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Entropy and universality of the Cardy-Verlinde formula in a dark energy universe
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We study the entropy of a FRW universe filled with dark enefgysmological constant, quintessence, or
phantom. For the general or time-dependent equation of sptatevp the entropy is expressed in terms of
energy, Casimir energy, avd The corresponding expression is reminiscent of the 2D conformal field theory
(CFT) entropy only for conformal matter. At the same time, the cosmological Cardy-Verlinde formula relating
three typical FRW universe entropies remains universal for any type of matter. The same conclusions hold in
modified gravity, which represents the gravitational alternative for dark energy and which contains terms that
increase at low curvature. It is interesting that black holes in modified gravity are more entropic than those in
Einstein gravity. Finally, some hydrodynamical examples testing the new shear viscosity bound, which is
expected to be the consequence of the holographic entropy bound, are presented for the early Universe in the
plasma era and for the Kasner metric. It seems that the Kasner metric provides a counterexample to the new
shear viscosity bound.
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I. INTRODUCTION presented as a type of Cardy entropy in conformal field
theory[2]. The corresponding expression is called the Cardy-
There is growing evidence from high redshift surveys ofVerlinde (CV) formula. Moreover, one more relation—the
supernovae and from Wilkinson Microwave Anisotropy universal cosmological CV formula—may be obtained by
Probe (WMAP) data analysis that the current Universe isrewriting the FRW equations in terms of three holographic
experiencing a phase of cosmic speed-up. The accepted exntropies(or energies There is currently much activity in
planation for this behavior is the dominance of some darkhe study of various aspects of the CV form{dze Ref[4]
energy contributing up to 70% of the critical energy density.and references thereirits holographic origin, the relation to
Nevertheless, it remains unclear what this dark energy is: the brane-world approach, and the description via anti—de
cosmological constant, quintessence, a phantom, an effecti&tter (AdS) duals within the AdS/CFT setup. It is also re-
gravitational contribution, or something else. In the absencenarkable that the CV formula can be generalized for the case
of a completely consistent dark energy model, a good stratef a generalconstank equation of stat¢5], while the cos-
egy would be to explore the general properties of amological CV formula remains valid.
Friedmann-Robertson-Walk€FRW) universe with dark en- The purpose of the present work is to discuss the entropy,
ergy described as matter with a genefia¢gative or time-  Cardy-Verlinde-like formulas, and related consequences of
dependentequation of state. Surprisingly, quite a lot of in- the holographic entropy bound for(eainly) FRW universe
formation about the present Universe and the future of sucfilled with dark energy where the effective equation of state
a universe may be obtained. is negative or even time-dependent. In a similar fashion,
In particular, a number of issues related to entropy andhese questions are studied for modified gravity, which rep-
energy of the Universe and their bounds may be understoodesents a gravitational alternative for dark energy. It is ex-
For instance, it seems clear that the FRW equations are not pected that a better understanding of this topic may shed
simple as they look, as they may encode some quantum fielsbme light on questions about the origin of holographic re-
theory structure via the holographic principle. In a very in-lations in the early Universe as well as in the current accel-
teresting work{1], a strong relation among the FRW equa- erating Universe, and on the origin of dark energy itself.
tions, conformal field theory entropy, and holography was The paper is organized as follows. In the next section we
established. First, this work proposed a holographical boundiscuss the thermodynamic system that corresponds to the
on the subextensive entropy associated with Casimir energfERW universe with a general equation of state that can be
Second, it showed that the FRW universe entropy may beegative(cosmological constant, phantoms, or quintessence
or time-dependent. The explicit expression for the entropy of
such a FRW universe is found and is presented as a CV
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different typical entropies of a FRW univejss found to be F=—f,T(TYV)A, (5)
universal, like the 2D CFT entropy. The entropy boufids
cluding the Bekenstein boupdor a dark energy universe which tells that the general free energy of the matter with
and their dependence on critical radii are briefly mentionedhas the following form:

Section Il is devoted to the study of the same questions
for modified gravity, which contains terms that increase with Fu(T.V)=TF(TWy). (6)
the decrease of curvature. Such a theory describes the current
accelerating Universe and represents the gravitational alteHere F(x) is a function depending on the matter.
native for dark energy. It is shown that the cosmological CV  For a=4 and =1, the classical radiation in four-
formula is universal, since it remains the same in both framegimensional spacetime is restorgu= fOT4, P:3f0T4- In
(Jordan or Einsteinused to describe such a gravity. In Sec. order to obtain an ideal gas, the free energy should be written
IV the black hole thermodynamics for modified gravity is F=f,(T*VA—T). It is interesting that the last term does not
briefly discussed. It is shown that for Schwarzschild—anti—deontribute top (p) but does contribute to the entrof®/ In
Sitter (SAdS black holes the entropy is related to the areaithe limit thata— 1 and— 0 with finite ¢;=fo(a—1) and
with a numerical coefficient that is different from the Ein- ¢,=gf,, we obtain F=TIn(TV%), p=c,TV, p=c,TV.
stein gravity case. The relation of such an entropy to the C\hen ¢, can be identified with the numbet of the mol-
formula is briefly mentioned. Section V is related more togcyles in the gas,= N andc,= 2N for the monatomic mol-
hydrodynamics and the early Universe. Namely, some Unigcyle. One can also obtain dust by choosthgO:
versal lower bound on the relation between shear viscosity
and entropy density was recently suggested. It is expected p=0, p=(a—1)f,ToV 1 (7)
that such a bound directly follows from the Bekenstein en-
tropy bound. As shear viscosity is typical for an anisotropic We may consider the case for which the entropy is con-
universe, we test the bound for hydrodynamics or a Kasnestant,S=S;, which is typical for an adiabatically expanding
universe. It seems that an anisotropic universe may giveniverse for which the first law of thermodynamics holds.
some counterexample for the bound. Finally, a summary anffrom (3) it follows that
an outlook are given in the last section.

T:(afo)—l/(oz—l)s%/(a—l)v—wl (8)

Il. THERMODYNAMICS OF A DARK ENERGY

UNIVERSE: ENERGY AND ENTROPY Herew is given in(4).

