit to the data contrary
calculateD{"(z). We may then findy® using Eq.(1.8) and o the case of SCDM. This visual distinction is not possible
minimize to find7,,. In the SCDM case there are no free when comparing the other data-compatible models discussed
parameters to vary and no minimization is needed. We thugelow with LCDM. We thus do not attempt to include the
find x?=x2,,=431.4, which impliesy3,/dof=2.2 (dof theoretical curves corresponding to other models on the same
=degrees of freedomSince this valuey?,/dof is signifi-  plot.
cantly larger than 1 we conclude that SCDM does not pro- We now consider other more general models and ansatze
vide a good fit to the Snla data. which, however, reduce for certain parameter values to

The next simplest model consistent with the flatness indiLCDM. If these parameter values givexd(LCDM) that is
cated by WMAP[26] is LCDM defined by Eq.(2.1). Itis  beyond the 2 level away from the minimunj(fmn, then we
straightforward to evaluat@}_h(z) numerically [using Eq.  would conclude that LCDM is disfavored compared to the

H2(z)=H3(1+2)° (2.2
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better fit model. Even if we just find models witjaﬁﬂn
<xZ:,(LCDM) =198.74 but within b we still have useful

PHYSICAL REVIEW 0, 043531 (2004

w(z)=p(2)/p(z) which in generaland in this casedepends
on the redshiftz. We can expressv(z) in terms ofH(z),

information since these models are more probable thafH/dz, andQqy using the Friedman equations

LCDM.

We start with a simple generalization of LCDM: We re-
place the cosmological constant energy density by a dark

energy with constant equation of state parameter. This ansatz

has been called “quiessence” in the literat{izgg]. The form
of H(z) is
H*(z; Qom, W) =Hg[(Qom(1+2)°
+(1- Qo) (1423 (2.9

This ansatz has two free paramet&rg, andw. We use prior
information from large scale structure,,h=0.2+0.03
[28] with h=0.72+0.08 [29]) to vary Qg in the range

0on=0.29+0.05 in this and in all subsequent ansatze. We

thus evaluatey’(w) and minimize with respect tev and
Qom. We find

Y2in=x2(w=—1.0100,=0.39=198.69. (2.7)
Including the X errors we have
w=—1.01+0.08 (2.8

which is identical with the corresponding result of Ref8].

Thus, the minimization of this generalized ansatz gives a

best fit that is indistinguishable at therdevel from LCDM.

This means either that LCDM is truly the best fit model or
that we have not chosen a general enough ansatz to see

better fit.

A further generalized ansatz involves the combination

of cosmological constant with quiessen¢guiessencekx
ansatz.
The form ofH(z) in this case is

H2(z;a;,Ww1)=HI Qom(1+2)3+a,(1+2)3¢+ W)
+(1-Qon—ay)]- (2.9

Minimizing x2(a;,w;,Qqm) With respect tow;, a;, Qom
we find

Xoin=x*W;=2.36, a;=(5 10°3),

Qon=0.24=195.1. (2.10
Including the error bars we have
w;=2.36"078, a;=(5 3910 . (2.10)

Clearly the fit is better compared to LCDM but the

x2(LCDM) = x?(a;=0,0,,=0.34)=198.7 corresponding
to LCDM with Qq,,=0.34 differs by less thad y3,(n=2)
=6.17 fromy?,,,. Therefore, LCDM is consistent at ther2

, @ 8mnG
H®=—=—3—(pm*poE) (212
a
and
a 477G
9=- 2~ 3pz[PmT (PoE+3PoE)], (213

whereq is the deceleration parameter and we have defined as
dark energy any other homogeneous and isotropic source of
gravity apart from matter. Using Eq&.12 and (2.13 we

find

H? 1
PoE= 75 q—z)- (2.14
Using Egs.(2.12 and(2.14) we find [30]
_Poe(2)  2q(2)—1
R e R ey o7y R
where
87Gpn(z H2
Qm(z)=;_+(z())=90m(1+z)3H—2. (2.16

a
Using now the definitions off and H it is easy to show that

dinH 01
P (2.17

g=—1+(1+2)
Thus substituting Eq(2.17 in Eq. (2.15 we have

2 ptind
W(Z):pDE(Z): 3( 2) dz
ppe(2)

1_(W0) Qon(1+2)

