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Entropy and universality of the Cardy-Verlinde formula in a dark energy universe
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We study the entropy of a FRW universe filled with dark energy~cosmological constant, quintessence, or
phantom!. For the general or time-dependent equation of statep5wr the entropy is expressed in terms of
energy, Casimir energy, andw. The corresponding expression is reminiscent of the 2D conformal field theory
~CFT! entropy only for conformal matter. At the same time, the cosmological Cardy-Verlinde formula relating
three typical FRW universe entropies remains universal for any type of matter. The same conclusions hold in
modified gravity, which represents the gravitational alternative for dark energy and which contains terms that
increase at low curvature. It is interesting that black holes in modified gravity are more entropic than those in
Einstein gravity. Finally, some hydrodynamical examples testing the new shear viscosity bound, which is
expected to be the consequence of the holographic entropy bound, are presented for the early Universe in the
plasma era and for the Kasner metric. It seems that the Kasner metric provides a counterexample to the new
shear viscosity bound.
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I. INTRODUCTION

There is growing evidence from high redshift surveys
supernovae and from Wilkinson Microwave Anisotrop
Probe ~WMAP! data analysis that the current Universe
experiencing a phase of cosmic speed-up. The accepted
planation for this behavior is the dominance of some d
energy contributing up to 70% of the critical energy dens
Nevertheless, it remains unclear what this dark energy i
cosmological constant, quintessence, a phantom, an effe
gravitational contribution, or something else. In the abse
of a completely consistent dark energy model, a good st
egy would be to explore the general properties of
Friedmann-Robertson-Walker~FRW! universe with dark en-
ergy described as matter with a general~negative or time-
dependent! equation of state. Surprisingly, quite a lot of in
formation about the present Universe and the future of s
a universe may be obtained.

In particular, a number of issues related to entropy a
energy of the Universe and their bounds may be underst
For instance, it seems clear that the FRW equations are n
simple as they look, as they may encode some quantum
theory structure via the holographic principle. In a very
teresting work@1#, a strong relation among the FRW equ
tions, conformal field theory entropy, and holography w
established. First, this work proposed a holographical bo
on the subextensive entropy associated with Casimir ene
Second, it showed that the FRW universe entropy may
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presented as a type of Cardy entropy in conformal fi
theory@2#. The corresponding expression is called the Car
Verlinde ~CV! formula. Moreover, one more relation—th
universal cosmological CV formula—may be obtained
rewriting the FRW equations in terms of three holograp
entropies~or energies!. There is currently much activity in
the study of various aspects of the CV formula~see Ref.@4#
and references therein!: its holographic origin, the relation to
the brane-world approach, and the description via anti–
Sitter ~AdS! duals within the AdS/CFT setup. It is also re
markable that the CV formula can be generalized for the c
of a general~constant! equation of state@5#, while the cos-
mological CV formula remains valid.

The purpose of the present work is to discuss the entro
Cardy-Verlinde-like formulas, and related consequences
the holographic entropy bound for a~mainly! FRW universe
filled with dark energy where the effective equation of sta
is negative or even time-dependent. In a similar fashi
these questions are studied for modified gravity, which r
resents a gravitational alternative for dark energy. It is
pected that a better understanding of this topic may s
some light on questions about the origin of holographic
lations in the early Universe as well as in the current acc
erating Universe, and on the origin of dark energy itself.

The paper is organized as follows. In the next section
discuss the thermodynamic system that corresponds to
FRW universe with a general equation of state that can
negative~cosmological constant, phantoms, or quintessen!
or time-dependent. The explicit expression for the entropy
such a FRW universe is found and is presented as a
formula ~in terms of energy and Casimir energy!. It is re-
markable that for a general equation of state, such a form
does not have a simple form, reminiscent of 2D CFT entro
Another form of the~cosmological! CV formula ~which is
expected to have a holographic origin and which relates th
©2004 The American Physical Society20-1
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different typical entropies of a FRW universe! is found to be
universal, like the 2D CFT entropy. The entropy bounds~in-
cluding the Bekenstein bound! for a dark energy universe
and their dependence on critical radii are briefly mention

Section III is devoted to the study of the same questi
for modified gravity, which contains terms that increase w
the decrease of curvature. Such a theory describes the cu
accelerating Universe and represents the gravitational a
native for dark energy. It is shown that the cosmological C
formula is universal, since it remains the same in both fram
~Jordan or Einstein! used to describe such a gravity. In Se
IV the black hole thermodynamics for modified gravity
briefly discussed. It is shown that for Schwarzschild–anti–
Sitter ~SAdS! black holes the entropy is related to the are
with a numerical coefficient that is different from the Ei
stein gravity case. The relation of such an entropy to the
formula is briefly mentioned. Section V is related more
hydrodynamics and the early Universe. Namely, some u
versal lower bound on the relation between shear visco
and entropy density was recently suggested. It is expe
that such a bound directly follows from the Bekenstein e
tropy bound. As shear viscosity is typical for an anisotro
universe, we test the bound for hydrodynamics or a Kas
universe. It seems that an anisotropic universe may g
some counterexample for the bound. Finally, a summary
an outlook are given in the last section.

II. THERMODYNAMICS OF A DARK ENERGY
UNIVERSE: ENERGY AND ENTROPY

Let us start from the simple thermodynamic system w
the free energyF5F(V,T), whereV is volume of the sys-
tem andT is temperature. The pressurep, energy densityr,
and entropyS are given by

p52
]F

]V
, r5

1

V S F2T
]F

]TD , S52
]F

]T
. ~1!

The first law of the thermodynamics holds automatica
TdS5dE1pdV. Here the total energyE is given by E
5rV. The Boltzmann constantkB is chosen to be unity
(kB51). The free energy may be chosen in the followi
form:

F52 f 0TaVb, ~2!

with some constantsf 0 , a, andb. As a result

p5b f 0TaVb21, r5~a21! f 0TaVb21, S5a f 0Ta21Vb.
~3!

Defining a parameterw by p5wr ~equation of state!, we
obtain

w5
b

a21
. ~4!

The case of interest is the negative equation of state, whic
typical for the current, dark energy, Universe. The free
ergy can be rewritten as
04352
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F52 f 0T~T1/wV!b, ~5!

which tells that the general free energy of the matter withw
has the following form:

Fw~T,V!5TF̂~T1/wV!. ~6!

Here F̂(x) is a function depending on the matter.
For a54 and b51, the classical radiation in four

dimensional spacetime is restored:p5 f 0T4, r53 f 0T4. In
order to obtain an ideal gas, the free energy should be wri
F5 f 0(TaVb2T). It is interesting that the last term does n
contribute top (r) but does contribute to the entropyS. In
the limit thata→1 andb→0 with finite c15 f 0(a21) and
c25b f 0, we obtain F5T ln(Tc1Vc2), p5c2TV, r5c1TV.
Then c2 can be identified with the numberN of the mol-
ecules in the gasc25N andc15 3

2 N for the monatomic mol-
ecule. One can also obtain dust by choosingb50:

p50, r5~a21! f 0TaV21. ~7!