Let us apply the above considerations to the
Let us start from the simple thermodynamic system with(n+ 1)-dimensional FRW metric of the form
the free energfr=F(V,T), whereV is volume of the sys- o
tem andT is temperature. The pressysgenergy density, ds*=g,,dx*dx"= —d7*+a’(7) y;;dx'dx, 9

and entropyS are given by ) ) ) ) )
where then-dimensional metricy;; is parametrized bk=

JF JF —1,0,1. In the following, thek=1 case is mainly consid-

(F_T_)’ T aT (D) ered. Sincev=a"fd"x\/y, the temperature of the Universe
is Teca™ ™. By combining (3) and (8), the total energyE

The first law of the thermodynamics holds automatically: =pV is given by
TdS=dE+pdV. Here the total ener is given by E
=pV. The pBoltzmann constarkg is grisengto be )llmity E=(a—1)a oD e/lemDggllamtly-wog=nw,
(kg=1). The free energy may be chosen in the following (10)
form:

B JF _1
p__é,_vv P_v

The a dependence i and(10) reproduces the correspond-
F=—foT*VA, (2)  ing results in Ref[5].
Rescaling the entropy and the volume &s—~\S; and
with some constantf,, «, and. As a result V—A\V, from the expression(10), we obtain E
—\Ye=DH1-WE " If the energy is extensiveE—\E. For
p=pRBf,TVA™ L p=(a—1)f,T*VF L, S=af,T* VA the extensive part of the energy it follows that 1+ 1A,
(3) B=1. In order to obtain the expression of this Eq. (4)
should be used.

Defining a parametew by p=wp (equation of state we The following free energy for general equation of state
obtain may be considered:
_ 1+ 1w —2n —2/In
W a,[jl. 4) F=—1oT V(1+f, T ™y, (11

If there is no the second term, the first term gives the exten-
The case of interest is the negative equation of state, which isive energy. Note thap=wp even if the second term is
typical for the current, dark energy, Universe. The free enincluded. As a result, the energy and entropy of the thermal
ergy can be rewritten as universe follow:
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f
E= Ty 14
w

1— E f T—2/nwv—2/n
n/t ’

S=f TV

.
1+ =
w

+ (12

1+£_i f., T~ 2mwy/—2/n
w nw/ ! '

As clear from(1) and (2), the entropy becomes negative
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2f§f1 —n/2[(w+1)n—1]

n

1
1+—
w

S"’fo

><V\(/)vn/[(w+1)n—1][anw\/§Ec]n/[(w+1)n71]
:A[anw (2E_EC)EC]n/[(W+l)n71].

(18)

Here
A= f0(1+ 1/W)( _4féf1/n)7n/2[(W+l)nfl]v\(/)vn/[(WJrl)nfl]

(unphysical caseif fo or a is chosen to be negative. If the and

terms containing ; can be neglected, as is clear from Egs.

(12), the entropyS becomes negative if
(1) fp<0 andw< —1: in this case, the enerdyis posi-
tive.

V0=fan \/;

Equation(18) reproduces Eq(20) in Ref.[5] if we identify
A= (27 JaB)MIWTN=11 " This expression represents one

(2) fo>0 and 0>w>—1: in this casefE also becomes f the forms of the Cardy-Verlinde formuld] for the gen-

negative.
We should also note that the ener(jiy we neglect the
terms containingf,) is positive (negative if f, is positive

eral equation of state.
As there are astrophysical indications that dark energy
currently dominates the thermal universe, our main interest

(negative. The case for negative entropy would be unphysi-rg|ates to the case whewe can be negative. One usually

cal and should be excluded. Then the casewsr—1 and
positive energyE, and the case for8w>—1 and negative
energyE, should be excluded.

The subextensive part of the energy, which is called
the Casimir energy, is given by

v

- _ 2f0f1T1+ 1w— 2/nwV172/n_

J (F
Ec=n(E+pV-T9= —nvz—(v)

(13

The extensive part of the ener@¢ has the following form:

1
EE: E_ EEC
f 2
= THY 14 ( 1+ w) flTZ’“WVZ’”}. (14

From the last expression i12), we obtain

1\t 2 1
14+ — 1-—+—
w nw w

T~S" 1+

flT—Z/nWV— 2/n}
(15

and
Ee~S"" 'V "+ O(f]), Ec~SY"1 2V O(f)),
(16

which reproduce the behaviors in RE5]. When the size of
the universe is large, the second termsSil2) and inEg
(14) are subdominant and we obtain

S~f TV (17

, EENETlJrl/WV.
w

1
1+ =
w

Then combining13) and(17), for the FRW metriq9) with
k=1, one gets

denotes the matter as quintessence-§>w>—1 and as
phantom[6] if w<—1. Whenw=—1, the situation corre-
sponds to the cosmological constant. First we should note
that entropyS (18) becomes singular at= — 1+ 1/n, which
occurs since the produ@-Eg becomes independent of the
temperature. If the entrop§is conserved, Eq18) indicates
that the producEcEg increases if the size of the univerae
increases whew is negative. The entropy may be conserved
but we may consider the variation of the entropy as a change
of the initial condition.

When 0>w>—1+1/n, if we keepEcEg as constant,
Eqg. (18) shows thatS decreases i increases. Whemw<
—1+1/n, Sincreases ifaincreases buf decreases IE-E¢
increases. As is seen froth2), the specific head E/d T with
fixed volume ¥ is a constantbecomes negative, when 0
>w>—1. For the phantom mattemi< —1), the specific
heat is positive and for the cosmological constant, the spe-
cific heat vanishes.

For the current realistic Universe the case for many kinds
of matter(with dark energy dominangés typical. In such a
case the free energy may be written as sum over various
contributions

F=—2 fioTH v 1+ £, T 2Miv-2m (19
1

Then one gets

fio
E= _Tl+1/WiV
Ei Wi

2
1+ ( 1— ﬁ) filT_Z/nWiV_Z/n}:

1
1+ =
Wi

S=2, fioT™v
|

+

1+ i — i) filT—Zlnin—Z/n} ’
W nw

E~=—2 fAf -|—1+1Iwi72/nin172/n,
C 2| iohil
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is consistent with(25). If there is only dark matter withv
<0 in the Universe, we hav&*"rV=C even at high tem-
perature. When the Universe expands and the radius grows,
the temperature increases too and also the erergiyd en-
xfilT‘z’”WiV‘z’“}. (200 ergy densityp behave aE~a "™ andp~a """ re-
spectively. As a result the density becomes large and might
Thus, in case for several types of matter, we cannot obtain 8i€nerate some future singularitidike Big Rip, where the

simple relation(18). Nevertheless, an inequality follows: ~ scale factor of the universe diverges in a finite time
As an example the system with dust and quintessence or

S=S~A[a™i\(2E;— E¢)Eq;]MWitHn=11  (21)  phantom matter, wher is negative, may be considered. If

we assume that there is no internal structure in the dust, the

Here energy of the dust does not depend on the temperature and
the free energy, corresponding (@), becomes a constant:

fio 1+ 1w 2
EE—Ei w, TV L 1wy

1 4f2.f S\ —n2[(wij+1)n—1]
A=fyl 1+ _) ( — 0_'1') F_: Epo- Then the total free energy can be assumed to be
Wi n given by
-n/ L —
X V\(’)Vlﬂ [(wj+1)n—1] ) (22) F= EDO_ prT1+ ll\NpV( 1+ fplT—Zanpv—Z/n) ) (26)