In the case of generalized Friedman equations valid in modi-
fied gravity models, Eq(2.18 can still be useful in charac-
terizing the expansion history but it should not be interpreted
as a property of an energy substance. Using the best fit form
of the quiessenca- (g-A) ansatz in Eq(2.18 we find the
predicted form ofw(z) which is plotted in Fig. 2 along with
the 1o and 2o error regions obtained by maximal variation
of the parameters,; and w; within the 100 and 2o error
contours ofy? as described in the previous section. This
form of w(z) (without error regionsalong with the corre-
sponding forms predicted by the other ansatze discussed be-

level (but not at the &) with the best fit of this ansatz. low, is also shown in Fig. 3. Clearly(z) differs signifi-
Nevertheless, given that this fit is better it is interesting tocantly from the LCDM prediction ofv=—1 at redshiftsz
compare the dark energy properties corresponding to this an~0.4. In particular we findw(z)=—1 for z<0.4 while
satz at best fit with those of LCDM. These properties arew(z)=2 for z=1. Thus, this ansatz gives us a hint for
well described by the effective equation of state parametethe “metamorphosis” of dark energy from antigravity

043531-4
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w(z)

FIG. 2. The redshift dependence of the equation of state paramgtgfor theq— A ansatze. The thick curve is the best fit and the light

(dark) shaded regions represent the (2) error regions.

(w=—1) at low redshifts to “hypergravity” (v=2) at high
redshifts. Clearly this metamorphogi§true) cannot persist

not realized in nature and we hawgz) <0 at all redshifts or
it is part of an oscillating behavior of the dark energy equa-

to arbitrarily high redshifts due to constraints coming fromtion of state parameter. This later possibility could also help
large scale structure and nucleosynthesis. Thus, it is eitheesolve the coincidence problef@1,32 and is a prediction

4 T

Sinh+DE, (194.336), {2}

0A,(193.826), {1}

>

Wer(2)
T

i ]
GChG, (194.816), {3} 1

q-A, (195.096), {5}

7

Linear, (196.358), {6} —

LA, (197.104), {9]

P3,(196.56).{7

/

N\
Quad, (196.778)N8

ChG (195.094), {10}

AT
//’ CA, (198.265), {11}
gk .—-_%4 \ Quies, (198.698), {12} |
e LCDM, (198.745), {13}
LA,
1 L L L L L L 1
0 025 0.5 0.75 1 125 15 175

z

FIG. 3. The redshift dependence of the equation of state parameter for the cosmological ansatze of Table I. The numbers in the

parentheses indicate the value xff;, for each ansatz and its rank according to increasing valugZgf. In LCDM the best fit value

Qom=0.34 was used giving?,;,=198.745.
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TABLE |. Best-fit parameters.

Model H(z) Xain Best fit parameters
OA H2(2) = H2{Qom(1+2)3+a,cos@,2+ay) a;=—3.22"3% a,=2.28'0%
1) +[1—a;cos@5) — Qgml} 193.8 az=—0.087+0.017, Qpn=0.34
Sinh+DE H2(2) =HZ[ Qom(1+2)%+a,(1+2)3"") + a,sinh(w,2) w;=0.19'53, w,=3.66'3%3
%) +1-Qom—a] 194.3 a,=—0.51"31, a,=0.545 0%
Qon=0.32
GCG (3) H%(2) =HZ[ Qom(1+2)%+ (1 194.8 A=0.9966 3000, a=13.75 303
—Qom) VA (1-A)(1+2)7]
Qom=0.24
GQ H2(Z)=H(Z)[QOm(l-i-Z)3+a1(1+z)3(1+""1) wi=—1.13+0.24,w,=2.42=0.02
+ay(1+2)°3 D+ (1-a;—a,— Q)]
4 195.1 a,=—57'310"%, a,=453103
Qom=0.24
g-A (5) H2(2)=H3[ Qom(1+2)3+a,(1+2)3¢H W 195.1 w;=2.36"348, a;=570410"°
+(1-Qom—ay)]
Qom=0.24
Linear H2(2) =HQom(1+2)%+(1— Qo) Wo=—1.13+0.09,w,;=1.87"0%8
(6) X (14 2z) 3 Wo=w1)g3wi2] 196.4 Qom=0.24
P3 H2(2) =H3[ Qom(1+2)%+ag(1+2)3+ay(1+2)? a;=—2.49+0.12,a,=0.46"55¢
7 +a(1+2)+(1—a;—a,—az— Qom)] 196.6 a;=0.33+0.06,0Q,,=0.34
Quad H2(2) =HZ[ Qom(1+2)3+a,(1+2) +a,(1+2)? a,;=—3.8511%, a,=1.63' 3%
8 +(1—a;—a,— Qom)] 196.8 Qom=0.34
LA H2(2) =H3[ Qom(1+2)%+ (1— Qo) (14 2) 3 Wot W) wo=—1.18+0.10,w;=2.79+0.05
9 e3wil/1+2)=1]) 197.1 Qom=0.24
CG (10 H2(2) =H Qom(1+2)%+ (1— Qo) VA+ (1—A)(1+2)%] 197.4 A=0.92+0.03Q,=0.24
CA (1) H2(2) =H Qom(1+2)%+ (1— Qom) fx(2)] 198.3 q=45810"% n=-15"8, 0,,=0.34
QUIES (12 H2(2) = H[ Qom(1+2)3+ (1— Qo) (1+2) 3] 198.7 w=—1.01+0.08,0,,=0.34
LCDM (13 H2(2) =H3 Qom(1+2)%+ (1— Qom) ] 198.7 Qom=0.34+0.03
SCDM H2(z)=H3(1+2)® 431.4 -