We may consider the case for which the entropy is c
stant,S5S0, which is typical for an adiabatically expandin
universe for which the first law of thermodynamics hold
From ~3! it follows that

T5~a f 0!21/(a21)S0
1/(a21)V2w. ~8!

Herew is given in ~4!.
Let us apply the above considerations to t

(n11)-dimensional FRW metric of the form

ds25gmndxmdxn52dt21a2~t!g i j dxidxj , ~9!

where then-dimensional metricg i j is parametrized byk5
21,0,1. In the following, thek51 case is mainly consid
ered. SinceV5an*dnxAg, the temperature of the Univers
is T}a2nw. By combining ~3! and ~8!, the total energyE
5rV is given by

E5~a21!a2a/(a21)f 0
2a/(a21)S0

a/(a21)V2w}a2nw.
~10!

The a dependence inT and ~10! reproduces the correspond
ing results in Ref.@5#.

Rescaling the entropy and the volume asS0→lS0 and
V→lV, from the expression ~10!, we obtain E
→l1/(a21)112wE. If the energy is extensive,E→lE. For
the extensive part of the energy it follows thata5111/w,
b51. In order to obtain the expression of thisb, Eq. ~4!
should be used.

The following free energy for general equation of sta
may be considered:

F52 f 0T111/wV~11 f 1T22/nwV22/n!. ~11!

If there is no the second term, the first term gives the ext
sive energy. Note thatp5wr even if the second term is
included. As a result, the energy and entropy of the ther
universe follow:
0-2



e
e
s

si

e

rgy
est
y

ote

e

ed
nge

0

pe-

ds

ious

ENTROPY AND UNIVERSALITY OF THE CARDY- . . . PHYSICAL REVIEW D 70, 043520 ~2004!
E5
f 0

w
T111/wVF11S 12

2

nD f 1T22/nwV22/nG ,
S5 f 0T1/wVF S 11

1

wD
1S 11

1

w
2

2

nwD f 1T22/nwV22/nG . ~12!

As clear from ~1! and ~2!, the entropy becomes negativ
~unphysical case! if f 0 or a is chosen to be negative. If th
terms containingf 1 can be neglected, as is clear from Eq
~12!, the entropyS becomes negative if

~1! f 0,0 andw,21: in this case, the energyE is posi-
tive.

~2! f 0.0 and 0.w.21: in this case,E also becomes
negative.

We should also note that the energy~if we neglect the
terms containingf 1) is positive ~negative! if f 0 is positive
~negative!. The case for negative entropy would be unphy
cal and should be excluded. Then the case forw,21 and
positive energyE, and the case for 0.w.21 and negative
energyE, should be excluded.

The subextensive part of the energyEC , which is called
the Casimir energy, is given by

EC5n~E1pV2TS!52nV2
]

]V S F

VD
522 f 0f 1T111/w22/nwV122/n. ~13!

The extensive part of the energyEE has the following form:

EE5E2
1

2
EC

5
f 0

w
T111/wVF11S 12

2

n
1wD f 1T22/nwV22/nG . ~14!

From the last expression in~12!, we obtain

T;SwF11S 11
1

wD 21S 12
2

nw
1

1

wD f 1T22/nwV22/nG
~15!

and

EE;Sw11V2w1O~ f 1
2!, EC;Sw1122/nV2w1O~ f 1

2!,
~16!

which reproduce the behaviors in Ref.@5#. When the size of
the universe is large, the second terms inS ~12! and in EE
~14! are subdominant and we obtain

S; f 0T1/wVS 11
1

wD , EE;
f 0

w
T111/wV. ~17!

Then combining~13! and ~17!, for the FRW metric~9! with
k51, one gets
04352
.
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S; f 0S 11
1

wD S 2
2 f 0

2f 1

n D 2n/2[(w11)n21]

3V0
wn/[(w11)n21]@anwAEEEC#n/[(w11)n21]

5A@anwA~2E2EC!EC#n/[(w11)n21]. ~18!

Here

A[ f 0~111/w!~24 f 0
2f 1 /n!2n/2[(w11)n21]V0

wn/[(w11)n21]

and

V05*dnxAg.

Equation~18! reproduces Eq.~20! in Ref. @5# if we identify
A5(2p/Aab)n/[(w11)n21]. This expression represents on
of the forms of the Cardy-Verlinde formula@1# for the gen-
eral equation of state.

As there are astrophysical indications that dark ene
currently dominates the thermal universe, our main inter
relates to the case wherew can be negative. One usuall
denotes the matter as quintessence if2 1

3 .w.21 and as
phantom@6# if w,21. Whenw521, the situation corre-
sponds to the cosmological constant. First we should n
that entropyS ~18! becomes singular atw52111/n, which
occurs since the productECEE becomes independent of th
temperature. If the entropyS is conserved, Eq.~18! indicates
that the productECEE increases if the size of the universea
increases whenw is negative. The entropy may be conserv
but we may consider the variation of the entropy as a cha
of the initial condition.

When 0.w.2111/n, if we keep ECEE as constant,
Eq. ~18! shows thatS decreases ifa increases. Whenw,
2111/n, S increases ifa increases butSdecreases ifECEE
increases. As is seen from~12!, the specific heatdE/dT with
fixed volume (V is a constant! becomes negative, when
.w.21. For the phantom matter (w,21), the specific
heat is positive and for the cosmological constant, the s
cific heat vanishes.

For the current realistic Universe the case for many kin
of matter~with dark energy dominance! is typical. In such a
case the free energy may be written as sum over var
contributions

F52(
i

f i0T111/wiV~11 f i1T22/nwiV22/n!. ~19!

Then one gets

E5(
i

f i0

wi
T111/wiVF11S 12

2

nD f i1T22/nwiV22/nG ,
S5(

i
f i0T1/wiVF S 11

1

wi
D

1S 11
1

wi
2

2

nwi
D f i1T22/nwiV22/nG ,

EC522(
i

f i0f i1T111/wi22/nwiV122/n,
0-3



in

r
e
iv
a-

ti-

a
n
t
is

la

ows,

ight

e or
If
the
and

t:
be

rgy
sive
-

n

last

BREVIK et al. PHYSICAL REVIEW D 70, 043520 ~2004!
EE5(
i

f i0

wi
T111/wiVF11S 12

2

n
1wi D

3 f i1T22/nwiV22/nG . ~20!

Thus, in case for several types of matter, we cannot obta
simple relation~18!. Nevertheless, an inequality follows:

S>Si;Ai@anwiA~2Ei2ECi!ECi#
n/[(wi11)n21]. ~21!

Here

Ai[ f 0i S 11
1

wi
D S 2

4 f 0i
2 f 1i

n D 2n/2[(wi11)n21]

3V0
win/[(wi11)n21] . ~22!

As S5( iSi andSi>0, the inequality~21! holds for arbitrary
i. With the entropyS ~20!, at high temperature the matte
with small and positivewi dominates. We now denote th
quantities related with the matter with smallest but posit
wi by the index ‘‘min.’’ On the other hand, at low temper
ture as in current Universe, if all thewi ’s are positive, the
matter with largewi dominates. We now denote the quan
ties related with the matter for largestwi by the index
‘‘max.’’ Then we obtain S
;Ai@anwiA(2Ei2ECi)ECi#

n/[(wi11)n21]. Here at high tem-
perature, we havei 5min and at low temperaturei 5max. If
there is a dark energy~say, phantom! with negativew, such a
matter dominates at low temperature:

S;Ap@anwpA~2Ep2EpC!EpC#n/[(wp11)n21]. ~23!

