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Accelerated cosmological models in first-order nonlinear gravity
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The evidence of the acceleration of universe at present time has led to investigate modified theories of
gravity and alternative theories of gravity, which are able to explain acceleration from a theoretical viewpoint
without the need of introducing dark energy. In this paper we study alternative gravitational theories defined by
Lagrangians which depend on general functions of the Ricci scalar invariant in minimal interaction with matter,
in view of their possible cosmological applications. Structural equations for the spacetimes described by such
theories are solved and the corresponding field equations are investigated in the Palatini formalism, which
prevents instability problems. Particular examples of these theories are also shown to provide, under suitable
hypotheses, a coherent theoretical explanation of earlier results concerning the present acceleration of the
universe and cosmological inflation. We suggest moreover a new possible Lagrangian, depending on the
inverse of sinhiR), which gives an explanation to the present acceleration of the universe.
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I. INTRODUCTION mines the relation between pressprand density of matter
p) smaller thanw,¢<—1 are currently preferable, owing to
Recent astronomical observations have provided stronthe experimental results ¢8]. Other possibilities include a
evidence that we live in an accelerating universe. The supedynamical scalar field callequintessencg6], or a phantom
nova observation resulisee for exampl¢l] and[2]), the scalar field[7,8], exotic perfect fluid§9], tachyon matter
observations about the anisotropy spectrum of the cosmicl0], a four Fermion moddl11] and a Born-Infeld quantum
microwave backgroundCMBR) (see for exampl¢3]) and  condensate mod¢ll2].
the results about the power spectrum of large-scale structure One of the first attempts to correctly interpret, from a
[4] have converted cosmologists to the acceptance of thgheoretical point of view, the observed data modifying gen-
evidence of an accelerating universe. eral relativity (without the introduction of dark energyvas
By itself, acceleration is easy to understand in the contexto address the cosmological constant problem to somehow
of general relativity as well as in quantum field theory; how-allow for the vacuum energy to be larg#3]; but this has
ever problems and doubts on the correct theoretical model tbeen proven to be not enough to get rid of dark matter and
interpret observational data arise, owing to the very small butlark energy.
nonzero energy scale which is seemingly implied. As a mat- The other possibility is to assume that we do not yet un-
ter of facts, if we believe that we live in a universe which is derstand gravity at large scales, which means that general
homogeneous, isotropic and accelerating, general relativity irelativity should be modified or replaced by alternative
unambiguous about the need for some sortafk energy  gravitational theories when the curvature of spacetime is
source to explain acceleratigs]. We are thus faced with small (see for examplg14]).
some problems concernin@) the small amount of energy of Rather than solving the cosmological constant problem or
the vacuum, which is much smaller than we estimate it to béntroducing dark energy, we can try to explain the current
(the so-calleccosmological constant problentii) the nature  period of acceleration of the universe by a modification of
of the dark energy which seems to dominate the universgeneral relativity which leads to modified Friedmann equa-
and; (iii ) the coincidence problerhetween the actual density tions(MFR) so that the acceleration kicks in. MFR equations
of dark energy in the universe and the actual matter densitgf this type arise surely in brane-world models with large
[5]. The real nature of dark energy, which is required byspatial extra dimensior{d.4].
general relativity in this cosmological context, is unknown In a completely different framework it has been realized
but it is fairly well accepted that dark energy should behavethat in the quantization on curved spacetimes, when interac-
like a fluid with a large negative pressure. This could betions among the quantum fields and the background geom-
explained in vacuum by means of a very small cosmologicaktry or the self interaction of the gravitational field are con-
constant, which is in fact related with the energy of thesidered, the standard Hilbert-Einstein Lagrangian has to be
vacuum, or by assuming the presence of some matter fielduitably modified[15]. These corrective terms, which are
the so-calleddark matteror dark energy The dark energy essential in order to remove divergences, are higher-order
models with effective equation of state.;; (which deter- terms in the curvature invariants such & R*'R
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mental results. It is moreover interesting that such correctivand[18]. The addition of correction terms of the pure-power
terms to the standard Hilbert-Einstein Lagrangian can be praype R™ (m>0) in addition to the IR term to the standard
dicted by some time-dependent compactification in string oHilbert-Einstein Lagrangian, can explain both the early time
M theory (see[16,18)). In particular it has been shown that inflation and the current acceleration without instability
guantum fluctuations in nearly flat spacetimes may induceroblems of field equationgl9]. It is there proven that the
terms which are proportional to inverse powers of the Ricciterms in the Lagrangian with positive powers of the curva-
scalar invariant for small R, while the expansion of the ef-ture support the inflationary period, while terms with nega-
fective action at large curvature predicts terms with a positive powers ofR are able to explain the current cosmic ac-
tive power of the curvature invarianf$8,19. celeration.

As an alternative to extra dimensions, it is also possible to In this paper we first extend the results previously ob-
explain the modified Friedmann equations by means of &ained in[30] (for Lagrangians depending on general func-
modified theory of four dimensional gravity16,17. A  tions of the Ricci scalar invariant in vacuyo the more
simple task to modify general relativity, when the curvaturegeneral case of interaction with matter fields. We consider a
is very small, is hence to add to the Lagrangian of the theoryirst order Palatini formalism for field equations of a gener-
a piece which is proportional to the inverse of the scalamlized gravitational Lagrangian in minimal interaction with a
curvature 1R (see[16-24 and references therginThese matter Lagrangian. The gravitational Lagrangian depends on
theories have been deeply analyzed in recent months, in vieaw metricg and a torsionless connectidh assumed to ba
of their capability of explaining present cosmological accel-priori independent. The method generates structural equa-
eration as well as early time inflation. As a matter of facts ittions for a spacetime with an ensuing conformal bimetric
appears that alternative theories of gravity provide values o$tructure.

