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Accelerated cosmological models in first-order nonlinear gravity
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The evidence of the acceleration of universe at present time has led to investigate modified theories of
gravity and alternative theories of gravity, which are able to explain acceleration from a theoretical viewpoint
without the need of introducing dark energy. In this paper we study alternative gravitational theories defined by
Lagrangians which depend on general functions of the Ricci scalar invariant in minimal interaction with matter,
in view of their possible cosmological applications. Structural equations for the spacetimes described by such
theories are solved and the corresponding field equations are investigated in the Palatini formalism, which
prevents instability problems. Particular examples of these theories are also shown to provide, under suitable
hypotheses, a coherent theoretical explanation of earlier results concerning the present acceleration of the
universe and cosmological inflation. We suggest moreover a new possible Lagrangian, depending on the
inverse of sinh(R), which gives an explanation to the present acceleration of the universe.
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I. INTRODUCTION

Recent astronomical observations have provided str
evidence that we live in an accelerating universe. The su
nova observation results~see for example@1# and @2#!, the
observations about the anisotropy spectrum of the cos
microwave background~CMBR! ~see for example@3#! and
the results about the power spectrum of large-scale struc
@4# have converted cosmologists to the acceptance of
evidence of an accelerating universe.

By itself, acceleration is easy to understand in the con
of general relativity as well as in quantum field theory; ho
ever problems and doubts on the correct theoretical mod
interpret observational data arise, owing to the very small
nonzero energy scale which is seemingly implied. As a m
ter of facts, if we believe that we live in a universe which
homogeneous, isotropic and accelerating, general relativi
unambiguous about the need for some sort ofdark energy
source to explain acceleration@5#. We are thus faced with
some problems concerning:~i! the small amount of energy o
the vacuum, which is much smaller than we estimate it to
~the so-calledcosmological constant problem!; ~ii ! the nature
of the dark energy which seems to dominate the unive
and;~iii ! thecoincidence problembetween the actual densit
of dark energy in the universe and the actual matter den
@5#. The real nature of dark energy, which is required
general relativity in this cosmological context, is unknow
but it is fairly well accepted that dark energy should beha
like a fluid with a large negative pressure. This could
explained in vacuum by means of a very small cosmolog
constant, which is in fact related with the energy of t
vacuum, or by assuming the presence of some matter fi
the so-calleddark matteror dark energy. The dark energy
models with effective equation of statewe f f ~which deter-
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mines the relation between pressurep and density of matter
r) smaller thanwe f f,21 are currently preferable, owing t
the experimental results of@3#. Other possibilities include a
dynamical scalar field calledquintessence@6#, or a phantom
scalar field@7,8#, exotic perfect fluids@9#, tachyon matter
@10#, a four Fermion model@11# and a Born-Infeld quantum
condensate model@12#.

One of the first attempts to correctly interpret, from
theoretical point of view, the observed data modifying ge
eral relativity ~without the introduction of dark energy! was
to address the cosmological constant problem to some
allow for the vacuum energy to be large@13#; but this has
been proven to be not enough to get rid of dark matter
dark energy.

The other possibility is to assume that we do not yet u
derstand gravity at large scales, which means that gen
relativity should be modified or replaced by alternati
gravitational theories when the curvature of spacetime
small ~see for example@14#!.

Rather than solving the cosmological constant problem
introducing dark energy, we can try to explain the curre
period of acceleration of the universe by a modification
general relativity which leads to modified Friedmann equ
tions~MFR! so that the acceleration kicks in. MFR equatio
of this type arise surely in brane-world models with lar
spatial extra dimensions@14#.

In a completely different framework it has been realiz
that in the quantization on curved spacetimes, when inte
tions among the quantum fields and the background ge
etry or the self interaction of the gravitational field are co
sidered, the standard Hilbert-Einstein Lagrangian has to
suitably modified@15#. These corrective terms, which ar
essential in order to remove divergences, are higher-o
terms in the curvature invariants such asR, RmnRmn ,
RmnabRmnab , Rh lR, or nonminimally coupled terms be
tween scalar fields and the gravitational field. This is a f
ther reason to support the idea that Lagrangians depen
on general functions of the curvature invariants can prov
physically significant models to explain cosmological expe
©2004 The American Physical Society24-1
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mental results. It is moreover interesting that such correc
terms to the standard Hilbert-Einstein Lagrangian can be
dicted by some time-dependent compactification in string
M theory ~see@16,18#!. In particular it has been shown tha
quantum fluctuations in nearly flat spacetimes may ind
terms which are proportional to inverse powers of the Ri
scalar invariant for small R, while the expansion of the
fective action at large curvature predicts terms with a po
tive power of the curvature invariants@18,19#.

As an alternative to extra dimensions, it is also possible
explain the modified Friedmann equations by means o
modified theory of four dimensional gravity@16,17#. A
simple task to modify general relativity, when the curvatu
is very small, is hence to add to the Lagrangian of the the
a piece which is proportional to the inverse of the sca
curvature 1/R ~see @16–24# and references therein!. These
theories have been deeply analyzed in recent months, in v
of their capability of explaining present cosmological acc
eration as well as early time inflation. As a matter of facts
appears that alternative theories of gravity provide value
we f f,21 and in accordance with the experimental resu
see@17# and @19#.

We remark moreover that modified theories of gravi
depending on any analytical function of the Ricci scal
have been studied in order to avoid the singularities in c
mological solutions@25#. It is worth noticing that black holes
in modified gravity are less entropic than in standard gen
relativity @26#.