Here we have denoted the quantities related with the ph
tom matter by the indexp. Note that for a negative equatio
of state the above universe entropy formula is dissimilar
the well-known Cardy formula in CFT. Since the entropy
given by

S; f p0T1/wpVF S 11
1

wp
D1S 11

1

wp
2

2

nwp
D f p1~T1/wpV!22/nG

~24!

for conserved entropy,T1/wpV is a constant:T1/wpV5C.
Then the energyE can be rewritten as

E;
f p0

wp
CTF11S 12

2

nD f p1C22/nG
5

f p0

wp
Cwp11V0

2wpa2nwp

3F11S 12
2

nD f p1C22/nG . ~25!

Thus, the energy is linear with the temperature. In the
line, we have considered the FRW metric~9!. Generally in
the FRW metric, if we have the relationp5wr, we find r
}a2n(11w) ~energy conservation! andE5rV}a2nw, which
04352
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is consistent with~25!. If there is only dark matter withw
,0 in the Universe, we haveT1/wpV5C even at high tem-
perature. When the Universe expands and the radius gr
the temperature increases too and also the energyE and en-
ergy densityr behave asE;a2nwp and r;a2n(wp11), re-
spectively. As a result the density becomes large and m
generate some future singularities~like Big Rip, where the
scale factor of the universe diverges in a finite time!.

As an example the system with dust and quintessenc
phantom matter, wherew is negative, may be considered.
we assume that there is no internal structure in the dust,
energy of the dust does not depend on the temperature
the free energy, corresponding to~7!, becomes a constan
F5ED0. Then the total free energy can be assumed to
given by

F5ED02 f p0T111/wpV~11 f p1T22/nwpV22/n!. ~26!

Thus, one obtains

E5ED01
f p0

wp
T111/wpVF11S 12

2

nD f p1~T21/wpV!22/nG ,
S5 f p0T1/wpVF S 11

1

wp
D

1S 11
1

wp
2

2

nwp
D f p1~T1/wpV!22/nG . ~27!

Note that dust does not contribute to the entropy. The ene
of the dust is not extensive or subextensive. The exten
and subextensive~Casimir! parts of the energy of the phan
tom or quintessence matter are given by

EpC522 f p0f p1T111/wp22/nwpV122/n,

EpE5
f p0

wp
T111/wpVF11S 12

2

n
1wpD

3 f p1T22/nwpV22/nG . ~28!

If we assume the entropyS is conserved, from the expressio
of S ~27!, we findT1/wpV is a constant:

T1/wpV5C. ~29!

Then the energyE ~27! can be rewritten as

E5ED01
f p0

wp
CTF11S 12

2

nD f p1C22/nG
5ED01

f p0

wp
Cwp11V0

2wpa2nwp

3F11S 12
2

nD f p1C22/nG . ~30!

Then energy is again linear in the temperature. In the
line, we have considered the FRW metric~9!. Generally in
0-4
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the FRW metric, if we have the relationp5wr, we find r
}a2n(11w) andE5rV}a2nw, which is consistent with the
last expression for the phantom or quintessence matte
~30!.

Taking into account the recent cosmological consid
ations of variations of fundamental constants, one may s
from the case in whichwp depends on timet. Of course, this
may be a negative~or sign-changing! function. The energy
conservation condition reads 05 ṙp1n(ȧ/a)(rp1pp) by as-
sumingrp5wp(t)pp . Then we obtain the expression

rp5a2n[11wp(t)]expS nE t

ẇp~ t8!ln a~ t8!dt8 D .

The energy in such a universe is

Ep5rpV5a2nwp(t)expS nE t

ẇp~ t8!ln a~ t8!dt8 DV0 .

~31!

If the spacetime expansion is adiabatic and thermodynam
quantities can be defined, Eqs.~1! are valid. Thus, if we
define a free energy as in the phantom part of Eq.~26!, we
can obtain the entropy and energy as in~27! and the exten-
sive and subextensive parts of the energy as in~28!. Then if
we define a variablej by T5V2wp(t)j, extracting the phan-
tom partEp from the expression ofE in ~27!, we obtain

Ep5
f p0

wp~ t !
a2nwp(t)V0

2wp(t)
j111/wp(t)

3F11S 12
2

nD f 1j22/nwp(t)G . ~32!

By comparing~31! with ~32!, one finds

j5S wp~ t !

f p0
D wp(t)/[wp(t)11]

V0
wp(t)expS nwp~ t !

wp~ t !11

3E t

ẇp~ t8!ln a~ t8!dt8D H 12 f 1

122/n

111/wp~ t !

3S wp~ t !

f p0
D 22/n[wp(t)11]

V0
22/nexpS 2

2

wp~ t !11

3E t

ẇp~ t8!ln a~ t8!dt8D J 1O~ f 1
2!. ~33!

From Eqs.~27! and~28!, the expressions of the entropySp ,
the extensive part of the energyEpE , and the Casimir energy
EpC may be evaluated:

Sp5 f p0j1/wp(t)F S 11
1

wp~ t ! D
1S 11

1

wp~ t !
2

2

nwp~ t ! D f p1j22/nwp(t)G ,

04352
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EpE5
f p0

wp~ t !
a2nwp(t)V0

2wp(t)
j111/wp(t)

3F11S 12
2

n
1wp~ t ! D f p1j22/nwp(t)G ,

EpC522 f p0f p1a2nwp(t)V0
2wp(t)

j111/wp(t)22/nw(t).
~34!

As wp(t) andj are time-dependent, the entropy is not co
stant and not conserved. Nevertheless, from~34! the Cardy-
Verlinde @1#–like formula ~in the form of Youm@5#! ~23! is
still valid:

Sp;Ap@anwpA~2Ep2EpC!EpC#n/[(wp11)n21]. ~35!

We should note, however, since

Ap5 f p0S 11
1

wp~ t ! D S 2
4 f p0

2 f p1

n D 2n/2[(wp(t)11)n21]

3V0
wn/[wp(t)11]n21

andwp(t) depend on time,Ap is not a constant but a functio
of the time t. Thus, the entropy of the expanding univer
with a ~negative! time-dependent equation of state is foun

Now, the FRW equations for a universe filled with matt
with pressurep and energy densityr are given by

H25
16pG

n~n21!
r2

k

a2 , Ḣ52
8pG

n21
~r1p!1

k

a2 .

~36!

As in Ref. @1#, if we define the Hubble entropySH , the
Bekenstein-Hawking energyEBH , and the Hawking tem-
peratureTH by

SH[
~n21!HV

4G
, EBH[

n~n21!V

8pGa2 , TH[2
Ḣ

2pH
,

~37!

the FRW equations can be rewritten in universal form as

SH5
2pa

n
AEBH~2E2kEBH!, kEBH5n~E1pV2THSH!,

~38!