Wer<—1 and in accordance with the experimental results; Starting from the request that the connection should be
see[17] and[19]. metric with respect to a metrie (suitably defined by dynam-

We remark moreover that modified theories of gravity,ics) we are able to obtaigeneralized Einstein field equa-
depending on any analytical function of the Ricci scalartions The metrich turns out to be related to the metgdoy
have been studied in order to avoid the singularities in cosa conformal transformation. These general results extend
mological solutiong25]. It is worth noticing that black holes those of the vacuum cag$80]; the universality of the Ein-
in modified gravity are less entropic than in standard generadtein field equations does not hold any longer, apart from the
relativity [26]. case of a purely radiation univergm this case the stress-

It turns out that the metric approach to these Lagrangiansnergy tensor is traceless and the structural equations for
leads to modified Friedmann equations which could explairspacetime are the same as in the vacuum)ca$e univer-
the observed cosmological acceleration of the universe withsality property was investigated not only at the level of equa-
out the need of dark enerdyl7]. However the metric ap- tions of motion, but also at the level of the definition of
proach leads to complicated fourth order equations that ca@nergy and conservation laws for the gravitational field. This
only be simplified by introducing fictitious scalar fielpa7].  problem was in fact analyzed in the pap88], where it was
It has moreover been proven that the aforementioned ashown that universality holds also for the gravitational
proach leads to results which are in contrast with the solaenergy-momentum complex, which turns out to be essen-
system experimentf28] and also that the relevant fourth tially the same as in the linear case. The formalism, devel-
order field equations suffer serious instability probld@@].  oped in this paper to obtain the generalized Einstein field

It has been shown if22] that, on the contrary, a Palatini equations, is very general and in forthcoming pagersier
variational approach to such modified nonlinear gravitationacompletion it will be moreover generalized to theories de-
Lagrangians coupled to matter produces second order fielpending on higher-order terms in the Ricci-squared curvature
equations. These equations are equivalent to the standaivariant [34], which have been already analyzed in the
Einstein field equations only in the vacuum cé36] or for ~ vacuum case ifi35].
special(radiating matter. The modified Friedmann equations  For cosmological applications, we shall substitute the
obtained in this context offer however an alternative expla-general Robertson-Walker metrigin the generalized Ein-
nation for the cosmological acceleration and the approach tetein field equations, assuming the stress-energy tensor to be
the de Sitter spacetime is exponentially fast when the 1/ a perfect fluid tensor. Taking into account the conformal re-
term dominates. These modified Friedmann equations are nittion between thephysica) metric g and the conformal
afflicted by instability problems and they are in acceptablemetric h, we obtain generalized Einstein equations which
accordance with the results of the solar system experimenteproduce amodified Hubble constantdepending on the
[21]. The Palatini formalism has been further proven to beconformal factor. We stress that, owing to the conformal
not excluded by electron-electron scattering experimenttransformation, also the metric results to be Robertson-
provided the physical fields are taken into account in a suitWalker. The formalism is fully and analytically applicable
able way[27,32. under the request that the structural equation can be solved

On the other hand it is widely believed and accepted thaso that bothf (R) andf’(R) can be expressed in terms of the
at the very early times the universe also underwent an accelrace =T ,,g*” (see alsq21]). Otherwise, numerical and
eration phase calleiflation, the origin of which is still un-  approximation methods are always applicable. These alterna-
known. Some authors have proposed that modified gravitaive theories are very rich in their structure and they can
tional Lagrangians can moreover explain early inflatidr] provide models of multi-universe cosmologies and can be
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suitably modified to fit experimental data. tionally depending on matter field together with their first

Examples can be provided by choosing particular expresderivatives, equipped with a gravitational coupling constant
sions of f(R). We treat here the simplest cases f¢R) k=8mG.
=BR" (pure power and f(R)=«a In(BR) (logarithmic La- Equations of motion ensuing from the first order Palatini
grangian, which are very significant in view of their cosmo- formalism are(see[20,22,30,3))
logical applications. The modified Hubble constant and the
first order field equations are obtained, both licandg. We
propose moreover a new possible Lagrangian, which de-
serves interesting cosmological applications, containing
terms in the inverse of the hyperbolic sine of the Ricci scalar. v Jof'(R)g#")=0, 3)