It turns out that the metric approach to these Lagrangi
leads to modified Friedmann equations which could exp
the observed cosmological acceleration of the universe w
out the need of dark energy@17#. However the metric ap-
proach leads to complicated fourth order equations that
only be simplified by introducing fictitious scalar fields@27#.
It has moreover been proven that the aforementioned
proach leads to results which are in contrast with the s
system experiments@28# and also that the relevant fourt
order field equations suffer serious instability problems@29#.

It has been shown in@22# that, on the contrary, a Palatin
variational approach to such modified nonlinear gravitatio
Lagrangians coupled to matter produces second order
equations. These equations are equivalent to the stan
Einstein field equations only in the vacuum case@30# or for
special~radiating! matter. The modified Friedmann equatio
obtained in this context offer however an alternative exp
nation for the cosmological acceleration and the approac
the de Sitter spacetime is exponentially fast when theR
term dominates. These modified Friedmann equations are
afflicted by instability problems and they are in accepta
accordance with the results of the solar system experim
@21#. The Palatini formalism has been further proven to
not excluded by electron-electron scattering experime
provided the physical fields are taken into account in a s
able way@27,32#.

On the other hand it is widely believed and accepted t
at the very early times the universe also underwent an ac
eration phase calledinflation, the origin of which is still un-
known. Some authors have proposed that modified grav
tional Lagrangians can moreover explain early inflation;@15#
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and@18#. The addition of correction terms of the pure-pow
type Rm (m.0) in addition to the 1/R term to the standard
Hilbert-Einstein Lagrangian, can explain both the early tim
inflation and the current acceleration without instabil
problems of field equations@19#. It is there proven that the
terms in the Lagrangian with positive powers of the curv
ture support the inflationary period, while terms with neg
tive powers ofR are able to explain the current cosmic a
celeration.

In this paper we first extend the results previously o
tained in @30# ~for Lagrangians depending on general fun
tions of the Ricci scalar invariant in vacuum!, to the more
general case of interaction with matter fields. We conside
first order Palatini formalism for field equations of a gene
alized gravitational Lagrangian in minimal interaction with
matter Lagrangian. The gravitational Lagrangian depends
a metricg and a torsionless connectionG, assumed to bea
priori independent. The method generates structural eq
tions for a spacetime with an ensuing conformal bimet
structure.

Starting from the request that the connection should
metric with respect to a metrich ~suitably defined by dynam
ics! we are able to obtaingeneralized Einstein field equa
tions. The metrich turns out to be related to the metricg by
a conformal transformation. These general results ext
those of the vacuum case@30#; the universality of the Ein-
stein field equations does not hold any longer, apart from
case of a purely radiation universe~in this case the stress
energy tensor is traceless and the structural equations
spacetime are the same as in the vacuum case!. The univer-
sality property was investigated not only at the level of eq
tions of motion, but also at the level of the definition
energy and conservation laws for the gravitational field. T
problem was in fact analyzed in the paper@33#, where it was
shown that universality holds also for the gravitation
energy-momentum complex, which turns out to be ess
tially the same as in the linear case. The formalism, dev
oped in this paper to obtain the generalized Einstein fi
equations, is very general and in forthcoming papers~under
completion! it will be moreover generalized to theories d
pending on higher-order terms in the Ricci-squared curva
invariant @34#, which have been already analyzed in t
vacuum case in@35#.

For cosmological applications, we shall substitute t
general Robertson-Walker metricg in the generalized Ein-
stein field equations, assuming the stress-energy tensor
a perfect fluid tensor. Taking into account the conformal
lation between the~physical! metric g and the conformal
metric h, we obtain generalized Einstein equations whi
reproduce amodified Hubble constant, depending on the
conformal factor. We stress that, owing to the conform
transformation, also the metrich results to be Robertson
Walker. The formalism is fully and analytically applicab
under the request that the structural equation can be so
so that bothf (R) and f 8(R) can be expressed in terms of th
tracet5Tmngmn ~see also@21#!. Otherwise, numerical and
approximation methods are always applicable. These alte
tive theories are very rich in their structure and they c
provide models of multi-universe cosmologies and can
4-2
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suitably modified to fit experimental data.
Examples can be provided by choosing particular exp

sions of f (R). We treat here the simplest cases off (R)
5bRn ~pure power! and f (R)5a ln(bR) ~logarithmic La-
grangian!, which are very significant in view of their cosmo
logical applications. The modified Hubble constant and
first order field equations are obtained, both forh andg. We
propose moreover a new possible Lagrangian, which
serves interesting cosmological applications, contain
terms in the inverse of the hyperbolic sine of the Ricci sca

The examplef (R)5bRn is remarkably important. As a
matter of facts each analytical Lagrangian inR can be locally
approximated by means of a Taylor polynomial expans
and further on polynomial Lagrangians inR can be~under
suitably hypotheses! locally approximated byf (R).bRn,
where n will be negative for smallR and positive for largeR.
In the aforementioned case off (R)5bRn we specify the
stress-energy tensor for the cases of dust, radiation
vacuum universes. In the dust universe and for the partic
choice of zero space curvature in the Robertson-Walker m
ric we can solve exactly the differential equations and
obtain the value of the acceleration parameter dependin
the exponentn ~for particular values ofn). It results that
acceleration is supported in the casesn,0 andn. 3

2 . These
models seem to be able to explain both the current univ
acceleration and early time inflation, taking into accou
leading terms of polynomial-like Lagrangians in each epo
of the universe. Polynomial Lagrangians are also discus
in order to treat radiation universes. It results that pres
time acceleration can be predicted and a critical value of
scale factor appears, which rules the transition from an
celerating to a decelerating epoch of the universe.

Logarithmic Lagrangians in the Ricci scalar give an int
esting, exactly solvable, model also for the case of pure
diation matter, supporting the present time acceleration
universe~see also@36# and @37#!.