Furthermore with the Bekenstein entropySB and the
Bekenstein-Hawking entropySBH as

SB[
2pa

n
E, SBH[

~n21!V

4Ga
, ~39!

we obtain well-known relation between entropies:

SH
2 52SBSBH2kSBH

2 . ~40!

In the case fork51, Eq. ~40! can be rewritten asSH
2 1(SB

2SBH)25SB
2 . Then we findSH<SB . For the system with

limited self-gravity, the Bekenstein bound@3# occurs:
0-5
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S<SB . This bound is useful for the case in which the syst
has relatively low energy or small volume. Then Bekenst
entropySB scales asSB→l111/nSB under the scale transfor
mationV→lV andE→lE @1#.

Equation~38! has a form similar to the second equation
~18! with w51/n; this equation is called the cosmologic
Cardy-Verlinde formula. The second equation in~37! has a
form similar to~13! andEBH may correspond to the Casim
energyEC . In Ref. @1#, the following cosmological bound
has been proposed:

EC<EBH . ~41!

As seen from the definition ofEBH in ~37!, we find EBH
;an22. If we consider phantom or quintessence as the m
ter field, as seen from the last expression in~30!, the behav-
ior of the Casimir energy is given byEC;a2nw. Then if w
,2112/n and EC is positive, there is a critical radiusac
whereEC5EBH , and if the radius,a of the universe is large
than the critical radius,a.ac , the bound in~41! is violated.
Formally ac is given by

ac5F2
16pG fp0f p1V0

2wp21C122/n

n~n21!
G1/[nwp1n22]

with the parametersf p0 , f p1, and C, which may be deter-
mined by some initial conditions. If we consider fou
dimensional spacetime (n53), becausew,2112/n, we
obtain w,2 1

3 , then for the quintessence (21,w,2 1
3 ),

the cosmological constant (w521), and the phantom (w
,21), there is always a critical radiusac and the bound
~41! is violated if a.ac .

Similarly, one can discuss the entropy bounds for the d
energy universe as in Ref.@5# even if wp depends on time
Although the entropy is not conserved, the expression of
entropySp ~35! still holds. The quantity (2Ep2Ep)EpC in-
side the square root of~35! has a maximumEp

2 when EpC

5Ep . Then

S<Ap@anwpEp#n/[(wp11)n21] for wp.211
1

n
,

S>Ap@anwpEp#n/[(wp11)n21] for wp,211
1

n
.

~42!

As wp depends on time, at some time, we may havewp.
2111/n and at another time,wp,2111/n. If we define
the Bekenstein entropySpB for the dark energy as in~39!,
SpB[(2pa/n)Ep , we find, even ifwp depends on time, the
relation as in Ref.@5#:

S<S0@anwp21SB#n/[(wp11)n21] for wp.211
1

n
,

S>S0@anwp21SB#n/[(wp11)n21] for wp,211
1

n
.

~43!
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Here S0 is given byS05Ap(n/2p)n/[(wp11)n21]. However,
as wp and Ap depend on time,S0 also depends on time. I
w,21,2111/n, the entropy can be negative~unphysical
case! even if the energy is positive. If21,w,1/n, the
entropy becomes negative only when the energy is nega

III. ENTROPY AND ENERGY IN MODIFIED GRAVITY

In Refs. @7,8#, a gravitational alternative was suggest
for the dark energy modifying the standard Einstein action
low curvature by the 1/R term. Such modified gravity may
produce the current cosmic speed-up@7# and may be natu-
rally generated by string/M theory@9#. It represents some
kind of higher derivative and nonlocal gravity, and as such
may contain some instabilities@11#. Nevertheless, with some
mild modifications at high curvature regions, the theory
shown to be stable@12#, which is also supported by quantum
field theory @12#. Modified gravity was studied in Palatin
form @10#, and it seems that it may be viable also in such
version. Classically, its action may be mapped to an equ
lent scalar-tensor theory. We discuss below the entropy,
energy, and CV formula for an accelerated universe in mo
fied gravity, which provides the gravitational dark energy.

Let us start from the rather general four-dimensional
tion:

Ŝ5
1

k2E d4xA2g f~R!, ~44!

where k2516pG, R is the scalar curvature, andf (R) is
some arbitrary function. By using the conformal transform
tion gmn→esgmn with s52 ln f8(R), etc., the action~44! is
rewritten as

ŜE5
1

k2E d4xA2gS R2
3

2
grs]rs]ss2V~s! D ,

V~s![esg~e2s!2e2s f ~g~e2s!!5
A

f 8~A!
2

f ~A!

f 8~A!2
.

~45!

Hereg(B) is given by solving the equationB5 f 8(A) with
respect toA, A5g(B), and A in ~45! is given by A[
2e2s. This is the standard form of the scalar-tensor theor
where the scalar field is fictitious@12#.

We now consider the FRW cosmology in modified gra
ity. The FRW metric in the physical~Jordan! frame is given
by

ds252dt21â~ t !2 (
i , j 51

3

g i j dxidxj . ~46!

The FRW equation in the Einstein frame has the followi
form:

3HE
21

3k

2aÊ
2

5
k2

2
~r (sE)1r (m)!. ~47!
0-6
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Herer (m) is the energy density of the matter but for simpli
ity, we neglect the matter. We also concentrate on thek50
case but the obtained results are correct even forkÞ0 case if
the radius of the universe is large enough. The Hubble c

stantHE in the Einstein frame is defined byHE[ ȧ̂E /âE with
the scale factorâE in the Einstein frame:âE5e2s/2â. The
contribution from thes field to the energy-momentum tens
r (sE) is given by

r (sE)[
1

k2 S 3

2
ṡ21V~s! D . ~48!

In the Einstein frame, the equation of motion fors has the
following form:

053~ s̈13HEṡ !1V8~s!. ~49!

Assuming that when the curvature is small the action
given by

Ŝ5
1

k2E d4xA2gS R2
ã

R
D , ~50!

the potential is given byV(s);(2/Aã)e(3/2)s. Since s5

2 ln f8(R);2ln(ã/R2), s is negative and large. Then the s
lution of Eqs.~47! and ~49! is given by

âE5âE0S tE

t0
D 4/3

, s52
4

3
ln

tE

t0
,

t0
2

Aã
54. ~51!

HeretE is the time coordinate in the Euclidean frame, whi
is related to the time coordinatet in the ~physical! Jordan
frame byes/2dtE5dt. As a result 3tE

1/35t and in the physical
~Jordan! frame the power law inflation occurs,

â5es/2âE}tE
2/3}t2. ~52!

In general, if p5wr, the scale factora behaves asâ
;t2/3(w11). Then as we can see from~52!, in the Jordan
frame we findw52 2

3 and from~52!, in the Einstein frame,
w522. In fact, in the Einstein frame one has

r (sE);
32

3k2tE
2 , p(sE)[

1

k2 S 3

2
ṡ22V~s! D;2

16

3k2tE
2 .

~53!