The examplef (R)=BR" is remarkably important. As a
matter of facts each analytical LagrangiarRigan be locally ~ where TH#'=—(2IN9) (8L ma! 69,,,) denotes the matter
approximated by means of a Taylor polynomial expansiorsource stress-energy tensor aﬁé means covariant deriva-
and further on polynomial Lagrangians Rican be(under tive with respect tol'. In this paper the metrig and its
suitably hypothesgslocally approximated byf(R)=8R", inverse are used for lowering and raising indices.
where n will be negative for smaR and positive for larg&. We shall use the standard notation denotingRpy,, the
In the aforementioned case 6{R)=pBR" we specify the symmetric part oRR,,,, i.e.,R(W)E%(RM,nL R,,). In order
stress-energy tensor for the cases of dust, radiation and get Eq.(3) one has to additionally assume that,; is
vacuum universes. In the dust universe and for the particulgfiunctionally independent df ; however it may contain met-
choice of zero space curvature in the Robertson-Walker metic covariant derivativesV? of fields. This entails that the
ric we can solve exactly the differential equations and wematter stress-energy tens®r,,=T,,(9,%,V9¥) depends
obtain the value of the acceleration parameter depending asn the metricg, the matter fields denoted here Ny, to-
the exponenn (for particular values ofh). It results that gether with their metric covariant derivatives. Physically
acceleration is supported in the cases0 andn>3. These speaking we are assuming that matter fields are minimally
models seem to be able to explain both the current universeoupled to the gravitational fielg.
acceleration and early time inflation, taking into account From Eq.(3) one sees that/gf’(R)g*” is a symmetric
leading terms of polynomial-like Lagrangians in each epochwice contravariant tensor density of weight 1, so that if it is
of the universe. Polynomial Lagrangians are also discussegbt degenerate one can use it to define a matricsuch that
in order to treat radiation universes. It results that presenghe following holds true:
time acceleration can be predicted and a critical value of the
scale factor appears, which rules the transition from an ac- \/af'(R)g’”= Jhhe?. (4)
celerating to a decelerating epoch of the universe.

Logarithmic Lagrangians in the Ricci scalar give an inter-This means that the two metri¢s and g are conformally
esting, exactly solvable, model also for the case of pure ra€quivalent. The corresponding conformal factor can be easily
diation matter, supporting the present time acceleration ofound (up to a possible sigrto bef’(R) (in dimM=4) and

1

universe(see alsd36] and[37)). the conformal transformation results to be
Lagrangians containing terms proportional to the inverse Y
of the hyperbolic sine of the Ricci scalar provide very com- hu =1 (R)g,, . ®)

plicated modified Friedmann equation which cannot beTherefore as it is well known, Eq(3) implies that T
solved apalytlcally. However these equations cquld give an:FLC(h), ie. the Levi-Civita connection ofh, and
explanation for the current acceleration of the universe in th

appropriate limit and they can be useful for further numericalth(gt”)s(gl;s i"(mé Rf‘ﬁ) i\s/vﬁofgogliicie;ncg::?;f t’hzoxlv:t\; ir’
analysis or finer approximation techniques. 9" Ruy

h. In what follows we shall call it @jeneralized Ricci scalar
and sometime for shortcut simply a Ricci scalar.
II. f(R) GRAVITY Equation(2) can be supplemented by the scalar-valued

. o . . . equation obtained by taking tlgetrace of Eq.(2), where we
We begin with considering on a 4-dimensional Loremz'ansetrztrT:g/“’T .
pv

manifold (M,g) the action
f"(R)IR=2f(R)=kT. (6)

A=Al o Ana J (VO F(R)+ 2L a0 d*X, (1) ~ We obtain that Eq(6) controls solutions of Eq2). We shall
refer to this scalar-valued equation as geictural equation
of the spacetime. More precisely, for any real solutien
where R=R(g,I')=g*’R,4(I') and R,,(I') is the Ricci =F(r) of Eq. (6) we have thatf(R)=f(F(7)) and f'(R)
tensor of any independent torsionless connecfionThe =f'(F(7)) can be seen as functions ef For notational
gravitational part of the Lagrangian is controlled by a givenconvenience we shall use the abuse of notatidm)
real analytic function of one real variabiR), while \Jg = =f(F(7)) andf’(7)=f'(F(7)).
denotes the scalar densjtef|g ||| of weight 1. The total Now we are in position to introduce the generalized Ein-
Lagrangian contains also a first order matter payi, func-  stein equation under the form
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R (h) f(7) N K @) p 0 0 0
y72% = gp.l/ y72% 2
! ! t
2f'(7) f'(7) 0 pa“(t) 0 0
T..= 1—-Kr?
with h ,, defined by Eq(5) for a giveng,,, andT ,, (see also 0 0 pa2(t)r2 0
[20,22,3Q). For the matter-free case we find tHa& F(0) 2N 2 s
0 0 0 pa?(t)r2sir’( )

becomes a constant, which implies that the two metrics are
homotetic; this property further implies that E@) is noth- (10

ing but Einstein equation for the metrgcand it is almost | 51er on we shall assume the standard relations between the
independent on the choice of the functifR). This is noth-  yresqyren, the matter density and the expansion factor
ing but theuniversality propertyobserved irf30]. Also Ein- a(t), namely

stein equation with cosmological constantcan be recasted

into the form(7) if we chosef(R)=R—A. These properties p=wp, p=nya 1w, (12)

justify the name of generalized Einstein equation for &g;.

In the presence of matt€r) expresses instead a deviation for where particular values of the parametee {—1,0%} will

the metricg to be Einstein, apart from the case wher0  correspond to the vacuum, dust or radiation dominated uni-

where universality still holds trugg0]. verse. Exotic matters, which are up to now under investiga-
It should be also noticed that E@) has, in general, many  tjon as possible models for dark energy, admit instead values

real solutions, especially wheiiR) is a polynomial function  of w< —1. These expressior41) follow from the conser-

of higher degree. Thereforé(R)-gravity supports the idea yation law of the energy-momentuf“T,,,=0 and conse-
of multi-universe interpretation. Moreover, the number quuenﬂy the Continuity equation should hold:

possible universes is dynamical, sinegurns out to be a
functi.on. of the FRW scale'factax(t) (see belowexcept for p+3H(p+p)=0, (12)
a radiation dominated period.