[11] (see also Refd.33,34)) of many modeld35-37 with  and 4, and classify the models according to the goodness of

stabilized modulu$38,39 of extra dimensions. fit. This classification will lead to some interesting conclu-
In addition tow(z) we also plot the reduced form &f(z) sions about the generic properties of dark energy. The 1
compared to LCDM defined as and 2 regions of thew(z) andH(z) curves in the context
of a particular ansatz are not particularly useful since other
) H2(z)— HECDM(Z) ansatze with equally good fits can giwgz) andH(z) best
HY(2)= H2 . (219 fits that are well outside thecregions of the initial ansatz

especially in regions witlz>1 where just a few data points
are available. Thus, in order to simplify the plots of Figs. 3

2 — 2 42
WhereHLCDM_O'P’(.H 2) +0.7. T_he reduced pest fit; (2) . and 4 and avoid confusion we only show the best fit curves
for the gA ansatz is shown in Fig. 4 along with the best fit . . .
without the correspondingd. and 2o regions.

;fs(czgsguen dC“ngo\fvorrEizgnmgu;% Sgg]tﬁ o;:lgztztefler::;atze We now briefly describe each one of the ansatze consid-
N . . red:

LCDM) are consistent with the data and with each other a? . s .

the 20 level, the predicted forms dfl,(z) andw(z) differ (1) Cubic Polynomial in (3-2) (P3:

significantly atz>0.5. _ H2(2) =HZ[ Qom(1+2)3+a5(1+2)3+a,(1+2)?

In order to shed more light to the dark energy metamor-
phosis puzzle we now consider more general formbl () +a(l+2)+(1—-a;—a,—az;— Qo) 1,
ansatze. For each ansatz we identify the predicted form of (2.20

H(z) and the parameters requiring fitting. Then we evaluate

and minimizex? with respect to these parameters varyingwherea, ,a,,as are unknown parameters to be fit. The only
Qom in the range)o,,=0.29+0.05. Finally, we identify the  priors used in thigand the other ansatze discussed hare
best fit parameter values and the correspondj/ﬁ,g1 (see flatness andly,=0.29+0.05. In contrast to Ref40] we
Table ), plot the corresponding/(z) andH(z) (see Figs. 3 have not fixeda;=0 since large scale structure data do not
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12 ————————

So6 - b
:
e
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4 | 4
2 r 4
(12): LCDM
a1):CA
0 r (13): Quies 7
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FIG. 4. The reduced Hubble parameter for some of the best and the worst fits of the cosmological ansatze of Table I. The number in the
parenthesis shows the rank{13) of the corresponding ansatz in terms of goodness of fit. The LCDM curve is not flat at zero because in
its construction we used the best fit valg,,=0.34 while theH, -py On the axis assumes the priQr,,,=0.30.

exclude a nonclustering form of matter with properties simi-son is that it only allows a slow changew({z) with redshift
lar to those of hot dark matter with very large free streamingoetweenw, and w; while the data seem to require a more
(or Jeanslength. This model has a slightly worse fig%;,,  “abrupt’ change fromw, tow, atz=0.5. The best fit values
=196.56), for Qo,=0.34, compared tog-A (x4, Of these parameters aravo=-1.18+0.10, w;=2.79
=195.1) but it also correspondsw(z)=—1 atz<0.5and  +0.05, andQy,=0.24.