Although the Jordan frame is physical, as the separatio
the gravity and the matter is easier in the Einstein frame,
work in the Einstein frame for a while. The FRW equatio
~47! can be rewritten in the form of the cosmological C
formula with n53 as

SH
E5

2pa

3
AEBH

E ~2EE2kEBH
E ! ~54!

by defining
04352
n-
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e

SH
E[

HEVE

2G
, EE[r (sE)VE , EBH

E [
3VE

4pGâE
2

,

VE[âE
3E d3xA2g, ~55!

andk2516pG. The second FRW equation can be given
considering the derivative of the~first! FRW equation~47!
with respective Einstein timetE and can be rewritten as

kEBH
E 53~EE1p(sE)VE2TH

ESH
E !. ~56!

Here

TH
E[2

1

2pHE

dHE

dtE

and we find

p(sE)52
1

3HE

dr (sE)

dtE
2r (sE) . ~57!

In the physical Jordan frame, sinceâ5es/2âE and es/2dtE
5dt, the Hubble parameter is

H[
1

â

dâ

dt
5

1

âE

dâE

dtE

dtE
dt

1
1

2

ds

dt
5HEe2s/21

ṡ

2
. ~58!

Then in the Jordan frame, the FRW equation can be rewri
as

3H21
3k

â2
5

k2

2
r (s) , r (s)[r (sE)e

2s1Hṡ2
ṡ2

4
.

~59!

Defining SH[HV/2G, E[r (s)V, EBH[3V/4pGâ2, V

[â3*d3A2g, we obtain the cosmological Cardy-Verlind
formula:

SH5
2pa

3
AEBH~2E2kEBH!. ~60!

By differentiating the FRW equation~59! with respect tot,
one gets the second FRW equation:

dH

dt
2

k

â2
5

k2

2
~r (s)1p(s)!, p(s)[2

1

3H

dr (s)

dt
2r (s) .

~61!

With the definition of the temperatureTH as

TH[2
1

2pH

dH

dt
,

it follows that

kEBH53~E1p(s)V2THSH!. ~62!
0-7
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For the case ofk50, by substituting~51! and ~52! into the
expressions ofr (s) in ~59! andp(s) in ~61!, we find

r (s)5
r (s)0

t2
, r (s)0[

22~27!2/3

3k2t0
4/3

212, p(s)52
2

3

r (s)0

t2
.

~63!

Eventually, it followsw52 2
3 in the Jordan frame.

At low temperature, as the field with lowest~negative! w
dominates, we may have a equation similar to~23! with n
53:

S;As@a3wsA~2Es2EsC!EsC#3/(3ws12),

As[ f s0S 11
1

ws
D S 2

4 f s0
2 f s1

3 D 23/2(3ws12)

3V0
3ws /(3ws12) . ~64!

Sincews52 2
3 , the exponents in~64! diverges. Then when

the entropy is finite, the following condition appears:

S 2
4 f s0

2 f s1

3 D 23/2

V0
3ws@a3wsA~2Es2EsC!EsC#351.

~65!

Notice that the solution~51! or ~52! is for k50 case. Then
the Casimir force should vanish. In order to find the Casim
force, we need to consider thekÞ0 case. As the expansio
over k corresponds to the expansion with respect to the
verse of the radius of the universe, we may consider
perturbation with respect tok in order to obtain the Casimi
energy. We should also note that, as discussed after~12!,
sincew is now greater than21 but negative, the entropyS
could be negative only if the energy is negative.

IV. BLACK HOLE THERMODYNAMICS

We now consider the black hole solution in the modifi
gravity, whose action is given by~50!. As it will be shown,
its thermodynamical properties are also related to the
formula. If we assumeRmn}gmn , the equation of motion is
given by

05S 11
ã

R2DRmn2
1

2
gmnS R2

ã

R
D . ~66!

ThenR56A3ã, Rmn56(A3ã/4)gmn . A large class of so-
lutions is given by the family of metrics

ds252e2rdt21e22rdr21 (
i , j 51,2

gi j
(2)dxidxj ,

e2r5
1

r S 2m1k(2)r 2
Lr 3

3 D , L57
A3ã

4
, ~67!

embracing de Sitter~dS! and anti–de Sitter~AdS! black
holes with any horizon topology. Herek(2) is the Ricci cur-
vature of the transverse manifold, as given by the Ricci t
04352
ir
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sor Ri j
(2) of the metric gi j

(2) , i.e., Ri j
(2)5k(2)gi j

(2) . If L,0
(L.0), the spacetime is asymptotically anti–de Sitter~de
Sitter!. In both cases the curvature radius will be defined

L253/uLu512/A3ã.
We shall mainly study the SAdS metric, although our r

sults apply equally well to any horizon topology. The the
modynamical free energy can be obtained according t
quantum gravity tree-level formula involving the Euclidea
actionI E : F(b)5b21I E5(k/2p)I E , wherek is the surface
gravity of the black hole. To pursue this program one has
regularize the volume divergences. In anti–de Sitter grav
one can achieve this, essentially, by two well known me
ods. One is the counterterm method inspired by the M
dacena duality with conformal field theories, the other
background subtraction chosen to correspond to the vac
of the CFT. This uniquely identifies it as anti–de Sitter spa
itself, with no matter inside. The unregularized Euclide
action will be

I E52
1

16pGE d4xS R2
ã

R
D ugu1/22

1

8pG R Kuhu1/2d3x.

~68!

The Euclidean SAdS solution is given by~67! taking k(2)

51 and the metricgi j
(2) to be that of a round two-sphere,

ds25S 12
m

r
1

r 2

L2D dt21S 12
m

r
1

r 2

L2D 21

dr21r 2dv2
2 ,

~69!

where dv2
2 is the line element of a two-sphere with un

radius and volumev254p. Moreover,t.t1b is periodi-
cally identified up tob and the curvature radius isL2

512/A3ã. This is a solution of~68! with R52A3ã. There-
fore it represents a spherically symmetric black hole i
mersed in anti–de Sitter space.

The background metric will be~69! with m50, i.e.,
anti–de Sitter space at finite temperatureT5k/2p. This has
zero gravitational entropy, since there is no horizon. The
tion ~68! for the metric~69! is easily seen to be

I E5
Aãb

3A12G
~Rm

3 2r 1
3 !1boundary terms, ~70!

whereRm is an upper bound for the radial integration andr 1

is the radius of the horizon. The action of the background

I EB5
Aãb

3A12G
R0

31background boundary terms,~71!

where againR0 is a radial cutoff. Now a meaningful com
parison of the black hole free energy with the vacuum f
energy~empty AdS space! requires that the vacuum metri
on the surfacer 5R0 be asymptotically coincident with the
actual metric on the surfacer 5Rm . This matching condition
ensures that the boundary temperatures in the black hole
the background be equal. A simple check gives the match
0-8
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condition that, asymptotically,R05Rm2mL2/6Rm
2 . Using

this in ~71! and subtracting the result from~70! give the
regularized action1

DI E5
Aãb

6A12G
~mL222r 1

3 !. ~72!

We note that the mass parameterm andr 1 are functions ofb
through the defining relationsm5r 11r 1

3 /L2 and b
54pL2r 1 /(mL212r 1

3 ). Hence the entropy could be com
puted by the familiar thermodynamical relationS5b]bDI E
2DI E . Instead we may use an easier way. We note that b

R2ã/R and R22L are proportional toAã, so I E must be
proportional to the action as computed in Einstein grav
Denoting this asI AdS, a simple computation givesI E
5 4

3 I AdS. We know that the entropy in Einstein gravity
A/4G, so we immediately conclude that in 1/R gravity the
entropy must be

S5
4

3

A

4G
5

A

3G
. ~73!