Another special property one wants to emphasize is thajhereH = a/a is the Hubble constantThe requirements3)
we can makef’(R)R—2f(R) to be any function we wish.  anq(4) fix h to be conformal tay and in fact equal to
This is, of course, due to the fact that the nonhomogenous

linear ODE
dr?

h=f’(7)[—dt2+a2(t) K2

f'(RIR—2f(R)=#(R) (8)
+r2(d 6>+ sirf(0)de?)

], (13
has a solution in the fornf(R)=R?[d ¢(s)/s®]. The
choice off(R) allows todesigna specific cosmological sce- wherer=T,,g*"=3p—p is a function of time through its
nario and to adjust the model to fit concrete experimentaliependence on the scale facadt):

data.
7=(3w—1)pla(t)] >+,

. FRW COSMOLOGY IN f(R) GRAVITY Substituting all necessary ingredients into the generalized

For the cosmological applications one has to choose thngtem equatiort7) we obtain the following

metric g to be the Friedmann-Robertson-Walker metric, () 4+ 2Kp sl a ba b (b2
which (in spherical coordinat¢takes the standard form: S A — N N T
P Rodh) 2b 7122 ba'h (b) }
(14)
_ 2, 42 1 24 120462+ sirP 2 .
g=—dt+a%(t)| T zdriFri(des+sim(0)de) |, for the 00 component, while for the 11 component we have
9
1-Kr?| f(7)+2kp
Rii(h) 2 = 2b
wherea(t) is the so-calledscale factorandK is the space a
curvature K=0,1,—1). Another main ingredient of the cos- ) o
mological model is the perfect fluid stress-energy tensor a ba b a K
=Z|2=+5-—+—+4| =| +4—].
2| "a ba b a2
T,=(p+P)u,u,+pg,,, (15)
Here for simplicity we have introduced the shortdu(t)
wherep is the pressurey is the density of matter ang is =f'(7). Of course for the usual Einstenian case one has
a co-moving fluid vector, which in a comoving franha# b(t)=1. Combining the last two equations we can obtain an
=(1,0,0,0)] becomes simply analogue of the Friedmann equation under the form

043524-4



ACCELERATED COSMOLOGICAL MODELS IN FIRST. ..

2 K

K

+a2=%

a b

f(r)+«kr
at2 o

P (16)

p+

which can be seen as a generalized definition aicaified
Hubble constant H- (a/a-+ b/2b), which takes into account
the presence of the conformal factprentering the definition
of the conformal metrid, which in turn generalizes the re-
sults of[21].

We stress that, owing to the conformal transformation be

tweenh andg, the generalized Ricci scalar can be generall
expressed from Eq$14) and(15) as follows:

2f(7)+ k7

b 7

R=R,,(h)g*'= =R(h)b

which reproduces general relativity in the particular cas

that Rh) is the true Ricci scalar of the metrlt As it has
been already remarked if20] the metric h itself is a
Robertson-Walker metrifsee Eq(13)]

h=e( —d”fz+A2("f)[%zdr2+ r2(d02+sin2(0)dcp2)D
(18)

with a new cosmic timeit=\[b[dt and a new scale factor
A= \|b[a, wheree= *1 corresponds to positive or negative
values ofb. The generalized Einstein equatidh) can be
also calculated int(x') coordinates. This is equivalent to the
assumption that the metrltis a physical ondi.e., that we

PHYSICAL REVIEW D 70, 043524 (2004

A. Examples: f(R)=BR" and polynomial Lagrangians

We consider, as a class of particular examples, the class of
linear Lagrangians in an arbitrary power of the curvature
invariantR. The importance of such models can be consid-
ered and understood in connection with the main effort of
modifying general relativity by means of alternative
Lagrangians, which are able to explain the experimental data
in some limit. Up to now(and up to our knowledge
polynomial-like and logarithmic-like Lagrangians in the gen-

eralized Ricci scalar invariant have been considésed for

yexample [5,16-18,21,22,36,37 and references thergin

These particular Lagrangians recover general relativity in
some approximation, which physically speaking means at
some age of the universe, and reproduce modified Friedmann
equations in some other limit. These modified Friedmann
equations are able to give a possible theoretical explanation

o the experimental resultsuch as inflation and present ac-
f(R)=R, as we shall see later on, but provides relevant de b \ P

viation from general relativity in the other cases. We remark

celeration of the universe

If we narrow down our researches to the case of polyno-
mial Lagrangians, each term of the Lagrangian behaves as a
leading term at some particular age of the universe and it is
able to reproduce at a convenient order of approximation the
experimental data. Moreover any analytical function can be
approximated by means of its Taylor polynomial expansions
in the limits of physical relevance and it consequently be-
haves like a polynomial-like Lagrangian. In this framework
it is hence worth analyzing exactly and analytically
Lagrangians of the type(R)=BR"\g (with arbitrary pos-
sibly nonintegern) representing single terms of a more
physical and general polynomial or polynomial-like expres-
sion for the Lagrangian. Integer valuesrofssume a funda-
mental role in this context representing, for any analytical
function, the terms deriving from a Taylor expansigmevi-

can use conformal frame instead of the original Einsteinyysly studied in a different context {i38]). The advantage

frame. We obtain in this case:

—f(7)+2kp
- 3
2b?

A 19

€

for the 00 component while for the 11 component we find

A
=

2

f(r)+2 A
J(D+2xp A LK

b7 A (20

A

which derives from this particular class of Lagrangians is
that they are easily and exactly solvable and they provide
coherent models for the universe acceleration and for the
early time inflation.