w(z)>0 atz=1. Its properties at best fit are shown in Fig.  (3) Linear ansatav(z) =wg+w,z:

3. The values of the best fit parameters arg=—2.49 ) ) 3

+0.12, a,=0.46 7397 and a;=0.33+0.06. Compared to H(2) =Hol Qom(1+2)

the quagiratic ansatz 'of R¢#0] this cubic ansatz hasf slightly + (1= Qo) (1+2)3 W0 wDgdwiz] (223
better i, andw(z) is larger than the corresponding(z)

of the quadratic ansatz a>1 shown in Ref.[40] and This ansatz was suggested in R¢#2—-44 in a more gen-

in Fig. 3. eral power series form. It can give very good fits for low
(2) Linder [41] ansatzw(z) =wy+w42/(1+2) (LA): redshift data £<0.5) but it cannot fit well the general form
of w(z) atz=1. At best fit it givesyZ,,=196.4, forQqn
H2(2)=H§[Qom(1+2)? =0.24, which is about average compared to the other an-

T (1— 4 7)3(1+Worwy) gdwy (1/1+2 1) satze. The best fit pgrameter values arg=—1.13+0.09
(1~ Qon)(1+2) © ] andw; =1.86"03%, which leads ton(z)>0.5 forz=1.
(2.2 (4) Chaplygin GagCG) and Generalized Chaplygin Gas

. - . (GCQ) [9,45-54:
It can easily be verified using Eq2.18 that the ansatz

(2.21) leads to av(z) of the form H2(2)=H3[Qom(1+2)3+ (1 Qom) VA+ (1—A)(1+2)%],
(2.249
"
W(Z)=wo+ 7 - (222 \yhere the above form oF(z) is a generalization of the

usual Chaplygin gas ansatz which is obtained &or6
This ansatz was suggested by Lin@ét] and it is designed [46]. For «=6 the equation of state of Chaplygin gas dark
to interpolate between two values wf w(z) =wg at z=0 energy is
andw(z)=w; atz>1. It does not give a very good fitom-
pared to other two parameter ansatze the data {2, Po=——. (2.25
=197.1), even though it is still better than LCDM. The rea- ¢ Pc
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From the form of Eq(2.24) it is clear that the Chaplygin gas to vary and minimize with respect to the four parametgrs
behaves like pressureless dust at high redshifts and like @,, w; andw, instead of two parametems; anda, with
cosmological constant a=0. The sound velocity of Chap- fixed w,;= —2/3 andw,= — 1/3 for the quadratic model. The
lygin gas grows rapidly and approaches the velocity of lightfit of the generalized ansatz is bettq;zmgn: 195.1 forQgn,
at late redshifts {s=dp./dp.=\Alp,~t?). Thus inho- =0.24 anda,= —0.06'0%3, a,=47021073%, w,;=-1.13
mogeneities of Chaplygin gas do not gr@gince the Jeans +0.24, and w,=2.42+0.02) than the quadratic ansatz

length approaches the horizoand no constraints can be (y2. =196.8 for Q,,=0.34, a;=—3.8511 and a,

imposed from large scale structure observations. The physi= 1 637979 and the best fit form ofv(z) differs signifi-
cal motivation of the Chaplygin gas equation of St@€5  4ntly from the corresponding quadratic best fit particularly
comes from string theorief57]. In fact, considering a 5, ;=1 |n particular we find thaw(z)=— 1 for z=0.4 and
brane in ad+2 dimensional space-time, the introduction of w(z)=2 for z=1. For comparison the quadratic ansatz of
light cone variables in the resulting Nambu-Goto actionpq¢ [40] predictsw(z)=0 for z=1 with very small 2r

leads to the action of a Newtonian fluid with equation of ;o5 ot~ 1. This disagreement of our generalized ansatz

stateh(2.|25)_. . f the Chaolva is that i with the quadratic ansatz at-1 despite the small @ error
The limitation of the Chaplygin gas ansatz is that it Con'regions is another indication of the limited usefulness of

strainsw(z) to w(z) <0 at all finite redshifts. Thus its good- ploting 1o and 2 error regions ofv(z) in the context of a

ness of fit is below z_‘;xve_ra_ge(ﬁif 197.4 forQomn=0.24and  articular ansatz. These regions can be easily violated in the
A=0.92+0.03). This limitation does not exist for the gen- context of another ansatz with better or similar fit.