Lagrangians containing terms proportional to the inve
of the hyperbolic sine of the Ricci scalar provide very co
plicated modified Friedmann equation which cannot
solved analytically. However these equations could give
explanation for the current acceleration of the universe in
appropriate limit and they can be useful for further numeri
analysis or finer approximation techniques.

II. f „R… GRAVITY

We begin with considering on a 4-dimensional Lorentz
manifold (M ,g) the action

A5Agrav
f 1Amat5E ~Ag f~R!12kLmat!d

4x, ~1!

where R[R(g,G)5gabRab(G) and Rmn(G) is the Ricci
tensor of any independent torsionless connectionG. The
gravitational part of the Lagrangian is controlled by a giv
real analytic function of one real variablef (R), while Ag
denotes the scalar densityudetigmniu1/2 of weight 1. The total
Lagrangian contains also a first order matter partLmat func-
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tionally depending on matter fieldsC together with their first
derivatives, equipped with a gravitational coupling const
k58pG.

Equations of motion ensuing from the first order Palat
formalism are~see@20,22,30,31#!

f 8~R!R(mn)~G!2
1

2
f ~R!gmn5kTmn , ~2!

¹a
G~Ag f8~R!gmn!50, ~3!

where Tmn52(2/Ag)(dLmat/dgmn) denotes the matte
source stress-energy tensor and¹G means covariant deriva
tive with respect toG. In this paper the metricg and its
inverse are used for lowering and raising indices.

We shall use the standard notation denoting byR(mn) the
symmetric part ofRmn , i.e., R(mn)[

1
2 (Rmn1Rnm). In order

to get Eq.~3! one has to additionally assume thatLmat is
functionally independent ofG; however it may contain met
ric covariant derivatives¹g of fields. This entails that the
matter stress-energy tensorTmn5Tmn(g,C,¹gC) depends
on the metricg, the matter fields denoted here byC, to-
gether with their metric covariant derivatives. Physica
speaking we are assuming that matter fields are minim
coupled to the gravitational fieldg.

From Eq.~3! one sees thatAg f8(R)gmn is a symmetric
twice contravariant tensor density of weight 1, so that if it
not degenerate one can use it to define a metrichmn such that
the following holds true:

Ag f8~R!gmn5Ahhmn. ~4!

This means that the two metricsh and g are conformally
equivalent. The corresponding conformal factor can be ea
found ~up to a possible sign! to be f 8(R) ~in dimM54) and
the conformal transformation results to be

hmn5 f 8~R!gmn . ~5!

Therefore, as it is well known, Eq.~3! implies that G
5GLC(h), i.e., the Levi-Civita connection ofh, and
R(mn)(G)5Rmn(h)[Rmn . We should emphasize, howeve
that scalarR5gmnRmn(h) is not a Ricci scalar of the metric
h. In what follows we shall call it ageneralized Ricci scalar
and sometime for shortcut simply a Ricci scalar.

Equation ~2! can be supplemented by the scalar-valu
equation obtained by taking theg-trace of Eq.~2!, where we
sett5tr T5gmnTmn :

f 8~R!R22 f ~R!5kt. ~6!

We obtain that Eq.~6! controls solutions of Eq.~2!. We shall
refer to this scalar-valued equation as thestructural equation
of the spacetime. More precisely, for any real solutionR
5F(t) of Eq. ~6! we have thatf (R)5 f „F(t)… and f 8(R)
5 f 8„F(t)… can be seen as functions oft. For notational
convenience we shall use the abuse of notationf (t)
5 f „F(t)… and f 8(t)5 f 8„F(t)….

Now we are in position to introduce the generalized E
stein equation under the form
4-3
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Rmn~h!5
f ~t!

2 f 8~t!
gmn1

k

f 8~t!
Tmn ~7!

with hmn defined by Eq.~5! for a givengmn andTmn ~see also
@20,22,30#!. For the matter-free case we find thatR5F(0)
becomes a constant, which implies that the two metrics
homotetic; this property further implies that Eq.~7! is noth-
ing but Einstein equation for the metricg and it is almost
independent on the choice of the functionf (R). This is noth-
ing but theuniversality propertyobserved in@30#. Also Ein-
stein equation with cosmological constantL can be recasted
into the form~7! if we chosef (R)5R2L. These properties
justify the name of generalized Einstein equation for Eq.~7!.
In the presence of matter~7! expresses instead a deviation f
the metricg to be Einstein, apart from the case whent50
where universality still holds true@30#.

It should be also noticed that Eq.~6! has, in general, many
real solutions, especially whenf (R) is a polynomial function
of higher degree. Therefore,f (R)-gravity supports the idea
of multi-universe interpretation. Moreover, the number
possible universes is dynamical, sincet turns out to be a
function of the FRW scale factora(t) ~see below! except for
a radiation dominated period.

Another special property one wants to emphasize is
we can makef 8(R)R22 f (R) to be any function we wish
This is, of course, due to the fact that the nonhomogen
linear ODE

f 8~R!R22 f ~R!5f~R! ~8!

has a solution in the formf (R)5R2*ds@f(s)/s3#. The
choice off (R) allows todesigna specific cosmological sce
nario and to adjust the model to fit concrete experimen
data.

III. FRW COSMOLOGY IN f „R… GRAVITY

For the cosmological applications one has to choose
metric g to be the Friedmann-Robertson-Walker metr
which ~in spherical coordinates! takes the standard form:

g52dt21a2~ t !F 1

12Kr 2 dr21r 2~du21sin2~u!dw2!G ,
~9!

wherea(t) is the so-calledscale factorand K is the space
curvature (K50,1,21). Another main ingredient of the cos
mological model is the perfect fluid stress-energy tensor

Tmn5~r1p!umun1pgmn ,

wherep is the pressure,r is the density of matter andum is
a co-moving fluid vector, which in a comoving frame@um

5(1,0,0,0)# becomes simply
04352
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Tmn5S r 0 0 0

0
pa2~ t !