So black holes in modified gravity are a little bit more e
tropic than expected. We may confirm this result by using
Noether charge method. In this case the formula is@13#

S54pE
S2

]L
]R

d2x,

whereL5L(R) is the Lagrangian density and the integral
over the horizon at r 5r 1 . In our case L5Ag(R
2ã/R)/16pG, so

S5
A

4G S 11
ã

R2D 5
4

3

A

4G
,

as a simple computation will confirm usingR253ã. These
calculations can be done in any spacetime dimensions, sd.
Then ~73! generalizes to

S5
2d

d12

A

4G
. ~74!

Note that for the black hole with the size of a FRW univer
the entropy is defined by the Bekenstein-Hawking entro
SBH ~39!. Then the above result indicates thatSBH should
also be modified by the factor 2d/(d12) if compared with
the FRW universe in Einstein gravity.

The higher entropy of black holes in 1/R gravity means
that they are more massive than those in Einstein the
since by the first lawdM5TdS. The precise prediction
should just be thatM is larger by the factorz52d/(d12).

1One finds that the boundary terms do not contribute to the fi
result.
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An asymptotic SAdSd black hole in general relativity ha
an excitation energy over the AdS vacuum that can be c
puted by canonical methods through the formula

M52
1

8pG R N~Q2Q0!Asdd22x. ~75!

Here we integrate, over a (d22)-dimensional sphere at in
finity contained in a Cauchy surface of equal time, the lap
functionN5A2gtt times the trace of the second fundame
tal form of the sphere as embedded in the Cauchy surf
after a regularizing subtraction from empty AdS space. F
the metric~69! one finds

M5
~d22!vd22

16pG
m. ~76!

This can be expressed as a function of the black hole ra
by using the conditionN(r 1)50, which is m5r 1

d23

1r 1
d21/L2. In theories with an AdS dual, this relation can b

interpreted as the energy of a CFT ‘‘living’’ on the bounda
of AdS spacetime, and leads to a CV formula for AdS bla
holes. In higher-derivative gravity, and this is just our ca
things may be not so straightforward. For a theory who
LagrangianL5L(R) is a function of the scalar curvature, th
above mass can be related to a Noether charge@14# that is
proportional to]L/]R, as in the entropy derivation give
above. Moreover, it is this Noether charge that enters
formulation of the first law for stationary black holes in di
feomorphism covariant theories of gravity@13,14#. The result
is the mass formula~75!, except that the integrand gets mu
tiplied with 16pG]L/]R evaluated on the background sol
tion, whereL5(R2ã/R)/16pG is the actual Lagrangian
This gives all masses an extra coefficient 11ã/R25 4

3 . It is
therefore clear that the Cardy-Verlinde formula for Ad
black holes@15,16#, being the square root of a quadrat
function of all the relevant energies, will give the entropy t
4/3 coefficient too, in accord with our calculations.

V. HYDRODYNAMICAL EXAMPLES TESTING
THE HOLOGRAPHIC ENTROPY BOUND

The suggestion of Kovtunet al. @17# that there may exist
in cosmology a universal lower bound onh/s—h being the
shear viscosity ands the entropy content per unit volume—
interesting, since it may be of fundamental importan
These authors are concerned with the infrared propertie
theories whose gravity duals contain a black brane wit
nonvanishing Hawking temperature, the point being that
infrared behavior is governed by hydrodynamical laws. If w
for definiteness consider a stack ofN nonextremal D3 branes
in type IIB supergravity, the metric near the horizon is giv
by

al
0-9
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ds25
r 2

R2
@2 f ~r !dt21dx21dy21dz2#

1
R2

r 2f ~r !
dr21R2dV5

2 , ~77!

whereR}N1/4 is a constant andf (r )512r 0
4/r 4 with r 0 be-

ing the horizon. The Hawking temperature of this metric
T5r 0 /pR2, and h and s are given byh5 1

8 pN2T3, s
5 1

2 p2N2T3. Thus, in dimensional notation

h

s
5

\

4pkB
56.08310213 K s. ~78!

The conjecture of Kovtunet al. ~see also Ref.@18#! is that
the value in Eq.~78! is a lower boundfor h/s. Since this
bound does not involve the speed of light, the authors e
conjecture that this bound exists for all systems, includ
nonrelativistic ones.

The idea has recently been further elaborated in Ref.@19#,
arguing that the bound follows from the generalized cova
ant entropy bound. From Eq.~40!, there is the Bekenstein
~and also the holographic! entropy bound, which is used t
prove the new bound to shear viscosity.

The purpose of this section is to elucidate this holograp
idea by considering some examples explicitly. We w
choose examples from general physics. Our scope is
wider than in the previous sections; our aim is to investig
the generality of the entropy bound. We will consider thr
examples, the first taken from ordinary hydrodynamics,
second from the theory of the Universe in the beginning
its plasma era, and finally the third taken from the very ea
Universe under conditions corresponding to the Kasner m
ric. The third example is presumably the one of main int
est; the shear viscosity concept is after all a concept
relates to ananisotropic physical situation. Moreover, we
will discuss the validity of the Cardy-Verlinde entropy fo
mula in the case of viscous cosmology, thus elaborating
the previous treatment on this topic in Ref.@20#. The central
inequality that we intend to analyze is thus

h/s

\/4pkB
.1. ~79!

Example 1. Hydrodynamics: Small-Reynolds-number fl
The following setup taken from ordinary hydrodynamics
volves both the shear viscosityh and the entropy densitys:
Assume that a solid sphere with radiusR and with high ther-
mal conductivityl is immersed in a uniform flow passing
at small Reynolds numbers. We take the origin in the cen
of the sphere, and use spherical coordinates with the p
axis in the direction of the undisturbed velocityu of the
stream. The equation of thermal conduction is¹2T5
2(h/2l)(v i ,k1vk,i)

2, where v is the fluid velocity for r
>R. Inserting Stokes’s formula~applicable at low Reynolds
numbers! for v, the solution for the temperature distributio
T(r ) can be written as@21#
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T~r !2T05
9u2h

4l H S 3

4

R2

r 2
2

5

3

R3

r 3
1

R4

r 4
2

1

12

R6

r 6 D cos2u

1
2

3

R

r
2

3

4

R2

r 2
1

5

9

R3

r 3
2

1

6

R4

r 4
2

1

36

R6

r 6 J ,

~80!

where T0 is the constant reference temperature at infin
The boundary conditions are T5T15const and
*(]T/]r )r 2sinudu50 for r 5R. From Eq.~80! it is seen that
DT[T12T055u2h/8l.