We stress once more that we are specializing to the case
of four dimensional spacetimes so tlgit'g,,=4. We as-
sume then a Lagrangian of the form

f(R)Vg=BR"g (B#0; neR; n£0,2)
(see alsg19] and[21]). The algebraic field equatiorn2) are

whereA denotes now the differentiation with respect to theconsequently the following:

new cosmic timd . An additional factore/b on the left-hand
side (LHS) appears due to the fact that?>=(1/|b|)dt? and

a?=(1/|b|)A?. Now the analogue of the Friedmann equation

takes the form

K

6f(7')-|—f<(p-|-3p)
A2

6b?

2

Tl

(21)

=kT

y3%

BRn—l

1
nRW— §R9;w

while the structural equatio(6) becomes

KT

R =Bin—2)

(22

with H=A/A being the Hubble constant of the conformal This expression implies that the case2 is singular(see
metric h. This expression is much simpler and recalls thee.g.,[19]). Taking into account the expressiohO) for the
standard Friedmann equations for the Robertson-Walker mestress energy tensor and the dominant energy condition we
ric. should impose
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=T,,9""<0. (23

Equation(22) forcesR" to be positive definite for even inte-
ger values of and we should fix the dimensional constgnt

(the dimension of3 is the same as the dimensionR¥ ") in
front of the Lagrangian to be

B>0 for n<2,

B<0 for n>2.

Let us introduce, for convenience, a new rescaled dime

sional coefficient3= B(2—n) which is positive for evem
and arbitrary otherwise. In the last case, i.e.,rardd, one

has sgriR=sgnB, where R=(—«x7/B)™. Instead, forn
even one has two different real solutions of E2R), namely

1in

— KT

Ri B i ( B ) -
B

This implies that in any cas& will be proportional to a

well-defined power ofa, which is exactlyR=a 3W*1/n,

(24

n

PHYSICAL REVIEW D 70, 043524 (2004

a(t)

Ho | (
~ lamH¥)

1+ H2(t)

q(t):=— 27

and from Eq.(26) it results, in the cas& =0, to be formally
equal to

3(1+w)—2n

on (28

q(n,w)=

We say formula28) to beformal since, at the moment, we
do not know about its effective solution realizations. This

will be the subject of our investigations below.

The effectivew, ;s can be obtainedas in[17]) by means
of simple calculations from Eq28) and it results to be, for
this theory,

2

1 1 w
Werr=30(NwW)— Z=—1+ -+ (29)

We remark that the range of 1.45<w¢;<<—0.74 for dark
energy, stated ifi3], can be easily recovered in our theory by

This expression shows that only in the vacuum case thgngosing suitable and admissible valuesiof

model approaches a de Sitf@nti—de Sitter universe.
The requirement$3) and (4) fix h to be conformal tay
and in fact equal to

ne -
— 1ng _ (n—=1)/n] _ Ht2
h z_nﬁ (—k7) ( dt

+a2(t)[ dr2+r2(d02+sin2(6)d<p2)“,

1-Kr?
(295

where we remark again that=sgnR=1 for odd values oh

and, on the contrarg,=*1 in accordance with the choice

of the solution in Eq(24) for even values ofh. We are now

If we consider expressiof28) for the deceleration param-
eterg(n,w) we see that, from the definition a¥.¢; in EqQ.
(29), an accelerating behavior of the cosmological model re-
quires that the effectivev ;< — 1. This bound to the value
of we¢f can be alternatively seen in termswefThis states in
particular that to obtain accelerated universes we should else
imposew<2n/3—1 for n>0 orw>2n/3—1 for n<O0.

For the casen=1 this imposes an upper bound for the
acceleration to the value @i<w,;;=—1, reproducing the
well-known results of general relativity; choosing alternative
Lagrangians witm>0 implies that this limit is shifted to the
valuew,;;=2n/3—1. In the casen<0 we have no longer
an upper bound, but a lower bound fer>w;;=2n/3
—1; dust and radiation matter satisfy that condition by defi-

able to calculate the modified Friedmann equations and thgition.

modified Hubble constant from E@L6); or, in a different but
completely equivalent way, by inserting E5) into Eq. (7).
From the structural equatioi®) we can calculate

KT
fn=1=

ne

2—n

b(t)=1'(7) = oo Bo1( — )"~ DIN

and we obtain that the Hubble constant for the megrzan
be locally calculated to be

2_(3)2_ 2ne — KT L
H™=\3 ~3Bw-D[3w(n-1)+(n-3)]| B
K 2n 2
_5 3w(n—1)+(n—=3)| ° (26)

Consider now, in more detail, the case of pressure-free
(dusb universe, i.e.,p=0, so thatr=—p(t)=— p/as(t)
(we remark once more that>0). The resulting generalized
Einstein equation$26) which derive from Eq.(2) produce
modified Friedmann equations in the matter universe case
considered here. The resulting expression for the
Hubble constant of can be calculated from E@26) to be
(for n#3)

, a4t 2] en(yp)'  6Kn?
Cad(t) 3[(3-n)[Ba’]M  al(t)(n-3)2

(30

which reproduces, as it should be expected, the standard
Friedmann equation in the very particular casel1l, and

B=p=1. We remark that the above expressi@0) repre-

sents the square value of the Hubble constant and it becomes

singular ain=3 in the case of dust universe, under analysis.
We restrict ourselves now to the case 6£R. We have to

The deceleration parameter can be obtained from the Hubblequire that the expression on the right-hand side of(8@).