12Kr 2
0 0

0 0 pa2~ t !r 2 0

0 0 0 pa2~ t !r 2sin2~u!

D .

~10!

Later on we shall assume the standard relations between
pressurep, the matter densityr and the expansion facto
a(t), namely

p5wr, r5ha23(11w), ~11!

where particular values of the parameterwP$21,0,13 % will
correspond to the vacuum, dust or radiation dominated u
verse. Exotic matters, which are up to now under investi
tion as possible models for dark energy, admit instead va
of w,21. These expressions~11! follow from the conser-
vation law of the energy-momentum¹mTmn50 and conse-
quently the continuity equation should hold:

ṙ13H~r1p!50, ~12!

whereH5ȧ/a is theHubble constant. The requirements~3!
and ~4! fix h to be conformal tog and in fact equal to

h5 f 8~t!H 2dt21a2~ t !F 1

12Kr 2 dr2

1r 2
„du21sin2~u!dw2

…G J , ~13!

wheret5Tmngmn53p2r is a function of time through its
dependence on the scale factora(t):

t5~3w21!h@a~ t !#23(11w).

Substituting all necessary ingredients into the generali
Einstein equation~7! we obtain the following

R00~h!5
2 f ~t!12kr

2b
52

3

2
F2

ä

a
1

ḃ

b

ȧ

a
1

b̈

b
2S ḃ

b
D 2G

~14!

for the 00 component, while for the 11 component we ha

R11~h!F12Kr 2

a2 G5
f ~t!12kp

2b

5
1

2 F2
ä

a
15

ḃ

b

ȧ

a
1

b̈

b
14S ȧ

a
D 2

14
K

a2G .

~15!

Here for simplicity we have introduced the shortcutb(t)
5 f 8(t). Of course for the usual Einstenian case one
b(t)51. Combining the last two equations we can obtain
analogue of the Friedmann equation under the form
4-4
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S ȧ

a
1

ḃ

2b
D 2

1
K

a2
5

k

3b Fr1
f ~t!1kt

2k G ~16!

which can be seen as a generalized definition of amodified

Hubble constant Hˆ 5(ȧ/a1ḃ/2b), which takes into accoun
the presence of the conformal factorb, entering the definition
of the conformal metrich, which in turn generalizes the re
sults of @21#.

We stress that, owing to the conformal transformation
tweenh andg, the generalized Ricci scalar can be genera
expressed from Eqs.~14! and ~15! as follows:

R5Rmn~h!gmn5
2 f ~t!1kt

b
5R~h!b ~17!

which reproduces general relativity in the particular ca
f (R)5R, as we shall see later on, but provides relevant
viation from general relativity in the other cases. We rem
that R~h! is the true Ricci scalar of the metrich. As it has
been already remarked in@20# the metric h itself is a
Robertson-Walker metric@see Eq.~13!#

h5eS 2d t̃21A2~ t̃ !F 1

12Kr 2 dr21r 2~du21sin2~u!dw2!G D
~18!

with a new cosmic timed t̃5Aubudt and a new scale facto
A5Aubua, wheree561 corresponds to positive or negativ
values ofb. The generalized Einstein equation~7! can be
also calculated in (t̃ ,xi) coordinates. This is equivalent to th
assumption that the metrich is a physical one~i.e., that we
can use conformal frame instead of the original Einst
frame!. We obtain in this case:

e
2 f ~t!12kr

2b2
523

Ä

A
~19!

for the 00 component while for the 11 component we fin

e
f ~t!12kp

2b2
5

Ä

A
12S Ȧ

A
D 2

12
K

A2
, ~20!

whereȦ denotes now the differentiation with respect to t
new cosmic timet̃ . An additional factore/b on the left-hand
side ~LHS! appears due to the fact thatdt25(1/ubu)d t̃2 and
a25(1/ubu)A2. Now the analogue of the Friedmann equati
takes the form

H̃252
K

A2
1e

f ~t!1k~r13p!

6b2
~21!

with H̃5Ȧ/A being the Hubble constant of the conform
metric h. This expression is much simpler and recalls t
standard Friedmann equations for the Robertson-Walker m
ric.
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A. Examples: f „R…ÄbRn and polynomial Lagrangians

We consider, as a class of particular examples, the clas
linear Lagrangians in an arbitrary power of the curvatu
invariant R. The importance of such models can be cons
ered and understood in connection with the main effort
modifying general relativity by means of alternativ
Lagrangians, which are able to explain the experimental d
in some limit. Up to now ~and up to our knowledge!
polynomial-like and logarithmic-like Lagrangians in the ge
eralized Ricci scalar invariant have been considered~see for
example @5,16–18,21,22,36,37# and references therein!.
These particular Lagrangians recover general relativity
some approximation, which physically speaking means
some age of the universe, and reproduce modified Friedm
equations in some other limit. These modified Friedma
equations are able to give a possible theoretical explana
to the experimental results~such as inflation and present a
celeration of the universe!.

If we narrow down our researches to the case of poly
mial Lagrangians, each term of the Lagrangian behaves
leading term at some particular age of the universe and
able to reproduce at a convenient order of approximation
experimental data. Moreover any analytical function can
approximated by means of its Taylor polynomial expansio
in the limits of physical relevance and it consequently b
haves like a polynomial-like Lagrangian. In this framewo
it is hence worth analyzing exactly and analytica
Lagrangians of the typeL(R)5bRnAg ~with arbitrary pos-
sibly nonintegern) representing single terms of a mo
physical and general polynomial or polynomial-like expre
sion for the Lagrangian. Integer values ofn assume a funda
mental role in this context representing, for any analyti
function, the terms deriving from a Taylor expansion~previ-
ously studied in a different context in@38#!. The advantage
which derives from this particular class of Lagrangians
that they are easily and exactly solvable and they prov
coherent models for the universe acceleration and for
early time inflation.