eralized Chaplygin gas ansatarbitrary @) which gives a A variant of this ansatz is one where one of the two arbi-
much better fit f7,=194.8 for Qon=0.24 and A  trary power law terms is replaced by an exponentially in-
=0.9966 000 @=13.75°009. This fit gives w(z)=1.2  creasing term. The corresponding ansatz ($iBtE) is
>0 for z=1 (see Fig. 3 as do all the ansatze with above
average goodness of fit. H2(2)=H3[ Qom(1+2)%+a,(1+2)3"WD + a,sinh(w,z)
(5) Generalized Cardassian ans&ta):
+(1—a;—Qom)]- (2.29
H(2)=H[ Qom(1+2)%+ (1~ Qom) fx(2)], (226

The results for this ansatz are almost identical to those of Eq.

where (2.29 (see Table | and Fig.)3

- 1 (7) Oscillating ansatZOA):

(1+2)3(~Ma

om

3
1—90m(l+z)

(2= H2(2) = HZ[ Qop(1+2)3+ 1008 8,72+ ay)

(2.27 +(1—ajcoqaz)—Qom) 1. (2.30
This model[58,59 emerges from a generalization of the i ] .
Friedman equations and predicts accelerated expansion at yEbis is our best fit ansatz. It gives a better fit to the data than
cent times without any dark energy. In this model the uni-any of ttloeg?c’)ther ansatﬁ?g;inzl%ﬁ for Qo,m=0.34, a;
verse is flat and consists only of matter and radiation. Here= —3.22" 575, a,=2.28"47, and az=—0.087+0.01x).
we follow Ref.[58] and consider the generalizatih27 of  The behavior ofw(z), however, forz=1 is qualitatively
the original Cardassian ansatz of Rgf0]. The original an-  different compared to the other ansatzee Fig. 3. For z
satz is obtained from Eq(2.27) by settingg=1 and is =<0.3 we findw(z)=—-1. For 0.5sz=<1.2 we findw(z)
equivalent to quiessencavi const). The generalized Car- >0 with a maximunw(z=0.75)=1.5. Atz=1.2, w(z) be-
dassian ansatz has been fitted to Snla data in[B&fusing comes negative and continues oscillating arousel0 with
a much smaller Snla dataset with redshifts1. We find large amplitude. This redshift range, however, includes only
(see Table)lthat this ansatz gives a relatively poor fit to the one data point a=1.75, which cannot constrain the behav-
data (7,=198.3 for Qy,=0.34 and q=0.045700%,  ior of w(z) andH(2) in any statistically significant way.
n=— 15jg) below the average goodness of fit for the models The quality of the fit for the oscillating ansatz combined
considered and only slightly better compared to LCDM withwith indications from the better fits of other ansatze that
Qom=0.34 (x2,,=198.7). The predictedv(z) increases indicatew(z)>0 for z=1 supports the idea that some type

with z but remains negativésee Fig. 3. of oscillation probably takes place far(z).
(6) Generalized Quardatic ansg@Quad: From the theoretical viewpoint this idea is also supported
for two reasons:
H2(2)=HZ[ Qom(1+2)3+a,(1+2)3E W) (a) Coincidence problem resolutioAn oscillating expan-
sion rate can help resolve the coincidence problem since our
+ay(1+2)30 "2+ (1-a;—a,~ Qo) . present accelerating phase is viewed simply as part of a se-

(2.28 quence of accelerating and decelerating periods in the expan-
sion history of the Universg31,32.
This is another generalization of the quadratic polynomial fit  (b) Extra dimensionsModels with extra dimensions ge-
for H(z) of Ref.[40]. Here we do not add an arbitrary cubic nerically predict oscillations of the stabilized modulus of the
term. Instead we allow the exponents of the two monomial&xtra dimension sizé&he radion fieldl due to its coupling to
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redshifting matter{11,12. These oscillations backreact on simple cosmological ansatz that will give the best possible fit
the expansion rate and induce oscillations of the Hubble pato the data given the number of parametefgRiressing this

rameter. important issue will be the subject of a subsequent paper.
Another factor pointing towards oscillating expansion rate
is the north-south pencil beam survey of RE&0], which ACKNOWLEDGMENTS

suggests an apparent periodicity in the galaxy distribution.
The number of galaxies as a function of redshift seems t?.
clump at regularly spaced intervals of 128 Mpc. Recent ¢
simulationg61] have indicated that this regularity has a pri-
ori probability less than 10° in CDM universes with or
without a cosmological constant. An oscillating expansion
rate could resolve this puzzle without invoking special fea-
tures in the primordial fluctuations spectrum. Here we demonstrate that the marginalization over the

zero point magnitudeM defined in Eq.(1.6) would have
negligible effectf O(1%)] on our results. Any model will
ll. CONCLUSION predict the theoretical valub!"(z;a;, .. ..a,) with some