constant by means of the following relation:

should be positive.
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1/n
K

Can)’

(39)

We start discussing_ integer values mf which are very a2(t) e[4xy
relevant for our analysis, as we stated before. In the case of a= =— —
B

odd integer values afl (=1) we should requirgg>0 for

0<n<2 or 2<n<3, ie, essentially in the case=1 of  hich results to be positive and well-defined for amygn
standard general relativity. Whemis still odd but3<0 one  +2) with a suitable choice fo8 ande. It follows that in the
getsn<0 orn>3 instead. case of a vacuum universe, and #r=0 we have that
In the case of even values of we see thaj3 is always

positive. Therefore, as we required before, we should:fix a(t)y=e
= —1 for the following values ofi: n<0 orn>3. Thus the ) ) ) i )
solutionR; of Eq. (24) gives no relevant contribution to the corresponding to a de Sitter univerggith an exponential
solutions of Eq.(30), owing the singularity in the case expansioly the deceleration parameter is in this cage)

a1

V(e/12)[4r 7/ B0t (35)

=2. Finally, one should notice thg>0 for ne (0,2)U(3, = — 1 supporting cosmological acceleration. .
+0) and negative otherwise, i.e., fore (—,0)U(2,3) in- A similar analysis can be performed under the hypothesis
dependently of the parity af. that the metrich is the physical metric and it is spatially flat

We remark however that we do not need to assumerthat (K=0). The deceleration parameter for the metrican be
is an integer and, in fact, it can be priori any real(or ~ formally calculated to be
rationa) number. In any case, however, we should require —f(r)+2xp 2n—3(1+w)

Eq. (22) to be definite and moreover we should impose the q(w,n)= =
positivity of Eq.(26). Suitable values oB have to be chosen f(r)+k(p+3p) n=3+3(n—-L)w
and the analysis can be carried over, following the headlines 2n—3(1+w)

of the analysis previously done in the case of integer values
of n. Specializing again to the case of dust universe \Kith

=0, in the case of real, nonrationalone has to assumeg which gives acceleratiog(— 1,n)= — 1 for any value of in

>0 and this imposes e (0,3). . . ~ B
The modified Friedmann equations, for dust universe in’acuum dominated universes ag,n)=(2n—3)/(n—3)

the cas&K =0, can be integrated and we easily obtgipart 0 In dust dominated universes provided tatn<3 (n
from integration constants, which can be forgotten in our#2). Finally, for pure radiation we have(3,n)=1, i.e.,

T n(1+3w)—3(1+w) (36)

analysig one gets deceleration for any valuerof
The effective value ofv can be also calculated in this case
36 " kny]™? from Eq.(29); we get
at)=|5—m—=| |=| t*"% (31)
2n(3—n) B n(l—-w)—w-1
_ _ _ Vel In(1+3w)—3(1+w)] S
Now the deceleration parameter can be obtained again from
Eq. (28); we find which allows us to make a comparison with the experimental
data.
3—2n These results are alternative to the case described by for-
q(t)= 2n (32 mula (28) wheng is the physical metric. As usual in alterna-

tive nonlinear theories, we do not knanpriori which is the

for the particular solutiong31) corresponding to the case Physical metric: discussions about the physical interpretation
K=0, selected by E(30). This implies that we obtain ac- ©f g andh both from the mathematical and physical view-
celerated solutions in the case: point are up to now open; see, e 7], [32] and[39].

1. Polynomial Lagrangians in the generalized Ricci scalar

3
g(t)<0en<0 orn>4 (33

2 As we told before theories with power Lagrangians in the

generalized Ricci scalar can be considered@soximations
corresponding to alternative theories of gravity with Of more physical polynomial-like Lagrangiaha8] of the
Lagrangians depending on inverse powers of the generalizdyPe:
Ricci scalar or on terms with powers higher th&f2, owing
to the restriction imposed for the positivity of EO). f(R)=R+ @ n B R™ 38)
If we consider the case of pure-radiation universe, corre- (2+n)R" 2—m
sponding tor=3p—p=0 with p=p(t) = n/a’*(t), we have
that Eq.(7) is undefined, since Eq22) impliesR"=0 and (here bothn>0 andm>0, with m#2 andn# —2).
f’(7)=0. This entails that our formalism fails to cover this  We consider the case of dust univerge 0. In the limit
case which has to be treated differentbee below. There- of small or large curvatures, corresponding to the cases of
fore, formula(28) for w=1/3 is purely formal. present time universe and early time universe, we obtain
In vacuum dominated universe, corresponding to the casom the structural equations that the leading terms are re-
w=—1, we obtain from Eq(26) that the Hubble constant is spectively:
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—a f(R)= m—2+a a U(m=1) 42
R—0= R =KT, (R)=¢ m—2 B )
m m—1
R— o= — BRM= k7. f’(R):Zam_Z, (43

From Eq.(32) we deduce that polynomial Lagrangians pro-

. . . X : . so that the Hubble constant for the metican be calculated
vide an explanation for early time inflation assuming that

. . . be
m>2 and they can provide an explanation to present time
cosmic acceleration assuming that some inverse power of the , kp(m=2) , m-2+a (o)D) a2
; S ; . - _ 4y a e
3&1\8;allzed Ricci scalar is present in the Lagrandian, Ba(m—1) a 8—12a(m—1) B a