We stress once more that we are specializing to the c
of four dimensional spacetimes so thatgmngmn54. We as-
sume then a Lagrangian of the form

f ~R!Ag5bRnAg ~bÞ0; nPR; nÞ0,2!

~see also@19# and@21#!. The algebraic field equations~2! are
consequently the following:

bRn21FnRmn2
1

2
RgmnG5kTmn

while the structural equation~6! becomes

Rn5
kt

b~n22!
. ~22!

This expression implies that the casen52 is singular~see
e.g., @19#!. Taking into account the expression~10! for the
stress energy tensor and the dominant energy condition
should impose
4-5
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t5Tmngmn,0. ~23!

Equation~22! forcesRn to be positive definite for even inte
ger values ofn and we should fix the dimensional constantb
~the dimension ofb is the same as the dimension ofR12n) in
front of the Lagrangian to be

b.0 for n,2,

b,0 for n.2.

Let us introduce, for convenience, a new rescaled dim
sional coefficientb̃5b(22n) which is positive for evenn
and arbitrary otherwise. In the last case, i.e., forn odd, one
has sgnR5sgnb̃, where R5(2kt/b̃)1/n. Instead, forn
even one has two different real solutions of Eq.~22!, namely

R656S 2kt

b̃
D 1/n

. ~24!

This implies that in any caseR will be proportional to a
well-defined power ofa, which is exactlyR.a23(w11)/n.
This expression shows that only in the vacuum case
model approaches a de Sitter~anti–de Sitter! universe.

The requirements~3! and ~4! fix h to be conformal tog
and in fact equal to

h5
n«

22n
b̃1/n~2kt!(n21)/nH 2dt2

1a2~ t !F 1

12Kr 2 dr21r 2~du21sin2~u!dw2!G J ,

~25!

where we remark again that«5sgnR51 for odd values ofn
and, on the contrary,«561 in accordance with the choic
of the solution in Eq.~24! for even values ofn. We are now
able to calculate the modified Friedmann equations and
modified Hubble constant from Eq.~16!; or, in a different but
completely equivalent way, by inserting Eq.~25! into Eq.~7!.
From the structural equation~6! we can calculate

f ~t!5
kt

n22
,

b~ t !5 f 8~t!5
n«

22n
b̃

1
n~2kt!(n21)/n,

and we obtain that the Hubble constant for the metricg can
be locally calculated to be

H25S ȧ

a
D 2

5
2n«

3~3w21!@3w~n21!1~n23!# F2kt

b̃
G 1/n

2
K

a2 F 2n

3w~n21!1~n23!G
2

. ~26!

The deceleration parameter can be obtained from the Hu
constant by means of the following relation:
04352
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q~ t !ª2S 11
Ḣ~ t !

H2~ t !
D 52S ä~ t !

a~ t !H2~ t !
D ~27!

and from Eq.~26! it results, in the caseK50, to be formally
equal to

q~n,w!5
3~11w!22n

2n
. ~28!

We say formula~28! to be formal since, at the moment, we
do not know about its effective solution realizations. Th
will be the subject of our investigations below.

The effectivewe f f can be obtained~as in @17#! by means
of simple calculations from Eq.~28! and it results to be, for
this theory,

we f f5
2

3
q~n,w!2

1

3
5211

1

n
1

w

n
. ~29!

We remark that the range of21.45,we f f,20.74 for dark
energy, stated in@3#, can be easily recovered in our theory b
choosing suitable and admissible values ofn.

If we consider expression~28! for the deceleration param
eter q(n,w) we see that, from the definition ofwe f f in Eq.
~29!, an accelerating behavior of the cosmological model
quires that the effectivewe f f,2 1

3 . This bound to the value
of we f f can be alternatively seen in terms ofw. This states in
particular that to obtain accelerated universes we should
imposew,2n/321 for n.0 or w.2n/321 for n,0.

For the casen51 this imposes an upper bound for th
acceleration to the value ofw,wcrit521, reproducing the
well-known results of general relativity; choosing alternati
Lagrangians withn.0 implies that this limit is shifted to the
value wcrit52n/321. In the casen,0 we have no longer
an upper bound, but a lower bound forw.wcrit52n/3
21; dust and radiation matter satisfy that condition by de
nition.

Consider now, in more detail, the case of pressure-f
~dust! universe, i.e.,p50, so thatt52r(t)52h/a3(t)
~we remark once more thath.0). The resulting generalized
Einstein equations~26! which derive from Eq.~2! produce
modified Friedmann equations in the matter universe c
considered here. The resulting expression for
Hubble constant ofg can be calculated from Eq.~26! to be
~for nÞ3)

H25
ȧ2~ t !

a2~ t !
5

2

3F «n~hk!1/n

~32n!@b̃a3#1/n
2

6Kn2

a2~ t !~n23!2G ~30!

which reproduces, as it should be expected, the stan
Friedmann equation in the very particular casen51, and
b̃5b51. We remark that the above expression~30! repre-
sents the square value of the Hubble constant and it beco
singular atn53 in the case of dust universe, under analys

We restrict ourselves now to the case of K50. We have to
require that the expression on the right-hand side of Eq.~30!
should be positive.
4-6



e

x

e

at

ir
th

ne
ue

i

u

ro

e
-

ith
liz

rre

is

a
s

sis
t

e

tal

for-
-

tion
-

he

s of
tain
re-

ACCELERATED COSMOLOGICAL MODELS IN FIRST- . . . PHYSICAL REVIEW D 70, 043524 ~2004!
We start discussing integer values ofn, which are very
relevant for our analysis, as we stated before. In the cas
odd integer values ofn («51) we should requireb̃.0 for
0,n,2 or 2,n,3, i.e., essentially in the casen51 of
standard general relativity. Whenn is still odd butb̃,0 one
getsn,0 or n.3 instead.