As S=3;S, andS;=0, the inequality21) holds for arbitrary  Thus, one obtains
i. With the entropyS (20), at high temperature the matter
with small and positivew; dominates. We now denote the
guantities related with the matter with smallest but positive
w; by the index “min.” On the other hand, at low tempera-

1+

f
E=Epo+ 2 TH 1Moy
Wp

2
1- ﬁ) fpl(T‘”WpV)_Z/“},

ture as in current Universe, if all the;’s are positive, the T 1

matter with largew; dominates. We now denote the quanti- S=fpoT™"rV|| 1+ Wo

ties related with the matter for largest; by the index P

“max.” Then we obtain S 1 2 Lier 1~ — 201
~A[a™i\(2E;—E¢;)Ec; VWit =11 Here at high tem- AR w, nw, Fpa(TTHOV) ' @7

perature, we have=min and at low temperaturie= max. If
there is a dark energigay, phantomwith negativew, such a  Note that dust does not contribute to the entropy. The energy
matter dominates at low temperature: of the dust is not extensive or subextensive. The extensive
and subextensivé€Casimip parts of the energy of the phan-
S~Ap[a™e\(2E,— Epc) Epc]MIWe N1 (23)  tom or quintessence matter are given by

Here we have denoted the quantities related with the phan- Epc= —2f pof py TH e~ 2Wpy/=2n,
tom matter by the indep. Note that for a negative equation

of state the above universe entropy formula is dissimilar to foo 1w 2
} i ; ; Epg=—T PVI1+|1——+w
the well-known Cardy formula in CFT. Since the entropy is PE™ W n p
given by P
1 1 2 X f 1T72/anV72/n ) (28)
S~fpoT™eV|| 14+ — | +| 1+ —— —) fpl(T”""pV)_ZI”} P
Wp Wp MWy . .
o4 If we assume the entrofyis conserved, from the expression
_ CUR S(27), we find T*»V is a constant;
for conserved entropyT*™rV is a constant:T™ev=C.
Then the energ¥ can be rewritten as TWpy=C. (29
f 2 Then the ener 27) can be rewritten as
E~2CT/1+[1-=|f,Cc 2 9¥ (27) wrl
W n/ P
pr 2 —2i
¢ E=Epe+ ——CT/1+|1——|f,C "
— LOprJr 1\/8Wpafnwp Wp n
P f
2 =Epo+ WLOCWP+1V(;Wpa7an
X1+ 1—ﬁ)fp1C2/n} (25 p
X |1+ 1—2 f, C 2N 30
ﬁ pl : ( )

Thus, the energy is linear with the temperature. In the last
line, we have considered the FRW met(®. Generally in
the FRW metric, if we have the relatigp=wp, we findp  Then energy is again linear in the temperature. In the last
xa "W (energy conservatiorandE=pVxa "V, which  line, we have considered the FRW met(®. Generally in
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the FRW metric, if we have the relatign=wp, we find p Fo0 i —Wot) o1 Lot
sca "W and E=pVeoa ", which is consistent with the Epe= Tk MOV et g p(t)
last expression for the phantom or quintessence matter in P

(30).

X

Taking into account the recent cosmological consider- 1+

ations of variations of fundamental constants, one may start

2
1-= +Wp(t)> fplg—%wpmy

from the case in.whiclalv.p depends_ on time_ Of course, this Epc=— 2fpofpla—nwp(t)v—wp(t)§1+ Lhwg(t) — 2/nw(t)

may be a negativéor sign-changingfunction. The energy 0 (34)
conservation condition reads=(p,+ n(a/a)(p,+ p,) by as-

sumingp,=wp(t)p,. Then we obtain the expression As wy(t) and ¢ are time-dependent, the entropy is not con-

stant and not conserved. Nevertheless, f(@4) the Cardy-
t, Verlinde [1]-like formula(in the form of Youm[5]) (23) is
pp= a”[“wp“”exp( nf wo(t)Ina(t")dt’ ) : still valid:

Sp~Ap[a™\(2E,— Epc) Epc]MIMp N1 (35)

We should note, however, since

The energy in such a universe is

t.
Ep=ppV= a‘“Wp(t)ex;{ nf wy(t")Ina(t’)dt’ )Vo.

2 —n/2 t)+1)n—-1
et 1a 1 atity n/2[(wp(t) + 1)n—1]
(31 PTIPOLT T w1 n
wn/[wp(t)+1]nfl

If the spacetime expansion is adiabatic and thermodynamical XV,
quantities can be defined, Eqd) are valid. Thus, if we

define a free energy as in the phantom part of ), we  andw,(t) depend on timed,, is not a constant but a function
can obtain the entropy and energy ag2d) and the exten- Of the timet. Thus, the entropy of the expanding universe
sive and subextensive parts of the energy a@®. Then if ~ With a (negative time-dependent equation of state is found.

we define a variable by T=V "¢, extracting the phan- Now, the FRW equations for a universe filled with matter
tom partE, from the expression o in (27), we obtain with pressurep and energy density are given by
f ) 167G k . 87G
E,= PO_ (1)~ W(D) g1+ Lhw (1) =) a2 H=———7(p+ p)+ 22
0
wp(t) (36)
x| 1+ 1_§)f1§—2/nwp(t)} (320  As in Ref.[1], if we define the Hubble entropg,, the
n Bekenstein-Hawking energi#gy, and the Hawking tem-

peratureT by
By comparing(31) with (32), one finds

o _(MDHV __n(n-1v H
_ Wp(t))Wp“)’[wp(‘””va(t) p( nwp(t) HTTTaG 0 TBHT TBaGa? T M 24!
foo 0 wp(t)+1 (37)
ft. Nl Nt 11—t 1-2/n the FRW equations can be rewritten in universal form as
X Wp(t )Ina(t’)dt — 1m -
wy(t)| 2w+ 2 Su=—VEsn(2E—KEgn), KEgy=n(E+pV—TuSy),
o s
( o ) Vo ex"( WD+ 1 39)
.o o ) Furthermore with the Bekenstein entropys and the
Xf wp(t)Ina(t’)dt’ | +O(f). (33)  Bekenstein-Hawking entrops, as
. 2ma (n—=1)V
From EQs.(27) and(28), the expressions of the entrofy, Sg=—E, Sgu= ~iGa (39)
the extensive part of the ener§ye, and the Casimir energy n a
Epc may be evaluated: we obtain well-known relation between entropies:
2 __
et 11 1| =200k @
wp(t)

In the case fok=1, Eq.(40) can be rewritten a§ﬁ+(SB
1 2 )f 52’”"%(0} —SBH)2=Sé. Then we findSy;=<Sg. For the system with
pl '

+ _— - . .
Wp(t)  nwpy(t) limited self-gravity, the Bekenstein boun@3] occurs:

1+
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S<Sg. This bound is useful for the case in which the systemHere S is given by Sy=A,(n/2z)"[(Wp* =11 However,

has relatively low energy or small volume. Then Bekensteirasw, and A, depend on timeS, also depends on time. If

entropySg scales aSz—\1""S, under the scale transfor- w< —1<—1+1/n, the entropy can be negativenphysical

mationV—AV andE—\E [1]. case even if the energy is positive. If-1<w<1/n, the
Equation(38) has a form similar to the second equation in entropy becomes negative only when the energy is negative.