This result reproduces previous results which have been =3 —Ka 2+ Aa %, (44)
obtained in a different framework both in the metric formal-
ism (in [17] and[19]) and in the Palatini formalisnd [21]  where for notational convenience we have introduced the
and[22]). We stress moreover that terms lijgR™ (with m parameters A = kp(m—2)/6a(m—1) and 3 =(s(m—-2
>0) are related to the so-called Starobinsky inflafitf]. + a)/[12a(m—1)])(a/B)Y™ D, which we require to be
positive.
2. Polynomial Lagrangians for radiation universes The deceleration parameter can be obtained by means of

We can otherwise consider, for the case of radiation unijormula(Z?):

—1 i
versesw=1, a Lagrangian of the forfn Aa4-3 A—Sat

CS—Ka2+Aa?* A-Ka?+3at

3 1 q(t,m) (45)
f(R)=aR+ mRm wherew= §; =0 (39
In the limit of large density mattes, corresponding to early

which in[19] and[21] has been already examined in the caset'me universes, we obtam=1; on the contrary at late times

m=2,7#0. It has been there proven that, in the metric for-""¢ haveq=—1 whenp resuilts to be very small and forget-

malism such Lagrangians support inflation, while in the Pa_table. This corresponds to a presently accelerating universe.

latini formalism they provide explanation for the present\/\r/]e rem?rk tha;thelcrltltc_:al valuqhzto (correspioncim(gj:];p ah
time acceleratioi21], change from a deceleration epoch to an accelerated gc

The structural equatiof6) admits besides the trivial so- met when the radius attains the critical value:

lution R=0 also a nontrivial solutiorR=g(a/B)Y*"™, — T
wheree =1 for modd ands = + 1 for even values of. This a— 4\/5 _ 4\/ 2ekn(m—2) B
correspond to de Sitter and anti—de Sitter universe for posi- ¢ 3 m-2+a \«a

tive and negative values & respectively. _ N
In the case of the obvious solutidR=0 we have that We remark that both asymptotic valuesgpand the critical

f(R)=0, f'(R)=a, and consequently valuea, do not depend on the value of the spatial curvature
K of the spacetime under consideration.
Kp K7 This simple example illustrates two important properties
H2=3—a—Ka‘2=3—aa‘4— Ka™ 2. (40)  of polynomial Lagrangians, which are full in physical sig-

nificance: There may exist tw@r more parallel universes,

. corresponding to different solutions of the structural equa-
The deceleration parameter can be formally calculated to bf'f'ons of the same Lagrangian and matter source. These dif-

ferent solutions provide models for different cosmologies;

K there exist solutions which provide a smooth transition from
3a deceleration epochs to accelerated universes. This happens in
q(t)= K7 ' (42) correspondence with some critical value of the cosmic radius
3a Ka 2 ?C(? and it is in relation with the so-callecbsmic speed-up
17].

In the particular cas& =0 we havea= *\/k7/3a+/2t and
the deceleration parameter can be easily calculated to be
q(t)=1, describing a decelerating universe for this solution We chose as a further particular example the d4$®

B. Another example: f(R) =« In(R) Lagrangians

(R=0). If we shift to the nontrivial solutionR  =aIn(BR), which is relevant since logarithmic terms in the
=g(al/B)Y™M 1 we now see that the structural equation Ricci scalar are induced by quantum effects in curved space-
gives times; sed 18] and[37]. Notice that the corresponding di-

mensions should bex]= 1/ B]=[R]. For notational conve-
nience we will fix3=1 in units such that dimensions remain
Im#1,2. correct.
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We obtain from the structural equati¢f) that 9k(1+w)2r
q(t,w)=—1+ 31T Wr—4a
a— KT k(1+w)7—4a
H(r)=—5—.
1| 3k(W+1)7[3(WH+ 1) k7+ a(—3w—7)]
E 2 _ (k7—a)l2a
b(t)=f’(7-)=ae(’”_“)/2“. 24« (3W 1)e
2K|[3(w+ 1) 7+ a(Bw—1) K] 7" o
Substituting these expressions into Ef6) and performing a2 120(3w— 1)e(<7 a)i2a 22 (50

straightforward calculations the explicit expression for the

Hubble constant can be easily obtained: which can be suitably approximated in the cases of small and

large energy densities.

1 3w+1)kr+a(Bw—1) K We.obtain that in_ the Iimit of large energy density, corre-

H2= > — == sponding to early time universes, we will hagét) =3 (w
[1_MT} 12¢(3w—1)elm@2e g +1)—2, which provides decelerating universes, apart for
da the case of vacuum space. The limit of late time universe,

(46)  namely for small energy density, provides as expected
from Eq. (48) a de Sitter like universe witlg(t)=—1,
which always provides an accelerating cosmological model.
The analysis performed above implies that, in the Palatini
formalism, Lagrangians proportional to the logarithm of the
r=3p—p=n(3w—1)[a(t)] 3w, (47)  Ricci scalar provide cosmological models without an infla-
tionary epoch, while these models are able to explain the
current acceleration of the universe; see 38 and[37].
We remark that the Hubble constant can be specialized to the
case of dust, radiation or vacuum universes by a suitablec a possible new cosmological modef(R) =R—6a/sinh(R)
choice ofw (w=—1,03). It follows from formula(46) that
the pure radiation case is singular and cannot be treated if
our formalism.
In the case of dust universavE&0) we have that

where we recall that can be expressed in terms aft) as

We consider moreover an alternative Lagrangian contain-
g a term proportional to the inverse of the hyperbolic sine
of the generalized Ricci scalar:

f(R) =R ba 51
(R)= SR’ (51)
1 a+3kp K
H2= 5 e(a+:<p)/2a_ —. (48)
1 3k 12a a® where coefficients have been chosen to simplify future equa-
+—p . . . .
da tions and reproduce general relativity in the appropriate
limit. Structural equation$6) hold in the form
We consider the limits of small and large energy density in RcosiR)+2 sinh(R)
the universe, which are respectivebp>kp and a<kp. In R—6a . =—KT. (52)
the case of small energy density, corresponding to late times sintf(R)
of the universe, we have that
We consider the limit of the above structural equation for the
case of small values @R (see alsd21] and[22]). Solutions
2 Ve can be found under the form
H==15 (49
— kT (k7)°+722(1+ &
e (kD +72a(1+0). -
2(1+a)

which reproduces an exponential expansion with a universe
approaching a de Sitter universe. On the other hand, in th . - <
case of large density matter we have that, apart from constajf) reproduce, in tEe limitrc|>a (see[22)), the result for

and positivé factors, the following holdd2=e” and this general relativitR=—[1/(1+ ) ] x7 we have to choose the

surely supports decelerating cosmological models. plus sign in E.q.(53). We remark that n the case=0 gen-
The deceleration parameter can be moreover calculat al relativity is exactly recovered, as it should be expected.
formally. It turns out to be, from Eq(27) his choice implies that in the limit of late universe

>| k7| we will have

The positivity is necessary and it follows from the positivity R
of H2. (1+a)
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so that deviations from Einstein gravitational theory are largestant cannot be solved analytically; neither does the struc-

and the universe approaches in that limit a de Sitter universeural equation(53) provide an explicit analytical expression

dominated by an exponential expansion. of R in terms ofr. We can however write the system in an
We obtain, in this case, that E(L6) for the Hubble con- implicit form:

- —9(w+1)ax sink?(R)(1+cosH(R))
| (sinf(R) + 6a cosiR))[ sinf(R) + 6a(R+ R cosi(R) + sin(R)coshR)) ]

R 6a N

i - = KT

| K sint?(R) ot sinh(R) | o
3[sin?(R)+6a coshR)] 2k

b RcoshR)+2 sinh(R) en -

sink(R)

where the solutioiR=F(7) of Eq. (55), substituted into Eq. a Robertson-Walker metric. This allows to obtain modified
(54), gives a formal solution to the system. This expressiorFriedmann field equations and a modified Hubble constant
could be possibly useful for some further numerical analysistelated to the conformal transformation betwgeandh. The

Considering the leading terms in the limit of sm&)  metric h results to be FRW, too, so that it can be conve-
corresponding to the present universe we are interested ifjiently considered as a physical metric in place of the origi-
the above system can be solved in a rough approximatioral 9.

We obtain from the structural equatiofs3) that R If we moreover specialize to the pure-power cd$R)
=18a/ k7 and substituting in the approximated expression—B8R" (with nan arbitrary real exponenive have seen that,
for H2 we obtain with suitable choices of the parameters involved, these mod-

els are able to explain the current acceleration of the uni-
3u verse. We obtain that polynomial Lagrangians in the gener-
— _) a>0, (56)  alized Ricci scalar provide an explanation for both present
KT acceleration and inflation of the universe in suitable limits
18].
so that the current acceleration of the universe is explaineB (]:onsidering instead the case of logarithmic Lagrangians
by means of this model in correspondence with small valuein R we have that in the limit of small matter density, corre-
of R As a matter of facts, apart from constant factors, wesponding to late time universe, the solution approaches a de
have thatH?= 7~ and consequently for the most interesting Sitter universe with exponential expansion. This results in a
case of dust universe we have tiét=a3(t), describing an ~ possible model for accelerating universe.
accelerating universe. In this cosmological model we will We also propose a new possible cosmological model in-
have that the effectivev,; at present time, which means in Volving the inverse power of the hyperbolic sine. Even if it is
the limit (56), can be simply obtained to he,= —2—w, ot analytically solvable it however provides, in a suitable

which goes in the direction of the experimental resultE3df limit, an explanation for the current acceleration of the uni-
verse as it should be expected.

The formalism developed here is very general and math-
IV. CONCLUSIONS AND PERSPECTIVES ematically well defined. It provides useful physical results in
*he specific cases we have considered. Of course, a fully
covariant satisfactory Lagrangian should be a more compli-
cated polynomial-like expression involving more than one
powerR™ and more than one inverse powRr", besides a

H2=[3w+4]?

In this paper we have analyzed alternative theories o
gravity, the Lagrangian of which is a general function of the
generalized Ricci scaldr, constructed out of a dynamical

metricg a_md a.dynamica! connectic_lh The Palatini fprmal— (possible logarithmic factor InBR) and terms proportional
ism provides first order field equations for the metric and the[0 the inverse power of sinR]. In this case, however, the

connectionl’. A structural metrich is introduced, such that - onjinearity of the structure equation does not allow in gen-
the connection results to be the Levi-Civita connectiomof era| a simple analytical resolution as we did in the specific
andh is consequently conformal @ Spacetime geometry is examples, so that numerical or approximation techniques
thus defined by means of generalized Einstein equations anghve to be invoked for generic Lagrangians.

it is in fact mutated from structural equations which repro-  Moreover, we stress that further applications of the for-
duce the standard Einstein spacetime with suitable choices @falism developed here can be extended to cover also gener-
the parameters. alized Ricci-squared theories, which will be analyzed in a

To treat explicitly cosmological models we choast be  forthcoming papef34].
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