In the case of even values ofn, we see thatb̃ is always
positive. Therefore, as we required before, we should fi«
521 for the following values ofn: n,0 or n.3. Thus the
solutionR1 of Eq. ~24! gives no relevant contribution to th
solutions of Eq.~30!, owing the singularity in the casen
52. Finally, one should notice thatb.0 for nP(0,2)ø(3,
1`) and negative otherwise, i.e., fornP(2`,0)ø(2,3) in-
dependently of the parity ofn.

We remark however that we do not need to assume thn
is an integer and, in fact, it can bea priori any real ~or
rational! number. In any case, however, we should requ
Eq. ~22! to be definite and moreover we should impose
positivity of Eq.~26!. Suitable values ofb have to be chosen
and the analysis can be carried over, following the headli
of the analysis previously done in the case of integer val
of n. Specializing again to the case of dust universe withK

50, in the case of real, nonrationaln one has to assumeb̃
.0 and this imposesnP(0,3).

The modified Friedmann equations, for dust universe
the caseK50, can be integrated and we easily obtain~apart
from integration constants, which can be forgotten in o
analysis!

a~ t !5F 3«

2n~32n!G
n/3Fkh

b̃
G 1/3

t2n/3. ~31!

Now the deceleration parameter can be obtained again f
Eq. ~28!; we find

q~ t !5
322n

2n
~32!

for the particular solutions~31! corresponding to the cas
K50, selected by Eq.~30!. This implies that we obtain ac
celerated solutions in the case:

q~ t !,0⇔n,0 or n.
3

2
~33!

corresponding to alternative theories of gravity w
Lagrangians depending on inverse powers of the genera
Ricci scalar or on terms with powers higher than3/2, owing
to the restriction imposed for the positivity of Eq.~30!.

If we consider the case of pure-radiation universe, co
sponding tot53p2r50 with r5r(t)5h/a4(t), we have
that Eq.~7! is undefined, since Eq.~22! implies Rn50 and
f 8(t)50. This entails that our formalism fails to cover th
case which has to be treated differently~see below!. There-
fore, formula~28! for w51/3 is purely formal.

In vacuum dominated universe, corresponding to the c
w521, we obtain from Eq.~26! that the Hubble constant i
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H25
ȧ2~ t !

a2~ t !
5

«

12F4kh

b̃
G 1/n

2
K

a2~ t !
, ~34!

which results to be positive and well-defined for anyn (n
Þ2) with a suitable choice forb and«. It follows that in the
case of a vacuum universe, and forK50 we have that

a~ t !5eA(«/12)[4kh/b̃] 1/nt ~35!

corresponding to a de Sitter universe~with an exponential
expansion!; the deceleration parameter is in this caseq(t)
521 supporting cosmological acceleration.

A similar analysis can be performed under the hypothe
that the metrich is the physical metric and it is spatially fla
(K50). The deceleration parameter for the metrich can be
formally calculated to be

q̃~w,n!5
2 f ~t!12kr

f ~t!1k~r13p!
5

2n23~11w!

n2313~n21!w

5
2n23~11w!

n~113w!23~11w!
~36!

which gives accelerationq̃(21,n)521 for any value ofn in
vacuum dominated universes andq̃(0,n)5(2n23)/(n23)
,0 in dust dominated universes provided that3

2 ,n,3 (n

Þ2). Finally, for pure radiation we haveq̃( 1
3 ,n)51, i.e.,

one gets deceleration for any value ofn.
The effective value ofw can be also calculated in this cas

from Eq. ~29!; we get

we f f5
n~12w!2w21

@n~113w!23~11w!#
~37!

which allows us to make a comparison with the experimen
data.

These results are alternative to the case described by
mula ~28! wheng is the physical metric. As usual in alterna
tive nonlinear theories, we do not knowa priori which is the
physical metric: discussions about the physical interpreta
of g and h both from the mathematical and physical view
point are up to now open; see, e.g.,@27#, @32# and @39#.

1. Polynomial Lagrangians in the generalized Ricci scalar

As we told before theories with power Lagrangians in t
generalized Ricci scalar can be considered asapproximations
of more physical polynomial-like Lagrangians@18# of the
type:

f ~R!5R1
a

~21n!Rn
1

b

22m
Rm ~38!

~here bothn.0 andm.0, with mÞ2 andnÞ22).
We consider the case of dust universew50. In the limit

of small or large curvatures, corresponding to the case
present time universe and early time universe, we ob
from the structural equations that the leading terms are
spectively:
4-7
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R→0⇒ 2a

Rn
5kt,

R→`⇒2bRm5kt.

From Eq.~32! we deduce that polynomial Lagrangians pr
vide an explanation for early time inflation assuming th
m. 3

2 and they can provide an explanation to present ti
cosmic acceleration assuming that some inverse power o
generalized Ricci scalar is present in the Lagrangian~i.e.,
aÞ0).

This result reproduces previous results which have b
obtained in a different framework both in the metric forma
ism ~in @17# and @19#! and in the Palatini formalism~ @21#
and @22#!. We stress moreover that terms likebRm ~with m
.0) are related to the so-called Starobinsky inflation@15#.