. : : ndetermined parameters (e.g., ,,Q,). The best-fit
We have fitted several cosmological models using the?nodel is obtained by minimizing the quantiys]:

maximum likelihood method and the most recent Snla data
consisting of 194 data points. No priors have been used in N [
our analysis other than those indicated by other observations, ,2(m’)= " ,
\ © X &~ dlogiD (z) |2
i.e., flatness an@,,=0.29+0.05. i=1 (o )2+( w4 )

We have confirmed recent stud{g,62,63 indicating an 100100 () 9z, i
increase of the equation of state parameter with redshift (A1)
termed metamorphosis of dark energy in a recent sfafy - )
We have shown, however, that the best fit ansatze indicatéhereM’=M—Mgqy is a free parameter representing the
that this metamorphosis continues beyowdz)=0 and difference between the actull [see Eq.(1.6)], and its as-
leads tow(z)>0 atz=1. Nucleosynthesis and large scale sumed valueM , in the data.

structure constraints are not consistent wittz) >0 at arbi- Uniform marginalization oveM’ corresponds to integrat-
trarily high redshifts. Thus our best fits to the data can onlymg overM' and therefore working with gz defined by
be made consistent with these constraints if some kind of
oscillating behavior is realized for the effective dark energy — +
equation of state parametex(z). This possibility is further X=-2 In( f
enhanced by the fact that an oscillating expansion rate ansatz -
has provided the best fit to the data among all the 13 ansatzgnich after some manipulation gives
considered and also by other theoretical and observational
arguments discussed in the previous section. _ +oo N _

At low redshifts ¢£<0.5) all the fitted ansatze approach x'=-2 |n(J g (WACMZHBM A/ZdM’>, (A3)
w(z)=—1 with w(z) approximately constant. Mo#ibut not o
all) of the better fits prediat/(z) slightly less than-1 (upto | here
—1.3) for some redshift range withjr0,0.5] but not neces-
sarily at z=0. There are good fits, howevdlike the N g2 o N o
guiessence\ ansatz, with szmn below average for which Azz —'2=X2(M’=0), B=O.22 —'2 (A4)
w(z)>—1 for all zimplying that phantom energ64,65 =19 =19
(w<—1) is consistent with the data but is not necessarily d
more probable than dark energw® —1). Since there are an
good fits withw(z)>—1 and rapidly increasing/(z) for z 1
>0.5, we conclude that even if the priar>—1 were used, C=0.04, — (A5)

: :

We thank U. Alam, V. Sahni, and J. Tonry for useful clari-
ations on the analysis of the Snla data. This work was
supported by the European Research and Training Network
HPRN-CT-2000-00152.

APPENDIX

|0910Dﬁbs(zi) -0.2M' — |0910DtLh(Zi)]2

e X°2dM’ ) , (A2)

[

with the proper ansatz we would still be able to see the rapid =10

increase ofw(z) with z This does not agree with the con-

clusion of Ref[40] that it is the use of priors that would hide with

the increase oW(z) with redshift. Here we have shown that data th

the cosmological ansatz selection can also play a crucial role a;=10gyD "~ 10g;D| - (A6)

in revealing or hiding the true expansion history of the uni- _
verse. Other comparisons of particular ansatze with the Sni&hus, the “marginalized” oveM’ x? is
data can also be found in the literaty6—70.

Thus we are led to an important questidsthere a sys- —_ 2(,\7, —0)—
tematic way to use the Snla data in constructing a relatively X=X

BZ

E—Hn

C 5 =
5)=x (M'=0) (A7)
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because in the cases considered the last two terms on tledfects of the marginalization are of order 1% and can be

right-hand side of Eq(A7) are of O(1) while the first is

neglected. This same conclusion has also been reached in

O(10?) and therefore dominates over the others. Thus th&ef.[25].
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