(18) with w=1/n; this equation is called the cosmological

Cardy-Verlinde formula. The second equation(87) has a ;. ENTROPY AND ENERGY IN MODIFIED GRAVITY

form similar to(13) andEgy may correspond to the Casimir

energyEc. In Ref. [_1]' the following cosmological bound In Refs.[7,8], a gravitational alternative was suggested
has been proposed: for the dark energy modifying the standard Einstein action at

low curvature by the R term. Such modified gravity may
produce the current cosmic speed{7 and may be natu-
rally generated by string/M theor}8]. It represents some

As seen from the definition oEgy in (37), we find Egy : . s = ! .
—a" 2. If we consider phantom or quintessence as the ma kind of higher derivative and nonlocal gravity, and as such it

ter field, as seen from the last expressiori3f), the behav- may cont:';\i'n some instgbilitie{il]. Neverth.eless, with some
ior of th,e Casimir energy is given b ~a‘”""’ Then ifw mild modifications at hlgh cqrvature regions, the theory is
<—1+2/n and E; is positive, there fs a criti.cal radiues, shown to be stabl[alz],_ \.NhICh 'S _also support_ed b_y quantum
WhereE..— E a?nd if the rad,iusa of the universe is larger field theory[lZ]. Modified gravity was ;tud|ed in Ealatml
than theccritiggl’radiusa>a the bound in(41) is violated form. [10], and_lt Seems thgt it may be viable also in such a
Formallva.. is diven b ¢ " version. Classically, its action may be mapped to an equiva-
yacisg y lent scalar-tensor theory. We discuss below the entropy, the
167G ff .\~ Wo~ll-2n] Unwy+n—2] energy, and CV formula for an accelerated universe in modi-
-~ PoTp1¥o fied gravity, which provides the gravitational dark energy.
n(n—1) Let us start from the rather general four-dimensional ac-
tion:

Ec<Egy. (41)

ac=

with the parameters$, f,;, andC, which may be deter-

mined by some initial conditions. If we consider four- .1 4

dimensional spacetimenE 3), becausev<—1+2/n, we S= Ff d x\/—_gf(R),

obtainw< —1, then for the quintessence-(l<w< —1),

the cosmological constantv=—1), and the phantomw  where x’>=167G, R is the scalar curvature, ant(R) is

<—1), there is always a critical radiug, and the bound some arbitrary function. By using the conformal transforma-

(41) is violated ifa>a. . tion g,,,—€g,, with o= —Inf'(R), etc., the actior44) is
Similarly, one can discuss the entropy bounds for the darkewritten as

energy universe as in Rdf] even ifw, depends on time.

(44)

Although the entropy is not conserved, the expression of the A 1 . 3 oo
entropyS, (35) still holds. The quantity (E,—E,)E,c in- SEZ?J’ d*xV—g| R=59?9,09,0-V(a) |,
side the square root dB35) has a maximunE,zj whenE, ¢
e V(o) (e7%)—e*"f(g(e™")) A TA
o)=e’g(e 7)—e“7f(g(e 7))= - .
S<A [ nwyE ]n/[(wp+l)n—1] for w.>—1+-— ’ ? f,(A) f’(A)Z
=AplaPEp 0 p n’ (45)

1 Here g(B) is given by solving the equatioB=f'(A) with
5;Ap[anwap]n/[(pr)nfl] for wp<—1+=. respect toA, A=g(B), and A in (45 is given by A=
n — €7, This is the standard form of the scalar-tensor theories
(42)  where the scalar field is fictitioyd.2].
We now consider the FRW cosmology in modified grav-

As wj, depends on time, at some time, we may h ity. The FRW metric in the physicdlordan frame is given

—1+1/n and at another timey,<—1+1/n. If we define

b
the Bekenstein entrop$,g for the dark energy as i(89), y
Spe=(2mal/n)E,, we find, even ifw, depends on time, the 3
relation as in Ref[5]: d?=—d?+a(t)? X, y;dxdx. (46)
iT=1
1
S<Sla™p ISVt N for  wp> -1+ = The FRW equation in the Einstein frame has the following
form:
_ _ 1 2
S=Sp[a™e gV N for W< -1+ - 3k

3HE+ —5 = S(p(ory T P(m)- (47)
43 ©log2 2T
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Herep ) is the energy density of the matter but for simplic- e HeVe . .
ity, we neglect the matter. We also concentrate onkikeé Si=—5g  E=rweVe. Egn
case but the obtained results are correct evekfod case if

the radius of the universe is large enough. The Hubble con-

stantH in the Einstein frame is defined by-=ag /ag with VEEéEJ d3x\— 7, (55)

the scale factogg in the Einstein frameaz=e “"a. The

contribution from ther field to the energy-momentum tensor and x>=167wG. The second FRW equation can be given by

p(oE) IS given by considering the derivative of thdirst) FRW equation(47)
with respective Einstein timg: and can be rewritten as

3V
B 47GaZ’

| ~

P(cE)

N

3.
2
(2" *V(‘ﬂ)- “48) KEGy=3(E5+ P(oe)Ve— THSH).- (56)

K

In the Einstein frame, the equation of motion ferhas the Here
following form:

. 1 dHe
. . THE——_
0=3(c+3Hgo)+V'(0). (49 2mHe dte
Assuming that when the curvature is small the action is@hd we find
given by
1 dper
D(UE)—_—3HE dte ~P(sE) - (57

.1 a
S= Ff d4X\/—g(R— ﬁ)' (50)
In the physical Jordan frame, sinee=e”?ar and e”dtg
—dt, the Hubbl i
the potential is given by/(o)~(2/Va)e®?7. Since o= dt, the Hubble parameter is
—Inf'(R~—In(@/R?), o is negative and large. Then the so- da 1 dazdte 1do

1 o
i i i - - _=_ = - — —ol2,
lution of Egs.(47) and (49) is given by H= 2 dt éE dtg dt + > di Hee 7%+ 5 (58

413 2
=2 t_E - f t_E t_o = Then in the Jordan frame, the FRW equation can be rewritten
ag=agg y g In y 4. (51)
to 37t \a as
Heretg is the time coordinate in the Euclidean frame, which , 3k «? B I a2
is related to the time coordinatein the (physica) Jordan 3H ™+ 2 S P0) P@TP0EE +Ho— a4
frame bye”?dt=dt. As a result 3t°*=t and in the physical (59