One may ask: What is the appropriate value to be inse
for the entropy densitys? Taking water as an example, on
might use the handbook value fors, resulting inh/s52.3
310210 K s, as in Ref.@19#. However, in our opinion the
physically most natural value to use fors in the present ex-
ample is the one associated with the temperature
ference DT. This amounts to settings5rcp*T0

T1(dT/T)

.rcpDT/T0 , cp being the specific heat capacity at consta
pressure. We then get

h

s
5

8nT0

5u2

1

Pr
,

where n5h/r is the kinematic viscosity and Pr5nrcp /l
the Prandtl number. We choose the moderate velocityu
51 mm/s to keep the Reynolds number small, and takeT
5300 K. Then, withn50.010 cm2/s, Pr56.75 @21# we get
h/s571 K s as a typical value. The inequality~79! is obvi-
ously satisfied.

Example 2. Plasma era in the early Universe.As the next
step we consider the initial stage of the plasma era in
early Universe. This can be taken to occur at about
51000 s after the big bang, when the Universe was cha
terized by ionized H and He in approximate equilibrium wi
radiation~cf. Refs.@22–25#!. The number densities of elec
trons and photons are equal,n.1019 cm-3, the temperature is
T.43108 K, and the energy density isrc25arT

4, where
ar5p2kB

4/(15\3c3)57.56310215 erg cm23K24 is the ra-
diation constant. The pressure isp5rc2/3. The presence o
energy dissipation and viscosity coefficients in the cosm
fluid is due to the fact that the thermal equilibrium is n
quite perfect. From relativistic kinetic theory one can calc
late the viscosity coefficients. Letx5mec

2/kBT be the ratio
between electron rest mass and thermal energy; whenx@1 it
is convenient to use the polynomial approximations@26# ~cf.
also@24#! for the evaluation of the shear viscosityh and the
bulk viscosityz:

h5
5me

6c8z~3!

9p3\3e4n
x24, z5

pc2\3n

256e4z~3!
x3, ~81!

z(3)51.202 being the Riemann zeta function. AtT54
3108 K one hasx514.8, leading to

h52.831014 g cm21 s21, z57.031023 g cm21 s21.
~82!
0-10
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We note that bothh andz now contain\, and also thath is
enormously larger thanz.

The entropy density, in view of the radiation dominanc
is given by

s5
4

3
arT

356.4531011 erg cm23K21, ~83!

and soh/s5435 K s. This value is surprisingly large enoug
to satisfy the bound in Eq.~79! as the value inExample 1.
There seems to be no simple reason why this should be
the physical conditions in the two cases are widely differe

So far, we assumed a radiation-dominated FRW unive
What happens if the universe is instead filled with mat
obeying the relationp5wrc2, with w constant and nega
tive? To investigate this point let us go back to Eq.~17!, in
which the subextensive parts are neglected. For the r
s/rc2, wheres5S/V andrc25E/V, we obtain

s

rc2
5

11w

T
. ~84!

This expression is seen to be independent of the prefactof 0.
Let us assume that the energy density atT543108 K is the
same as before, i.e.,rc25arT

451.9431020 erg cm23. Then
s is found from ~84!, and taking the shear viscosity to b
given by ~81! as before, we obtain the following simpl
equation:

h

s
5

578

11w
. ~85!

We see that except in the case wherew is close to21, the
order of magnitude ofh/s is roughly the same as above. It
moreover evident that the expression~85! is physically
meaningful only whenw.21 ~the viscosityh has always to
be positive, for general thermodynamical reasons!. We thus
see that the inclusion of shear viscosity implies that it is o
the case of quintessence that is of physical interest. The
of phantoms,w,21, leads to negative entropies and is
the present context excluded.

Example 3. The Kasner universe.Our third example is
taken from the theory of the very early Universe. From
dinary hydrodynamics we know that the shear viscos
comes into play whenever there are fluid sheets sliding w
respect to each other. Correspondingly, in a relativistic f
mulation, the most natural circumstances under whichh is
expected to be of significance are when anisotropy is brou
into consideration. It becomes natural to focus attention
the anisotropic Kasner metric

ds252dt21t2p1dx21t2p2dy21t2p3dz2, ~86!

where the numbersp1 ,p2 ,p3 are constants. The two num
bersP andQ are defined byP5( i 51

3 pi , Q5( i 51
3 pi

2 . In a
vacuum Kasner space,P5Q51. Here, we assume that the
is an isotropic fluid with energy densityr and pressurep
immersed in this space. Bothr andp, as well as the viscosity
coefficientsh and z, are assumed to be dependent on ti
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but independent of position. IfUm5(U0,Ui) is the fluid’s
four-velocity, the energy-momentum tensor isTmn5rUmUn

1(p2zu)hmn22hsmn , where hmn5gmn1UmUn is the
projection tensor,u5Um

;m is the scalar expansion,umn

5 1
2 (Um;ahn

a1Un;ahm
a) is the expansion tensor, andsmn

5umn2 1
3 hmnu is the shear tensor.

Consider now the Einstein equations, taking the cosm
logical constantL to be zero. Withk2516pG we obtain
from Rmn5 1

2 k2(Tmn2 1
2 gmnTa

a) the two equations

P2Q1
3

4
k2tzP5

1

4
k2t2~r13p!, ~87!

pi~12P2k2th!1
1

4
k2tS z1

4

3
h D P52

1

4
k2t2~r2p!.

~88!

The structure of the Einstein equations leads to the time
lationships,

r~ t !5r0~ t0 /t !2, p~ t !5p0~ t0 /t !2,

z~ t !5z0t0 /t, h~ t !5h0t0 /t, ~89!

where $r0 ,p0 ,z0 ,h0% refer to the chosen initial instantt
5t0. We can then write the equations such that they con
time-independent quantities only:

P2Q1
3

4
k2z0t0P5

1

4
k2t0

2~r013p0!, ~90!

pi~12P2k2h0t0!1
1

4
k2t0S z01

4

3
h0D P

52
1

4
k2t0

2~r02p0!. ~91!

Let us consider the production of entropy. First, for the B
anchi type-I spaces the average expansion anisotropy pa
eterA is defined as@27#

A5
1

3 (
i 51

3 S 12
Hi

H D 2

, ~92!

whereHi5ȧi /ai with ai5tpi are the directional Hubble fac
tors andH5 1

3 (1
3Hi is the average Hubble factor. Accord

ingly, in our caseA53Q/P221. Next, the entropy curren
four-vector is Sm5nsUm, where n is the baryon number
density ands5s/n the nondimensional entropy per baryo
In general,

Sm
;m5

2h

T
smnsmn1

z

T
u2, ~93!

meaning in the comoving frame of reference (ṡ5ds/dt)

ṡ5
3P2

nTt2
S z1

2

3
hAD . ~94!
0-11
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As we would expect, the anisotropy in general provide
significant contribution to the growth of entropy, in view o
the large magnitude ofh. However, let us go back to Eq
~91!: this equation tells us that all thepi have to beequal in
the present case. Withp15p25p3[b we get for theisotro-
pic Kasner space

b5
1

6 F11
3

4
k2t0z0

1AS 11
3

4
k2t0z0D 2

13k2t0
2~r02p0!G . ~95!