2. Polynomial Lagrangians for radiation universes

We can otherwise consider, for the case of radiation u
versesw5 1

3 , a Lagrangian of the form1

f ~R!5aR1
b

m22
Rm S wherew5

1

3
; t50D ~39!

which in @19# and@21# has been already examined in the ca
m52,tÞ0. It has been there proven that, in the metric f
malism such Lagrangians support inflation, while in the P
latini formalism they provide explanation for the prese
time acceleration@21#.

The structural equation~6! admits besides the trivial so
lution R50 also a nontrivial solutionR5«(a/b)1/(12m),
where«51 for m odd and«561 for even values ofm. This
correspond to de Sitter and anti–de Sitter universe for p
tive and negative values ofR respectively.

In the case of the obvious solutionR50 we have that
f (R)50, f 8(R)5a, and consequently

H25
kr

3a
2Ka225

kh

3a
a242Ka22. ~40!

The deceleration parameter can be formally calculated to

q~ t !5

kh

3a

kh

3a
2Ka22

. ~41!

In the particular caseK50 we havea5 4Akh/3aA2t and
the deceleration parameter can be easily calculated to
q(t)51, describing a decelerating universe for this solut
(R50). If we shift to the nontrivial solution R
5«(a/b)1/(m21) we now see that the structural equati
gives

1mÞ1,2.
04352
t
e
he

n

i-

e
-
-
t

i-

e

be
n

f ~R!5«
m221a

m22 S a

b D 1/(m21)

, ~42!

f 8~R!52a
m21

m22
, ~43!

so that the Hubble constant for the metricg can be calculated
to be

H25
kh~m22!

6a~m21!
a241«

m221a

12a~m21! S a

b D 1/(m21)

2Ka22

5S2Ka221La24, ~44!

where for notational convenience we have introduced
parameters L5kh(m22)/6a(m21) and S5„«(m22
1a)/@12a(m21)#…(a/b)1/(m21), which we require to be
positive.

The deceleration parameter can be obtained by mean
formula ~27!:

q~ t,m!5
La242S

S2Ka221La24
5

L2Sa4

L2Ka21Sa4
. ~45!

In the limit of large density matterr, corresponding to early
time universes, we obtainq51; on the contrary at late time
we haveq521 whenr results to be very small and forge
table. This corresponds to a presently accelerating unive
We remark that the critical valueq50 ~corresponding to a
change from a deceleration epoch to an accelerated epoc! is
met when the radius attains the critical value:

ac5
4AL

S
5

4AF2«kh~m22!

m221a
S b

a
D 1/(m21)

.

We remark that both asymptotic values ofq and the critical
valueac do not depend on the value of the spatial curvat
K of the spacetime under consideration.

This simple example illustrates two important propert
of polynomial Lagrangians, which are full in physical sig
nificance: There may exist two~or more! parallel universes,
corresponding to different solutions of the structural eq
tions of the same Lagrangian and matter source. These
ferent solutions provide models for different cosmologie
there exist solutions which provide a smooth transition fro
deceleration epochs to accelerated universes. This happe
correspondence with some critical value of the cosmic rad
ac(t) and it is in relation with the so-calledcosmic speed-up
@17#.

B. Another example: f „R…Äa ln„R… Lagrangians

We chose as a further particular example the casef (R)
5a ln(bR), which is relevant since logarithmic terms in th
Ricci scalar are induced by quantum effects in curved spa
times; see@18# and @37#. Notice that the corresponding d
mensions should be@a#51/@b#5@R#. For notational conve-
nience we will fixb51 in units such that dimensions rema
correct.
4-8



he

t
b

d

i

m

rs
th
ta

at

and

e-

for
se,

el.
tini
he
a-
the

in-
ine

ua-
ate

the

ed.

ty

ACCELERATED COSMOLOGICAL MODELS IN FIRST- . . . PHYSICAL REVIEW D 70, 043524 ~2004!
We obtain from the structural equation~6! that

f ~t!5
a2kt

2
,

b~ t !5 f 8~t!5ae(kt2a)/2a.

Substituting these expressions into Eq.~16! and performing
straightforward calculations the explicit expression for t
Hubble constant can be easily obtained:

H25
1

F12
3k~11w!

4a
tG2 F3~w11!kt1a~3w21!

12a~3w21!e(kt2a)/2a
2

K

a2G ,

~46!

where we recall thatt can be expressed in terms ofa(t) as

t53p2r5h~3w21!@a~ t !#23(11w). ~47!

We remark that the Hubble constant can be specialized to
case of dust, radiation or vacuum universes by a suita

choice ofw (w521,0,13 ). It follows from formula~46! that
the pure radiation case is singular and cannot be treate
our formalism.

In the case of dust universe (w50) we have that

H25
1

S 11
3k

4a
r D 2 Fa13kr

12a
e(a1kr)/2a2

K

a2G . ~48!

We consider the limits of small and large energy density
the universe, which are respectivelya@kr and a!kr. In
the case of small energy density, corresponding to late ti
of the universe, we have that

H25
Ae

12
, ~49!

which reproduces an exponential expansion with a unive
approaching a de Sitter universe. On the other hand, in
case of large density matter we have that, apart from cons
and positive2 factors, the following holdsH2.er and this
surely supports decelerating cosmological models.

The deceleration parameter can be moreover calcul
formally. It turns out to be, from Eq.~27!,

2The positivity is necessary and it follows from the positivi
of H2.
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q~ t,w!5211
9k~11w!2t

3k~11w!t24a

2
1

2 F3k~w11!t@3~w11!kt1a~23w27!#

24a2~3w21!e(kt2a)/2a

1
2K

a2 GF3~w11!kt1a~3w21!

12a~3w21!e(kt2a)/2a
2

K

a2G21

~50!

which can be suitably approximated in the cases of small
large energy densities.