(Jordan frame the power law inflation occurs,

N Defining Sy=HV/2G, E=pyV, Egy=3V/4nGa?, V

agtgTcts (520 =337d3/=7, we obtain the cosmological Cardy-Verlinde
formula:

é: e(r/2

In general, if p=wp, the scale factora behaves asa
~t2BW+1)  Then as we can see fro®2), in the Jordan 2ma
frame we findw=— % and from(52), in the Einstein frame, SH:TvEBH(ZE_ KEgh). (60)
w=—2. In fact, in the Einstein frame one has
By differentiating the FRW equatio(b9) with respect tat,

% _ i(_ 2_y >~_ 16 one gets the second FRW equation:
P(oE) —3K2té, Py = 2127 (o) 3K2té'
(53) dH k K2 . 1 dp(g)
E—§=7(P(a)+ P P@="35 qr Pl
Although the Jordan frame is physical, as the separation of 61)

the gravity and the matter is easier in the Einstein frame, we

work in the Einstein frame for a while. The FRW equation wjth the definition of the temperatuf®, as
(47) can be rewritten in the form of the cosmological CV

formula withn=3 as 1 dH

=" 2am dt

2ma
SE:T\/EEH(ZEE_kEEH) B9 it follows that

by defining kEBH:3(E+ p((r)V_THSH)' (62)
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For the case ok=0, by substituting’51) and(52) into the
expressions op, in (59) andp, in (61), we find
P(s)0 22(27)*3 2 p(a)0

PO~ "2 p(f’)OE—?,Kztg/s —-12, P@="3 72
(63

Eventually, it followsw= — % in the Jordan frame.

At low temperature, as the field with lowestegative w
dominates, we may have a equation similar(28) with n
=3:

S~ Ao'[aSWU [ ZEU._ EO’C) EUC]3/(3WU+ 2),

1 4f§0f01 —3/2(3w,+2)
NI
% V§WUI(3W"+ 2) (64)
Sincew, = — 3, the exponents it64) diverges. Then when

the entropy is finite, the following condition appears:

( _ 4f5’0fa'l) 32

3 V" lar\(2E,~ E,0)E,clP=1.

(65)

Notice that the solutiort51) or (52) is for k=0 case. Then

the Casimir force should vanish. In order to find the Casimir d<2—
force, we need to consider thker 0 case. As the expansion N
over k corresponds to the expansion with respect to the in-

PHYSICAL REVIEW D 70, 043520(2004

sor R of the metricg{?), i.e., RP=k@g® . If A<0
(A>0), the spacetime is asymptotically anti—de Siitee
Sitten). In both cases the curvature radius will be defined by
L2=3/A|=12//3a.

We shall mainly study the SAdS metric, although our re-
sults apply equally well to any horizon topology. The ther-
modynamical free energy can be obtained according to a
quantum gravity tree-level formula involving the Euclidean
actionlg: F(B)=p8"tlg=(k/2m)lg, wherex is the surface
gravity of the black hole. To pursue this program one has to
regularize the volume divergences. In anti—de Sitter gravity
one can achieve this, essentially, by two well known meth-
ods. One is the counterterm method inspired by the Mal-
dacena duality with conformal field theories, the other a
background subtraction chosen to correspond to the vacuum
of the CFT. This uniquely identifies it as anti—de Sitter space
itself, with no matter inside. The unregularized Euclidean
action will be

1 a 1
S S T o FONT Y 11243
le=— 155/ ¢ X(R R)|g| e § K|h|Yd3x.
(68)

The Euclidean SAdS solution is given 1§§7) taking k(®

=1 and the metri@{?) to be that of a round two-sphere,

) -

moor moor
1- =+ —|dP?+|1- =+ —| dr’+r?dw3,
r L2 r 2

(69

verse of the radius of the universe, we may consider the

perturbation with respect th in order to obtain the Casimir
energy. We should also note that, as discussed &ft®r
sincew is now greater thanr-1 but negative, the entropy
could be negative only if the energy is negative.

IV. BLACK HOLE THERMODYNAMICS

where dw3 is the line element of a two-sphere with unit

radius and volumev,=47. Moreover,7= 7+ B is periodi-
cally identified up toB and the curvature radius ik?
=12/\/3a. This is a solution of68) with R= — \/3a. There-
fore it represents a spherically symmetric black hole im-
mersed in anti—-de Sitter space.

We now consider the black hole solution in the modified Th€ background metric will bg69) with =0, i.e.,

gravity, whose action is given b§p0). As it will be shown,

anti—de Sitter space at finite temperattire «/27r. This has

its thermodynamical properties are also related to the C\£€ro gravitational entropy, since there is no horizon. The ac-

formula. If we assum® ,,*g,,, the equation of motion is
given by
a 1 a
0= 1+E RW—EgW R_ﬁ . (66)

ThenR==* \/g, Ru.,= i(\/gM)gw,. A large class of so-
lutions is given by the family of metrics

d?=—e*d?+e 2dr2+ > g{Pdxdx,
ii=12

3a
A=F——,

4

1 Ar3
2=2| — pt+k@r - —
€ r K 3 )

(67)

embracing de SittedS) and anti—de SittefAdS) black
holes with any horizon topology. Hetd?) is the Ricci cur-

tion (68) for the metric(69) is easily seen to be

Iz@ﬂ
£ 3126

whereR,, is an upper bound for the radial integration and
is the radius of the horizon. The action of the background is

g
EB 3\/1—2G

where againR, is a radial cutoff. Now a meaningful com-
parison of the black hole free energy with the vacuum free
energy(empty AdS spaderequires that the vacuum metric
on the surface =R, be asymptotically coincident with the
actual metric on the surface=R,,,. This matching condition
ensures that the boundary temperatures in the black hole and

(R3—r3)+boundary terms,  (70)

R3+ background boundary terms,(71)

vature of the transverse manifold, as given by the Ricci tenthe background be equal. A simple check gives the matching
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condition that, asymptoticallyRy= Rm—,uL2/6R§1. Using An asymptotic SAdgblack hole in general relativity has
this in (71) and subtracting the result frorfv0) give the an excitation energy over the AdS vacuum that can be com-
regularized actioh puted by canonical methods through the formula
Vap
Alg= L2—2r3). 72
E6JEG“L +) (72 M= N(® — 0 ) Jodd2x. (75)

- 87G

We note that the mass parameteandr , are functions of3
through the defining relationsu=r,+r3/L? and B

=47-rL2r+/(,uL2+2r?;). Hence the entropy could be com- Here we integrate, over a( 2)-dimensional sphere at in-

puted by the familiar thermodynamical relatiG- Ba Al ¢ f|n|ty.conta_|ned in a Cauchy surface of equal time, the lapse
. unctionN=/— gy times the trace of the second fundamen-
—Alg. Instead we may use an easier way. We note that bot .
al form of the sphere as embedded in the Cauchy surface,