It is seen that the shear viscosity is absent. Equation~94!
reduces to

ṡ5
3P2

nkBTt2
z, ~96!

when written in dimensional form.
Let us evaluate the expression~96!. Due to the propor-

tionality to the small bulk viscosity we can insert forn andT
as if the cosmic fluid were ideal. Thus from conservation
particle number,n}a23, and from conservation of entropy
a}T21. Moreover, ast}T22, we can write Eq.~96! as

ṡ5
3P2z0

n0kBT0t0

1

t
. ~97!

Thuss2s0} ln(t/t0) is the increase in specific entropy whe
t increases fromt0 to t. Multiplying with the particle density
n, we obtain an expression for the corresponding increas
2s0 in entropy density. Recalling the expression in Eq.~89!
for h, we then derive as our main result the following e
pression for the sought ratio:

h

s
5

h0t0

s0t F11
3P2z0

s0T0t0
S t0

t D 3/2

ln
t

t0
G21

. ~98!

It is of interest to evaluate this expression att5t0. Let
us identify t0 with the instant at whichT51012 K, i.e., at
t5231024 s. Then n05631029 cm23, r054.5
31034 erg cm23. This temperature is a kind of limit for stan
dard cosmological theory. IfT.1012 K the universe consists
of many kinds of particles and antiparticles, but whenT has
fallen below this value a large number of hadrons has dis
peared, and the universe consists of leptons, antileptons,
tons, and nucleons. We then have@26#

h5
3pc\4

608meGF
2

x, z5
pc\4

7776meGF
2

x5, ~99!

which is valid whenx5mec
2/kBT is small. Here, the weak

coupling constant is given byGFc/\351025mp
22 .

With T051012 K we getx55.9431023, and so we have
at this instant

h051.831023 g cm21 s21, z056.031012 g cm21 s21.
~100!
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The entropy density is calculated approximatively by assu
ing radiation dominance, such as before. Then, froms
5 4

3 arT
3 we get s051.031022 erg cm-3 K-1. Thus, h0 /s0

518 K s. Once again, we end up with the same order-
magnitude result for the ratioh/s as before, when we choos
to work at the instantt5t0. However, Eq.~98! tells us that
h/s diminisheswith increasingt, and approaches zero whe
t→`. It means thath/s cannot in this case be subject to
lower bound. The Kasner case thus provides a counterex
ple to the suggestion in Eq.~79!. Of course, this can be
considered as rather academical as current Universe is n
anisotropic one.

Actually, it follows already from the thermodynamica
formalism that the lower bound in Eq.~79! cannot be uni-
versal. At least this is so in a phenomenological theory,
which h andz are arbitrary input parameters. Namely, fro
Eq. ~93! or ~94! it is seen that the specific entropy rate
change involves bothh andz. Let us imagine thath is kept

constant whilez is changing. Thereforeṡ and accordinglys
itself, as well as the ratioh/s, change. If this ratio were
subject to a lower bound, this would correspond to the ex
tence of a maximum value ofs. However, we may makes
and s as large as we wish, by inserting a sufficiently lar
value of z in Eq. ~94!. Recall in this context the way in
which viscosity coefficients are introduced in fluid mecha
ics: they are based on the assumption thatfirst ordervelocity
gradients are sufficient to construct the contribution to
stress tensor due to deviations from thermal equilibrium. T
theory is thus approximate already from the outset.

The discussion of Verlinde@1# about the holographic
bound on the subextensive entropy associated with the
simir energy assumed a radiation-dominated FRW unive
As shown in Ref.@20#, the same entropy formula holds if th
fluid possesses a constant, though small, bulk viscos
Similarly, the generalized entropy formula@5# for the case in
which the state equation isp5wr with w a constant~still
assuming a FRW metric! was also found to hold in the pres
ence of the same kind of viscosity@28#.

One may ask: How does the entropy formula look if t
cosmic fluid possesses both a shear viscosity and a bulk
cosity? The answer is immediate, if the anisotropy is ori
nally introduced via the Kasner metric. As shown above
Einstein equations eliminate the anisotropies, and we are
with an isotropic Kasner metric whose scale factor istb,
whereb is given by Eq.~95!. The anisotropy factorA van-
ishes, and the production of entropy is governed by the b
viscosityz; cf. Eq. ~94!.

Let us assume thatz is constant and small, so that we ca
adopt the same expression fora(t) as in the case of a non
viscous fluid. The argument can be given similarly to th
given in Ref. @28#: Taking n53 we see that the quantit
ra3(w11) can be considered as a function ofns. SinceE
;ra3 andS;nsa3, it follows thatEa3w is independent of
V and is a function ofS only. The conventional decompos
tion of the total energyE(S,V) into an extensive part and
subextensive part,E(S,V)5EE(S,V)1 1

2 EC(S,V), together
with the scale transformations EE(lS,lV)
5lEE(S,V), EC(lS,lV)5l1/3EC(S,V), leads to
0-12
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EE5
a

4pa3w
Sw11, EC5

b

2pa3w
Sw11/3, ~101!

wherea andb are constants. We thus get, when we reinst
a5tb,

S5F2pt3bw

Aab
A~2E2EC!ECG 3/(3w12)

. ~102!

This is the Kasner-metric-induced form of our previous e
pression~18!, whenn53. It will be of interest to understand
better the connection between the CV formula and shear
cosity bound. However, this requires the nontrivial gener
zation of the CV formula for an anisotropic universe wi
shear viscosity.

VI. DISCUSSION

In summary, we studied the entropy of a FRW unive
filled with dark energy and its representation in the form
the holographic CV formula. This investigation shows th
the expression of the entropy in terms of energy and Cas
energy depends on the equation of state in a quite com
cated form. Only for a radiation-dominated FRW univer
does the corresponding CV formula acquire the form typi
for 2D CFT entropy. At the same time, for a negative
time-dependent equation of state, such a formula seem
have nothing in common with 2D CFT, still being related
holography. Nevertheless, there exists another cosmolog
CV formula that is very useful for deriving the entrop
bounds and that is the same for any type of matter un
consideration. It is remarkable that the universality of t
cosmological CV formula together with the fact that it
predicted by the form of FRW equations proves its ho
graphical origin. Of course, the actual reasons for suc
m
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manifestation of the holographic principle in the mode
Universe remain obscure.~Some hints may be drawn from
the brane-world approach.! Furthermore, all conclusions
above remain true for the modified gravity, which is cons
ered as a gravitational alternative for dark energy. T
should not seem strange after all, as modified gravity may
rewritten in the classically equivalent form as a type
scalar-tensor gravity with matter described by a scalar fie

The black hole thermodynamics in modified gravity
also considered. The black hole entropy law is slightly d
ferent ~by numerical factor! from the standard case of th
Einstein gravity. In the last section we analyzed the recen
proposed bound for the ratio of shear viscosity to entro
density. This bound seems to follow from the Bekenst
entropy bound. As shear viscosity is absent in the curr
isotropic Universe, we concentrate on the early Universe
the plasma era or the anisotropic Kasner universe, where
newly proposed bound seems to be violated.

The important lesson drawn from this and other studies
the entropy of the FRW universe is that the holographic pr
ciple does not distinguish whether dark energy is presen
not. For instance, the cosmological CV formula is the sa
whatever the equation of state. This indicates that the or
of dark energy should be sought within fundamental theo
perhaps within string/M theory.
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