We obtain that in the limit of large energy density, corr
sponding to early time universes, we will haveq(t).3(w
11)22, which provides decelerating universes, apart
the case of vacuum space. The limit of late time univer
namely for small energy densityt, provides as expected
from Eq. ~48! a de Sitter like universe withq(t)521,
which always provides an accelerating cosmological mod

The analysis performed above implies that, in the Pala
formalism, Lagrangians proportional to the logarithm of t
Ricci scalar provide cosmological models without an infl
tionary epoch, while these models are able to explain
current acceleration of the universe; see also@36# and @37#.

C. A possible new cosmological model:f „R…ÄRÀ6aÕsinh„R…

We consider moreover an alternative Lagrangian conta
ing a term proportional to the inverse of the hyperbolic s
of the generalized Ricci scalar:

f ~R!5R2
6a

sinh~R!
, ~51!

where coefficients have been chosen to simplify future eq
tions and reproduce general relativity in the appropri
limit. Structural equations~6! hold in the form

R26a
R cosh~R!12 sinh~R!

sinh2~R!
52kt. ~52!

We consider the limit of the above structural equation for
case of small values ofR ~see also@21# and@22#!. Solutions
can be found under the form

R5
2kt6A~kt!2172a~11a!

2~11a!
. ~53!

To reproduce, in the limituktu@a ~see@22#!, the result for
general relativityR52@1/(11a)#kt we have to choose the
plus sign in Eq.~53!. We remark that in the casea50 gen-
eral relativity is exactly recovered, as it should be expect
This choice implies that in the limit of late universea
@uktu we will have

R.A 18a

~11a!
4-9
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so that deviations from Einstein gravitational theory are la
and the universe approaches in that limit a de Sitter unive
dominated by an exponential expansion.

We obtain, in this case, that Eq.~16! for the Hubble con-
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stant cannot be solved analytically; neither does the st
tural equation~53! provide an explicit analytical expressio
of R in terms oft. We can however write the system in a
implicit form:
H25F 29~w11!ak sinh2~R!~11cosh2~R!!

~sinh2~R!16a cosh~R!!@sinh3~R!16a~R1R cosh2~R!1sinh~R!cosh~R!!#
G22

3F k sinh2~R!

3@sinh2~R!16a cosh~R!#
S r1

R2
6a

sinh~R!
1kt

2k
D G , ~54!

R26a
R cosh~R!12 sinh~R!

sinh2~R!
52kt, ~55!
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where the solutionR5F(t) of Eq. ~55!, substituted into Eq.
~54!, gives a formal solution to the system. This express
could be possibly useful for some further numerical analy

Considering the leading terms in the limit of smallR,
corresponding to the present universe we are intereste
the above system can be solved in a rough approximat
We obtain from the structural equation~53! that R
518a/kt and substituting in the approximated express
for H2 we obtain

H2.@3w14#2S 2
3a

kt D , a.0, ~56!

so that the current acceleration of the universe is explai
by means of this model in correspondence with small val
of R. As a matter of facts, apart from constant factors,
have thatH2.t21 and consequently for the most interesti
case of dust universe we have thatH2.a3(t), describing an
accelerating universe. In this cosmological model we w
have that the effectivewe f f at present time, which means i
the limit ~56!, can be simply obtained to bewe f f5222w,
which goes in the direction of the experimental results of@3#.

IV. CONCLUSIONS AND PERSPECTIVES

In this paper we have analyzed alternative theories
gravity, the Lagrangian of which is a general function of t
generalized Ricci scalarR, constructed out of a dynamica
metricg and a dynamical connectionG. The Palatini formal-
ism provides first order field equations for the metric and
connectionG. A structural metrich is introduced, such tha
the connection results to be the Levi-Civita connection oh
andh is consequently conformal tog. Spacetime geometry i
thus defined by means of generalized Einstein equations
it is in fact mutated from structural equations which rep
duce the standard Einstein spacetime with suitable choice
the parameters.

To treat explicitly cosmological models we chooseg to be
n
s.

in,
n.

n

d
s

e

l

f

e

nd
-
of

a Robertson-Walker metric. This allows to obtain modifi
Friedmann field equations and a modified Hubble cons
related to the conformal transformation betweeng andh. The
metric h results to be FRW, too, so that it can be conv
niently considered as a physical metric in place of the or
nal g.

If we moreover specialize to the pure-power casef (R)
5bRn ~with n an arbitrary real exponent! we have seen that
with suitable choices of the parameters involved, these m
els are able to explain the current acceleration of the u
verse. We obtain that polynomial Lagrangians in the gen
alized Ricci scalar provide an explanation for both pres
acceleration and inflation of the universe in suitable lim
@18#.

Considering instead the case of logarithmic Lagrangi
in R we have that in the limit of small matter density, corr
sponding to late time universe, the solution approaches a
Sitter universe with exponential expansion. This results i
possible model for accelerating universe.

We also propose a new possible cosmological model
volving the inverse power of the hyperbolic sine. Even if it
not analytically solvable it however provides, in a suitab
limit, an explanation for the current acceleration of the u
verse as it should be expected.

The formalism developed here is very general and ma
ematically well defined. It provides useful physical results
the specific cases we have considered. Of course, a
covariant satisfactory Lagrangian should be a more com
cated polynomial-like expression involving more than o
powerRm and more than one inverse powerR2n, besides a
~possible! logarithmic factor ln(bR) and terms proportiona
to the inverse power of sinh(R). In this case, however, the
nonlinearity of the structure equation does not allow in ge
eral a simple analytical resolution as we did in the spec
examples, so that numerical or approximation techniq
have to be invoked for generic Lagrangians.

Moreover, we stress that further applications of the f
malism developed here can be extended to cover also ge
alized Ricci-squared theories, which will be analyzed in
forthcoming paper@34#.
4-10
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