R-a/R andR—2A are proportional to\/g_! SOlg must be  after a regularizing subtraction from empty AdS space. For
proportional to the action as computed in Einstein gravitythe metric(69) one finds

Denoting this aslgs, a simple computation givesg
=3laqs- We know that the entropy in Einstein gravity is

AJ4G, so we immediately conclude that inRLgravity the (d—2)wg_»
entropy must be M= —lenc M (76)
o= 4 A A -3
“326 36" (79

This can be expressed as a function of the black hole radius
. o . . . by using the conditionN(r,)=0, which is u=r9"3
So black holes in modified gravity are a little bit more en- +r$l/|—2- In theories with an AdS dual, this relation can be

tropic than expected. We may confirm this result by using the .
. interpreted as the energy of a CFT “living” on the boundary
Noether charge method. In this case the formulel&] of AdS spacetime, and leads to a CV formula for AdS black

holes. In higher-derivative gravity, and this is just our case,
L . >
S= 477f —d?%x, things may be not so straightforward. For a theory whose
$?IR LagrangiarL =L (R) is a function of the scalar curvature, the
. ) ) ) . above mass can be related to a Noether chftggthat is
whereL=L(R) is the Lagrangian density and the integral is ,ohortional todL/gR, as in the entropy derivation given
over the horizon atr=r,. In our case £L=Vg(R  ahove. Moreover, it is this Noether charge that enters the

—alR)/167G, so formulation of the first law for stationary black holes in dif-
feomorphism covariant theories of gravjt}3,14]. The result

A a 4 A is the mass formul&75), except that the integrand gets mul-

S=acl1f =2| ~ 336’ tiplied with 16rGJL/JR evaluated on the background solu-

tion, whereL=(R—a/R)/16xG is the actual Lagrangian.

This gives all masses an extra coefficient a/R*=%. It is
therefore clear that the Cardy-Verlinde formula for AdS
black holes[15,1€], being the square root of a quadratic
function of all the relevant energies, will give the entropy the
od A 4/3 coefficient too, in accord with our calculations.

S=—x—. (74

as a simple computation will confirm usirRf=3a. These
calculations can be done in any spacetime dimensions].say
Then (73) generalizes to

V. HYDRODYNAMICAL EXAMPLES TESTING

Note that for the black hole with the size of a FRW universe, THE HOLOGRAPHIC ENTROPY BOUND

the entropy is defined by the Bekenstein-Hawking entropy

Sgn (39). Then the above result indicates 2y, should The suggestion of Kovtuet al.[17] that there may exist
also be modified by the factord2(d+2) if compared with  in cosmology a universal lower bound ayis—# being the
the FRW universe in Einstein gravity. shear viscosity andthe entropy content per unit volume—is

The higher entropy of black holes inR/gravity means interesting, since it may be of fundamental importance.
that they are more massive than those in Einstein theoryThese authors are concerned with the infrared properties of
since by the first lawdM=TdS The precise prediction theories whose gravity duals contain a black brane with a
should just be thai is larger by the factor=2d/(d+2). nonvanishing Hawking temperature, the point being that the

infrared behavior is governed by hydrodynamical laws. If we
for definiteness consider a stackMdhonextremal D3 branes
'one finds that the boundary terms do not contribute to the finain type 1B supergravity, the metric near the horizon is given
result. by
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r2 9u?y| (3R> 5R® R* 1R®
o 2 2 2 I - _Z -
ds? RZ[ f(r)dt?+dx?+dy?+dZ] T(1)=To=—x 22 3r3+r4 s cogo
. R? 424 R2dO2 ; +2R 3R2+5R3 1R* 1RS
2 | o 37 4727973 6% 360"
(80)

whereRxNY*is a constant and(r)=1—r&/r* with r, be-

ing the horizon. The Hawking temperature of this metric iswhere T, is the constant reference temperature at infinity.

T=ro/mR? and » and s are given by »p=2wN?T3, s The boundary conditions are T=T;=const and

=3m°N2T3. Thus, in dimensional notation [(dT/ar)r?sinede=0 for r =R. From Eq.(80) it is seen that
AT=T,—To=5u?7y/8\.

B B s One may ask: What is the appropriate value to be inserted

- M—G-ng 1007 Ks. (78 for the entropy densitg? Taking water as an example, one
might use the handbook value fer resulting in7»/s=2.3

The conjecture of Kovturet al. (see also Ref[18]) is that <10 °K's, as in Ref[19]. However, in our opinion the

the value in Eq(78) is alower boundfor #/s. Since this Physically most natural value to use fsin the present ex-

bound does not involve the speed of light, the authors evefMPI€ is the one associated with the temperature dif-

conjecture that this bound exists for all systems, includingerence AT. This amounts to settings=pc,[ (dT/T)

nonrelativistic ones. ~pc,AT/Ty, ¢, being the specific heat capacity at constant
The idea has recently been further elaborated in &€, pressure. We then get

arguing that the bound follows from the generalized covari-

ant entropy bound. From Ed40), there is the Bekenstein 7 8vT, 1

(and also the holographi@ntropy bound, which is used to e

prove the new bound to shear viscosity.
The purpose of this section is to elucidate this holographiG,here ;= nlp is the kinematic viscosity and Prupc, /)

idea by considering some examples explicitly. We will the prangti number. We choose the moderate vglonity

choose examples from general physics. Our scope is thus 1 m/s to keep the Reynolds number small, and fake

wider than i.n the previous sections; our ain_1 is to investigate: 300 K. Then, withy=0.010 cr¥/s, Pr=6.75[21] we get

the generality of the entropy bounq. We will conS|de.r three7]/S=71 K s as a typical value. The inequality9) is obvi-

examples, the first taken from ordinary hydrodynamics, th usly satisfied.

second from the theory of the Universe in the beginning o Example 2. Plasma era in the early Universe the next

its plasma era, and finally the third taken from the very earlyStep we consider the initial stage of the plasma era in the

Universe under conditions corresponding to the Kasner metéarly Universe. This can be taken to occur at abbut

ric. The third exa.mple- Is presuma_bly the one of main inter-_ 1000 s after the big bang, when the Universe was charac-
est; the shear viscosity concept is after all a concept th%rized by ionized H and He in approximate equilibrium with

re]ate; to ananisotrppic physical situation'. Moreover, we radiation(cf. Refs.[22—-25). The number densities of elec-
will discuss the validity of the Cardy-Verlinde entropy for- trons and photons are equak=10° cm3, the temperature is

mula in the case of viscous cosmology, thus elaborating on T S
. . S =4x10® K, and the energy density isc>=a, T*, where
the previous treatment on this topic in REX0]. The central a, = m2k4/(15h3¢%) = 7.56x 10 15 erg cn 3K ~* is the ra-

inequality that we intend to analyze is thus diation constant. The pressurefis- pc?/3. The presence of
energy dissipation and viscosity coefficients in the cosmic
_7" (790  fluid is due to the fact that the thermal equilibrium is not
filAmkg quite perfect. From relativistic kinetic theory one can calcu-
late the viscosity coefficients. Lat=m.c?/kgT be the ratio
Example 1. Hydrodynamics: Small-Reynolds-number flonpetween electron rest mass and thermal energy; wkeh it
The following setup taken from ordinary hydrodynamics in-is convenient to use the polynomial approximati¢?6] (cf.
volves both the shear viscosity and the entropy density  also[24]) for the evaluation of the shear viscosityand the
Assume that a solid sphere with radiesind with high ther-  bulk viscosity:

mal conductivity\ is immersed in a uniform flow passing it

i
s

5u2 Pr’

nls

at small Reynolds numbers. We take the origin in the center 5mg08§(3) 4 wc?hen 3

of the sphere, and use spherical coordinates with the polar 1= ordnietn X {= st 3 (81)
axis in the direction of the undisturbed velocity of the mhten ¢@3)

stream. The equation of thermal conduction V&T= £(3)=1.202 being the Riemann zeta function. At=4

—(n/27\)(vi’k+vk’i)2, wherev is the fluid velocity forr X 10% K one hasx=14.8, leading to
=R. Inserting Stokes’s formuléapplicable at low Reynolds

numbers for v, the solution for the temperature distribution  7=2.8x10%gem ' s, (=7.0x103gem s %
T(r) can be written a§21] (82
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We note that bothy and{ now containf, and also thatyis  but independent of position. #=(U°U") is the fluid’s

enormously larger thad. four-velocity, the energy-momentum tensorTis,=pU U,
The entropy density, in view of the radiation dominance,+ (p—¢{6)h,,—2%o,,, where h,,=g,,+U,U, is the
is given by projection tensor,d=U*. is the scalar expansiorg,,,
4 = %(Uﬂ;ah% U,..hy) is the expansion tensor, and,,
— 1 H
s==2a,T°=6.45 10" erg cm 3K 1, 83 0w 3w 0 the shear tensor. .
377 9 (83 Consider now the Einstein equations, taking the cosmo-

_ _ o logical constantA to be zero. Withx?=16wG we obtain
and son/s=435 K's. This value is surprisingly large enough from R,,= %KZ(TMV_ 39,,T%) the two equations
to satisfy the bound in Eq.79) as the value irExample 1.
There seems to be no simple reason why this should be so; 3 1
the physical conditions in the two cases are widely different. P-Q+ ZKZtCPZ ZKztz(P+3p), (87

So far, we assumed a radiation-dominated FRW universe.

What happens if the universe is instead filled with matter 1
obeying the relatiopp=wpc?, with w constant and nega-  p;(1—P—«’ty)+ chzt
tive? To investigate this point let us go back to Efj7), in

4\ 1,
{+3m|P=—7xT(p=—p).

which the subextensive parts are neglected. For the ratio (88)
s/pc?, wheres=S/V andpc®=E/V, we obtain The structure of the Einstein equations leads to the time re-
lationships,
s 14w
T &9 p(D=polto/V?, P(t)=Po(to/t)?,
This expression is seen to be independent of the prefégtor (O =Lotolt,  7(1)=10tolt, (89)

Let us assume that the energy densitff at4 < 10° K is the
same as before, i.epc?=a,T*=1.94x 10°° erg cm 3. Then
s is found from (84), and taking the shear viscosity to be
given by (81) as before, we obtain the following simple

where {pg,po,{0, 70} refer to the chosen initial instarit
=t,. We can then write the equations such that they contain
time-independent quantities only:

equation: . .
— _ .2 _ 22
n 578 o P—Q+ 7 x*{otoP= 7 x*t5(po+3po), (90)
s 1+w’ (85 . .
{(1=P—x?noto) + 7 k%to| Lot = )P

We see that except in the case wharés close to—1, the Pi( 1“moto) + 71| Lot 3770

order of magnitude o#)/s is roughly the same as above. Itis 1

moreover evident that the expressid85) is physically Z_ZKZtS(Po—po)- @)

meaningful only whem> —1 (the viscosityn has always to

be positive, for general thermodynamical reagokige thus

see that the inclusion of shear viscosity implies that it is only-€t Us consider the production of entropy. First, for the Bi-
the case of quintessence that is of physical interest. The ca@8chi type-l spaces the average expansion anisotropy param-

of phantomsw< —1, leads to negative entropies and is in 81€rA is defined ag27]

the present context excluded. 3
Example 3. The Kasner univers®ur third example is Azl D

taken from the theory of the very early Universe. From or- 3=

dinary hydrodynamics we know that the shear viscosity

comes into play whenever there are fluid sheets sliding witlwhereH;=a; /a; with a;=tPi are the directional Hubble fac-

respect to each other. Correspondingly, in a relativistic fortors andH=%E§Hi is the average Hubble factor. Accord-

mulation, the most natural circumstances under whijcls ingly, in our caseA=3Q/P2—1. Next, the entropy current

expected to be of significance are when anisotropy is broughbur-vector is S*=noU*, wheren is the baryon number

into consideration. It becomes natural to focus attention ofyensity ando=s/n the nondimensional entropy per baryon.
the anisotropic Kasner metric In general,

1_

H.\?
) : (92)

I

ds?= —dt?>+t?Padx?+ t?P2dy? + t?P3d 22, (86) 27 s
S”;MZ?O'MVG'“”-F Taz, (93

where the numberp,,p,,ps are constants. The two num-

bersP andQ are defined byP=3>_,p;, Q=2 p?. Ina

vacuum Kasner spacB=Q=1. Here, we assume that there

is an isotropic fluid with energy density and pressure 3p2 5

immersed in this space. Botghandp, as well as the viscosity - ( i+ 3 UA) _ (94)

0'_
coefficientsy and {, are assumed to be dependent on time nTt?

meaning in the comoving frame of referenafz(da/dt)
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As we would expect, the anisotropy in general provides alhe entropy density is calculated approximatively by assum-
significant contribution to the growth of entropy, in view of ing radiation dominance, such as before. Then, frem

the large magnitude of). However, let us go back to Eq.

(92): this equation tells us that all thg have to beequalin
the present case. Wity = p,=p3=b we get for theisotro-
pic Kasner space

1 3 )
b:_ 1+ ZK togo

6

3 2
+ l+ZK togo

It is seen that the shear viscosity is absent. Equatézi
reduces to

2

+3K2t§<po—po>J. (95)

3P?
0':
nkgTt?

g, (96)

when written in dimensional form.
Let us evaluate the expressigd6). Due to the propor-
tionality to the small bulk viscosity we can insert foand T

=%a,T® we get s,=1.0x10% ergcm® K. Thus, 70/so

=18 K's. Once again, we end up with the same order-of-
magnitude result for the ratig/s as before, when we choose

to work at the instant=t,. However, Eq.(998) tells us that

n/s diminisheswith increasingt, and approaches zero when
t—oo. It means thaty/s cannot in this case be subject to a
lower bound. The Kasner case thus provides a counterexam-
ple to the suggestion in Eq79). Of course, this can be
considered as rather academical as current Universe is not an
anisotropic one.

Actually, it follows already from the thermodynamical
formalism that the lower bound in E479) cannot be uni-
versal. At least this is so in a phenomenological theory, in
which » and{ are arbitrary input parameters. Namely, from
Eqg. (93) or (94) it is seen that the specific entropy rate of
change involves botly and{. Let us imagine tha is kept
constant whilef is changing. Therefore and accordinglyr
itself, as well as the ratiay/s, change. If this ratio were
subject to a lower bound, this would correspond to the exis-

as if the cosmic fluid were ideal. Thus from conservation oftence of a maximum value &f However, we may make
particle numbernxa~3, and from conservation of entropy, ands as large as we wish, by inserting a sufficiently large

axT 1. Moreover, ag=T 2, we can write Eq(96) as

3P%;, 1
o= ————.

(97)

value of £ in Eq. (94). Recall in this context the way in
which viscosity coefficients are introduced in fluid mechan-
ics: they are based on the assumption fist order velocity
gradients are sufficient to construct the contribution to the
stress tensor due to deviations from thermal equilibrium. The

Thuso — ogx=In(t/ty) is the increase in specific entropy when theory is thus approximate already from the outset.

t increases front, to t. Multiplying with the particle density

The discussion of Verlindgl] about the holographic

n, we obtain an expression for the corresponding increase bound on the subextensive entropy associated with the Ca-

—5p in entropy density. Recalling the expression in EBf)

simir energy assumed a radiation-dominated FRW universe.

for 5, we then derive as our main result the following ex- As shown in Ref[20], the same entropy formula holds if the

pression for the sought ratio:

3 PZ t 3/2
4 %ot} ™)
SoToto t

n_ Moto !

S Sot

& (98

It is of interest to evaluate this expression tatt,. Let
us identify t, with the instant at whichiT=10K, i.e., at
t=2%x10 *s. Then No=6x10cm 3, po=4.5

X 10** erg cmi 3. This temperature is a kind of limit for stan-
dard cosmological theory. IF>10'? K the universe consists

of many kinds of particles and antiparticles, but whHehas

fluid possesses a constant, though small, bulk viscosity.
Similarly, the generalized entropy formylg] for the case in
which the state equation ig=wp with w a constant(still
assuming a FRW metriavas also found to hold in the pres-
ence of the same kind of viscosifg28].

One may ask: How does the entropy formula look if the
cosmic fluid possesses both a shear viscosity and a bulk vis-
cosity? The answer is immediate, if the anisotropy is origi-
nally introduced via the Kasner metric. As shown above the
Einstein equations eliminate the anisotropies, and we are left
with an isotropic Kasner metric whose scale factort'is

fallen below this value a large number of hadrons has disapwvhereb is given by Eq.(95). The anisotropy factoA van-
peared, and the universe consists of leptons, antileptons, phizhes, and the production of entropy is governed by the bulk

tons, and nucleons. We then hgas)

[ mch?
=——X
7776n.G2

3wch?

=——X, °, (99)
608M,G2

7

which is valid whenx=m.c?/kgT is small. Here, the weak

coupling constant is given b@gc/4%=10"°m_ 2.
With To=10' K we getx=5.94x10 3, and so we have
at this instant

7o=1.8x10 gem sl (,=6.0x10%gcmts
(100

viscosity £; cf. Eq. (94).

Let us assume thdtis constant and small, so that we can
adopt the same expression faft) as in the case of a non-
viscous fluid. The argument can be given similarly to that
given in Ref.[28]: Taking n=3 we see that the quantity
pa™*l) can be considered as a function mf. Since E
~pa® andS~nga?d, it follows thatEa®" is independent of
V and is a function ofs only. The conventional decomposi-
tion of the total energ¥(S,V) into an extensive part and a
subextensive par(S,V)=Eg(S,V)+3Ec(S,V), together
with the scale transformations Eg(AS,\V)
=NEg(S,V), Ec(ASA\V)=\YE(S,V), leads to
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o B manifestation of the holographic principle in the modern
Ee=—3-S""!, Ec=-——5-S""",  (10)  Universe remain obscuréSome hints may be drawn from
4ma 2ma the brane-world approaoh.Furthermore, all conclusions

above remain true for the modified gravity, which is consid-

wherea and 8 are constants. We thus get, when we remstat%red as a gravitational alternative for dark energy. This

—1b
a=t, should not seem strange after all, as modified gravity may be
2.t 30w 3/(3w+2) rewritten in the classically equivalent form as a type of
s=|2" [(2E—E¢)Ec _ (102  scalar-tensor gravity with matter described by a scalar field.
Vap The black hole thermodynamics in modified gravity is

o o ) also considered. The black hole entropy law is slightly dif-
This is the Kasner-metric-induced form of our previous ex-ferent (by numerical factdr from the standard case of the
pression(18), whenn=3. It will be of interest to understand Ejnstein gravity. In the last section we analyzed the recently
better the connection between the CV formula and shear Vi%)roposed bound for the ratio of shear Viscosity to entropy
cosity bound. However, this requires the nontrivial generali—density_ This bound seems to follow from the Bekenstein
zation of the CV formula for an anisotropic universe with entropy bound. As shear viscosity is absent in the current
shear viscosity. isotropic Universe, we concentrate on the early Universe in

the plasma era or the anisotropic Kasner universe, where the
VI. DISCUSSION newly proposed bound seems to be violated.
In summary, we studied the entropy of a FRW universe The important lesson drawn from this and other studies of

filled with dark energy and its representation in the form ofthe entropy of the FRW universe is that the holographic prin-

. s T ciple does not distinguish whether dark energy is present or
mg gfg)?ggiﬁ)hrlcoﬁ\rfefc;ﬁrlgsy ?;]ht'zr'rﬂ\sle;tgggg; Zﬁ%wé‘atsr;raﬁ.?ot. For instance, the cosmologica_l (_ZV _formula is the same
energy depends on the equation of state in a quite Compl}/_vhatever the equation of state. Thl_s mdlcates that the origin

S . . of dark energy should be sought within fundamental theory,
cated form. Only for a radiation-dominated FRW universe erhaps within strina/M theor
does the corresponding CV formula acquire the form typicaP P 9 Y-
for 2D CFT entropy. At the same time, for a negative or
time-depepde_nt equation o_f state, such a for_mula seems to ACKNOWLEDGMENTS
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